Properties

Label 363.3.h.n.245.3
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,18,0,-32,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.3
Root \(1.90610 + 0.619331i\) of defining polynomial
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.n.323.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17804 + 1.62143i) q^{2} +(1.88824 + 2.33121i) q^{3} +(-0.00519352 + 0.0159840i) q^{4} +(-3.22364 + 4.43696i) q^{5} +(-1.55548 + 5.80790i) q^{6} +(-1.72766 + 5.31721i) q^{7} +(7.59238 - 2.46692i) q^{8} +(-1.86912 + 8.80377i) q^{9} -10.9918 q^{10} +(-0.0470687 + 0.0180744i) q^{12} +(-7.86105 + 5.71139i) q^{13} +(-10.6567 + 3.46258i) q^{14} +(-16.4305 + 0.863040i) q^{15} +(12.9984 + 9.44391i) q^{16} +(10.5047 - 14.4584i) q^{17} +(-16.4766 + 7.34053i) q^{18} +(-5.76592 - 17.7457i) q^{19} +(-0.0541783 - 0.0745701i) q^{20} +(-15.6578 + 6.01259i) q^{21} +12.3649i q^{23} +(20.0871 + 13.0413i) q^{24} +(-1.56932 - 4.82989i) q^{25} +(-18.5212 - 6.01791i) q^{26} +(-24.0528 + 12.2663i) q^{27} +(-0.0760176 - 0.0552300i) q^{28} +(2.35608 + 0.765535i) q^{29} +(-20.7551 - 25.6242i) q^{30} +(-39.8286 + 28.9372i) q^{31} +0.268903i q^{32} +35.8182 q^{34} +(-18.0228 - 24.8063i) q^{35} +(-0.131012 - 0.0755985i) q^{36} +(-12.1539 + 37.4057i) q^{37} +(21.9809 - 30.2541i) q^{38} +(-28.1580 - 7.54133i) q^{39} +(-13.5295 + 41.6395i) q^{40} +(53.7571 - 17.4667i) q^{41} +(-28.1945 - 18.3049i) q^{42} +43.9060 q^{43} +(-33.0366 - 36.6734i) q^{45} +(-20.0488 + 14.5663i) q^{46} +(54.9558 - 17.8562i) q^{47} +(2.52835 + 48.1345i) q^{48} +(14.3540 + 10.4288i) q^{49} +(5.98260 - 8.23434i) q^{50} +(53.5409 - 2.81233i) q^{51} +(-0.0504643 - 0.155313i) q^{52} +(-25.3428 - 34.8814i) q^{53} +(-48.2241 - 24.5498i) q^{54} +44.6323i q^{56} +(30.4815 - 46.9496i) q^{57} +(1.53428 + 4.72204i) q^{58} +(85.6247 + 27.8212i) q^{59} +(0.0715372 - 0.267107i) q^{60} +(-24.9740 - 18.1446i) q^{61} +(-93.8392 - 30.4902i) q^{62} +(-43.5823 - 25.1484i) q^{63} +(51.5577 - 37.4589i) q^{64} -53.2906i q^{65} +34.0775 q^{67} +(0.176547 + 0.242996i) q^{68} +(-28.8251 + 23.3478i) q^{69} +(18.9901 - 58.4456i) q^{70} +(22.0985 - 30.4160i) q^{71} +(7.52711 + 71.4526i) q^{72} +(3.74717 - 11.5326i) q^{73} +(-74.9685 + 24.3587i) q^{74} +(8.29624 - 12.7784i) q^{75} +0.313592 q^{76} +(-20.9434 - 54.5402i) q^{78} +(-51.0852 + 37.1155i) q^{79} +(-83.8045 + 27.2297i) q^{80} +(-74.0128 - 32.9105i) q^{81} +(91.6490 + 66.5869i) q^{82} +(-5.70238 + 7.84865i) q^{83} +(-0.0147863 - 0.281501i) q^{84} +(30.2882 + 93.2174i) q^{85} +(51.7229 + 71.1904i) q^{86} +(2.66420 + 6.93803i) q^{87} +34.1289i q^{89} +(20.5449 - 96.7691i) q^{90} +(-16.7874 - 51.6662i) q^{91} +(-0.197640 - 0.0642171i) q^{92} +(-142.665 - 38.2087i) q^{93} +(93.6927 + 68.0717i) q^{94} +(97.3240 + 31.6225i) q^{95} +(-0.626871 + 0.507754i) q^{96} +(30.5992 - 22.2316i) q^{97} +35.5595i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} + 18 q^{4} - 32 q^{6} + 34 q^{7} + 17 q^{9} + 12 q^{10} + 106 q^{12} + 2 q^{13} - 28 q^{15} + 102 q^{16} - 42 q^{18} - 66 q^{19} + 12 q^{21} + 74 q^{24} - 176 q^{25} - 55 q^{27} + 146 q^{28}+ \cdots + 252 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17804 + 1.62143i 0.589019 + 0.810715i 0.994648 0.103323i \(-0.0329475\pi\)
−0.405629 + 0.914038i \(0.632948\pi\)
\(3\) 1.88824 + 2.33121i 0.629413 + 0.777071i
\(4\) −0.00519352 + 0.0159840i −0.00129838 + 0.00399600i
\(5\) −3.22364 + 4.43696i −0.644728 + 0.887392i −0.998857 0.0478050i \(-0.984777\pi\)
0.354129 + 0.935197i \(0.384777\pi\)
\(6\) −1.55548 + 5.80790i −0.259247 + 0.967984i
\(7\) −1.72766 + 5.31721i −0.246809 + 0.759601i 0.748524 + 0.663107i \(0.230763\pi\)
−0.995334 + 0.0964935i \(0.969237\pi\)
\(8\) 7.59238 2.46692i 0.949048 0.308364i
\(9\) −1.86912 + 8.80377i −0.207680 + 0.978197i
\(10\) −10.9918 −1.09918
\(11\) 0 0
\(12\) −0.0470687 + 0.0180744i −0.00392239 + 0.00150620i
\(13\) −7.86105 + 5.71139i −0.604696 + 0.439338i −0.847543 0.530727i \(-0.821919\pi\)
0.242846 + 0.970065i \(0.421919\pi\)
\(14\) −10.6567 + 3.46258i −0.761195 + 0.247327i
\(15\) −16.4305 + 0.863040i −1.09537 + 0.0575360i
\(16\) 12.9984 + 9.44391i 0.812402 + 0.590245i
\(17\) 10.5047 14.4584i 0.617921 0.850495i −0.379279 0.925282i \(-0.623828\pi\)
0.997199 + 0.0747875i \(0.0238278\pi\)
\(18\) −16.4766 + 7.34053i −0.915366 + 0.407807i
\(19\) −5.76592 17.7457i −0.303469 0.933982i −0.980244 0.197792i \(-0.936623\pi\)
0.676775 0.736190i \(-0.263377\pi\)
\(20\) −0.0541783 0.0745701i −0.00270892 0.00372850i
\(21\) −15.6578 + 6.01259i −0.745609 + 0.286314i
\(22\) 0 0
\(23\) 12.3649i 0.537603i 0.963196 + 0.268801i \(0.0866275\pi\)
−0.963196 + 0.268801i \(0.913372\pi\)
\(24\) 20.0871 + 13.0413i 0.836964 + 0.543390i
\(25\) −1.56932 4.82989i −0.0627730 0.193195i
\(26\) −18.5212 6.01791i −0.712355 0.231458i
\(27\) −24.0528 + 12.2663i −0.890845 + 0.454308i
\(28\) −0.0760176 0.0552300i −0.00271491 0.00197250i
\(29\) 2.35608 + 0.765535i 0.0812440 + 0.0263978i 0.349357 0.936990i \(-0.386400\pi\)
−0.268113 + 0.963387i \(0.586400\pi\)
\(30\) −20.7551 25.6242i −0.691837 0.854140i
\(31\) −39.8286 + 28.9372i −1.28479 + 0.933457i −0.999686 0.0250387i \(-0.992029\pi\)
−0.285107 + 0.958496i \(0.592029\pi\)
\(32\) 0.268903i 0.00840323i
\(33\) 0 0
\(34\) 35.8182 1.05348
\(35\) −18.0228 24.8063i −0.514939 0.708752i
\(36\) −0.131012 0.0755985i −0.00363923 0.00209996i
\(37\) −12.1539 + 37.4057i −0.328483 + 1.01097i 0.641361 + 0.767239i \(0.278370\pi\)
−0.969844 + 0.243727i \(0.921630\pi\)
\(38\) 21.9809 30.2541i 0.578444 0.796160i
\(39\) −28.1580 7.54133i −0.722000 0.193368i
\(40\) −13.5295 + 41.6395i −0.338238 + 1.04099i
\(41\) 53.7571 17.4667i 1.31115 0.426018i 0.431703 0.902016i \(-0.357913\pi\)
0.879446 + 0.475998i \(0.157913\pi\)
\(42\) −28.1945 18.3049i −0.671296 0.435832i
\(43\) 43.9060 1.02107 0.510534 0.859857i \(-0.329448\pi\)
0.510534 + 0.859857i \(0.329448\pi\)
\(44\) 0 0
\(45\) −33.0366 36.6734i −0.734147 0.814964i
\(46\) −20.0488 + 14.5663i −0.435842 + 0.316658i
\(47\) 54.9558 17.8562i 1.16927 0.379920i 0.340902 0.940099i \(-0.389268\pi\)
0.828372 + 0.560179i \(0.189268\pi\)
\(48\) 2.52835 + 48.1345i 0.0526739 + 1.00280i
\(49\) 14.3540 + 10.4288i 0.292939 + 0.212832i
\(50\) 5.98260 8.23434i 0.119652 0.164687i
\(51\) 53.5409 2.81233i 1.04982 0.0551438i
\(52\) −0.0504643 0.155313i −0.000970468 0.00298679i
\(53\) −25.3428 34.8814i −0.478167 0.658140i 0.499985 0.866034i \(-0.333339\pi\)
−0.978151 + 0.207894i \(0.933339\pi\)
\(54\) −48.2241 24.5498i −0.893038 0.454625i
\(55\) 0 0
\(56\) 44.6323i 0.797005i
\(57\) 30.4815 46.9496i 0.534763 0.823677i
\(58\) 1.53428 + 4.72204i 0.0264532 + 0.0814145i
\(59\) 85.6247 + 27.8212i 1.45127 + 0.471545i 0.925390 0.379016i \(-0.123738\pi\)
0.525876 + 0.850561i \(0.323738\pi\)
\(60\) 0.0715372 0.267107i 0.00119229 0.00445179i
\(61\) −24.9740 18.1446i −0.409409 0.297453i 0.363953 0.931417i \(-0.381427\pi\)
−0.773363 + 0.633964i \(0.781427\pi\)
\(62\) −93.8392 30.4902i −1.51353 0.491777i
\(63\) −43.5823 25.1484i −0.691782 0.399182i
\(64\) 51.5577 37.4589i 0.805589 0.585295i
\(65\) 53.2906i 0.819855i
\(66\) 0 0
\(67\) 34.0775 0.508620 0.254310 0.967123i \(-0.418152\pi\)
0.254310 + 0.967123i \(0.418152\pi\)
\(68\) 0.176547 + 0.242996i 0.00259628 + 0.00357348i
\(69\) −28.8251 + 23.3478i −0.417756 + 0.338374i
\(70\) 18.9901 58.4456i 0.271287 0.834937i
\(71\) 22.0985 30.4160i 0.311247 0.428394i −0.624523 0.781006i \(-0.714707\pi\)
