Properties

Label 363.3.h.n.251.1
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,18,0,-32,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.1
Root \(2.10855 - 2.90217i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.n.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.41170 - 1.10853i) q^{2} +(2.93308 - 0.630124i) q^{3} +(7.17480 + 5.21280i) q^{4} +(1.98428 - 0.644731i) q^{5} +(-10.7053 - 1.10160i) q^{6} +(7.17034 + 5.20956i) q^{7} +(-10.2655 - 14.1293i) q^{8} +(8.20589 - 3.69641i) q^{9} -7.48447 q^{10} +(24.3290 + 10.7685i) q^{12} +(0.508273 - 1.56430i) q^{13} +(-18.6881 - 25.7220i) q^{14} +(5.41378 - 3.14139i) q^{15} +(8.39811 + 25.8467i) q^{16} +(11.8154 - 3.83907i) q^{17} +(-32.0936 + 3.51458i) q^{18} +(8.54780 - 6.21034i) q^{19} +(17.5977 + 5.71782i) q^{20} +(24.3138 + 10.7618i) q^{21} +20.3378i q^{23} +(-39.0129 - 34.9738i) q^{24} +(-16.7037 + 12.1360i) q^{25} +(-3.46815 + 4.77350i) q^{26} +(21.7393 - 16.0126i) q^{27} +(24.2894 + 74.7550i) q^{28} +(-6.82340 + 9.39161i) q^{29} +(-21.9525 + 4.71615i) q^{30} +(-7.22737 + 22.2436i) q^{31} -27.6317i q^{32} -44.5665 q^{34} +(17.5867 + 5.71427i) q^{35} +(78.1442 + 16.2546i) q^{36} +(-5.86208 - 4.25905i) q^{37} +(-36.0469 + 11.7123i) q^{38} +(0.505098 - 4.90850i) q^{39} +(-29.4793 - 21.4180i) q^{40} +(22.8512 + 31.4520i) q^{41} +(-71.0217 - 63.6687i) q^{42} +15.8444 q^{43} +(13.8996 - 12.6253i) q^{45} +(22.5450 - 69.3864i) q^{46} +(-26.6317 - 36.6554i) q^{47} +(40.9190 + 70.5186i) q^{48} +(9.13245 + 28.1068i) q^{49} +(70.4413 - 22.8878i) q^{50} +(32.2365 - 18.7055i) q^{51} +(11.8011 - 8.57403i) q^{52} +(38.3428 + 12.4583i) q^{53} +(-91.9184 + 30.5315i) q^{54} -154.791i q^{56} +(21.1581 - 23.6016i) q^{57} +(33.6903 - 24.4774i) q^{58} +(66.5264 - 91.5657i) q^{59} +(55.2182 + 5.68211i) q^{60} +(-23.9538 - 73.7222i) q^{61} +(49.3152 - 67.8766i) q^{62} +(78.0956 + 16.2445i) q^{63} +(2.96194 - 9.11592i) q^{64} -3.43171i q^{65} +62.9082 q^{67} +(104.786 + 34.0470i) q^{68} +(12.8153 + 59.6523i) q^{69} +(-53.6662 - 38.9908i) q^{70} +(9.71270 - 3.15585i) q^{71} +(-136.466 - 77.9979i) q^{72} +(-60.3706 - 43.8618i) q^{73} +(15.2784 + 21.0289i) q^{74} +(-41.3462 + 46.1212i) q^{75} +93.7020 q^{76} +(-7.16445 + 16.1864i) q^{78} +(-26.6720 + 82.0879i) q^{79} +(33.3284 + 45.8726i) q^{80} +(53.6731 - 60.6646i) q^{81} +(-43.0961 - 132.636i) q^{82} +(11.2304 - 3.64896i) q^{83} +(118.348 + 203.957i) q^{84} +(20.9700 - 15.2356i) q^{85} +(-54.0563 - 17.5639i) q^{86} +(-14.0957 + 31.8459i) q^{87} +74.5782i q^{89} +(-61.4167 + 27.6656i) q^{90} +(11.7938 - 8.56870i) q^{91} +(-106.017 + 145.919i) q^{92} +(-7.18222 + 69.7962i) q^{93} +(50.2259 + 154.579i) q^{94} +(12.9572 - 17.8341i) q^{95} +(-17.4114 - 81.0458i) q^{96} +(-23.8462 + 73.3909i) q^{97} -106.016i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.41170 1.10853i −1.70585 0.554264i −0.716217 0.697878i \(-0.754128\pi\)
−0.989634 + 0.143614i \(0.954128\pi\)
\(3\) 2.93308 0.630124i 0.977692 0.210041i
\(4\) 7.17480 + 5.21280i 1.79370 + 1.30320i
\(5\) 1.98428 0.644731i 0.396856 0.128946i −0.103789 0.994599i \(-0.533097\pi\)
0.500644 + 0.865653i \(0.333097\pi\)
\(6\) −10.7053 1.10160i −1.78422 0.183601i
\(7\) 7.17034 + 5.20956i 1.02433 + 0.744222i 0.967167 0.254142i \(-0.0817932\pi\)
0.0571672 + 0.998365i \(0.481793\pi\)
\(8\) −10.2655 14.1293i −1.28319 1.76616i
\(9\) 8.20589 3.69641i 0.911765 0.410712i
\(10\) −7.48447 −0.748447
\(11\) 0 0
\(12\) 24.3290 + 10.7685i 2.02741 + 0.897377i
\(13\) 0.508273 1.56430i 0.0390979 0.120331i −0.929603 0.368564i \(-0.879850\pi\)
0.968700 + 0.248233i \(0.0798497\pi\)
\(14\) −18.6881 25.7220i −1.33486 1.83728i
\(15\) 5.41378 3.14139i 0.360919 0.209426i
\(16\) 8.39811 + 25.8467i 0.524882 + 1.61542i
\(17\) 11.8154 3.83907i 0.695026 0.225828i 0.0598641 0.998207i \(-0.480933\pi\)
0.635162 + 0.772379i \(0.280933\pi\)
\(18\) −32.0936 + 3.51458i −1.78298 + 0.195254i
\(19\) 8.54780 6.21034i 0.449884 0.326860i −0.339666 0.940546i \(-0.610314\pi\)
0.789550 + 0.613686i \(0.210314\pi\)
\(20\) 17.5977 + 5.71782i 0.879883 + 0.285891i
\(21\) 24.3138 + 10.7618i 1.15780 + 0.512468i
\(22\) 0 0
\(23\) 20.3378i 0.884251i 0.896953 + 0.442126i \(0.145775\pi\)
−0.896953 + 0.442126i \(0.854225\pi\)
\(24\) −39.0129 34.9738i −1.62554 1.45724i
\(25\) −16.7037 + 12.1360i −0.668150 + 0.485439i
\(26\) −3.46815 + 4.77350i −0.133390 + 0.183596i
\(27\) 21.7393 16.0126i 0.805159 0.593059i
\(28\) 24.2894 + 74.7550i 0.867478 + 2.66982i
\(29\) −6.82340 + 9.39161i −0.235290 + 0.323849i −0.910292 0.413967i \(-0.864143\pi\)
0.675002 + 0.737816i \(0.264143\pi\)
\(30\) −21.9525 + 4.71615i −0.731751 + 0.157205i
\(31\) −7.22737 + 22.2436i −0.233141 + 0.717534i 0.764222 + 0.644954i \(0.223123\pi\)
−0.997363 + 0.0725803i \(0.976877\pi\)
\(32\) 27.6317i 0.863489i
\(33\) 0 0
\(34\) −44.5665 −1.31078
\(35\) 17.5867 + 5.71427i 0.502477 + 0.163265i
\(36\) 78.1442 + 16.2546i 2.17067 + 0.451518i
\(37\) −5.86208 4.25905i −0.158435 0.115109i 0.505743 0.862684i \(-0.331218\pi\)
−0.664178 + 0.747575i \(0.731218\pi\)
\(38\) −36.0469 + 11.7123i −0.948602 + 0.308220i
\(39\) 0.505098 4.90850i 0.0129512 0.125859i
\(40\) −29.4793 21.4180i −0.736983 0.535449i
\(41\) 22.8512 + 31.4520i 0.557347 + 0.767122i 0.990986 0.133964i \(-0.0427707\pi\)
−0.433639 + 0.901087i \(0.642771\pi\)
\(42\) −71.0217 63.6687i −1.69099 1.51592i
\(43\) 15.8444 0.368474 0.184237 0.982882i \(-0.441019\pi\)
0.184237 + 0.982882i \(0.441019\pi\)
\(44\) 0 0
\(45\) 13.8996 12.6253i 0.308879 0.280562i
\(46\) 22.5450 69.3864i 0.490109 1.50840i
\(47\) −26.6317 36.6554i −0.566633 0.779903i 0.425518 0.904950i \(-0.360092\pi\)
−0.992151 + 0.125047i \(0.960092\pi\)
\(48\) 40.9190 + 70.5186i 0.852478 + 1.46914i
\(49\) 9.13245 + 28.1068i 0.186376 + 0.573608i
\(50\) 70.4413 22.8878i 1.40883 0.457755i
\(51\) 32.2365 18.7055i 0.632089 0.366774i
\(52\) 11.8011 8.57403i 0.226945 0.164885i
\(53\) 38.3428 + 12.4583i 0.723450 + 0.235063i 0.647518 0.762050i \(-0.275807\pi\)
0.0759315 + 0.997113i \(0.475807\pi\)
\(54\) −91.9184 + 30.5315i −1.70219 + 0.565398i
\(55\) 0 0
\(56\) 154.791i 2.76412i
\(57\) 21.1581 23.6016i 0.371194 0.414063i
\(58\) 33.6903 24.4774i 0.580867 0.422024i
\(59\) 66.5264 91.5657i 1.12757 1.55196i 0.334955 0.942234i \(-0.391279\pi\)
0.792611 0.609727i \(-0.208721\pi\)
\(60\) 55.2182 + 5.68211i 0.920304 + 0.0947018i
\(61\) −23.9538 73.7222i −0.392685 1.20856i −0.930750 0.365657i \(-0.880844\pi\)
0.538065 0.842903i \(-0.319156\pi\)
\(62\) 49.3152 67.8766i 0.795407 1.09478i
\(63\) 78.0956 + 16.2445i 1.23961 + 0.257850i
\(64\) 2.96194 9.11592i 0.0462803 0.142436i
\(65\) 3.43171i 0.0527956i
\(66\) 0 0
\(67\) 62.9082 0.938929 0.469464 0.882951i \(-0.344447\pi\)
0.469464 + 0.882951i \(0.344447\pi\)
\(68\) 104.786 + 34.0470i 1.54097 + 0.500691i
\(69\) 12.8153 + 59.6523i 0.185729 + 0.864526i
\(70\) −53.6662 38.9908i −0.766660 0.557011i
\(71\) 9.71270 3.15585i 0.136799 0.0444486i −0.239817 0.970818i \(-0.577088\pi\)
0.376616 + 0.926369i \(0.377088\pi\)
\(72\) −136.466 77.9979i −1.89536 1.08330i
\(73\) −60.3706 43.8618i −0.826995 0.600847i 0.0917125 0.995786i \(-0.470766\pi\)
−0.918708 + 0.394938i \(0.870766\pi\)
\(74\) 15.2784 + 21.0289i 0.206465 + 0.284174i
\(75\) −41.3462 + 46.1212i −0.551283 + 0.614949i