0.935769 + 0.352612i \(0.114707\pi\)
\(72\) 7.52711 + 71.4526i 0.104543 + 0.992397i
\(73\) 3.74717 11.5326i 0.0513311 0.157981i −0.922105 0.386940i \(-0.873532\pi\)
0.973436 + 0.228959i \(0.0735321\pi\)
\(74\) −74.9685 + 24.3587i −1.01309 + 0.329172i
\(75\) 8.29624 12.7784i 0.110616 0.170379i
\(76\) 0.313592 0.00412621
\(77\) 0 0
\(78\) −20.9434 54.5402i −0.268506 0.699233i
\(79\) −51.0852 + 37.1155i −0.646648 + 0.469817i −0.862128 0.506691i \(-0.830868\pi\)
0.215480 + 0.976508i \(0.430868\pi\)
\(80\) −83.8045 + 27.2297i −1.04756 + 0.340372i
\(81\) −74.0128 32.9105i −0.913738 0.406303i
\(82\) 91.6490 + 66.5869i 1.11767 + 0.812035i
\(83\) −5.70238 + 7.84865i −0.0687034 + 0.0945621i −0.841986 0.539500i \(-0.818613\pi\)
0.773283 + 0.634062i \(0.218613\pi\)
\(84\) −0.0147863 0.281501i −0.000176027 0.00335120i
\(85\) 30.2882 + 93.2174i 0.356331 + 1.09668i
\(86\) 51.7229 + 71.1904i 0.601429 + 0.827795i
\(87\) 2.66420 + 6.93803i 0.0306230 + 0.0797474i
\(88\) 0 0
\(89\) 34.1289i 0.383471i 0.981447 + 0.191735i \(0.0614115\pi\)
−0.981447 + 0.191735i \(0.938588\pi\)
\(90\) 20.5449 96.7691i 0.228277 1.07521i
\(91\) −16.7874 51.6662i −0.184476 0.567760i
\(92\) −0.197640 0.0642171i −0.00214826 0.000698012i
\(93\) −142.665 38.2087i −1.53403 0.410846i
\(94\) 93.6927 + 68.0717i 0.996731 + 0.724167i
\(95\) 97.3240 + 31.6225i 1.02446 + 0.332868i
\(96\) −0.626871 + 0.507754i −0.00652991 + 0.00528910i
\(97\) 30.5992 22.2316i 0.315456 0.229192i −0.418778 0.908089i \(-0.637542\pi\)
0.734234 + 0.678896i \(0.237542\pi\)
\(98\) 35.5595i 0.362852i
\(99\) 0 0
\(100\) 0.0853512 0.000853512
\(101\) 27.5699 + 37.9467i 0.272969 + 0.375710i 0.923389 0.383865i \(-0.125407\pi\)
−0.650420 + 0.759575i \(0.725407\pi\)
\(102\) 67.6332 + 83.4998i 0.663071 + 0.818626i
\(103\) 32.3840 99.6677i 0.314408 0.967647i −0.661590 0.749866i \(-0.730118\pi\)
0.975998 0.217782i \(-0.0698820\pi\)
\(104\) −45.5946 + 62.7556i −0.438410 + 0.603419i
\(105\) 23.7974 88.8554i 0.226642 0.846241i
\(106\) 26.7030 82.1833i 0.251915 0.775314i
\(107\) 44.3479 14.4095i 0.414467 0.134668i −0.0943585 0.995538i \(-0.530080\pi\)
0.508825 + 0.860870i \(0.330080\pi\)
\(108\) −0.0711460 0.448165i −0.000658759 0.00414968i
\(109\) 168.413 1.54507 0.772537 0.634969i \(-0.218987\pi\)
0.772537 + 0.634969i \(0.218987\pi\)
\(110\) 0 0
\(111\) −110.150 + 42.2977i −0.992344 + 0.381060i
\(112\) −72.6722 + 52.7994i −0.648858 + 0.471423i
\(113\) 44.0531 14.3137i 0.389850 0.126670i −0.107532 0.994202i \(-0.534295\pi\)
0.497382 + 0.867532i \(0.334295\pi\)
\(114\) 112.034 5.88477i 0.982753 0.0516208i
\(115\) −54.8624 39.8598i −0.477064 0.346607i
\(116\) −0.0244726 + 0.0336837i −0.000210971 + 0.000290377i
\(117\) −35.5885 79.8821i −0.304176 0.682753i
\(118\) 55.7591 + 171.609i 0.472535 + 1.45431i
\(119\) 58.7298 + 80.8347i 0.493528 + 0.679283i
\(120\) −122.618 + 47.0852i −1.02181 + 0.392376i
\(121\) 0 0
\(122\) 61.8686i 0.507120i
\(123\) 142.225 + 92.3379i 1.15630 + 0.750715i
\(124\) −0.255681 0.786906i −0.00206195 0.00634602i
\(125\) −103.910 33.7624i −0.831280 0.270099i
\(126\) −10.5651 100.291i −0.0838501 0.795963i
\(127\) −55.2468 40.1392i −0.435014 0.316056i 0.348636 0.937258i \(-0.386645\pi\)
−0.783651 + 0.621202i \(0.786645\pi\)
\(128\) 122.497 + 39.8016i 0.957006 + 0.310950i
\(129\) 82.9049 + 102.354i 0.642673 + 0.793443i
\(130\) 86.4070 62.7783i 0.664669 0.482910i
\(131\) 162.272i 1.23872i 0.785109 + 0.619358i \(0.212607\pi\)
−0.785109 + 0.619358i \(0.787393\pi\)
\(132\) 0 0
\(133\) 104.319 0.784353
\(134\) 40.1446 + 55.2543i 0.299587 + 0.412346i
\(135\) 23.1125 146.263i 0.171204 1.08343i
\(136\) 44.0877 135.688i 0.324174 0.997705i
\(137\) 31.0745 42.7704i 0.226821 0.312192i −0.680405 0.732837i \(-0.738196\pi\)
0.907226 + 0.420644i \(0.138196\pi\)
\(138\) −71.8139 19.2333i −0.520391 0.139372i
\(139\) 26.7410 82.3003i 0.192381 0.592089i −0.807616 0.589709i \(-0.799242\pi\)
0.999997 0.00237984i \(-0.000757526\pi\)
\(140\) 0.490106 0.159245i 0.00350076 0.00113747i
\(141\) 145.396 + 94.3970i 1.03118 + 0.669482i
\(142\) 75.3502 0.530635
\(143\) 0 0
\(144\) −107.438 + 96.7835i −0.746095 + 0.672107i
\(145\) −10.9918 + 7.98600i −0.0758054 + 0.0550758i
\(146\) 23.1136 7.51007i 0.158312 0.0514388i
\(147\) 2.79202 + 53.1542i 0.0189933 + 0.361593i
\(148\) −0.534772 0.388535i −0.00361332 0.00262523i
\(149\) −37.8827 + 52.1411i −0.254246 + 0.349940i −0.916993 0.398904i \(-0.869391\pi\)
0.662746 + 0.748844i \(0.269391\pi\)
\(150\) 30.4926 1.60168i 0.203284 0.0106778i
\(151\) −13.7929 42.4502i −0.0913437 0.281127i 0.894940 0.446187i \(-0.147218\pi\)
−0.986284 + 0.165060i \(0.947218\pi\)
\(152\) −87.5541 120.508i −0.576014 0.792815i
\(153\) 107.654 + 119.505i 0.703622 + 0.781079i
\(154\) 0 0
\(155\) 270.001i 1.74194i
\(156\) 0.266780 0.410911i 0.00171013 0.00263405i
\(157\) −43.5918 134.162i −0.277655 0.854534i −0.988505 0.151190i \(-0.951689\pi\)
0.710850 0.703344i \(-0.248311\pi\)
\(158\) −120.360 39.1075i −0.761775 0.247516i
\(159\) 33.4628 124.944i 0.210458 0.785811i
\(160\) −1.19311 0.866847i −0.00745696 0.00541780i
\(161\) −65.7465 21.3623i −0.408363 0.132685i
\(162\) −33.8277 158.776i −0.208813 0.980101i
\(163\) −97.8624 + 71.1012i −0.600383 + 0.436204i −0.846015 0.533159i \(-0.821005\pi\)
0.245632 + 0.969363i \(0.421005\pi\)
\(164\) 0.949967i 0.00579248i
\(165\) 0 0
\(166\) −19.4437 −0.117130
\(167\) −63.1468 86.9141i −0.378125 0.520444i 0.576962 0.816771i \(-0.304238\pi\)
−0.955086 + 0.296327i \(0.904238\pi\)
\(168\) −104.047 + 84.2763i −0.619330 + 0.501645i
\(169\) −23.0477 + 70.9335i −0.136377 + 0.419725i
\(170\) −115.465 + 158.924i −0.679205 + 0.934846i
\(171\) 167.006 17.5931i 0.976643 0.102884i
\(172\) −0.228026 + 0.701793i −0.00132573 + 0.00408019i
\(173\) −312.721 + 101.609i −1.80763 + 0.587336i −0.999997 0.00234427i \(-0.999254\pi\)
−0.807637 + 0.589680i \(0.799254\pi\)
\(174\) −8.11099 + 12.4931i −0.0466149 + 0.0717993i
\(175\) 28.3928 0.162244
\(176\) 0 0
\(177\) 96.8227 + 252.142i 0.547021 + 1.42453i
\(178\) −55.3376 + 40.2051i −0.310885 + 0.225872i
\(179\) −45.9346 + 14.9251i −0.256618 + 0.0833802i −0.434501 0.900671i \(-0.643075\pi\)
0.177883 + 0.984052i \(0.443075\pi\)
\(180\) 0.757763 0.337593i 0.00420980 0.00187552i
\(181\) −0.0538541 0.0391273i −0.000297537 0.000216173i 0.587636 0.809125i \(-0.300059\pi\)
−0.587934 + 0.808909i \(0.700059\pi\)
\(182\) 63.9969 88.0842i 0.351632 0.483979i
\(183\) −4.85773 92.4811i −0.0265450 0.505361i
\(184\) 30.5031 + 93.8788i 0.165778 + 0.510211i
\(185\) −126.788 174.509i −0.685341 0.943291i
\(186\) −106.111 276.332i −0.570492 1.48566i
\(187\) 0 0
\(188\) 0.971151i 0.00516570i
\(189\) −23.6673 149.086i −0.125224 0.788814i
\(190\) 63.3777 + 195.056i 0.333567 + 1.02661i
\(191\) 187.751 + 61.0042i 0.982992 + 0.319393i 0.756049 0.654515i \(-0.227127\pi\)
0.226943 + 0.973908i \(0.427127\pi\)
\(192\) 184.678 + 49.4608i 0.961864 + 0.257608i
\(193\) 1.23267 + 0.895586i 0.00638688 + 0.00464034i 0.590974 0.806691i \(-0.298744\pi\)
−0.584587 + 0.811331i \(0.698744\pi\)
\(194\) 72.0941 + 23.4248i 0.371619 + 0.120746i
\(195\) 124.232 100.625i 0.637086 0.516027i
\(196\) −0.241241 + 0.175272i −0.00123082 + 0.000894245i
\(197\) 215.460i 1.09370i −0.837229 0.546852i \(-0.815826\pi\)
0.837229 0.546852i \(-0.184174\pi\)
\(198\) 0 0
\(199\) −106.663 −0.535993 −0.267997 0.963420i \(-0.586362\pi\)
−0.267997 + 0.963420i \(0.586362\pi\)
\(200\) −23.8298 32.7990i −0.119149 0.163995i