\(76\) 93.7020 1.23292
\(77\) 0 0
\(78\) −7.16445 + 16.1864i −0.0918519 + 0.207518i
\(79\) −26.6720 + 82.0879i −0.337620 + 1.03909i 0.627797 + 0.778377i \(0.283957\pi\)
−0.965417 + 0.260710i \(0.916043\pi\)
\(80\) 33.3284 + 45.8726i 0.416605 + 0.573407i
\(81\) 53.6731 60.6646i 0.662631 0.748946i
\(82\) −43.0961 132.636i −0.525562 1.61751i
\(83\) 11.2304 3.64896i 0.135305 0.0439634i −0.240581 0.970629i \(-0.577338\pi\)
0.375887 + 0.926666i \(0.377338\pi\)
\(84\) 118.348 + 203.957i 1.40890 + 2.42806i
\(85\) 20.9700 15.2356i 0.246705 0.179242i
\(86\) −54.0563 17.5639i −0.628561 0.204232i
\(87\) −14.0957 + 31.8459i −0.162019 + 0.366045i
\(88\) 0 0
\(89\) 74.5782i 0.837957i 0.907996 + 0.418979i \(0.137612\pi\)
−0.907996 + 0.418979i \(0.862388\pi\)
\(90\) −61.4167 + 27.6656i −0.682408 + 0.307396i
\(91\) 11.7938 8.56870i 0.129602 0.0941616i
\(92\) −106.017 + 145.919i −1.15236 + 1.58608i
\(93\) −7.18222 + 69.7962i −0.0772282 + 0.750497i
\(94\) 50.2259 + 154.579i 0.534318 + 1.64446i
\(95\) 12.9572 17.8341i 0.136392 0.187727i
\(96\) −17.4114 81.0458i −0.181369 0.844227i
\(97\) −23.8462 + 73.3909i −0.245837 + 0.756608i 0.749661 + 0.661822i \(0.230217\pi\)
−0.995498 + 0.0947856i \(0.969783\pi\)
\(98\) 106.016i 1.08179i
\(99\) 0 0
\(100\) −183.108 −1.83108
\(101\) −12.1692 3.95400i −0.120487 0.0391485i 0.248153 0.968721i \(-0.420176\pi\)
−0.368640 + 0.929572i \(0.620176\pi\)
\(102\) −130.717 + 28.0824i −1.28154 + 0.275318i
\(103\) −57.0875 41.4765i −0.554248 0.402685i 0.275101 0.961415i \(-0.411289\pi\)
−0.829349 + 0.558731i \(0.811289\pi\)
\(104\) −27.3202 + 8.87688i −0.262694 + 0.0853546i
\(105\) 55.1839 + 5.67858i 0.525561 + 0.0540817i
\(106\) −117.004 85.0083i −1.10381 0.801965i
\(107\) −108.282 149.037i −1.01198 1.39287i −0.917677 0.397328i \(-0.869938\pi\)
−0.0943034 0.995544i \(-0.530062\pi\)
\(108\) 239.445 1.56448i 2.21709 0.0144859i
\(109\) 58.5394 0.537058 0.268529 0.963272i \(-0.413462\pi\)
0.268529 + 0.963272i \(0.413462\pi\)
\(110\) 0 0
\(111\) −19.8777 8.79828i −0.179078 0.0792638i
\(112\) −74.4327 + 229.080i −0.664577 + 2.04536i
\(113\) −89.3418 122.968i −0.790635 1.08822i −0.994029 0.109119i \(-0.965197\pi\)
0.203393 0.979097i \(-0.434803\pi\)
\(114\) −98.3481 + 57.0672i −0.862703 + 0.500590i
\(115\) 13.1124 + 40.3558i 0.114021 + 0.350920i
\(116\) −97.9131 + 31.8139i −0.844078 + 0.274258i
\(117\) −1.61147 14.7153i −0.0137733 0.125772i
\(118\) −328.471 + 238.648i −2.78366 + 2.02244i
\(119\) 104.721 + 34.0258i 0.880005 + 0.285931i
\(120\) −99.9611 44.2449i −0.833009 0.368708i
\(121\) 0 0
\(122\) 278.071i 2.27927i
\(123\) 86.8431 + 77.8521i 0.706042 + 0.632944i
\(124\) −167.806 + 121.918i −1.35327 + 0.983212i
\(125\) −55.9792 + 77.0488i −0.447834 + 0.616390i
\(126\) −248.431 141.993i −1.97168 1.12693i
\(127\) 4.41099 + 13.5756i 0.0347322 + 0.106895i 0.966920 0.255081i \(-0.0821022\pi\)
−0.932187 + 0.361976i \(0.882102\pi\)
\(128\) −85.1764 + 117.235i −0.665441 + 0.915901i
\(129\) 46.4728 9.98393i 0.360254 0.0773948i
\(130\) −3.80415 + 11.7080i −0.0292627 + 0.0900613i
\(131\) 153.686i 1.17318i 0.809885 + 0.586589i \(0.199529\pi\)
−0.809885 + 0.586589i \(0.800471\pi\)
\(132\) 0 0
\(133\) 93.6438 0.704088
\(134\) −214.624 69.7356i −1.60167 0.520415i
\(135\) 32.8130 45.7894i 0.243059 0.339181i
\(136\) −175.535 127.534i −1.29070 0.937750i
\(137\) 76.6942 24.9195i 0.559812 0.181894i −0.0154246 0.999881i \(-0.504910\pi\)
0.575237 + 0.817987i \(0.304910\pi\)
\(138\) 22.4042 217.722i 0.162349 1.57769i
\(139\) 171.464 + 124.576i 1.23356 + 0.896231i 0.997152 0.0754243i \(-0.0240311\pi\)
0.236404 + 0.971655i \(0.424031\pi\)
\(140\) 96.3938 + 132.675i 0.688527 + 0.947676i
\(141\) −101.210 90.7319i −0.717804 0.643489i
\(142\) −36.6352 −0.257994
\(143\) 0 0
\(144\) 164.454 + 181.052i 1.14204 + 1.25731i
\(145\) −7.48447 + 23.0348i −0.0516170 + 0.158861i
\(146\) 157.344 + 216.566i 1.07770 + 1.48333i
\(147\) 44.4970 + 76.6848i 0.302700 + 0.521665i
\(148\) −19.8577 61.1156i −0.134173 0.412943i
\(149\) −215.252 + 69.9397i −1.44465 + 0.469394i −0.923342 0.383978i \(-0.874554\pi\)
−0.521303 + 0.853371i \(0.674554\pi\)
\(150\) 192.188 111.518i 1.28125 0.743455i
\(151\) 220.642 160.306i 1.46121 1.06163i 0.478161 0.878272i \(-0.341304\pi\)
0.983046 0.183357i \(-0.0586964\pi\)
\(152\) −175.496 57.0220i −1.15458 0.375145i
\(153\) 82.7654 75.1777i 0.540951 0.491357i
\(154\) 0 0
\(155\) 48.7971i 0.314820i
\(156\) 29.2110 32.5845i 0.187250 0.208875i
\(157\) −4.90208 + 3.56157i −0.0312234 + 0.0226852i −0.603288 0.797524i \(-0.706143\pi\)
0.572064 + 0.820209i \(0.306143\pi\)
\(158\) 181.994 250.493i 1.15186 1.58540i
\(159\) 120.313 + 12.3805i 0.756684 + 0.0778649i
\(160\) −17.8150 54.8289i −0.111344 0.342681i
\(161\) −105.951 + 145.829i −0.658079 + 0.905769i
\(162\) −250.365 + 147.471i −1.54546 + 0.910317i
\(163\) 50.0381 154.002i 0.306982 0.944795i −0.671947 0.740599i \(-0.734542\pi\)
0.978930 0.204196i \(-0.0654580\pi\)
\(164\) 344.781i 2.10232i
\(165\) 0 0
\(166\) −42.3596 −0.255178
\(167\) −151.417 49.1982i −0.906686 0.294600i −0.181692 0.983355i \(-0.558158\pi\)
−0.724994 + 0.688755i \(0.758158\pi\)
\(168\) −97.5375 454.014i −0.580581 2.70246i
\(169\) 134.535 + 97.7455i 0.796066 + 0.578376i
\(170\) −88.4323 + 28.7334i −0.520190 + 0.169020i
\(171\) 47.1863 82.5575i 0.275944 0.482793i
\(172\) 113.680 + 82.5935i 0.660931 + 0.480195i
\(173\) −22.5826 31.0822i −0.130535 0.179666i 0.738746 0.673983i \(-0.235418\pi\)
−0.869282 + 0.494317i \(0.835418\pi\)
\(174\) 83.3924 93.0232i 0.479266 0.534616i
\(175\) −182.995 −1.04568
\(176\) 0 0
\(177\) 137.429 310.489i 0.776437 1.75418i
\(178\) 82.6721 254.439i 0.464450 1.42943i
\(179\) 80.0291 + 110.151i 0.447090 + 0.615367i 0.971769 0.235933i \(-0.0758147\pi\)
−0.524679 + 0.851300i \(0.675815\pi\)
\(180\) 165.540 18.1283i 0.919665 0.100713i
\(181\) −40.2773 123.961i −0.222526 0.684865i −0.998533 0.0541412i \(-0.982758\pi\)
0.776007 0.630724i \(-0.217242\pi\)
\(182\) −49.7356 + 16.1601i −0.273273 + 0.0887916i
\(183\) −116.712 201.139i −0.637773 1.09912i
\(184\) 287.359 208.778i 1.56173 1.13467i
\(185\) −14.3779 4.67167i −0.0777186 0.0252523i
\(186\) 101.875 230.162i 0.547713 1.23743i
\(187\) 0 0
\(188\) 401.821i 2.13735i
\(189\) 239.297 1.56351i 1.26612 0.00827254i
\(190\) −63.9758 + 46.4811i −0.336715 + 0.244637i
\(191\) −185.493 + 255.309i −0.971169 + 1.33670i −0.0297142 + 0.999558i \(0.509460\pi\)
−0.941454 + 0.337140i \(0.890540\pi\)
\(192\) 2.94344 28.6041i 0.0153304 0.148980i
\(193\) −45.2431 139.244i −0.234420 0.721472i −0.997198 0.0748107i \(-0.976165\pi\)
0.762777 0.646661i \(-0.223835\pi\)
\(194\) 162.712 223.954i 0.838721 1.15440i
\(195\) −2.16241 10.0655i −0.0110893 0.0516178i
\(196\) −80.9915 + 249.266i −0.413222 + 1.27177i
\(197\) 229.459i 1.16476i −0.812915 0.582382i \(-0.802121\pi\)
0.812915 0.582382i \(-0.197879\pi\)
\(198\) 0 0
\(199\) −389.358 −1.95657 −0.978287 0.207253i \(-0.933548\pi\)
−0.978287 + 0.207253i \(0.933548\pi\)
\(200\) 342.946 + 111.430i 1.71473 + 0.557150i
\(201\) 184.515 39.6400i 0.917984 0.197214i
\(202\) 37.1344 + 26.9797i 0.183834 + 0.133563i
\(203\) −97.8522 + 31.7941i −0.482031 + 0.156621i
\(204\) 328.799 + 33.8343i 1.61176 + 0.165854i
\(205\) 65.6213 + 47.6767i 0.320104 + 0.232569i
\(206\) 148.788 + 204.789i 0.722270 + 0.994120i
\(207\) 75.1767 + 166.889i 0.363173 + 0.806229i
\(208\) 44.7006 0.214907
\(209\) 0 0
\(210\) −181.976 80.5465i −0.866553 0.383555i
\(211\) −63.0362 + 194.005i −0.298750 + 0.919457i 0.683186 + 0.730244i \(0.260594\pi\)
−0.981936 + 0.189213i \(0.939406\pi\)
\(212\) 210.159 + 289.260i 0.991318 + 1.36443i
\(213\) 26.4995 15.3766i 0.124411 0.0721904i
\(214\) 204.213 + 628.504i 0.954268 + 2.93693i
\(215\) 31.4396 10.2154i 0.146231 0.0475133i
\(216\) −449.413 142.784i −2.08061 0.661035i
\(217\) −167.702 + 121.842i −0.772819 + 0.561486i
\(218\) −199.719 64.8926i −0.916141 0.297672i
\(219\) −204.710 90.6091i −0.934750 0.413740i
\(220\) 0 0
\(221\) 20.4342i 0.0924626i
\(222\) 58.0635 + 52.0521i 0.261547 + 0.234469i
\(223\) 13.3648 9.71010i 0.0599319 0.0435431i −0.557416 0.830233i \(-0.688207\pi\)
0.617348 + 0.786690i \(0.288207\pi\)
\(224\) 143.949 198.128i 0.642628 0.884502i
\(225\) −92.2095 + 161.330i −0.409820 + 0.717024i
\(226\) 168.493 + 518.569i 0.745546 + 2.29456i
\(227\) −66.3365 + 91.3043i −0.292231 + 0.402222i −0.929737 0.368224i \(-0.879966\pi\)
0.637506 + 0.770445i \(0.279966\pi\)
\(228\) 274.835 59.0439i 1.20542 0.258965i
\(229\) −113.909 + 350.577i −0.497421 + 1.53090i 0.315730 + 0.948849i \(0.397751\pi\)
−0.813150 + 0.582054i \(0.802249\pi\)
\(230\) 152.217i 0.661815i
\(231\) 0 0
\(232\) 202.743 0.873892
\(233\) −165.998 53.9359i −0.712436 0.231485i −0.0696955 0.997568i \(-0.522203\pi\)
−0.642741 + 0.766084i \(0.722203\pi\)
\(234\) −10.8144 + 51.9905i −0.0462156 + 0.222181i
\(235\) −76.4777 55.5643i −0.325437 0.236444i
\(236\) 954.627 310.177i 4.04503 1.31431i
\(237\) −26.5054 + 257.577i −0.111837 + 1.08682i
\(238\) −319.557 232.172i −1.34268 0.975511i
\(239\) −202.993 279.397i −0.849345 1.16902i −0.984007 0.178132i \(-0.942995\pi\)
0.134661 0.990892i \(-0.457005\pi\)
\(240\) 126.660 + 113.547i 0.527751 + 0.473112i
\(241\) 261.447 1.08484 0.542421 0.840107i \(-0.317508\pi\)
0.542421 + 0.840107i \(0.317508\pi\)
\(242\) 0 0
\(243\) 119.201 211.755i 0.490540 0.871419i
\(244\) 212.435 653.808i 0.870636 2.67954i
\(245\) 36.2426 + 49.8837i 0.147929 + 0.203607i
\(246\) −209.981 361.876i −0.853583 1.47104i
\(247\) −5.37024 16.5279i −0.0217419 0.0669146i
\(248\) 388.479 126.224i 1.56645 0.508970i
\(249\) 30.6402 17.7792i 0.123053 0.0714025i
\(250\) 276.395 200.813i 1.10558 0.803251i
\(251\) −188.638 61.2921i −0.751544 0.244192i −0.0918987 0.995768i \(-0.529294\pi\)
−0.659646 + 0.751577i \(0.729294\pi\)
\(252\) 475.641 + 523.648i 1.88746 + 2.07797i
\(253\) 0 0
\(254\) 51.2057i 0.201597i
\(255\) 51.9062 57.9008i 0.203554 0.227062i
\(256\) 389.537 283.016i 1.52163 1.10553i
\(257\) −1.09633 + 1.50897i −0.00426588 + 0.00587148i −0.811145 0.584846i \(-0.801155\pi\)
0.806879 + 0.590717i \(0.201155\pi\)
\(258\) −169.619 17.4542i −0.657437 0.0676521i
\(259\) −19.8453 61.0776i −0.0766229 0.235821i
\(260\) 17.8888 24.6218i 0.0688031 0.0946994i
\(261\) −21.2769 + 102.289i −0.0815205 + 0.391910i
\(262\) 170.366 524.332i 0.650251 2.00127i
\(263\) 27.0901i 0.103004i 0.998673 + 0.0515020i \(0.0164009\pi\)
−0.998673 + 0.0515020i \(0.983599\pi\)
\(264\) 0 0
\(265\) 84.1151 0.317416
\(266\) −319.485 103.807i −1.20107 0.390251i
\(267\) 46.9935 + 218.744i 0.176006 + 0.819264i
\(268\) 451.354 + 327.928i 1.68416 + 1.22361i
\(269\) −135.856 + 44.1424i −0.505042 + 0.164098i −0.550446 0.834871i \(-0.685542\pi\)
0.0454041 + 0.998969i \(0.485542\pi\)
\(270\) −162.707 + 119.846i −0.602619 + 0.443873i
\(271\) −85.2115 61.9098i −0.314434 0.228449i 0.419363 0.907819i \(-0.362254\pi\)
−0.733797 + 0.679369i \(0.762254\pi\)
\(272\) 198.455 + 273.150i 0.729613 + 1.00423i
\(273\) 29.1928 32.5642i 0.106933 0.119283i
\(274\) −289.282 −1.05577
\(275\) 0 0
\(276\) −219.008 + 494.797i −0.793507 + 1.79274i
\(277\) −75.6843 + 232.932i −0.273229 + 0.840911i 0.716454 + 0.697634i \(0.245764\pi\)
−0.989683 + 0.143277i \(0.954236\pi\)
\(278\) −446.889 615.089i −1.60751 2.21255i
\(279\) 22.9143 + 209.243i 0.0821300 + 0.749976i
\(280\) −99.7985 307.148i −0.356423 1.09696i
\(281\) −61.9247 + 20.1206i −0.220373 + 0.0716034i −0.417122 0.908850i \(-0.636961\pi\)
0.196750 + 0.980454i \(0.436961\pi\)
\(282\) 244.721 + 421.745i 0.867804 + 1.49555i
\(283\) −127.482 + 92.6208i −0.450465 + 0.327282i −0.789779 0.613391i \(-0.789805\pi\)
0.339314 + 0.940673i \(0.389805\pi\)
\(284\) 86.1375 + 27.9878i 0.303301 + 0.0985485i
\(285\) 26.7668 60.4734i 0.0939187 0.212187i
\(286\) 0 0
\(287\) 344.566i 1.20058i
\(288\) −102.138 226.742i −0.354645 0.787300i
\(289\) −108.940 + 79.1493i −0.376954 + 0.273873i
\(290\) 51.0695 70.2912i 0.176102 0.242383i
\(291\) −23.6972 + 230.287i −0.0814337 + 0.791365i
\(292\) −204.504 629.400i −0.700358 2.15548i
\(293\) 108.158 148.867i 0.369139 0.508077i −0.583527 0.812094i \(-0.698328\pi\)
0.952667 + 0.304017i \(0.0983279\pi\)
\(294\) −66.8030 310.952i −0.227221 1.05766i
\(295\) 72.9716 224.584i 0.247361 0.761300i
\(296\) 126.549i 0.427529i
\(297\) 0 0
\(298\) 811.906 2.72452
\(299\) 31.8144 + 10.3371i 0.106403 + 0.0345724i
\(300\) −537.071 + 115.381i −1.79024 + 0.384604i
\(301\) 113.610 + 82.5421i 0.377440 + 0.274226i
\(302\) −930.469 + 302.328i −3.08102 + 1.00109i
\(303\) −38.1846 3.92930i −0.126022 0.0129680i
\(304\) 232.302 + 168.778i 0.764153 + 0.555189i
\(305\) −95.0619 130.842i −0.311679 0.428989i
\(306\) −365.708 + 164.736i −1.19512 + 0.538353i
\(307\) −386.672 −1.25952 −0.629759 0.776790i \(-0.716846\pi\)
−0.629759 + 0.776790i \(0.716846\pi\)
\(308\) 0 0
\(309\) −193.578 85.6816i −0.626465 0.277287i
\(310\) 54.0930 166.481i 0.174494 0.537036i
\(311\) −54.2185 74.6253i −0.174336 0.239953i 0.712903 0.701262i \(-0.247380\pi\)
−0.887239 + 0.461309i \(0.847380\pi\)
\(312\) −74.5388 + 43.2517i −0.238906 + 0.138627i
\(313\) −22.9902 70.7565i −0.0734510 0.226059i 0.907591 0.419856i \(-0.137920\pi\)
−0.981042 + 0.193797i \(0.937920\pi\)
\(314\) 20.6725 6.71691i 0.0658361 0.0213914i
\(315\) 165.437 18.1170i 0.525196 0.0575143i
\(316\) −619.274 + 449.929i −1.95973 + 1.42382i
\(317\) 498.144 + 161.857i 1.57143 + 0.510589i 0.959831 0.280578i \(-0.0905263\pi\)
0.611600 + 0.791167i \(0.290526\pi\)
\(318\) −396.747 175.609i −1.24763 0.552229i
\(319\) 0 0
\(320\) 19.9982i 0.0624943i
\(321\) −411.511 368.907i −1.28197 1.14924i
\(322\) 523.128 380.075i 1.62462 1.18036i
\(323\) 77.1542 106.194i 0.238867 0.328773i
\(324\) 701.326 155.469i 2.16459 0.479843i
\(325\) 10.4943 + 32.2981i 0.0322901 + 0.0993787i
\(326\) −341.430 + 469.939i −1.04733 + 1.44153i
\(327\) 171.701 36.8871i 0.525078 0.112805i
\(328\) 209.815 645.744i 0.639680 1.96873i
\(329\) 401.571i 1.22058i
\(330\) 0 0
\(331\) 251.706 0.760441 0.380221 0.924896i \(-0.375848\pi\)
0.380221 + 0.924896i \(0.375848\pi\)
\(332\) 99.5968 + 32.3610i 0.299990 + 0.0974728i
\(333\) −63.8467 13.2806i −0.191732 0.0398818i
\(334\) 462.051 + 335.699i 1.38339 + 1.00509i
\(335\) 124.827 40.5589i 0.372619 0.121071i
\(336\) −73.9677 + 718.812i −0.220142 + 2.13932i
\(337\) −40.1679 29.1837i −0.119193 0.0865985i 0.526592 0.850118i \(-0.323470\pi\)
−0.645785 + 0.763520i \(0.723470\pi\)
\(338\) −350.640 482.615i −1.03740 1.42785i
\(339\) −339.532 304.379i −1.00157 0.897874i
\(340\) 229.875 0.676104
\(341\) 0 0