\(201\) 64.3465 + 79.4420i 0.320132 + 0.395234i
\(202\) −29.0496 + 89.4053i −0.143810 + 0.442601i
\(203\) −8.14102 + 11.2051i −0.0401035 + 0.0551978i
\(204\) −0.233113 + 0.870404i −0.00114271 + 0.00426669i
\(205\) −95.7943 + 294.824i −0.467289 + 1.43817i
\(206\) 199.754 64.9039i 0.969678 0.315068i
\(207\) −108.857 23.1114i −0.525881 0.111649i
\(208\) −156.119 −0.750573
\(209\) 0 0
\(210\) 172.107 66.0891i 0.819557 0.314710i
\(211\) 173.797 126.271i 0.823684 0.598442i −0.0940813 0.995565i \(-0.529991\pi\)
0.917765 + 0.397123i \(0.129991\pi\)
\(212\) 0.689163 0.223923i 0.00325077 0.00105624i
\(213\) 112.633 5.91627i 0.528795 0.0277759i
\(214\) 75.6075 + 54.9321i 0.353306 + 0.256692i
\(215\) −141.537 + 194.809i −0.658311 + 0.906088i
\(216\) −152.358 + 152.467i −0.705362 + 0.705865i
\(217\) −85.0544 261.771i −0.391956 1.20632i
\(218\) 198.397 + 273.070i 0.910078 + 1.25261i
\(219\) 33.9605 13.0408i 0.155071 0.0595472i
\(220\) 0 0
\(221\) 173.654i 0.785767i
\(222\) −198.344 128.772i −0.893440 0.580056i
\(223\) 13.8343 + 42.5777i 0.0620373 + 0.190931i 0.977272 0.211991i \(-0.0679946\pi\)
−0.915234 + 0.402922i \(0.867995\pi\)
\(224\) −1.42981 0.464575i −0.00638310 0.00207400i
\(225\) 45.4545 4.78836i 0.202020 0.0212816i
\(226\) 75.1049 + 54.5669i 0.332323 + 0.241446i
\(227\) −213.516 69.3755i −0.940598 0.305619i −0.201709 0.979446i \(-0.564649\pi\)
−0.738890 + 0.673827i \(0.764649\pi\)
\(228\) 0.592136 + 0.731050i 0.00259709 + 0.00320636i
\(229\) 84.2193 61.1889i 0.367770 0.267200i −0.388516 0.921442i \(-0.627012\pi\)
0.756286 + 0.654242i \(0.227012\pi\)
\(230\) 135.912i 0.590921i
\(231\) 0 0
\(232\) 19.7767 0.0852446
\(233\) 36.1658 + 49.7780i 0.155218 + 0.213640i 0.879543 0.475819i \(-0.157848\pi\)
−0.724325 + 0.689459i \(0.757848\pi\)
\(234\) 87.5986 151.808i 0.374353 0.648754i
\(235\) −97.9304 + 301.399i −0.416725 + 1.28255i
\(236\) −0.889387 + 1.22414i −0.00376859 + 0.00518702i
\(237\) −182.985 49.0075i −0.772089 0.206783i
\(238\) −61.8818 + 190.453i −0.260008 + 0.800221i
\(239\) −141.955 + 46.1240i −0.593954 + 0.192987i −0.590542 0.807007i \(-0.701086\pi\)
−0.00341179 + 0.999994i \(0.501086\pi\)
\(240\) −221.721 143.950i −0.923838 0.599792i
\(241\) −358.881 −1.48913 −0.744567 0.667548i \(-0.767344\pi\)
−0.744567 + 0.667548i \(0.767344\pi\)
\(242\) 0 0
\(243\) −63.0323 234.683i −0.259392 0.965772i
\(244\) 0.419727 0.304949i 0.00172019 0.00124979i
\(245\) −92.5441 + 30.0694i −0.377731 + 0.122732i
\(246\) 17.8268 + 339.385i 0.0724667 + 1.37961i
\(247\) 146.679 + 106.568i 0.593840 + 0.431450i
\(248\) −231.008 + 317.956i −0.931486 + 1.28208i
\(249\) −29.0643 + 1.52666i −0.116724 + 0.00613115i
\(250\) −67.6665 208.256i −0.270666 0.833024i
\(251\) −209.852 288.837i −0.836065 1.15074i −0.986764 0.162165i \(-0.948152\pi\)
0.150699 0.988580i \(-0.451848\pi\)
\(252\) 0.628318 0.566010i 0.00249332 0.00224607i
\(253\) 0 0
\(254\) 136.864i 0.538836i
\(255\) −160.118 + 246.625i −0.627915 + 0.967156i
\(256\) 0.997138 + 3.06887i 0.00389507 + 0.0119878i
\(257\) −62.8586 20.4240i −0.244586 0.0794708i 0.184159 0.982897i \(-0.441044\pi\)
−0.428745 + 0.903426i \(0.641044\pi\)
\(258\) −68.2950 + 255.001i −0.264709 + 0.988378i
\(259\) −177.896 129.249i −0.686858 0.499031i
\(260\) 0.851797 + 0.276766i 0.00327614 + 0.00106448i
\(261\) −11.1434 + 19.3115i −0.0426949 + 0.0739903i
\(262\) −263.112 + 191.162i −1.00424 + 0.729627i
\(263\) 85.4194i 0.324789i −0.986726 0.162394i \(-0.948078\pi\)
0.986726 0.162394i \(-0.0519216\pi\)
\(264\) 0 0
\(265\) 236.464 0.892315
\(266\) 122.892 + 169.146i 0.461998 + 0.635886i
\(267\) −79.5618 + 64.4435i −0.297984 + 0.241361i
\(268\) −0.176982 + 0.544695i −0.000660381 + 0.00203244i
\(269\) 95.0942 130.886i 0.353510 0.486565i −0.594816 0.803862i \(-0.702775\pi\)
0.948326 + 0.317297i \(0.102775\pi\)
\(270\) 264.383 134.829i 0.979197 0.499365i
\(271\) 80.3424 247.269i 0.296467 0.912430i −0.686258 0.727358i \(-0.740748\pi\)
0.982725 0.185072i \(-0.0592520\pi\)
\(272\) 273.088 88.7317i 1.00400 0.326219i
\(273\) 88.7464 136.693i 0.325078 0.500707i
\(274\) 105.956 0.386701
\(275\) 0 0
\(276\) −0.223487 0.581998i −0.000809737 0.00210869i
\(277\) −70.2162 + 51.0151i −0.253488 + 0.184170i −0.707271 0.706942i \(-0.750074\pi\)
0.453783 + 0.891112i \(0.350074\pi\)
\(278\) 164.946 53.5942i 0.593331 0.192785i
\(279\) −180.312 404.729i −0.646279 1.45064i
\(280\) −198.031 143.878i −0.707255 0.513851i
\(281\) 284.908 392.143i 1.01391 1.39553i 0.0975213 0.995233i \(-0.468909\pi\)
0.916387 0.400292i \(-0.131091\pi\)
\(282\) 18.2243 + 346.953i 0.0646253 + 1.23033i
\(283\) −133.518 410.925i −0.471794 1.45203i −0.850233 0.526406i \(-0.823539\pi\)
0.378439 0.925626i \(-0.376461\pi\)
\(284\) 0.371400 + 0.511188i 0.00130775 + 0.00179996i
\(285\) 110.052 + 286.594i 0.386148 + 1.00559i
\(286\) 0 0
\(287\) 316.014i 1.10109i
\(288\) −2.36736 0.502612i −0.00822001 0.00174518i
\(289\) −9.39211 28.9059i −0.0324986 0.100021i
\(290\) −25.8975 8.41460i −0.0893016 0.0290159i
\(291\) 109.605 + 29.3547i 0.376650 + 0.100875i
\(292\) 0.164876 + 0.119790i 0.000564644 + 0.000410238i
\(293\) −5.25894 1.70873i −0.0179486 0.00583185i 0.300029 0.953930i \(-0.403004\pi\)
−0.317978 + 0.948098i \(0.603004\pi\)
\(294\) −82.8967 + 67.1447i −0.281962 + 0.228383i
\(295\) −399.464 + 290.228i −1.35412 + 0.983823i
\(296\) 313.981i 1.06075i
\(297\) 0 0
\(298\) −129.170 −0.433458
\(299\) −70.6205 97.2008i −0.236189 0.325086i
\(300\) 0.161163 + 0.198972i 0.000537211 + 0.000663240i
\(301\) −75.8548 + 233.457i −0.252009 + 0.775604i
\(302\) 52.5814 72.3721i 0.174111 0.239643i
\(303\) −36.4034 + 135.924i −0.120143 + 0.448593i
\(304\) 92.6406 285.119i 0.304739 0.937890i
\(305\) 161.014 52.3166i 0.527915 0.171530i
\(306\) −66.9483 + 315.335i −0.218785 + 1.03051i
\(307\) −219.257 −0.714191 −0.357095 0.934068i \(-0.616233\pi\)
−0.357095 + 0.934068i \(0.616233\pi\)
\(308\) 0 0
\(309\) 293.495 112.702i 0.949823 0.364732i
\(310\) 437.787 318.071i 1.41222 1.02604i
\(311\) −135.193 + 43.9268i −0.434704 + 0.141244i −0.518191 0.855265i \(-0.673394\pi\)
0.0834870 + 0.996509i \(0.473394\pi\)
\(312\) −232.390 + 12.2067i −0.744840 + 0.0391240i
\(313\) −76.2787 55.4197i −0.243702 0.177060i 0.459229 0.888318i \(-0.348126\pi\)
−0.702931 + 0.711258i \(0.748126\pi\)
\(314\) 166.181 228.729i 0.529239 0.728435i
\(315\) 252.076 112.303i 0.800241 0.356518i
\(316\) −0.327943 1.00931i −0.00103779 0.00319400i
\(317\) 294.607 + 405.491i 0.929359 + 1.27915i 0.960109 + 0.279625i \(0.0902102\pi\)
−0.0307506 + 0.999527i \(0.509790\pi\)
\(318\) 242.008 92.9312i 0.761032 0.292237i
\(319\) 0 0
\(320\) 349.513i 1.09223i
\(321\) 117.331 + 76.1759i 0.365517 + 0.237308i
\(322\) −42.8143 131.769i −0.132964 0.409220i
\(323\) −317.143 103.046i −0.981867 0.319028i
\(324\) 0.910429 1.01210i 0.00280997 0.00312376i
\(325\) 39.9219 + 29.0050i 0.122837 + 0.0892460i
\(326\) −230.571 74.9172i −0.707274 0.229807i
\(327\) 318.004 + 392.607i 0.972489 + 1.20063i
\(328\) 365.056 265.228i 1.11297 0.808623i
\(329\) 323.061i 0.981948i
\(330\) 0 0
\(331\) −653.489 −1.97429 −0.987143 0.159839i \(-0.948903\pi\)
−0.987143 + 0.159839i \(0.948903\pi\)
\(332\) −0.0958375 0.131909i −0.000288667 0.000397316i
\(333\) −306.595 176.915i −0.920705 0.531278i
\(334\) 66.5358 204.776i 0.199209 0.613103i
\(335\) −109.854 + 151.201i −0.327921 + 0.451345i
\(336\) −260.309 69.7165i −0.774729 0.207490i
\(337\) −203.755 + 627.094i −0.604615 + 1.86081i −0.105195 + 0.994452i \(0.533547\pi\)
−0.499419 + 0.866361i \(0.666453\pi\)
\(338\) −142.165 + 46.1921i −0.420606 + 0.136663i
\(339\) 116.551 + 75.6695i 0.343808 + 0.223214i
\(340\) −1.64729 −0.00484497
\(341\) 0 0
\(342\) 225.265 + 250.063i 0.658670 + 0.731179i
\(343\) −301.882 + 219.330i −0.880122 + 0.639446i
\(344\) 333.351 108.312i 0.969043 0.314861i
\(345\) −10.6714 203.161i −0.0309315 0.588872i
\(346\) −533.149 387.355i −1.54089 1.11952i
\(347\) 163.333 224.809i 0.470702 0.647865i −0.505983 0.862543i \(-0.668870\pi\)
0.976685 + 0.214678i \(0.0688702\pi\)
\(348\) −0.124734 + 0.00655187i −0.000358431 + 1.88272e-5i
\(349\) 78.1118 + 240.403i 0.223816 + 0.688835i 0.998410 + 0.0563757i \(0.0179545\pi\)
−0.774594 + 0.632459i \(0.782046\pi\)
\(350\) 33.4477 + 46.0369i 0.0955650 + 0.131534i
\(351\) 119.023 233.801i 0.339096 0.666100i
\(352\) 0 0
\(353\) 560.803i 1.58868i −0.607476 0.794338i \(-0.707818\pi\)
0.607476 0.794338i \(-0.292182\pi\)
\(354\) −294.770 + 454.025i −0.832685 + 1.28256i
\(355\) 63.7168 + 196.100i 0.179484 + 0.552395i
\(356\) −0.545516 0.177249i −0.00153235 0.000497891i
\(357\) −77.5470 + 289.547i −0.217219 + 0.811056i
\(358\) −78.3126 56.8975i −0.218750 0.158931i
\(359\) 281.573 + 91.4886i 0.784326 + 0.254843i 0.673686 0.739018i \(-0.264710\pi\)
0.110640 + 0.993861i \(0.464710\pi\)
\(360\) −341.297 196.940i −0.948047 0.547055i
\(361\) 10.3923 7.55047i 0.0287876 0.0209154i
\(362\) 0.133414i 0.000368547i
\(363\) 0 0
\(364\) 0.913018 0.00250829
\(365\) 39.0901 + 53.8030i 0.107096 + 0.147405i
\(366\) 144.229 116.823i 0.394068 0.319187i
\(367\) 26.2225 80.7046i 0.0714510 0.219904i −0.908954 0.416897i \(-0.863118\pi\)
0.980405 + 0.196993i \(0.0631177\pi\)
\(368\) −116.773 + 160.724i −0.317317 + 0.436749i
\(369\) 53.2949 + 505.913i 0.144431 + 1.37104i
\(370\) 133.593 411.156i 0.361061 1.11123i
\(371\) 229.256 74.4897i 0.617940 0.200781i
\(372\) 1.35166 2.08191i 0.00363349 0.00559654i
\(373\) −316.098 −0.847447 −0.423724 0.905792i \(-0.639277\pi\)
−0.423724 + 0.905792i \(0.639277\pi\)
\(374\) 0 0
\(375\) −117.499 305.988i −0.313332 0.815968i
\(376\) 373.196 271.143i 0.992543 0.721124i
\(377\) −22.8935 + 7.43855i −0.0607255 + 0.0197309i
\(378\) 213.851 214.003i 0.565744 0.566147i
\(379\) 87.9702 + 63.9141i 0.232111 + 0.168639i 0.697762 0.716330i \(-0.254180\pi\)
−0.465650 + 0.884969i \(0.654180\pi\)
\(380\) −1.01091 + 1.39139i −0.00266028 + 0.00366157i
\(381\) −10.7462 204.584i −0.0282051 0.536967i
\(382\) 122.264 + 376.291i 0.320064 + 0.985055i
\(383\) −259.809 357.597i −0.678353 0.933673i 0.321560 0.946889i \(-0.395793\pi\)
−0.999913 + 0.0132167i \(0.995793\pi\)
\(384\) 138.517 + 360.721i 0.360721 + 0.939378i
\(385\) 0 0
\(386\) 3.05372i 0.00791119i
\(387\) −82.0653 + 386.538i −0.212055 + 0.998806i
\(388\) 0.196433 + 0.604558i 0.000506270 + 0.00155814i
\(389\) 484.656 + 157.474i 1.24590 + 0.404818i 0.856450 0.516229i \(-0.172665\pi\)
0.389451 + 0.921047i \(0.372665\pi\)
\(390\) 309.507 + 82.8927i 0.793607 + 0.212545i
\(391\) 178.776 + 129.889i 0.457228 + 0.332196i
\(392\) 134.708 + 43.7693i 0.343643 + 0.111656i
\(393\) −378.290 + 306.408i −0.962570 + 0.779663i
\(394\) 349.353 253.819i 0.886682 0.644212i
\(395\) 346.310i 0.876734i
\(396\) 0 0
\(397\) 13.0481 0.0328668 0.0164334 0.999865i \(-0.494769\pi\)
0.0164334 + 0.999865i \(0.494769\pi\)
\(398\) −125.653 172.946i −0.315710 0.434538i
\(399\) 196.979 + 243.190i 0.493681 + 0.609498i
\(400\) 25.2143 77.6015i 0.0630356 0.194004i
\(401\) 323.050 444.640i 0.805611 1.10883i −0.186375 0.982479i \(-0.559674\pi\)
0.991986 0.126350i \(-0.0403262\pi\)
\(402\) −53.0071 + 197.919i −0.131858 + 0.492336i
\(403\) 147.823 454.953i 0.366807 1.12892i
\(404\) −0.749725 + 0.243601i −0.00185576 + 0.000602972i
\(405\) 384.613 222.300i 0.949662 0.548889i
\(406\) −27.7588 −0.0683714
\(407\) 0 0
\(408\) 399.566 153.433i 0.979327 0.376062i
\(409\) 500.107 363.349i 1.22276 0.888384i 0.226430 0.974028i \(-0.427295\pi\)
0.996326 + 0.0856436i \(0.0272946\pi\)
\(410\) −590.886 + 191.991i −1.44119 + 0.468270i
\(411\) 158.383 8.31934i 0.385360 0.0202417i
\(412\) 1.42490 + 1.03525i 0.00345850 + 0.00251275i
\(413\) −295.862 + 407.219i −0.716372 + 0.986001i
\(414\) −90.7647 203.731i −0.219238 0.492103i
\(415\) −16.4417 50.6024i −0.0396186 0.121934i
\(416\) −1.53581 2.11386i −0.00369185 0.00508140i
\(417\) 242.353 93.0636i 0.581182 0.223174i
\(418\) 0 0
\(419\) 440.342i 1.05094i 0.850814 + 0.525468i \(0.176110\pi\)
−0.850814 + 0.525468i \(0.823890\pi\)
\(420\) 1.29667 + 0.841850i 0.00308731 + 0.00200440i
\(421\) 177.447 + 546.125i 0.421489 + 1.29721i 0.906317 + 0.422599i \(0.138882\pi\)
−0.484828 + 0.874610i \(0.661118\pi\)
\(422\) 409.480 + 133.048i 0.970331 + 0.315280i
\(423\) 54.4834 + 517.194i 0.128802 + 1.22268i
\(424\) −278.462 202.315i −0.656750 0.477157i
\(425\) −86.3177 28.0463i −0.203100 0.0659913i
\(426\) 142.279 + 175.658i 0.333989 + 0.412342i
\(427\) 139.625 101.444i 0.326992 0.237573i
\(428\) 0.783693i 0.00183106i
\(429\) 0 0
\(430\) −482.605 −1.12234
\(431\) −388.809 535.150i −0.902109 1.24165i −0.969790 0.243940i \(-0.921560\pi\)
0.0676813 0.997707i \(-0.478440\pi\)
\(432\) −428.491 67.7099i −0.991877 0.156736i
\(433\) 65.7530 202.367i 0.151855 0.467360i −0.845974 0.533224i \(-0.820980\pi\)
0.997829 + 0.0658637i \(0.0209803\pi\)
\(434\) 324.245 446.285i 0.747109 1.02831i
\(435\) −39.3722 10.5447i −0.0905107 0.0242408i
\(436\) −0.874656 + 2.69192i −0.00200609 + 0.00617412i
\(437\) 219.423 71.2947i 0.502111 0.163146i
\(438\) 61.1516 + 39.7020i 0.139615 + 0.0906438i
\(439\) 103.815 0.236482 0.118241 0.992985i \(-0.462275\pi\)
0.118241 + 0.992985i \(0.462275\pi\)
\(440\) 0 0
\(441\) −118.642 + 106.877i −0.269029 + 0.242351i
\(442\) −281.569 + 204.572i −0.637033 + 0.462831i
\(443\) 263.223 85.5262i 0.594182 0.193061i 0.00353800 0.999994i \(-0.498874\pi\)
0.590644 + 0.806932i \(0.298874\pi\)
\(444\) −0.104019 1.98031i −0.000234278 0.00446017i
\(445\) −151.429 110.019i −0.340289 0.247234i
\(446\) −52.7393 + 72.5895i −0.118250 + 0.162757i
\(447\) −193.084 + 10.1421i −0.431954 + 0.0226892i
\(448\) 110.102 + 338.859i 0.245764 + 0.756382i
\(449\) 292.645 + 402.791i 0.651770 + 0.897084i 0.999174 0.0406314i \(-0.0129369\pi\)
−0.347405 + 0.937715i \(0.612937\pi\)
\(450\) 61.3111 + 68.0603i 0.136247 + 0.151245i
\(451\) 0 0
\(452\) 0.778483i 0.00172231i
\(453\) 72.9162 112.310i 0.160963 0.247926i
\(454\) −139.042 427.928i −0.306260 0.942572i
\(455\) 283.357 + 92.0683i 0.622763 + 0.202348i
\(456\) 115.607 431.655i 0.253523 0.946612i
\(457\) 656.206 + 476.762i 1.43590 + 1.04324i 0.988879 + 0.148719i \(0.0475151\pi\)
0.447021 + 0.894523i \(0.352485\pi\)
\(458\) 198.427 + 64.4728i 0.433247 + 0.140770i
\(459\) −75.3151 + 476.619i −0.164085 + 1.03839i
\(460\) 0.922048 0.669907i 0.00200445 0.00145632i
\(461\) 790.057i 1.71379i −0.515492 0.856894i \(-0.672391\pi\)
0.515492 0.856894i \(-0.327609\pi\)
\(462\) 0 0
\(463\) 540.381 1.16713 0.583565 0.812067i \(-0.301658\pi\)
0.583565 + 0.812067i \(0.301658\pi\)
\(464\) 23.3956 + 32.2013i 0.0504216 + 0.0693994i
\(465\) 629.430 509.826i 1.35361 1.09640i
\(466\) −38.1068 + 117.281i −0.0817743 + 0.251675i
\(467\) −163.326 + 224.799i −0.349734 + 0.481367i −0.947253 0.320488i \(-0.896153\pi\)
0.597519 + 0.801855i \(0.296153\pi\)
\(468\) 1.46167 0.153978i 0.00312322 0.000329013i
\(469\) −58.8745 + 181.197i −0.125532 + 0.386348i
\(470\) −604.063 + 196.272i −1.28524 + 0.417600i