\(342\) −252.503 + 229.354i −0.738313 + 0.670626i
\(343\) 53.2613 163.922i 0.155281 0.477905i
\(344\) −162.651 223.870i −0.472823 0.650785i
\(345\) 63.8889 + 110.104i 0.185185 + 0.319143i
\(346\) 42.5894 + 131.077i 0.123091 + 0.378835i
\(347\) −437.276 + 142.079i −1.26016 + 0.409451i −0.861551 0.507670i \(-0.830507\pi\)
−0.398609 + 0.917121i \(0.630507\pi\)
\(348\) −267.140 + 155.010i −0.767644 + 0.445431i
\(349\) −318.550 + 231.440i −0.912750 + 0.663152i −0.941709 0.336429i \(-0.890781\pi\)
0.0289588 + 0.999581i \(0.490781\pi\)
\(350\) 624.323 + 202.855i 1.78378 + 0.579585i
\(351\) −13.9990 42.1456i −0.0398833 0.120073i
\(352\) 0 0
\(353\) 16.9433i 0.0479980i −0.999712 0.0239990i \(-0.992360\pi\)
0.999712 0.0239990i \(-0.00763985\pi\)
\(354\) −813.054 + 906.952i −2.29676 + 2.56201i
\(355\) 17.2380 12.5242i 0.0485578 0.0352793i
\(356\) −388.761 + 535.084i −1.09203 + 1.50304i
\(357\) 328.594 + 33.8132i 0.920432 + 0.0947150i
\(358\) −150.930 464.516i −0.421593 1.29753i
\(359\) 44.6059 61.3948i 0.124250 0.171016i −0.742360 0.670001i \(-0.766294\pi\)
0.866611 + 0.498985i \(0.166294\pi\)
\(360\) −321.073 66.7859i −0.891871 0.185516i
\(361\) −77.0586 + 237.162i −0.213459 + 0.656958i
\(362\) 467.565i 1.29162i
\(363\) 0 0
\(364\) 129.285 0.355179
\(365\) −148.071 48.1113i −0.405675 0.131812i
\(366\) 175.220 + 815.605i 0.478742 + 2.22843i
\(367\) −501.030 364.020i −1.36520 0.991879i −0.998095 0.0617010i \(-0.980347\pi\)
−0.367109 0.930178i \(-0.619653\pi\)
\(368\) −525.665 + 170.799i −1.42844 + 0.464127i
\(369\) 303.774 + 173.624i 0.823236 + 0.470526i
\(370\) 43.8745 + 31.8767i 0.118580 + 0.0861533i
\(371\) 210.029 + 289.080i 0.566115 + 0.779190i
\(372\) −415.364 + 463.334i −1.11657 + 1.24552i
\(373\) 365.674 0.980359 0.490179 0.871622i \(-0.336931\pi\)
0.490179 + 0.871622i \(0.336931\pi\)
\(374\) 0 0
\(375\) −115.641 + 261.264i −0.308376 + 0.696704i
\(376\) −244.527 + 752.576i −0.650337 + 2.00153i
\(377\) 11.2232 + 15.4474i 0.0297697 + 0.0409744i
\(378\) −818.142 259.933i −2.16440 0.687653i
\(379\) −126.661 389.823i −0.334198 1.02856i −0.967116 0.254337i \(-0.918143\pi\)
0.632917 0.774220i \(-0.281857\pi\)
\(380\) 185.931 60.4126i 0.489292 0.158981i
\(381\) 21.4921 + 37.0389i 0.0564098 + 0.0972150i
\(382\) 915.865 665.415i 2.39755 1.74192i
\(383\) 50.3695 + 16.3660i 0.131513 + 0.0427311i 0.374034 0.927415i \(-0.377974\pi\)
−0.242521 + 0.970146i \(0.577974\pi\)
\(384\) −175.956 + 397.532i −0.458219 + 1.03524i
\(385\) 0 0
\(386\) 525.213i 1.36065i
\(387\) 130.017 58.5673i 0.335962 0.151337i
\(388\) −553.664 + 402.260i −1.42697 + 1.03675i
\(389\) 53.2922 73.3504i 0.136998 0.188561i −0.735006 0.678061i \(-0.762821\pi\)
0.872004 + 0.489500i \(0.162821\pi\)
\(390\) −3.78039 + 36.7375i −0.00969330 + 0.0941987i
\(391\) 78.0782 + 240.300i 0.199688 + 0.614578i
\(392\) 303.380 417.567i 0.773929 1.06522i
\(393\) 96.8415 + 450.774i 0.246416 + 1.14701i
\(394\) −254.361 + 782.844i −0.645587 + 1.98691i
\(395\) 180.081i 0.455902i
\(396\) 0 0
\(397\) −335.768 −0.845763 −0.422882 0.906185i \(-0.638981\pi\)
−0.422882 + 0.906185i \(0.638981\pi\)
\(398\) 1328.37 + 431.615i 3.33762 + 1.08446i
\(399\) 274.664 59.0072i 0.688382 0.147888i
\(400\) −453.955 329.818i −1.13489 0.824544i
\(401\) 17.9951 5.84696i 0.0448755 0.0145809i −0.286493 0.958082i \(-0.592490\pi\)
0.331369 + 0.943501i \(0.392490\pi\)
\(402\) −673.451 69.3000i −1.67525 0.172388i
\(403\) 31.1222 + 22.6116i 0.0772262 + 0.0561081i
\(404\) −66.6999 91.8045i −0.165099 0.227239i
\(405\) 67.3901 154.980i 0.166395 0.382667i
\(406\) 369.087 0.909082
\(407\) 0 0
\(408\) −595.221 263.458i −1.45888 0.645730i
\(409\) 36.8542 113.426i 0.0901081 0.277324i −0.895840 0.444377i \(-0.853425\pi\)
0.985948 + 0.167053i \(0.0534250\pi\)
\(410\) −171.029 235.402i −0.417145 0.574150i
\(411\) 209.248 121.418i 0.509119 0.295420i
\(412\) −193.383 595.172i −0.469376 1.44459i
\(413\) 954.034 309.984i 2.31001 0.750567i
\(414\) −71.4787 652.713i −0.172654 1.57660i
\(415\) 19.9315 14.4811i 0.0480278 0.0348943i
\(416\) −43.2243 14.0444i −0.103905 0.0337606i
\(417\) 581.416 + 257.347i 1.39428 + 0.617140i
\(418\) 0 0
\(419\) 412.874i 0.985381i −0.870205 0.492690i \(-0.836014\pi\)
0.870205 0.492690i \(-0.163986\pi\)
\(420\) 366.332 + 328.405i 0.872219 + 0.781917i
\(421\) −489.408 + 355.576i −1.16249 + 0.844598i −0.990091 0.140429i \(-0.955152\pi\)
−0.172399 + 0.985027i \(0.555152\pi\)
\(422\) 430.121 592.011i 1.01924 1.40287i
\(423\) −354.030 202.349i −0.836951 0.478365i
\(424\) −217.582 669.650i −0.513166 1.57936i
\(425\) −150.771 + 207.519i −0.354756 + 0.488280i
\(426\) −107.454 + 23.0847i −0.252239 + 0.0541895i
\(427\) 212.303 653.401i 0.497197 1.53021i
\(428\) 1633.76i 3.81721i
\(429\) 0 0
\(430\) −118.587 −0.275783
\(431\) 421.718 + 137.024i 0.978464 + 0.317922i 0.754228 0.656613i \(-0.228011\pi\)
0.224236 + 0.974535i \(0.428011\pi\)
\(432\) 596.442 + 427.414i 1.38065 + 0.989385i
\(433\) −177.158 128.713i −0.409142 0.297259i 0.364112 0.931355i \(-0.381372\pi\)
−0.773254 + 0.634096i \(0.781372\pi\)
\(434\) 707.214 229.788i 1.62953 0.529465i
\(435\) −7.43772 + 72.2791i −0.0170982 + 0.166159i
\(436\) 420.008 + 305.154i 0.963322 + 0.699894i
\(437\) 126.305 + 173.843i 0.289026 + 0.397811i
\(438\) 597.967 + 536.058i 1.36522 + 1.22388i
\(439\) −171.641 −0.390982 −0.195491 0.980705i \(-0.562630\pi\)
−0.195491 + 0.980705i \(0.562630\pi\)
\(440\) 0 0
\(441\) 178.834 + 196.884i 0.405519 + 0.446449i
\(442\) −22.6519 + 69.7155i −0.0512487 + 0.157727i
\(443\) −348.285 479.374i −0.786197 1.08211i −0.994571 0.104059i \(-0.966817\pi\)
0.208374 0.978049i \(-0.433183\pi\)
\(444\) −96.7546 166.744i −0.217916 0.375550i
\(445\) 48.0829 + 147.984i 0.108051 + 0.332548i
\(446\) −56.3607 + 18.3127i −0.126369 + 0.0410598i
\(447\) −587.281 + 340.774i −1.31383 + 0.762358i
\(448\) 68.7280 49.9338i 0.153411 0.111459i
\(449\) −414.782 134.771i −0.923791 0.300158i −0.191770 0.981440i \(-0.561423\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(450\) 493.430 448.194i 1.09651 0.995986i
\(451\) 0 0
\(452\) 1347.99i 2.98229i
\(453\) 546.148 609.222i 1.20563 1.34486i
\(454\) 327.534 237.967i 0.721440 0.524157i
\(455\) 17.8777 24.6065i 0.0392916 0.0540803i
\(456\) −550.674 56.6658i −1.20762 0.124267i
\(457\) −73.7134 226.866i −0.161298 0.496425i 0.837446 0.546520i \(-0.184048\pi\)
−0.998744 + 0.0500945i \(0.984048\pi\)
\(458\) 777.249 1069.79i 1.69705 2.33579i
\(459\) 195.386 272.654i 0.425678 0.594018i
\(460\) −116.288 + 357.897i −0.252800 + 0.778037i
\(461\) 711.175i 1.54268i 0.636424 + 0.771339i \(0.280413\pi\)
−0.636424 + 0.771339i \(0.719587\pi\)
\(462\) 0 0
\(463\) −461.487 −0.996732 −0.498366 0.866967i \(-0.666066\pi\)
−0.498366 + 0.866967i \(0.666066\pi\)
\(464\) −300.046 97.4908i −0.646651 0.210110i
\(465\) 30.7483 + 143.126i 0.0661253 + 0.307797i
\(466\) 506.545 + 368.026i 1.08701 + 0.789756i
\(467\) 46.0163 14.9516i 0.0985361 0.0320163i −0.259334 0.965788i \(-0.583503\pi\)
0.357870 + 0.933771i \(0.383503\pi\)
\(468\) 65.1457 113.979i 0.139200 0.243546i
\(469\) 451.073 + 327.724i 0.961777 + 0.698772i
\(470\) 199.324 + 274.346i 0.424094 + 0.583716i
\(471\) −12.1339 + 13.5353i −0.0257621 + 0.0287373i
\(472\) −1976.69 −4.18790
\(473\) 0 0
\(474\) 375.960 849.393i 0.793164 1.79197i