\(471\) 230.448 354.951i 0.489274 0.753612i
\(472\) 718.728 1.52273
\(473\) 0 0
\(474\) −136.101 354.430i −0.287133 0.747743i
\(475\) −76.6609 + 55.6974i −0.161391 + 0.117258i
\(476\) −1.59708 + 0.518921i −0.00335520 + 0.00109017i
\(477\) 354.457 157.915i 0.743096 0.331059i
\(478\) −242.015 175.834i −0.506308 0.367854i
\(479\) 276.392 380.421i 0.577019 0.794198i −0.416346 0.909206i \(-0.636689\pi\)
0.993365 + 0.115008i \(0.0366895\pi\)
\(480\) −0.232074 4.41822i −0.000483489 0.00920462i
\(481\) −118.097 363.464i −0.245523 0.755642i
\(482\) −422.776 581.901i −0.877128 1.20726i
\(483\) −74.3449 193.606i −0.153923 0.400841i
\(484\) 0 0
\(485\) 207.434i 0.427699i
\(486\) 306.267 378.667i 0.630179 0.779151i
\(487\) 78.5518 + 241.757i 0.161297 + 0.496422i 0.998744 0.0500964i \(-0.0159529\pi\)
−0.837447 + 0.546518i \(0.815953\pi\)
\(488\) −234.373 76.1525i −0.480273 0.156050i
\(489\) −350.540 93.8823i −0.716850 0.191988i
\(490\) −157.776 114.631i −0.321992 0.233941i
\(491\) 117.097 + 38.0472i 0.238487 + 0.0774892i 0.425822 0.904807i \(-0.359985\pi\)
−0.187335 + 0.982296i \(0.559985\pi\)
\(492\) −2.21458 + 1.79376i −0.00450117 + 0.00364586i
\(493\) 35.8182 26.0234i 0.0726535 0.0527859i
\(494\) 363.370i 0.735567i
\(495\) 0 0
\(496\) −790.989 −1.59474
\(497\) 123.549 + 170.051i 0.248590 + 0.342155i
\(498\) −36.7142 45.3273i −0.0737234 0.0910187i
\(499\) 20.1875 62.1308i 0.0404560 0.124511i −0.928789 0.370610i \(-0.879149\pi\)
0.969245 + 0.246099i \(0.0791488\pi\)
\(500\) 1.07932 1.48555i 0.00215863 0.00297110i
\(501\) 83.3792 311.323i 0.166426 0.621404i
\(502\) 221.115 680.522i 0.440468 1.35562i
\(503\) −405.054 + 131.610i −0.805277 + 0.261650i −0.682596 0.730796i \(-0.739149\pi\)
−0.122681 + 0.992446i \(0.539149\pi\)
\(504\) −392.932 83.4229i −0.779628 0.165522i
\(505\) −257.243 −0.509393
\(506\) 0 0
\(507\) −208.881 + 80.2103i −0.411994 + 0.158206i
\(508\) 0.928510 0.674602i 0.00182778 0.00132796i
\(509\) −66.4418 + 21.5883i −0.130534 + 0.0424131i −0.373555 0.927608i \(-0.621861\pi\)
0.243021 + 0.970021i \(0.421861\pi\)
\(510\) −588.510 + 30.9125i −1.15394 + 0.0606128i
\(511\) 54.8473 + 39.8489i 0.107333 + 0.0779823i
\(512\) 299.027 411.576i 0.584038 0.803859i
\(513\) 356.360 + 356.107i 0.694659 + 0.694165i
\(514\) −40.9337 125.981i −0.0796376 0.245099i
\(515\) 337.827 + 464.979i 0.655975 + 0.902872i
\(516\) −2.06660 + 0.793574i −0.00400503 + 0.00153793i
\(517\) 0 0
\(518\) 440.706i 0.850785i
\(519\) −827.364 537.157i −1.59415 1.03498i
\(520\) −131.463 404.603i −0.252814 0.778082i
\(521\) 95.7147 + 31.0996i 0.183714 + 0.0596921i 0.399429 0.916764i \(-0.369208\pi\)
−0.215716 + 0.976456i \(0.569208\pi\)
\(522\) −44.4395 + 4.68144i −0.0851332 + 0.00896828i
\(523\) −689.238 500.761i −1.31785 0.957477i −0.999956 0.00935234i \(-0.997023\pi\)
−0.317898 0.948125i \(-0.602977\pi\)
\(524\) −2.59375 0.842761i −0.00494991 0.00160832i
\(525\) 53.6123 + 66.1896i 0.102119 + 0.126075i
\(526\) 138.502 100.627i 0.263311 0.191307i
\(527\) 879.833i 1.66951i
\(528\) 0 0
\(529\) 376.110 0.710983
\(530\) 278.563 + 383.409i 0.525590 + 0.723413i
\(531\) −404.974 + 701.819i −0.762662 + 1.32169i
\(532\) −0.541782 + 1.66743i −0.00101839 + 0.00313427i
\(533\) −322.828 + 444.335i −0.605681 + 0.833648i
\(534\) −198.217 53.0870i −0.371193 0.0994138i
\(535\) −79.0273 + 243.221i −0.147715 + 0.454619i
\(536\) 258.730 84.0664i 0.482705 0.156840i
\(537\) −121.529 78.9014i −0.226311 0.146930i
\(538\) 324.247 0.602689
\(539\) 0 0
\(540\) 2.21784 + 1.12905i 0.00410711 + 0.00209084i
\(541\) 591.736 429.921i 1.09378 0.794679i 0.113747 0.993510i \(-0.463715\pi\)
0.980034 + 0.198831i \(0.0637145\pi\)
\(542\) 495.575 161.022i 0.914345 0.297089i
\(543\) −0.0104753 0.199427i −1.92915e−5 0.000367269i
\(544\) 3.88792 + 2.82474i 0.00714691 + 0.00519253i
\(545\) −542.903 + 747.242i −0.996152 + 1.37109i
\(546\) 326.185 17.1334i 0.597408 0.0313799i
\(547\) 38.0953 + 117.245i 0.0696440 + 0.214342i 0.979821 0.199878i \(-0.0640545\pi\)
−0.910177 + 0.414220i \(0.864054\pi\)
\(548\) 0.522256 + 0.718823i 0.000953021 + 0.00131172i
\(549\) 206.421 185.951i 0.375994 0.338708i
\(550\) 0 0
\(551\) 46.2241i 0.0838913i
\(552\) −161.254 + 248.375i −0.292128 + 0.449954i
\(553\) −109.093 335.753i −0.197275 0.607149i
\(554\) −165.435 53.7530i −0.298619 0.0970271i
\(555\) 167.411 625.084i 0.301642 1.12628i
\(556\) 1.17661 + 0.854856i 0.00211620 + 0.00153751i
\(557\) −191.900 62.3520i −0.344524 0.111942i 0.131644 0.991297i \(-0.457974\pi\)
−0.476168 + 0.879355i \(0.657974\pi\)
\(558\) 443.825 769.149i 0.795385 1.37840i
\(559\) −345.147 + 250.764i −0.617436 + 0.448594i
\(560\) 492.649i 0.879731i
\(561\) 0 0
\(562\) 971.465 1.72858
\(563\) 284.551 + 391.651i 0.505420 + 0.695651i 0.983139 0.182862i \(-0.0585362\pi\)
−0.477719 + 0.878513i \(0.658536\pi\)
\(564\) −2.26396 + 1.83376i −0.00401411 + 0.00325135i
\(565\) −78.5019 + 241.604i −0.138941 + 0.427618i
\(566\) 508.998 700.575i 0.899289 1.23776i
\(567\) 302.861 336.683i 0.534147 0.593797i
\(568\) 92.7467 285.445i 0.163286 0.502544i
\(569\) 444.542 144.440i 0.781268 0.253849i 0.108887 0.994054i \(-0.465271\pi\)
0.672382 + 0.740205i \(0.265271\pi\)
\(570\) −335.046 + 516.060i −0.587800 + 0.905368i
\(571\) −656.796 −1.15026 −0.575128 0.818064i \(-0.695048\pi\)
−0.575128 + 0.818064i \(0.695048\pi\)
\(572\) 0 0
\(573\) 212.306 + 552.879i 0.370516 + 0.964885i
\(574\) −512.395 + 372.277i −0.892674 + 0.648566i
\(575\) 59.7209 19.4045i 0.103862 0.0337469i
\(576\) 233.412 + 523.917i 0.405229 + 0.909579i
\(577\) 706.639 + 513.403i 1.22468 + 0.889780i 0.996480 0.0838344i \(-0.0267167\pi\)
0.228198 + 0.973615i \(0.426717\pi\)
\(578\) 35.8047 49.2809i 0.0619458 0.0852611i
\(579\) 0.239768 + 4.56469i 0.000414108 + 0.00788375i
\(580\) −0.0705622 0.217168i −0.000121659 0.000374428i
\(581\) −31.8811 43.8806i −0.0548728 0.0755259i
\(582\) 81.5225 + 212.298i 0.140073 + 0.364774i
\(583\) 0 0
\(584\) 96.8039i 0.165760i
\(585\) 469.158 + 99.6063i 0.801980 + 0.170267i
\(586\) −3.42464 10.5399i −0.00584409 0.0179863i
\(587\) −751.908 244.310i −1.28093 0.416201i −0.412025 0.911173i \(-0.635178\pi\)
−0.868909 + 0.494972i \(0.835178\pi\)
\(588\) −0.864118 0.231430i −0.00146959 0.000393588i
\(589\) 743.158 + 539.936i 1.26173 + 0.916699i
\(590\) −941.168 305.804i −1.59520 0.518312i
\(591\) 502.282 406.839i 0.849886 0.688391i
\(592\) −511.238 + 371.436i −0.863577 + 0.627425i
\(593\) 928.634i 1.56599i 0.622026 + 0.782997i \(0.286310\pi\)
−0.622026 + 0.782997i \(0.713690\pi\)
\(594\) 0 0
\(595\) −547.984 −0.920981
\(596\) −0.636679 0.876313i −0.00106825 0.00147032i
\(597\) −201.404 248.653i −0.337361 0.416505i
\(598\) 74.4106 229.012i 0.124433 0.382964i
\(599\) −539.215 + 742.166i −0.900192 + 1.23901i 0.0702143 + 0.997532i \(0.477632\pi\)
−0.970407 + 0.241477i \(0.922368\pi\)
\(600\) 31.4650 117.485i 0.0524416 0.195808i
\(601\) −295.316 + 908.889i −0.491374 + 1.51229i 0.331158 + 0.943575i \(0.392561\pi\)
−0.822532 + 0.568719i \(0.807439\pi\)
\(602\) −467.894 + 152.028i −0.777232 + 0.252538i
\(603\) −63.6949 + 300.011i −0.105630 + 0.497530i
\(604\) 0.750158 0.00124198
\(605\) 0 0
\(606\) −263.275 + 101.098i −0.434448 + 0.166828i
\(607\) −632.343 + 459.424i −1.04175 + 0.756877i −0.970627 0.240591i \(-0.922659\pi\)
−0.0711247 + 0.997467i \(0.522659\pi\)
\(608\) 4.77187 1.55047i 0.00784847 0.00255012i
\(609\) −41.4938 + 2.17953i −0.0681343 + 0.00357887i
\(610\) 274.508 + 199.442i 0.450014 + 0.326954i
\(611\) −330.027 + 454.243i −0.540142 + 0.743442i
\(612\) −2.46927 + 1.10009i −0.00403476 + 0.00179754i
\(613\) −26.5687 81.7701i −0.0433421 0.133393i 0.927044 0.374953i \(-0.122341\pi\)
−0.970386 + 0.241560i \(0.922341\pi\)
\(614\) −258.293 355.509i −0.420672 0.579005i
\(615\) −868.181 + 333.382i −1.41168 + 0.542084i
\(616\) 0 0
\(617\) 7.47837i 0.0121205i 0.999982 + 0.00606027i \(0.00192905\pi\)
−0.999982 + 0.00606027i \(0.998071\pi\)
\(618\) 528.487 + 343.115i 0.855158 + 0.555202i
\(619\) 100.475 + 309.230i 0.162318 + 0.499564i 0.998829 0.0483869i \(-0.0154080\pi\)
−0.836510 + 0.547951i \(0.815408\pi\)
\(620\) 4.31569 + 1.40225i 0.00696079 + 0.00226170i
\(621\) −151.671 297.410i −0.244237 0.478921i
\(622\) −230.487 167.458i −0.370557 0.269226i
\(623\) −181.470 58.9633i −0.291285 0.0946441i
\(624\) −294.790 363.947i −0.472420 0.583249i
\(625\) 587.484 426.832i 0.939975 0.682932i
\(626\) 188.967i 0.301864i
\(627\) 0 0
\(628\) 2.37084 0.00377522
\(629\) 413.156 + 568.660i 0.656845 + 0.904070i
\(630\) 479.047 + 276.426i 0.760392 + 0.438772i
\(631\) −211.843 + 651.985i −0.335726 + 1.03326i 0.630638 + 0.776077i \(0.282793\pi\)
−0.966363 + 0.257180i \(0.917207\pi\)
\(632\) −296.297 + 407.818i −0.468825 + 0.645282i
\(633\) 622.536 + 166.729i 0.983469 + 0.263395i
\(634\) −310.418 + 955.368i −0.489618 + 1.50689i
\(635\) 356.192 115.734i 0.560932 0.182258i
\(636\) 1.82332 + 1.18377i 0.00286685 + 0.00186127i
\(637\) −172.400 −0.270644
\(638\) 0 0
\(639\) 226.471 + 251.401i 0.354414 + 0.393429i
\(640\) −571.484 + 415.207i −0.892943 + 0.648761i
\(641\) 259.923 84.4540i 0.405496 0.131754i −0.0991656 0.995071i \(-0.531617\pi\)
0.504661 + 0.863317i \(0.331617\pi\)
\(642\) 14.7066 + 279.982i 0.0229074 + 0.436109i
\(643\) −149.364 108.519i −0.232292 0.168770i 0.465550 0.885021i \(-0.345856\pi\)
−0.697842 + 0.716251i \(0.745856\pi\)
\(644\) 0.682911 0.939947i 0.00106042 0.00145954i
\(645\) −721.396 + 37.8926i −1.11844 + 0.0587482i
\(646\) −206.525 635.617i −0.319698 0.983928i
\(647\) 211.660 + 291.325i 0.327141 + 0.450271i 0.940631 0.339432i \(-0.110235\pi\)
−0.613490 + 0.789703i \(0.710235\pi\)
\(648\) −643.121 67.2862i −0.992471 0.103837i
\(649\) 0 0
\(650\) 98.8995i 0.152153i
\(651\) 449.640 692.565i 0.690691 1.06385i
\(652\) −0.628232 1.93350i −0.000963546 0.00296549i
\(653\) −979.935 318.400i −1.50067 0.487596i −0.560455 0.828185i \(-0.689374\pi\)
−0.940212 + 0.340589i \(0.889374\pi\)
\(654\) −261.964 + 978.127i −0.400557 + 1.49561i
\(655\) −719.993 523.105i −1.09923 0.798634i
\(656\) 863.712 + 280.637i 1.31663 + 0.427801i
\(657\) 94.5265 + 54.5450i 0.143876 + 0.0830213i
\(658\) −523.821 + 380.578i −0.796080 + 0.578386i
\(659\) 1071.63i 1.62614i −0.582166 0.813070i \(-0.697795\pi\)
0.582166 0.813070i \(-0.302205\pi\)
\(660\) 0 0
\(661\) 441.357 0.667712 0.333856 0.942624i \(-0.391650\pi\)
0.333856 + 0.942624i \(0.391650\pi\)
\(662\) −769.834 1059.59i −1.16289 1.60058i
\(663\) −404.826 + 327.901i −0.610597 + 0.494572i
\(664\) −23.9327 + 73.6573i −0.0360432 + 0.110930i
\(665\) −336.286 + 462.859i −0.505694 + 0.696028i
\(666\) −74.3239 705.535i −0.111598 1.05936i
\(667\) −9.46574 + 29.1325i −0.0141915 + 0.0436770i
\(668\) 1.71719 0.557949i 0.00257064 0.000835253i
\(669\) −73.1352 + 112.648i −0.109320 + 0.168382i
\(670\) −374.573 −0.559064
\(671\) 0 0
\(672\) −1.61681 4.21043i −0.00240596 0.00626552i
\(673\) −299.904 + 217.893i −0.445623 + 0.323764i −0.787865 0.615848i \(-0.788814\pi\)
0.342242 + 0.939612i \(0.388814\pi\)
\(674\) −1256.82 + 408.365i −1.86472 + 0.605883i
\(675\) 96.9915 + 96.9225i 0.143691 + 0.143589i
\(676\) −1.01410 0.736789i −0.00150015 0.00108992i
\(677\) −44.2177 + 60.8605i −0.0653142 + 0.0898973i −0.840424 0.541929i \(-0.817694\pi\)
0.775110 + 0.631826i \(0.217694\pi\)
\(678\) 14.6088 + 278.121i 0.0215469 + 0.410208i
\(679\) 65.3450 + 201.111i 0.0962371 + 0.296187i
\(680\) 459.919 + 633.024i 0.676351 + 0.930918i
\(681\) −241.440 628.749i −0.354537 0.923272i
\(682\) 0 0
\(683\) 987.234i 1.44544i −0.691142 0.722719i \(-0.742892\pi\)
0.691142 0.722719i \(-0.257108\pi\)
\(684\) −0.586140 + 2.76079i −0.000856930 + 0.00403625i
\(685\) 89.5974 + 275.752i 0.130799 + 0.402558i
\(686\) −711.257 231.101i −1.03682 0.336882i
\(687\) 301.670 + 80.7940i 0.439113 + 0.117604i
\(688\) 570.708 + 414.644i 0.829518 + 0.602680i
\(689\) 398.443 + 129.462i 0.578291 + 0.187898i
\(690\) 316.840 256.634i 0.459188 0.371933i
\(691\) −830.700 + 603.539i −1.20217 + 0.873428i −0.994497 0.104770i \(-0.966589\pi\)
−0.207675 + 0.978198i \(0.566589\pi\)
\(692\) 5.52624i 0.00798589i
\(693\) 0 0
\(694\) 556.925 0.802486
\(695\) 278.960 + 383.955i 0.401381 + 0.552454i
\(696\) 37.3432 + 46.1038i 0.0536540 + 0.0662411i
\(697\) 312.158 960.725i 0.447860 1.37837i
\(698\) −297.779 + 409.857i −0.426617 + 0.587188i
\(699\) −47.7535 + 178.303i −0.0683169 + 0.255083i
\(700\) −0.147458 + 0.453830i −0.000210655 + 0.000648328i
\(701\) −177.798 + 57.7699i −0.253634 + 0.0824107i −0.433074 0.901358i \(-0.642571\pi\)
0.179440 + 0.983769i \(0.442571\pi\)
\(702\) 519.305 82.4393i 0.739751 0.117435i
\(703\) 733.868 1.04391
\(704\) 0 0
\(705\) −887.541 + 340.816i −1.25892 + 0.483427i
\(706\) 909.302 660.647i 1.28796 0.935760i
\(707\) −249.402 + 81.0357i −0.352761 + 0.114619i
\(708\) −4.53310 + 0.238109i −0.00640268 + 0.000336312i
\(709\) 577.375 + 419.488i 0.814351 + 0.591661i 0.915089 0.403252i \(-0.132120\pi\)
−0.100738 + 0.994913i \(0.532120\pi\)
\(710\) −242.902 + 334.326i −0.342115 + 0.470881i
\(711\) −231.273 519.115i −0.325278 0.730120i
\(712\) 84.1931 + 259.120i 0.118249 + 0.363932i
\(713\) −357.804 492.475i −0.501829 0.690708i
\(714\) −560.833 + 215.360i −0.785481 + 0.301625i
\(715\) 0 0
\(716\) 0.811733i 0.00113370i
\(717\) −375.570 243.834i −0.523807 0.340076i
\(718\) 183.361 + 564.328i 0.255378 + 0.785972i
\(719\) 474.314 + 154.114i 0.659685 + 0.214345i 0.619680 0.784855i \(-0.287262\pi\)
0.0400055 + 0.999199i \(0.487262\pi\)
\(720\) −83.0840 788.691i −0.115394 1.09540i
\(721\) 474.005 + 344.385i 0.657427 + 0.477649i
\(722\) 24.4851 + 7.95569i 0.0339129 + 0.0110190i
\(723\) −677.653 836.629i −0.937280 1.15716i
\(724\) 0.000905104 0 0.000657596i 1.25014e−6 0 9.08282e-7i
\(725\) 12.5809i 0.0173530i
\(726\) 0 0
\(727\) 427.838 0.588498 0.294249 0.955729i \(-0.404930\pi\)
0.294249 + 0.955729i \(0.404930\pi\)
\(728\) −254.912 350.857i −0.350154 0.481946i
\(729\) 428.076 590.078i 0.587209 0.809435i
\(730\) −41.1881 + 126.764i −0.0564220 + 0.173649i
\(731\) 461.217 634.810i 0.630940 0.868414i
\(732\) 1.50345 + 0.402656i 0.00205389 + 0.000550076i
\(733\) −295.860 + 910.564i −0.403629 + 1.24224i 0.518405 + 0.855135i \(0.326526\pi\)
−0.922035 + 0.387108i \(0.873474\pi\)
\(734\) 161.748 52.5551i 0.220365 0.0716010i
\(735\) −244.844 158.962i −0.333120 0.216275i
\(736\) −3.32495 −0.00451760
\(737\) 0 0
\(738\) −757.518 + 682.398i −1.02645 + 0.924659i
\(739\) −918.220 + 667.126i −1.24252 + 0.902741i −0.997763 0.0668442i \(-0.978707\pi\)
−0.244753 + 0.969585i \(0.578707\pi\)
\(740\) 3.44782 1.12027i 0.00465922 0.00151387i
\(741\) 28.5307 + 543.165i 0.0385030 + 0.733016i
\(742\) 390.851 + 283.970i 0.526754 + 0.382709i
\(743\) 509.543 701.326i 0.685791 0.943911i −0.314194 0.949359i \(-0.601734\pi\)
0.999985 + 0.00544821i \(0.00173423\pi\)
\(744\) −1177.42 + 61.8461i −1.58256 + 0.0831265i
\(745\) −109.228 336.168i −0.146614 0.451232i