\(475\) −67.4117 + 207.472i −0.141919 + 0.436783i
\(476\) 573.980 + 790.015i 1.20584 + 1.65970i
\(477\) 360.688 39.4990i 0.756159 0.0828072i
\(478\) 382.834 + 1178.24i 0.800908 + 2.46494i
\(479\) 163.035 52.9731i 0.340364 0.110591i −0.133847 0.991002i \(-0.542733\pi\)
0.474212 + 0.880411i \(0.342733\pi\)
\(480\) −86.8018 149.592i −0.180837 0.311650i
\(481\) −9.64197 + 7.00530i −0.0200457 + 0.0145640i
\(482\) −891.979 289.822i −1.85058 0.601290i
\(483\) −218.872 + 494.489i −0.453150 + 1.02379i
\(484\) 0 0
\(485\) 161.002i 0.331964i
\(486\) −641.415 + 590.306i −1.31978 + 1.21462i
\(487\) 400.866 291.247i 0.823134 0.598042i −0.0944742 0.995527i \(-0.530117\pi\)
0.917609 + 0.397485i \(0.130117\pi\)
\(488\) −795.745 + 1095.25i −1.63062 + 2.24436i
\(489\) 49.7256 483.229i 0.101688 0.988198i
\(490\) −68.3515 210.364i −0.139493 0.429315i
\(491\) 194.115 267.177i 0.395347 0.544148i −0.564222 0.825623i \(-0.690824\pi\)
0.959569 + 0.281475i \(0.0908237\pi\)
\(492\) 217.255 + 1011.27i 0.441575 + 2.05542i
\(493\) −44.5665 + 137.162i −0.0903986 + 0.278218i
\(494\) 62.3413i 0.126197i
\(495\) 0 0
\(496\) −635.619 −1.28149
\(497\) 86.0839 + 27.9704i 0.173207 + 0.0562784i
\(498\) −124.244 + 26.6918i −0.249486 + 0.0535980i
\(499\) −88.8306 64.5392i −0.178017 0.129337i 0.495208 0.868774i \(-0.335092\pi\)
−0.673226 + 0.739437i \(0.735092\pi\)
\(500\) −803.279 + 261.001i −1.60656 + 0.522003i
\(501\) −475.118 48.8909i −0.948339 0.0975867i
\(502\) 575.631 + 418.220i 1.14668 + 0.833108i
\(503\) 336.038 + 462.516i 0.668067 + 0.919516i 0.999715 0.0238878i \(-0.00760445\pi\)
−0.331647 + 0.943403i \(0.607604\pi\)
\(504\) −572.170 1270.20i −1.13526 2.52023i
\(505\) −26.6963 −0.0528639
\(506\) 0 0
\(507\) 456.194 + 201.921i 0.899791 + 0.398267i
\(508\) −39.1191 + 120.396i −0.0770060 + 0.237000i
\(509\) 317.947 + 437.617i 0.624651 + 0.859758i 0.997681 0.0680613i \(-0.0216813\pi\)
−0.373031 + 0.927819i \(0.621681\pi\)
\(510\) −241.273 + 140.001i −0.473085 + 0.274511i
\(511\) −204.377 629.008i −0.399955 1.23094i
\(512\) −1091.44 + 354.631i −2.13172 + 0.692639i
\(513\) 86.3797 271.881i 0.168381 0.529982i
\(514\) 5.41310 3.93284i 0.0105313 0.00765145i
\(515\) −140.019 45.4949i −0.271881 0.0883395i
\(516\) 385.477 + 170.620i 0.747049 + 0.330660i
\(517\) 0 0
\(518\) 230.378i 0.444745i
\(519\) −85.8221 76.9368i −0.165361 0.148240i
\(520\) −48.4877 + 35.2284i −0.0932456 + 0.0677469i
\(521\) 198.606 273.357i 0.381201 0.524678i −0.574701 0.818363i \(-0.694882\pi\)
0.955902 + 0.293685i \(0.0948818\pi\)
\(522\) 185.980 325.392i 0.356284 0.623356i
\(523\) −95.0022 292.387i −0.181649 0.559057i 0.818226 0.574897i \(-0.194958\pi\)
−0.999875 + 0.0158400i \(0.994958\pi\)
\(524\) −801.135 + 1102.67i −1.52888 + 2.10433i
\(525\) −536.737 + 115.309i −1.02236 + 0.219637i
\(526\) 30.0301 92.4232i 0.0570915 0.175710i
\(527\) 290.564i 0.551355i
\(528\) 0 0
\(529\) 115.375 0.218100
\(530\) −286.976 93.2441i −0.541464 0.175932i
\(531\) 207.444 997.287i 0.390666 1.87813i
\(532\) 671.875 + 488.146i 1.26292 + 0.917568i
\(533\) 60.8151 19.7600i 0.114100 0.0370732i
\(534\) 82.1557 798.382i 0.153850 1.49510i
\(535\) −310.950 225.919i −0.581216 0.422278i
\(536\) −645.788 888.850i −1.20483 1.65830i
\(537\) 304.140 + 272.652i 0.566369 + 0.507732i
\(538\) 512.434 0.952480
\(539\) 0 0
\(540\) 474.118 157.482i 0.877996 0.291634i
\(541\) 25.5563 78.6541i 0.0472389 0.145387i −0.924655 0.380806i \(-0.875646\pi\)
0.971894 + 0.235420i \(0.0756465\pi\)
\(542\) 222.088 + 305.677i 0.409756 + 0.563980i
\(543\) −196.247 338.206i −0.361412 0.622848i
\(544\) −106.080 326.480i −0.195000 0.600148i
\(545\) 116.158 37.7422i 0.213135 0.0692517i
\(546\) −135.696 + 78.7384i −0.248527 + 0.144209i
\(547\) −320.933 + 233.172i −0.586715 + 0.426273i −0.841139 0.540819i \(-0.818114\pi\)
0.254424 + 0.967093i \(0.418114\pi\)
\(548\) 680.166 + 220.999i 1.24118 + 0.403283i
\(549\) −469.069 516.413i −0.854407 0.940642i
\(550\) 0 0
\(551\) 122.653i 0.222601i
\(552\) 711.289 793.435i 1.28857 1.43738i
\(553\) −618.888 + 449.649i −1.11915 + 0.813108i
\(554\) 516.425 710.798i 0.932174 1.28303i
\(555\) −45.1153 4.64249i −0.0812889 0.00836485i
\(556\) 580.832 + 1787.62i 1.04466 + 3.21514i
\(557\) 225.174 309.925i 0.404262 0.556419i −0.557545 0.830146i \(-0.688257\pi\)
0.961807 + 0.273728i \(0.0882567\pi\)
\(558\) 153.776 739.277i 0.275584 1.32487i
\(559\) 8.05326 24.7854i 0.0144066 0.0443388i
\(560\) 502.548i 0.897407i
\(561\) 0 0
\(562\) 233.573 0.415610
\(563\) −137.748 44.7570i −0.244667 0.0794973i 0.184116 0.982904i \(-0.441058\pi\)
−0.428784 + 0.903407i \(0.641058\pi\)
\(564\) −253.197 1178.57i −0.448932 2.08967i
\(565\) −256.561 186.402i −0.454089 0.329915i
\(566\) 537.602 174.677i 0.949827 0.308617i
\(567\) 700.890 155.373i 1.23614 0.274026i
\(568\) −144.296 104.837i −0.254043 0.184573i
\(569\) 542.614 + 746.845i 0.953628 + 1.31256i 0.949897 + 0.312563i \(0.101188\pi\)
0.00373108 + 0.999993i \(0.498812\pi\)
\(570\) −158.357 + 176.645i −0.277819 + 0.309904i
\(571\) −421.725 −0.738573 −0.369287 0.929316i \(-0.620398\pi\)
−0.369287 + 0.929316i \(0.620398\pi\)
\(572\) 0 0
\(573\) −383.189 + 865.726i −0.668742 + 1.51087i
\(574\) 381.962 1175.56i 0.665439 2.04801i
\(575\) −246.819 339.717i −0.429250 0.590812i
\(576\) −9.39080 85.7527i −0.0163035 0.148876i
\(577\) 142.274 + 437.874i 0.246575 + 0.758880i 0.995373 + 0.0960821i \(0.0306311\pi\)
−0.748798 + 0.662798i \(0.769369\pi\)
\(578\) 459.409 149.271i 0.794825 0.258254i
\(579\) −220.443 379.905i −0.380730 0.656140i
\(580\) −173.775 + 126.255i −0.299613 + 0.217681i
\(581\) 99.5349 + 32.3409i 0.171317 + 0.0556641i
\(582\) 336.128 759.403i 0.577539 1.30482i
\(583\) 0 0
\(584\) 1303.26i 2.23161i
\(585\) −12.6850 28.1602i −0.0216838 0.0481371i
\(586\) −534.025 + 387.992i −0.911306 + 0.662102i
\(587\) 24.9599 34.3544i 0.0425212 0.0585254i −0.787227 0.616663i \(-0.788484\pi\)
0.829748 + 0.558138i \(0.188484\pi\)
\(588\) −80.4856 + 782.152i −0.136880 + 1.33019i
\(589\) 76.3620 + 235.018i 0.129647 + 0.399012i
\(590\) −497.915 + 685.321i −0.843923 + 1.16156i
\(591\) −144.587 673.020i −0.244649 1.13878i
\(592\) 60.8521 187.283i 0.102791 0.316357i
\(593\) 106.267i 0.179203i −0.995978 0.0896015i \(-0.971441\pi\)
0.995978 0.0896015i \(-0.0285593\pi\)
\(594\) 0 0
\(595\) 229.732 0.386105
\(596\) −1908.97 620.263i −3.20297 1.04071i
\(597\) −1142.02 + 245.344i −1.91293 + 0.410962i
\(598\) −97.0823 70.5344i −0.162345 0.117951i
\(599\) −692.381 + 224.968i −1.15589 + 0.375573i −0.823361 0.567518i \(-0.807904\pi\)
−0.332534 + 0.943091i \(0.607904\pi\)
\(600\) 1076.10 + 110.734i 1.79350 + 0.184557i
\(601\) −95.9442 69.7075i −0.159641 0.115986i 0.505097 0.863063i \(-0.331457\pi\)
−0.664738 + 0.747077i \(0.731457\pi\)
\(602\) −296.101 407.549i −0.491863 0.676991i
\(603\) 516.218 232.535i 0.856083 0.385629i
\(604\) 2418.71 4.00448
\(605\) 0 0
\(606\) 125.919 + 55.7343i 0.207787 + 0.0919708i
\(607\) −220.392 + 678.296i −0.363084 + 1.11746i 0.588089 + 0.808796i \(0.299881\pi\)
−0.951172 + 0.308660i \(0.900119\pi\)
\(608\) −171.602 236.190i −0.282240 0.388470i
\(609\) −266.974 + 154.914i −0.438381 + 0.254374i
\(610\) 179.281 + 551.771i 0.293904 + 0.904543i
\(611\) −70.8764 + 23.0291i −0.116001 + 0.0376909i
\(612\) 985.711 107.945i 1.61064 0.176381i