\(746\) −372.375 512.530i −0.499162 0.687038i
\(747\) −58.4393 64.8725i −0.0782321 0.0868441i
\(748\) 0 0
\(749\) 260.702i 0.348067i
\(750\) 357.719 550.982i 0.476959 0.734643i
\(751\) −357.678 1100.82i −0.476268 1.46580i −0.844240 0.535966i \(-0.819947\pi\)
0.367971 0.929837i \(-0.380053\pi\)
\(752\) 882.972 + 286.895i 1.17417 + 0.381509i
\(753\) 277.090 1034.60i 0.367981 1.37398i
\(754\) −39.0305 28.3573i −0.0517646 0.0376092i
\(755\) 232.813 + 75.6455i 0.308362 + 0.100193i
\(756\) 2.50590 + 0.395982i 0.00331469 + 0.000523786i
\(757\) 331.936 241.165i 0.438488 0.318580i −0.346546 0.938033i \(-0.612645\pi\)
0.785034 + 0.619453i \(0.212645\pi\)
\(758\) 217.931i 0.287508i
\(759\) 0 0
\(760\) 816.931 1.07491
\(761\) 148.998 + 205.078i 0.195792 + 0.269484i 0.895613 0.444833i \(-0.146737\pi\)
−0.699822 + 0.714318i \(0.746737\pi\)
\(762\) 319.060 258.432i 0.418714 0.339150i
\(763\) −290.961 + 895.487i −0.381339 + 1.17364i
\(764\) −1.95018 + 2.68419i −0.00255259 + 0.00351334i
\(765\) −877.277 + 92.4160i −1.14677 + 0.120805i
\(766\) 273.753 842.524i 0.357380 1.09990i
\(767\) −831.998 + 270.332i −1.08474 + 0.352454i
\(768\) −5.27137 + 8.11930i −0.00686376 + 0.0105720i
\(769\) 788.887 1.02586 0.512931 0.858430i \(-0.328560\pi\)
0.512931 + 0.858430i \(0.328560\pi\)
\(770\) 0 0
\(771\) −71.0793 185.102i −0.0921910 0.240081i
\(772\) −0.0207169 + 0.0150517i −2.68354e−5 + 1.94971e-5i
\(773\) 326.547 106.102i 0.422442 0.137260i −0.0900787 0.995935i \(-0.528712\pi\)
0.512520 + 0.858675i \(0.328712\pi\)
\(774\) −723.420 + 322.293i −0.934651 + 0.416399i
\(775\) 202.267 + 146.956i 0.260990 + 0.189620i
\(776\) 177.477 244.277i 0.228708 0.314790i
\(777\) −34.6029 658.767i −0.0445340 0.847834i
\(778\) 315.609 + 971.346i 0.405668 + 1.24852i
\(779\) −619.918 853.244i −0.795787 1.09531i
\(780\) 0.963195 + 2.50832i 0.00123487 + 0.00321580i
\(781\) 0 0
\(782\) 442.887i 0.566351i
\(783\) −66.0605 + 10.4871i −0.0843685 + 0.0133934i
\(784\) 88.0908 + 271.116i 0.112361 + 0.345811i
\(785\) 735.795 + 239.074i 0.937318 + 0.304553i
\(786\) −942.458 252.411i −1.19906 0.321134i
\(787\) −156.500 113.704i −0.198856 0.144478i 0.483901 0.875123i \(-0.339219\pi\)
−0.682758 + 0.730645i \(0.739219\pi\)
\(788\) 3.44391 + 1.11899i 0.00437044 + 0.00142004i
\(789\) 199.131 161.292i 0.252384 0.204426i
\(790\) 561.517 407.966i 0.710781 0.516413i
\(791\) 258.969i 0.327394i
\(792\) 0 0
\(793\) 299.953 0.378251
\(794\) 15.3712 + 21.1566i 0.0193592 + 0.0266456i
\(795\) 446.499 + 551.247i 0.561634 + 0.693393i
\(796\) 0.553954 1.70490i 0.000695922 0.00214183i
\(797\) 312.659 430.338i 0.392294 0.539947i −0.566495 0.824065i \(-0.691701\pi\)
0.958789 + 0.284119i \(0.0917009\pi\)
\(798\) −162.266 + 605.874i −0.203341 + 0.759241i
\(799\) 319.119 982.148i 0.399398 1.22922i
\(800\) 1.29877 0.421997i 0.00162347 0.000527496i
\(801\) −300.463 63.7909i −0.375110 0.0796391i
\(802\) 1101.52 1.37346
\(803\) 0 0
\(804\) −1.60399 + 0.615931i −0.00199501 + 0.000766083i
\(805\) 306.727 222.850i 0.381027 0.276832i
\(806\) 911.816 296.267i 1.13128 0.367577i
\(807\) 484.683 25.4588i 0.600599 0.0315475i
\(808\) 302.933 + 220.094i 0.374917 + 0.272393i
\(809\) 170.708 234.960i 0.211012 0.290433i −0.690371 0.723455i \(-0.742553\pi\)
0.901383 + 0.433022i \(0.142553\pi\)
\(810\) 813.533 + 361.746i 1.00436 + 0.446599i
\(811\) −118.833 365.730i −0.146526 0.450962i 0.850678 0.525688i \(-0.176192\pi\)
−0.997204 + 0.0747256i \(0.976192\pi\)
\(812\) −0.136823 0.188320i −0.000168501 0.000231921i
\(813\) 728.142 279.607i 0.895623 0.343919i
\(814\) 0 0
\(815\) 663.416i 0.814008i
\(816\) 722.508 + 469.080i 0.885426 + 0.574853i
\(817\) −253.158 779.140i −0.309863 0.953660i
\(818\) 1178.29 + 382.850i 1.44045 + 0.468031i
\(819\) 486.235 51.2220i 0.593693 0.0625421i
\(820\) −4.21497 3.06235i −0.00514020 0.00373458i
\(821\) −591.295 192.123i −0.720213 0.234011i −0.0740974 0.997251i \(-0.523608\pi\)
−0.646115 + 0.763240i \(0.723608\pi\)
\(822\) 200.070 + 247.006i 0.243394 + 0.300494i
\(823\) 231.689 168.332i 0.281517 0.204534i −0.438062 0.898945i \(-0.644335\pi\)
0.719579 + 0.694411i \(0.244335\pi\)
\(824\) 836.604i 1.01530i
\(825\) 0 0
\(826\) −1008.81 −1.22132
\(827\) −245.405 337.771i −0.296741 0.408430i 0.634448 0.772966i \(-0.281228\pi\)
−0.931189 + 0.364536i \(0.881228\pi\)
\(828\) 0.934765 1.61995i 0.00112894 0.00195646i
\(829\) 114.601 352.706i 0.138240 0.425460i −0.857840 0.513917i \(-0.828194\pi\)
0.996080 + 0.0884576i \(0.0281938\pi\)
\(830\) 62.6793 86.2707i 0.0755173 0.103941i
\(831\) −251.512 67.3605i −0.302662 0.0810595i
\(832\) −191.356 + 588.932i −0.229995 + 0.707851i
\(833\) 301.567 97.9852i 0.362026 0.117629i
\(834\) 436.397 + 283.326i 0.523258 + 0.339719i
\(835\) 589.197 0.705625
\(836\) 0 0
\(837\) 603.038 1184.57i 0.720475 1.41526i
\(838\) −713.983 + 518.739i −0.852009 + 0.619020i
\(839\) −823.477 + 267.564i −0.981498 + 0.318908i −0.755449 0.655208i \(-0.772581\pi\)
−0.226050 + 0.974116i \(0.572581\pi\)
\(840\) −38.5195 733.330i −0.0458565 0.873012i
\(841\) −675.418 490.720i −0.803113 0.583496i
\(842\) −676.464 + 931.073i −0.803402 + 1.10579i
\(843\) 1452.14 76.2764i 1.72259 0.0904821i
\(844\) 1.11570 + 3.43377i 0.00132192 + 0.00406845i
\(845\) −240.432 330.926i −0.284534 0.391628i
\(846\) −774.410 + 697.615i −0.915379 + 0.824604i
\(847\) 0 0
\(848\) 692.739i 0.816910i
\(849\) 705.841 1087.18i 0.831380 1.28055i
\(850\) −56.2104 172.998i −0.0661298 0.203527i
\(851\) −462.517 150.281i −0.543498 0.176593i
\(852\) −0.490398 + 1.83106i −0.000575584 + 0.00214913i
\(853\) −1089.63 791.663i −1.27741 0.928093i −0.277939 0.960599i \(-0.589651\pi\)
−0.999472 + 0.0325055i \(0.989651\pi\)
\(854\) 328.968 + 106.888i 0.385208 + 0.125162i
\(855\) −460.307 + 797.712i −0.538371 + 0.932997i
\(856\) 301.159 218.805i 0.351822 0.255614i
\(857\) 770.599i 0.899182i 0.893235 + 0.449591i \(0.148430\pi\)
−0.893235 + 0.449591i \(0.851570\pi\)
\(858\) 0 0
\(859\) −549.532 −0.639735 −0.319867 0.947462i \(-0.603638\pi\)
−0.319867 + 0.947462i \(0.603638\pi\)
\(860\) −2.37875 3.27407i −0.00276599 0.00380706i
\(861\) −736.697 + 596.710i −0.855629 + 0.693043i
\(862\) 409.676 1260.85i 0.475262 1.46271i
\(863\) 644.169 886.623i 0.746430 1.02737i −0.251792 0.967781i \(-0.581020\pi\)
0.998223 0.0595920i \(-0.0189800\pi\)
\(864\) −3.29845 6.46788i −0.00381765 0.00748598i
\(865\) 557.263 1715.08i 0.644235 1.98275i
\(866\) 405.583 131.782i 0.468341 0.152173i
\(867\) 49.6514 76.4763i 0.0572680 0.0882080i
\(868\) 4.62587 0.00532935
\(869\) 0 0
\(870\) −29.2843 76.2613i −0.0336602 0.0876567i
\(871\) −267.885 + 194.630i −0.307560 + 0.223456i
\(872\) 1278.66 415.461i 1.46635 0.476446i
\(873\) 138.529 + 310.942i 0.158681 + 0.356176i
\(874\) 374.088 + 271.791i 0.428018 + 0.310973i
\(875\) 359.043 494.181i 0.410335 0.564778i
\(876\) 0.0320703 + 0.610553i 3.66100e−5 + 0.000696978i
\(877\) 445.959 + 1372.52i 0.508505 + 1.56502i 0.794798 + 0.606875i \(0.207577\pi\)
−0.286293 + 0.958142i \(0.592423\pi\)
\(878\) 122.298 + 168.329i 0.139292 + 0.191719i
\(879\) −5.94670 15.4862i −0.00676531 0.0176180i
\(880\) 0 0
\(881\) 162.080i 0.183973i 0.995760 + 0.0919866i \(0.0293217\pi\)
−0.995760 + 0.0919866i \(0.970678\pi\)
\(882\) −313.058 66.4648i −0.354941 0.0753569i
\(883\) −26.9204 82.8525i −0.0304875 0.0938307i 0.934655 0.355556i \(-0.115709\pi\)
−0.965142 + 0.261725i \(0.915709\pi\)
\(884\) −2.77569 0.901877i −0.00313992 0.00102022i
\(885\) −1430.87 383.218i −1.61680 0.433014i
\(886\) 448.761 + 326.044i 0.506502 + 0.367995i
\(887\) 776.279 + 252.228i 0.875174 + 0.284361i 0.711952 0.702228i \(-0.247811\pi\)
0.163222 + 0.986589i \(0.447811\pi\)
\(888\) −731.957 + 592.871i −0.824276 + 0.667648i
\(889\) 308.876 224.412i 0.347442 0.252432i
\(890\) 375.137i 0.421503i
\(891\) 0 0
\(892\) −0.752410 −0.000843509
\(893\) −633.741 872.270i −0.709677 0.976786i
\(894\) −243.904 301.124i −0.272824 0.336828i
\(895\) 81.8547 251.923i 0.0914578 0.281478i
\(896\) −423.267 + 582.577i −0.472396 + 0.650197i
\(897\) 93.2475 348.170i 0.103955 0.388149i
\(898\) −308.350 + 949.005i −0.343375 + 1.05680i
\(899\) −115.992 + 37.6879i −0.129023 + 0.0419221i
\(900\) −0.159531 + 0.751413i −0.000177257 + 0.000834903i
\(901\) −770.548 −0.855214
\(902\) 0 0
\(903\) −687.470 + 263.989i −0.761318 + 0.292346i
\(904\) 299.157 217.351i 0.330926 0.240432i
\(905\) 0.347213 0.112816i 0.000383660 0.000124659i
\(906\) 268.001 14.0772i 0.295807 0.0155378i
\(907\) −451.884 328.313i −0.498218 0.361977i 0.310118 0.950698i \(-0.399632\pi\)
−0.808336 + 0.588721i \(0.799632\pi\)
\(908\) 2.21780 3.05253i 0.00244251 0.00336182i
\(909\) −385.606 + 171.792i −0.424209 + 0.188991i
\(910\) 184.523 + 567.903i 0.202773 + 0.624070i
\(911\) 956.353 + 1316.31i 1.04978 + 1.44490i 0.888996 + 0.457914i \(0.151403\pi\)
0.160788 + 0.986989i \(0.448597\pi\)
\(912\) 839.600 322.407i 0.920614 0.353516i
\(913\) 0 0
\(914\) 1625.64i 1.77860i
\(915\) 425.994 + 276.572i 0.465567 + 0.302264i
\(916\) 0.540649 + 1.66395i 0.000590228 + 0.00181654i
\(917\) −862.832 280.351i −0.940929 0.305726i
\(918\) −861.528 + 439.357i −0.938484 + 0.478602i
\(919\) 46.5896 + 33.8493i 0.0506960 + 0.0368328i 0.612845 0.790203i \(-0.290025\pi\)
−0.562149 + 0.827036i \(0.690025\pi\)
\(920\) −514.867 167.290i −0.559638 0.181837i
\(921\) −414.009 511.134i −0.449521 0.554977i
\(922\) 1281.02 930.716i 1.38939 1.00945i
\(923\) 365.315i 0.395791i
\(924\) 0 0
\(925\) 199.739 0.215934
\(926\) 636.589 + 876.189i 0.687461 + 0.946209i
\(927\) 816.922 + 471.392i 0.881254 + 0.508513i
\(928\) −0.205855 + 0.633557i −0.000221827 + 0.000682712i
\(929\) −12.6377 + 17.3943i −0.0136036 + 0.0187237i −0.815765 0.578384i \(-0.803684\pi\)
0.802161 + 0.597108i \(0.203684\pi\)
\(930\) 1568.14 + 419.982i 1.68617 + 0.451593i
\(931\) 102.302 314.853i 0.109884 0.338187i
\(932\) −0.983480 + 0.319552i −0.00105524 + 0.000342867i
\(933\) −357.679 232.219i −0.383365 0.248895i
\(934\) −556.899 −0.596251
\(935\) 0 0
\(936\) −467.264 518.702i −0.499214 0.554169i
\(937\) −185.231 + 134.578i −0.197685 + 0.143626i −0.682224 0.731143i \(-0.738987\pi\)
0.484539 + 0.874769i \(0.338987\pi\)
\(938\) −363.155 + 117.996i −0.387159 + 0.125796i
\(939\) −14.8371 282.468i −0.0158010 0.300818i
\(940\) −4.30896 3.13064i −0.00458400 0.00333047i
\(941\) 507.355 698.315i 0.539166 0.742099i −0.449326 0.893368i \(-0.648336\pi\)
0.988493 + 0.151269i \(0.0483360\pi\)
\(942\) 847.005 44.4904i 0.899156 0.0472297i
\(943\) 215.974 + 664.699i 0.229028 + 0.704877i
\(944\) 850.246 + 1170.26i 0.900685 + 1.23969i
\(945\) 737.782 + 375.588i 0.780722 + 0.397448i
\(946\) 0 0
\(947\) 1155.70i 1.22038i 0.792253 + 0.610192i \(0.208908\pi\)
−0.792253 + 0.610192i \(0.791092\pi\)
\(948\) 1.73367 2.67031i 0.00182877 0.00281679i
\(949\) 36.4105 + 112.060i 0.0383672 + 0.118082i
\(950\) −180.619 58.6866i −0.190125 0.0617754i
\(951\) −388.999 + 1452.46i −0.409043 + 1.52729i
\(952\) 645.312 + 468.846i 0.677849 + 0.492486i
\(953\) −1709.15 555.337i −1.79344 0.582725i −0.793769 0.608220i \(-0.791884\pi\)
−0.999675 + 0.0254945i \(0.991884\pi\)
\(954\) 673.612 + 388.697i 0.706092 + 0.407439i
\(955\) −875.916 + 636.390i −0.917189 + 0.666377i
\(956\) 2.50855i 0.00262401i
\(957\) 0 0
\(958\) 942.426 0.983743
\(959\) 173.732 + 239.122i 0.181160 + 0.249345i
\(960\) −814.790 + 659.964i −0.848740 + 0.687463i
\(961\) 451.992 1391.09i 0.470335 1.44754i
\(962\) 450.209 619.659i 0.467993 0.644136i
\(963\) 43.9667 + 417.362i 0.0456559 + 0.433398i
\(964\) 1.86386 5.73636i 0.00193346 0.00595058i
\(965\) −7.94735 + 2.58225i −0.00823560 + 0.00267591i
\(966\) 226.338 348.620i 0.234304 0.360891i
\(967\) 1767.36 1.82767 0.913835 0.406085i \(-0.133106\pi\)
0.913835 + 0.406085i \(0.133106\pi\)
\(968\) 0 0
\(969\) −358.619 933.904i −0.370092 0.963781i
\(970\) −336.340 + 244.365i −0.346742 + 0.251923i
\(971\) −483.830 + 157.206i −0.498280 + 0.161901i −0.547365 0.836894i \(-0.684369\pi\)
0.0490858 + 0.998795i \(0.484369\pi\)
\(972\) 4.07853 + 0.211321i 0.00419601 + 0.000217408i
\(973\) 391.408 + 284.375i 0.402270 + 0.292266i
\(974\) −299.456 + 412.166i −0.307449 + 0.423168i
\(975\) 7.76528 + 147.835i 0.00796439 + 0.151625i
\(976\) −153.266 471.704i −0.157035 0.483303i
\(977\) 831.426 + 1144.36i 0.850999 + 1.17130i 0.983642 + 0.180136i \(0.0576537\pi\)
−0.132643 + 0.991164i \(0.542346\pi\)
\(978\) −260.726 678.972i −0.266590 0.694246i
\(979\) 0 0
\(980\) 1.63539i 0.00166877i
\(981\) −314.784 + 1482.67i −0.320880 + 1.51139i
\(982\) 76.2541 + 234.686i 0.0776518 + 0.238988i
\(983\) 1.06713 + 0.346732i 0.00108559 + 0.000352728i 0.309560 0.950880i \(-0.399818\pi\)
−0.308474 + 0.951233i \(0.599818\pi\)
\(984\) 1307.62 + 350.208i 1.32888 + 0.355903i
\(985\) 955.985 + 694.564i 0.970543 + 0.705141i
\(986\) 84.3903 + 27.4201i 0.0855886 + 0.0278094i
\(987\) −753.124 + 610.016i −0.763044 + 0.618051i
\(988\) −2.46516 + 1.79105i −0.00249510 + 0.00181280i
\(989\) 542.891i 0.548929i
\(990\) 0 0
\(991\) −1431.64 −1.44464 −0.722320 0.691559i \(-0.756924\pi\)
−0.722320 + 0.691559i \(0.756924\pi\)
\(992\) −7.78130 10.7100i −0.00784405 0.0107964i
\(993\) −1233.94 1523.42i −1.24264 1.53416i
\(994\) −130.180 + 400.653i −0.130966 + 0.403071i
\(995\) 343.842 473.258i 0.345570 0.475636i
\(996\) 0.126544 0.472493i 0.000127052 0.000474391i
\(997\) 360.427 1109.28i 0.361511 1.11262i −0.590626 0.806945i \(-0.701119\pi\)
0.952137 0.305671i \(-0.0988808\pi\)
\(998\) 124.522 40.4598i 0.124772 0.0405409i
\(999\) −166.496 1048.80i −0.166662 1.04985i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.n.245.3 16
3.2 odd 2 inner 363.3.h.n.245.2 16
11.2 odd 10 363.3.b.m.122.6 8
11.3 even 5 363.3.h.j.269.3 16
11.4 even 5 inner 363.3.h.n.323.2 16
11.5 even 5 363.3.h.j.251.2 16
11.6 odd 10 33.3.h.b.20.3 yes 16
11.7 odd 10 363.3.h.o.323.3 16
11.8 odd 10 33.3.h.b.5.2 16
11.9 even 5 363.3.b.l.122.3 8
11.10 odd 2 363.3.h.o.245.2 16
33.2 even 10 363.3.b.m.122.3 8
33.5 odd 10 363.3.h.j.251.3 16
33.8 even 10 33.3.h.b.5.3 yes 16
33.14 odd 10 363.3.h.j.269.2 16
33.17 even 10 33.3.h.b.20.2 yes 16
33.20 odd 10 363.3.b.l.122.6 8
33.26 odd 10 inner 363.3.h.n.323.3 16
33.29 even 10 363.3.h.o.323.2 16
33.32 even 2 363.3.h.o.245.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.2 16 11.8 odd 10
33.3.h.b.5.3 yes 16 33.8 even 10
33.3.h.b.20.2 yes 16 33.17 even 10
33.3.h.b.20.3 yes 16 11.6 odd 10
363.3.b.l.122.3 8 11.9 even 5
363.3.b.l.122.6 8 33.20 odd 10
363.3.b.m.122.3 8 33.2 even 10
363.3.b.m.122.6 8 11.2 odd 10
363.3.h.j.251.2 16 11.5 even 5
363.3.h.j.251.3 16 33.5 odd 10
363.3.h.j.269.2 16 33.14 odd 10
363.3.h.j.269.3 16 11.3 even 5
363.3.h.n.245.2 16 3.2 odd 2 inner
363.3.h.n.245.3 16 1.1 even 1 trivial
363.3.h.n.323.2 16 11.4 even 5 inner
363.3.h.n.323.3 16 33.26 odd 10 inner
363.3.h.o.245.2 16 11.10 odd 2
363.3.h.o.245.3 16 33.32 even 2
363.3.h.o.323.2 16 33.29 even 10
363.3.h.o.323.3 16 11.7 odd 10