\(613\) 556.171 404.082i 0.907294 0.659188i −0.0330350 0.999454i \(-0.510517\pi\)
0.940329 + 0.340267i \(0.110517\pi\)
\(614\) 1319.21 + 428.637i 2.14855 + 0.698106i
\(615\) 222.515 + 98.4898i 0.361812 + 0.160146i
\(616\) 0 0
\(617\) 762.156i 1.23526i 0.786468 + 0.617631i \(0.211907\pi\)
−0.786468 + 0.617631i \(0.788093\pi\)
\(618\) 565.448 + 506.906i 0.914965 + 0.820237i
\(619\) 429.344 311.937i 0.693609 0.503936i −0.184236 0.982882i \(-0.558981\pi\)
0.877845 + 0.478946i \(0.158981\pi\)
\(620\) −254.369 + 350.110i −0.410273 + 0.564693i
\(621\) 325.660 + 442.129i 0.524413 + 0.711963i
\(622\) 102.253 + 314.702i 0.164394 + 0.505952i
\(623\) −388.519 + 534.751i −0.623626 + 0.858348i
\(624\) 131.110 28.1670i 0.210113 0.0451394i
\(625\) 98.1039 301.933i 0.156966 0.483093i
\(626\) 266.885i 0.426334i
\(627\) 0 0
\(628\) −53.7372 −0.0855688
\(629\) −85.6138 27.8176i −0.136111 0.0442252i
\(630\) −584.504 121.582i −0.927784 0.192987i
\(631\) −547.258 397.607i −0.867288 0.630121i 0.0625701 0.998041i \(-0.480070\pi\)
−0.929858 + 0.367919i \(0.880070\pi\)
\(632\) 1433.65 465.820i 2.26843 0.737058i
\(633\) −62.6424 + 608.754i −0.0989612 + 0.961696i
\(634\) −1520.09 1104.41i −2.39763 1.74198i
\(635\) 17.5053 + 24.0939i 0.0275674 + 0.0379432i
\(636\) 798.683 + 715.994i 1.25579 + 1.12578i
\(637\) 48.6093 0.0763097
\(638\) 0 0
\(639\) 68.0360 61.7987i 0.106473 0.0967115i
\(640\) −93.4285 + 287.543i −0.145982 + 0.449287i
\(641\) 461.931 + 635.794i 0.720641 + 0.991878i 0.999502 + 0.0315462i \(0.0100431\pi\)
−0.278861 + 0.960331i \(0.589957\pi\)
\(642\) 995.009 + 1714.77i 1.54986 + 2.67098i
\(643\) −262.574 808.119i −0.408357 1.25679i −0.918059 0.396443i \(-0.870244\pi\)
0.509702 0.860351i \(-0.329756\pi\)
\(644\) −1520.35 + 493.992i −2.36079 + 0.767069i
\(645\) 85.7780 49.7733i 0.132989 0.0771680i
\(646\) −380.946 + 276.773i −0.589699 + 0.428441i
\(647\) −1112.14 361.357i −1.71892 0.558512i −0.727146 0.686483i \(-0.759154\pi\)
−0.991778 + 0.127971i \(0.959154\pi\)
\(648\) −1408.13 135.609i −2.17305 0.209274i
\(649\) 0 0
\(650\) 121.825i 0.187423i
\(651\) −415.106 + 463.046i −0.637644 + 0.711284i
\(652\) 1161.79 844.092i 1.78189 1.29462i
\(653\) 314.778 433.255i 0.482049 0.663484i −0.496848 0.867838i \(-0.665509\pi\)
0.978897 + 0.204354i \(0.0655092\pi\)
\(654\) −626.681 64.4872i −0.958228 0.0986043i
\(655\) 99.0863 + 304.956i 0.151277 + 0.465582i
\(656\) −621.024 + 854.767i −0.946684 + 1.30300i
\(657\) −657.526 136.771i −1.00080 0.208175i
\(658\) −445.153 + 1370.04i −0.676525 + 2.08213i
\(659\) 138.756i 0.210555i 0.994443 + 0.105278i \(0.0335731\pi\)
−0.994443 + 0.105278i \(0.966427\pi\)
\(660\) 0 0
\(661\) 27.1690 0.0411029 0.0205515 0.999789i \(-0.493458\pi\)
0.0205515 + 0.999789i \(0.493458\pi\)
\(662\) −858.746 279.023i −1.29720 0.421485i
\(663\) −12.8761 59.9352i −0.0194210 0.0903999i
\(664\) −166.843 121.219i −0.251270 0.182558i
\(665\) 185.815 60.3751i 0.279422 0.0907895i
\(666\) 203.104 + 116.085i 0.304961 + 0.174303i
\(667\) −191.004 138.773i −0.286363 0.208055i
\(668\) −829.924 1142.29i −1.24240 1.71002i
\(669\) 33.0814 36.9020i 0.0494491 0.0551599i
\(670\) −470.835 −0.702738
\(671\) 0 0
\(672\) 297.367 671.831i 0.442511 0.999749i
\(673\) 203.174 625.305i 0.301893 0.929131i −0.678926 0.734207i \(-0.737554\pi\)
0.980818 0.194924i \(-0.0624459\pi\)
\(674\) 104.690 + 144.093i 0.155326 + 0.213788i
\(675\) −168.799 + 531.298i −0.250073 + 0.787108i
\(676\) 455.735 + 1402.61i 0.674165 + 2.07487i
\(677\) −581.347 + 188.891i −0.858711 + 0.279012i −0.705090 0.709118i \(-0.749093\pi\)
−0.153621 + 0.988130i \(0.549093\pi\)
\(678\) 820.968 + 1414.83i 1.21087 + 2.08677i
\(679\) −553.319 + 402.010i −0.814903 + 0.592062i
\(680\) −430.536 139.890i −0.633142 0.205720i
\(681\) −137.037 + 309.603i −0.201229 + 0.454630i
\(682\) 0 0
\(683\) 990.520i 1.45025i −0.688618 0.725124i \(-0.741782\pi\)
0.688618 0.725124i \(-0.258218\pi\)
\(684\) 768.908 346.361i 1.12413 0.506376i
\(685\) 136.116 98.8943i 0.198710 0.144371i
\(686\) −363.423 + 500.209i −0.529772 + 0.729168i
\(687\) −113.198 + 1100.05i −0.164771 + 1.60123i
\(688\) 133.063 + 409.525i 0.193405 + 0.595240i
\(689\) 38.9772 53.6476i 0.0565707 0.0778629i
\(690\) −95.9159 446.466i −0.139009 0.647052i
\(691\) 177.091 545.029i 0.256282 0.788754i −0.737293 0.675573i \(-0.763896\pi\)
0.993574 0.113181i \(-0.0361038\pi\)
\(692\) 340.727i 0.492380i
\(693\) 0 0
\(694\) 1649.35 2.37659
\(695\) 420.551 + 136.645i 0.605109 + 0.196612i
\(696\) 594.661 127.753i 0.854398 0.183554i
\(697\) 390.744 + 283.892i 0.560608 + 0.407306i
\(698\) 1343.35 436.482i 1.92458 0.625333i
\(699\) −520.870 53.5990i −0.745165 0.0766795i
\(700\) −1312.95 953.913i −1.87564 1.36273i
\(701\) −481.412 662.606i −0.686750 0.945230i 0.313240 0.949674i \(-0.398585\pi\)
−0.999990 + 0.00444396i \(0.998585\pi\)
\(702\) 1.04087 + 159.307i 0.00148272 + 0.226932i
\(703\) −76.5580 −0.108902
\(704\) 0 0
\(705\) −259.327 114.784i −0.367840 0.162814i
\(706\) −18.7821 + 57.8054i −0.0266036 + 0.0818774i
\(707\) −66.6584 91.7474i −0.0942834 0.129770i
\(708\) 2604.55 1511.31i 3.67874 2.13462i
\(709\) 55.5742 + 171.040i 0.0783840 + 0.241241i 0.982568 0.185901i \(-0.0595204\pi\)
−0.904185 + 0.427142i \(0.859520\pi\)
\(710\) −72.6944 + 23.6199i −0.102387 + 0.0332674i
\(711\) 84.5631 + 772.194i 0.118935 + 1.08607i
\(712\) 1053.74 765.586i 1.47997 1.07526i
\(713\) −452.384 146.989i −0.634480 0.206155i
\(714\) −1083.58 479.617i −1.51762 0.671732i
\(715\) 0 0
\(716\) 1207.48i 1.68643i
\(717\) −771.450 691.581i −1.07594 0.964548i
\(718\) −220.240 + 160.014i −0.306741 + 0.222860i
\(719\) −391.663 + 539.078i −0.544733 + 0.749761i −0.989286 0.145992i \(-0.953363\pi\)
0.444553 + 0.895753i \(0.353363\pi\)
\(720\) 443.053 + 253.230i 0.615351 + 0.351708i
\(721\) −193.263 594.801i −0.268048 0.824967i
\(722\) 525.802 723.704i 0.728257 1.00236i
\(723\) 766.845 164.744i 1.06064 0.227862i
\(724\) 357.200 1099.35i 0.493371 1.51844i
\(725\) 239.684i 0.330598i
\(726\) 0 0
\(727\) 162.429 0.223424 0.111712 0.993741i \(-0.464367\pi\)
0.111712 + 0.993741i \(0.464367\pi\)
\(728\) −242.140 78.6760i −0.332610 0.108071i
\(729\) 216.195 696.205i 0.296563 0.955013i
\(730\) 451.842 + 328.283i 0.618962 + 0.449702i
\(731\) 187.208 60.8277i 0.256099 0.0832116i
\(732\) 211.108 2051.53i 0.288399 2.80264i
\(733\) 946.453 + 687.638i 1.29120 + 0.938115i 0.999829 0.0184934i \(-0.00588696\pi\)
0.291376 + 0.956609i \(0.405887\pi\)
\(734\) 1305.84 + 1797.33i 1.77907 + 2.44868i
\(735\) 137.735 + 123.475i 0.187395 + 0.167994i
\(736\) 561.967 0.763542
\(737\) 0 0
\(738\) −843.919 929.096i −1.14352 1.25894i
\(739\) 74.8985 230.514i 0.101351 0.311927i −0.887506 0.460797i \(-0.847564\pi\)
0.988857 + 0.148870i \(0.0475636\pi\)
\(740\) −78.8063 108.468i −0.106495 0.146578i
\(741\) −26.1660 45.0937i −0.0353117 0.0608552i
\(742\) −396.102 1219.08i −0.533830 1.64296i
\(743\) 783.342 254.523i 1.05430 0.342562i 0.269943 0.962876i \(-0.412995\pi\)
0.784353 + 0.620314i \(0.212995\pi\)
\(744\) 1059.90 615.016i 1.42460 0.826635i
\(745\) −382.028 + 277.560i −0.512789 + 0.372563i
\(746\) −1247.57 405.360i −1.67235 0.543378i
\(747\) 78.6669 71.4549i 0.105310 0.0956559i
\(748\) 0 0
\(749\) 1632.75i 2.17990i
\(750\) 684.151 763.163i 0.912202 1.01755i
\(751\) 4.96588 3.60793i 0.00661236 0.00480416i −0.584474 0.811412i \(-0.698699\pi\)
0.591087 + 0.806608i \(0.298699\pi\)
\(752\) 723.767 996.179i 0.962456 1.32471i
\(753\) −591.910 60.9092i −0.786069 0.0808887i
\(754\) −21.1662 65.1430i −0.0280719 0.0863965i
\(755\) 334.461 460.347i 0.442995 0.609731i
\(756\) 1725.06 + 1236.19i 2.28182 + 1.63517i
\(757\) −340.620 + 1048.32i −0.449961 + 1.38484i 0.426990 + 0.904256i \(0.359574\pi\)
−0.876951 + 0.480580i \(0.840426\pi\)
\(758\) 1470.37i 1.93980i
\(759\) 0 0
\(760\) −384.996 −0.506574
\(761\) 1141.53 + 370.907i 1.50004 + 0.487394i 0.940031 0.341090i \(-0.110796\pi\)
0.560013 + 0.828484i \(0.310796\pi\)
\(762\) −32.2660 150.190i −0.0423438 0.197100i
\(763\) 419.747 + 304.964i 0.550127 + 0.399691i
\(764\) −2661.75 + 864.856i −3.48397 + 1.13201i
\(765\) 115.760 202.535i 0.151321 0.264752i
\(766\) −153.703 111.672i −0.200657 0.145786i
\(767\) −109.423 150.608i −0.142664 0.196360i
\(768\) 964.209 1075.56i 1.25548 1.40047i
\(769\) 1038.16 1.35001 0.675007 0.737811i \(-0.264141\pi\)
0.675007 + 0.737811i \(0.264141\pi\)
\(770\) 0 0
\(771\) −2.26479 + 5.11676i −0.00293747 + 0.00663652i
\(772\) 401.241 1234.89i 0.519742 1.59960i
\(773\) 344.566 + 474.255i 0.445752 + 0.613525i 0.971478 0.237129i \(-0.0762063\pi\)
−0.525726 + 0.850654i \(0.676206\pi\)
\(774\) −508.503 + 55.6863i −0.656981 + 0.0719461i
\(775\) −149.223 459.262i −0.192546 0.592596i
\(776\) 1281.76 416.468i 1.65175 0.536686i
\(777\) −96.6944 166.640i −0.124446 0.214466i
\(778\) −263.128 + 191.174i −0.338211 + 0.245725i
\(779\) 390.656 + 126.932i 0.501483 + 0.162942i
\(780\) 36.9545 83.4899i 0.0473775 0.107038i
\(781\) 0 0
\(782\) 906.383i 1.15906i
\(783\) 2.04786 + 313.427i 0.00261541 + 0.400290i
\(784\) −649.773 + 472.088i −0.828792 + 0.602153i
\(785\) −7.43084 + 10.2277i −0.00946603 + 0.0130289i
\(786\) 169.301 1645.26i 0.215396 2.09320i
\(787\) −115.407 355.185i −0.146641 0.451315i 0.850577 0.525850i \(-0.176253\pi\)
−0.997218 + 0.0745349i \(0.976253\pi\)
\(788\) 1196.12 1646.32i 1.51792 2.08924i
\(789\) 17.0701 + 79.4573i 0.0216351 + 0.100706i
\(790\) 199.626 614.384i 0.252691 0.777701i
\(791\) 1347.16i 1.70311i
\(792\) 0 0
\(793\) −127.499 −0.160780
\(794\) 1145.54 + 372.208i 1.44275 + 0.468776i
\(795\) 246.716 53.0030i 0.310335 0.0666704i
\(796\) −2793.57 2029.65i −3.50951 2.54981i
\(797\) 795.852 258.588i 0.998560 0.324452i 0.236270 0.971687i \(-0.424075\pi\)
0.762290 + 0.647236i \(0.224075\pi\)
\(798\) −1002.48 103.158i −1.25625 0.129271i
\(799\) −455.389 330.859i −0.569948 0.414092i
\(800\) 335.337 + 461.552i 0.419172 + 0.576940i
\(801\) 275.671 + 611.980i 0.344159 + 0.764020i
\(802\) −67.8754 −0.0846326
\(803\) 0 0
\(804\) 1530.49 + 677.429i 1.90360 + 0.842573i
\(805\) −116.216 + 357.675i −0.144367 + 0.444316i
\(806\) −81.1140 111.644i −0.100638 0.138516i
\(807\) −370.662 + 215.080i −0.459309 + 0.266517i
\(808\) 69.0558 + 212.532i 0.0854650 + 0.263034i
\(809\) −493.440 + 160.328i −0.609938 + 0.198181i −0.597668 0.801744i \(-0.703906\pi\)
−0.0122700 + 0.999925i \(0.503906\pi\)
\(810\) −401.715 + 454.042i −0.495944 + 0.560546i
\(811\) 633.194 460.042i 0.780757 0.567253i −0.124449 0.992226i \(-0.539716\pi\)
0.905206 + 0.424973i \(0.139716\pi\)
\(812\) −867.806 281.967i −1.06873 0.347250i
\(813\) −288.943 127.892i −0.355403 0.157309i
\(814\) 0 0
\(815\) 337.843i 0.414531i
\(816\) 754.202 + 676.118i 0.924267 + 0.828576i
\(817\) 135.435 98.3990i 0.165771 0.120439i
\(818\) −251.471 + 346.120i −0.307422 + 0.423130i
\(819\) 65.1052 113.909i 0.0794936 0.139082i
\(820\) 222.291 + 684.141i 0.271086 + 0.834318i
\(821\) 324.234 446.270i 0.394926 0.543569i −0.564535 0.825409i \(-0.690945\pi\)
0.959462 + 0.281840i \(0.0909446\pi\)
\(822\) −848.486 + 182.284i −1.03222 + 0.221756i
\(823\) −14.2681 + 43.9128i −0.0173367 + 0.0533570i −0.959351 0.282217i \(-0.908930\pi\)
0.942014 + 0.335574i \(0.108930\pi\)
\(824\) 1232.39i 1.49562i
\(825\) 0 0
\(826\) −3598.50 −4.35654
\(827\) −567.030 184.239i −0.685648 0.222780i −0.0545813 0.998509i \(-0.517382\pi\)
−0.631066 + 0.775729i \(0.717382\pi\)
\(828\) −330.583 + 1589.28i −0.399255 + 1.91942i
\(829\) 1122.16 + 815.300i 1.35364 + 0.983474i 0.998821 + 0.0485378i \(0.0154561\pi\)
0.354815 + 0.934937i \(0.384544\pi\)
\(830\) −84.0532 + 27.3105i −0.101269 + 0.0329043i
\(831\) −75.2116 + 730.899i −0.0905073 + 0.879542i
\(832\) −12.7546 9.26674i −0.0153300 0.0111379i
\(833\) 215.808 + 297.034i 0.259073 + 0.356584i
\(834\) −1698.34 1522.51i −2.03638 1.82555i
\(835\) −332.172 −0.397811
\(836\) 0 0
\(837\) 199.059 + 599.288i 0.237824 + 0.715995i
\(838\) −457.683 + 1408.60i −0.546161 + 1.68091i
\(839\) 978.665 + 1347.02i 1.16647 + 1.60550i 0.683727 + 0.729738i \(0.260358\pi\)
0.482739 + 0.875764i \(0.339642\pi\)
\(840\) −486.258 838.004i −0.578879 0.997624i
\(841\) 218.240 + 671.673i 0.259500 + 0.798660i
\(842\) 2063.88 670.595i 2.45116 0.796432i
\(843\) −168.951 + 98.0354i −0.200417 + 0.116293i
\(844\) −1463.58 + 1063.36i −1.73410 + 1.25990i
\(845\) 329.975 + 107.215i 0.390503 + 0.126882i
\(846\) 983.537 + 1082.81i 1.16257 + 1.27991i
\(847\) 0 0
\(848\) 1095.66i 1.29206i
\(849\) −315.551 + 351.993i −0.371673 + 0.414597i
\(850\) 744.427 540.858i 0.875797 0.636303i
\(851\) 86.6196 119.222i 0.101786 0.140096i
\(852\) 270.284 + 27.8130i 0.317234 + 0.0326443i
\(853\) 251.091 + 772.780i 0.294363 + 0.905956i 0.983435 + 0.181263i \(0.0580184\pi\)
−0.689072 + 0.724693i \(0.741982\pi\)
\(854\) −1448.63 + 1993.87i −1.69629 + 2.33474i
\(855\) 40.4034 194.240i 0.0472555 0.227181i
\(856\) −994.221 + 3059.90i −1.16147 + 3.57465i
\(857\) 551.421i 0.643431i −0.946836 0.321716i \(-0.895740\pi\)
0.946836 0.321716i \(-0.104260\pi\)
\(858\) 0 0
\(859\) −1196.04 −1.39236 −0.696180 0.717868i \(-0.745118\pi\)
−0.696180 + 0.717868i \(0.745118\pi\)
\(860\) 278.824 + 90.5953i 0.324214 + 0.105343i
\(861\) 217.120 + 1010.64i 0.252172 + 1.17380i
\(862\) −1286.88 934.973i −1.49290 1.08466i
\(863\) 681.319 221.374i 0.789478 0.256517i 0.113596 0.993527i \(-0.463763\pi\)
0.675882 + 0.737010i \(0.263763\pi\)
\(864\) −442.454 600.693i −0.512100 0.695247i
\(865\) −64.8498 47.1161i −0.0749709 0.0544695i
\(866\) 461.729 + 635.516i 0.533175 + 0.733852i
\(867\) −269.654 + 300.796i −0.311020 + 0.346939i
\(868\) −1838.37 −2.11793
\(869\) 0 0
\(870\) 105.499 238.350i 0.121263 0.273965i
\(871\) 31.9745 98.4075i 0.0367101 0.112982i
\(872\) −600.939 827.121i −0.689150 0.948534i
\(873\) 75.6040 + 690.383i 0.0866025 + 0.790817i
\(874\) −238.203 733.114i −0.272544 0.838803i
\(875\) −802.780 + 260.839i −0.917463 + 0.298102i
\(876\) −996.428 1717.22i −1.13747 1.96029i
\(877\) 802.250 582.869i 0.914766 0.664616i −0.0274497 0.999623i \(-0.508739\pi\)
0.942216 + 0.335007i \(0.108739\pi\)
\(878\) 585.588 + 190.269i 0.666957 + 0.216707i
\(879\) 223.431 504.790i 0.254188 0.574278i
\(880\) 0 0
\(881\) 1256.55i 1.42628i −0.701021 0.713140i \(-0.747272\pi\)
0.701021 0.713140i \(-0.252728\pi\)
\(882\) −391.877 869.951i −0.444305 0.986339i
\(883\) −225.170 + 163.596i −0.255006 + 0.185273i −0.707943 0.706270i \(-0.750376\pi\)
0.452936 + 0.891543i \(0.350376\pi\)
\(884\) 106.519 146.611i 0.120497 0.165850i
\(885\) 72.5158 704.702i 0.0819388 0.796274i
\(886\) 656.846 + 2021.56i 0.741361 + 2.28168i
\(887\) −690.062 + 949.789i −0.777973 + 1.07079i 0.217529 + 0.976054i \(0.430200\pi\)
−0.995503 + 0.0947346i \(0.969800\pi\)
\(888\) 79.7414 + 371.177i 0.0897988 + 0.417992i
\(889\) −39.0947 + 120.321i −0.0439761 + 0.135344i
\(890\) 558.178i 0.627166i
\(891\) 0 0
\(892\) 146.507 0.164245
\(893\) −455.286 147.931i −0.509838 0.165656i
\(894\) 2381.38 511.602i 2.66374 0.572262i
\(895\) 229.818 + 166.972i 0.256779 + 0.186561i
\(896\) −1221.49 + 396.885i −1.36327 + 0.442953i
\(897\) 99.8279 + 10.2726i 0.111291 + 0.0114521i
\(898\) 1265.71 + 919.596i 1.40948 + 1.02405i
\(899\) −159.587 219.653i −0.177517 0.244331i
\(900\) −1502.57 + 676.843i −1.66952 + 0.752048i
\(901\) 500.866 0.555900
\(902\) 0 0
\(903\) 385.237 + 170.514i 0.426619 + 0.188831i
\(904\) −820.317 + 2524.68i −0.907430 + 2.79278i
\(905\) −159.843 220.004i −0.176622 0.243099i
\(906\) −2538.63 + 1473.06i −2.80203 + 1.62590i
\(907\) 44.9979 + 138.489i 0.0496118 + 0.152690i 0.972793 0.231675i \(-0.0744206\pi\)
−0.923181 + 0.384365i \(0.874421\pi\)
\(908\) −951.902 + 309.292i −1.04835 + 0.340630i
\(909\) −114.474 + 12.5361i −0.125934 + 0.0137911i
\(910\) −88.2704 + 64.1322i −0.0970004 + 0.0704749i
\(911\) 1024.00 + 332.718i 1.12404 + 0.365223i 0.811308 0.584619i \(-0.198756\pi\)
0.312732 + 0.949841i \(0.398756\pi\)
\(912\) 787.712 + 348.658i 0.863719 + 0.382301i
\(913\) 0 0
\(914\) 855.714i 0.936230i
\(915\) −361.271 323.868i −0.394831 0.353954i
\(916\) −2644.76 + 1921.53i −2.88730 + 2.09774i
\(917\) −800.637 + 1101.98i −0.873105 + 1.20173i
\(918\) −968.844 + 713.624i −1.05539 + 0.777369i
\(919\) −97.6839 300.640i −0.106294 0.327138i 0.883738 0.467982i \(-0.155019\pi\)
−0.990032 + 0.140843i \(0.955019\pi\)
\(920\) 435.594 599.544i 0.473472 0.651678i
\(921\) −1134.14 + 243.652i −1.23142 + 0.264551i
\(922\) 788.358 2426.32i 0.855052 2.63158i
\(923\) 16.7976i 0.0181990i
\(924\) 0 0
\(925\) 149.606 0.161737
\(926\) 1574.45 + 511.571i 1.70028 + 0.552453i
\(927\) −621.768 129.333i −0.670731 0.139518i
\(928\) 259.506 + 188.542i 0.279640 + 0.203170i
\(929\) −1063.90 + 345.682i −1.14521 + 0.372101i −0.819337 0.573313i \(-0.805658\pi\)
−0.325872 + 0.945414i \(0.605658\pi\)
\(930\) 53.7551 522.387i 0.0578012 0.561707i
\(931\) 252.615 + 183.536i 0.271337 + 0.197138i
\(932\) −909.843 1252.29i −0.976226 1.34366i
\(933\) −206.050 184.717i −0.220847 0.197982i
\(934\) −173.568 −0.185833
\(935\) 0 0
\(936\) −191.374 + 173.829i −0.204459 + 0.185715i
\(937\) −324.843 + 999.765i −0.346684 + 1.06699i 0.613991 + 0.789313i \(0.289563\pi\)
−0.960676 + 0.277672i \(0.910437\pi\)
\(938\) −1175.64 1618.12i −1.25334 1.72508i
\(939\) −112.017 193.048i −0.119294 0.205588i
\(940\) −259.067 797.325i −0.275603 0.848218i
\(941\) 304.866 99.0570i 0.323981 0.105268i −0.142511 0.989793i \(-0.545518\pi\)
0.466492 + 0.884525i \(0.345518\pi\)
\(942\) 56.4016 32.7275i 0.0598744 0.0347426i
\(943\) −639.664 + 464.743i −0.678329 + 0.492835i
\(944\) 2925.37 + 950.510i 3.09891 + 1.00690i
\(945\) 473.823 157.384i 0.501400 0.166544i
\(946\) 0 0
\(947\) 689.980i 0.728596i 0.931283 + 0.364298i \(0.118691\pi\)
−0.931283 + 0.364298i \(0.881309\pi\)
\(948\) −1532.87 + 1709.89i −1.61695 + 1.80369i
\(949\) −99.2979 + 72.1442i −0.104634 + 0.0760213i
\(950\) 459.977 633.104i 0.484187 0.666426i
\(951\) 1563.08 + 160.846i 1.64362 + 0.169133i
\(952\) −594.253 1828.92i −0.624216 1.92114i
\(953\) 788.855 1085.77i 0.827760 1.13931i −0.160576 0.987023i \(-0.551335\pi\)
0.988336 0.152290i \(-0.0486647\pi\)
\(954\) −1274.35 265.074i −1.33579 0.277856i
\(955\) −203.464 + 626.198i −0.213051 + 0.655705i
\(956\) 3062.78i 3.20374i
\(957\) 0 0
\(958\) −614.947 −0.641907
\(959\) 679.743 + 220.862i 0.708804 + 0.230304i
\(960\) −12.6013 58.6562i −0.0131264 0.0611002i
\(961\) 334.925 + 243.337i 0.348517 + 0.253212i
\(962\) 40.6611 13.2116i 0.0422673 0.0137335i
\(963\) −1439.45 822.728i −1.49476 0.854339i
\(964\) 1875.83 + 1362.87i 1.94588 + 1.41377i
\(965\) −179.550 247.129i −0.186062 0.256093i
\(966\) 1294.88 1444.42i 1.34046 1.49526i
\(967\) −1283.30 −1.32709 −0.663546 0.748135i \(-0.730949\pi\)
−0.663546 + 0.748135i \(0.730949\pi\)
\(968\) 0 0
\(969\) 159.384 360.091i 0.164483 0.371611i
\(970\) 178.476 549.292i 0.183996 0.566281i
\(971\) −500.100 688.328i −0.515036 0.708886i 0.469722 0.882814i \(-0.344354\pi\)
−0.984758 + 0.173928i \(0.944354\pi\)
\(972\) 1959.08 897.926i 2.01551 0.923792i
\(973\) 580.471 + 1786.50i 0.596578 + 1.83608i
\(974\) −1690.49 + 549.274i −1.73562 + 0.563936i
\(975\) 51.1324 + 88.1201i 0.0524435 + 0.0903796i
\(976\) 1704.31 1238.25i 1.74622 1.26870i
\(977\) 1153.28 + 374.724i 1.18043 + 0.383545i 0.832527 0.553985i \(-0.186893\pi\)
0.347904 + 0.937530i \(0.386893\pi\)
\(978\) −705.322 + 1593.51i −0.721188 + 1.62936i
\(979\) 0 0
\(980\) 546.831i 0.557991i
\(981\) 480.367 216.385i 0.489671 0.220576i
\(982\) −958.436 + 696.345i −0.976004 + 0.709109i
\(983\) 267.240 367.825i 0.271862 0.374186i −0.651155 0.758945i \(-0.725715\pi\)
0.923017 + 0.384759i \(0.125715\pi\)
\(984\) 208.504 2026.23i 0.211895 2.05917i
\(985\) −147.939 455.310i −0.150192 0.462243i
\(986\) 304.095 418.551i 0.308413 0.424494i
\(987\) −253.040 1177.84i −0.256373 1.19335i
\(988\) 47.6262 146.578i 0.0482046 0.148359i
\(989\) 322.239i 0.325823i
\(990\) 0 0
\(991\) 697.554 0.703889 0.351945 0.936021i \(-0.385521\pi\)
0.351945 + 0.936021i \(0.385521\pi\)
\(992\) 614.626 + 199.704i 0.619583 + 0.201315i
\(993\) 738.273 158.606i 0.743478 0.159724i
\(994\) −262.687 190.853i −0.264272 0.192005i
\(995\) −772.595 + 251.031i −0.776478 + 0.252293i
\(996\) 312.517 + 32.1588i 0.313772 + 0.0322880i
\(997\) 529.077 + 384.397i 0.530669 + 0.385553i 0.820608 0.571492i \(-0.193635\pi\)
−0.289939 + 0.957045i \(0.593635\pi\)
\(998\) 231.520 + 318.660i 0.231984 + 0.319299i
\(999\) −195.636 + 1.27824i −0.195832 + 0.00127952i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.251.1 16
3.2 odd 2 inner 363.3.h.n.251.4 16
11.2 odd 10 33.3.h.b.14.1 16
11.3 even 5 363.3.h.j.323.1 16
11.4 even 5 363.3.b.l.122.1 8
11.5 even 5 inner 363.3.h.n.269.4 16
11.6 odd 10 363.3.h.o.269.1 16
11.7 odd 10 363.3.b.m.122.8 8
11.8 odd 10 33.3.h.b.26.4 yes 16
11.9 even 5 363.3.h.j.245.4 16
11.10 odd 2 363.3.h.o.251.4 16
33.2 even 10 33.3.h.b.14.4 yes 16
33.5 odd 10 inner 363.3.h.n.269.1 16
33.8 even 10 33.3.h.b.26.1 yes 16
33.14 odd 10 363.3.h.j.323.4 16
33.17 even 10 363.3.h.o.269.4 16
33.20 odd 10 363.3.h.j.245.1 16
33.26 odd 10 363.3.b.l.122.8 8
33.29 even 10 363.3.b.m.122.1 8
33.32 even 2 363.3.h.o.251.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.1 16 11.2 odd 10
33.3.h.b.14.4 yes 16 33.2 even 10
33.3.h.b.26.1 yes 16 33.8 even 10
33.3.h.b.26.4 yes 16 11.8 odd 10
363.3.b.l.122.1 8 11.4 even 5
363.3.b.l.122.8 8 33.26 odd 10
363.3.b.m.122.1 8 33.29 even 10
363.3.b.m.122.8 8 11.7 odd 10
363.3.h.j.245.1 16 33.20 odd 10
363.3.h.j.245.4 16 11.9 even 5
363.3.h.j.323.1 16 11.3 even 5
363.3.h.j.323.4 16 33.14 odd 10
363.3.h.n.251.1 16 1.1 even 1 trivial
363.3.h.n.251.4 16 3.2 odd 2 inner
363.3.h.n.269.1 16 33.5 odd 10 inner
363.3.h.n.269.4 16 11.5 even 5 inner
363.3.h.o.251.1 16 33.32 even 2
363.3.h.o.251.4 16 11.10 odd 2
363.3.h.o.269.1 16 11.6 odd 10
363.3.h.o.269.4 16 33.17 even 10