Properties

Label 363.3.h.k.323.3
Level $363$
Weight $3$
Character 363.323
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.23612624896000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 323.3
Root \(0.458196 - 0.219999i\) of defining polynomial
Character \(\chi\) \(=\) 363.323
Dual form 363.3.h.k.245.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.55513 - 2.14046i) q^{2} +(-2.99901 + 0.0770245i) q^{3} +(-0.927051 - 2.85317i) q^{4} +(1.66251 + 2.28825i) q^{5} +(-4.49900 + 6.53904i) q^{6} +(-2.31247 - 7.11706i) q^{7} +(2.51626 + 0.817582i) q^{8} +(8.98813 - 0.461994i) q^{9} +7.48331 q^{10} +(3.00000 + 8.48528i) q^{12} +(-18.1624 - 13.1957i) q^{13} +(-18.8300 - 6.11822i) q^{14} +(-5.16213 - 6.73442i) q^{15} +(15.3713 - 11.1679i) q^{16} +(-12.4411 - 17.1237i) q^{17} +(12.9889 - 19.9572i) q^{18} +(4.62494 - 14.2341i) q^{19} +(4.98752 - 6.86474i) q^{20} +(7.48331 + 21.1660i) q^{21} +31.1127i q^{23} +(-7.60926 - 2.25812i) q^{24} +(5.25329 - 16.1680i) q^{25} +(-56.4899 + 18.3547i) q^{26} +(-26.9199 + 2.07783i) q^{27} +(-18.1624 + 13.1957i) q^{28} +(-20.1301 + 6.54066i) q^{29} +(-22.4425 + 0.576398i) q^{30} +(-24.2705 - 17.6336i) q^{31} -39.6863i q^{32} -56.0000 q^{34} +(12.4411 - 17.1237i) q^{35} +(-9.65061 - 25.2164i) q^{36} +(-3.09017 - 9.51057i) q^{37} +(-23.2751 - 32.0354i) q^{38} +(55.4856 + 38.1752i) q^{39} +(2.31247 + 7.11706i) q^{40} +(40.2601 + 13.0813i) q^{41} +(56.9425 + 16.8983i) q^{42} -14.9666 q^{43} +(16.0000 + 19.7990i) q^{45} +(66.5954 + 48.3844i) q^{46} +(-34.9699 - 11.3624i) q^{47} +(-45.2386 + 34.6767i) q^{48} +(-5.66312 + 4.11450i) q^{49} +(-26.4373 - 36.3878i) q^{50} +(38.6298 + 50.3958i) q^{51} +(-20.8122 + 64.0535i) q^{52} +(24.9376 - 34.3237i) q^{53} +(-37.4166 + 60.8523i) q^{54} -19.7990i q^{56} +(-12.7739 + 43.0445i) q^{57} +(-17.3050 + 53.2592i) q^{58} +(32.2799 - 10.4884i) q^{59} +(-14.4289 + 20.9716i) q^{60} +(78.7037 - 57.1816i) q^{61} +(-75.4878 + 24.5275i) q^{62} +(-24.0728 - 62.9007i) q^{63} +(-23.4615 - 17.0458i) q^{64} -63.4980i q^{65} -42.0000 q^{67} +(-37.3232 + 51.3710i) q^{68} +(-2.39644 - 93.3073i) q^{69} +(-17.3050 - 53.2592i) q^{70} +(38.2377 + 52.6296i) q^{71} +(22.9942 + 6.18604i) q^{72} +(23.1247 + 71.1706i) q^{73} +(-25.1626 - 8.17582i) q^{74} +(-14.5093 + 48.8925i) q^{75} -44.8999 q^{76} +(168.000 - 59.3970i) q^{78} +(-18.1624 - 13.1957i) q^{79} +(51.1099 + 16.6066i) q^{80} +(80.5731 - 8.30494i) q^{81} +(90.6099 - 65.8319i) q^{82} +(-12.4411 - 17.1237i) q^{83} +(53.4528 - 40.9731i) q^{84} +(18.4998 - 56.9364i) q^{85} +(-23.2751 + 32.0354i) q^{86} +(59.8665 - 21.1660i) q^{87} +62.2254i q^{89} +(67.2610 - 3.45725i) q^{90} +(-51.9149 + 159.777i) q^{91} +(88.7698 - 28.8431i) q^{92} +(74.1457 + 51.0138i) q^{93} +(-78.7037 + 57.1816i) q^{94} +(40.2601 - 13.0813i) q^{95} +(3.05681 + 119.020i) q^{96} +(-59.8673 - 43.4961i) q^{97} +18.5203i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 12 q^{4} + 28 q^{9} + 48 q^{12} + 32 q^{15} + 76 q^{16} - 68 q^{25} - 92 q^{27} - 120 q^{31} - 896 q^{34} - 84 q^{36} + 40 q^{37} + 224 q^{42} + 256 q^{45} - 76 q^{48} - 28 q^{49} + 224 q^{58}+ \cdots - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55513 2.14046i 0.777567 1.07023i −0.217979 0.975953i \(-0.569947\pi\)
0.995546 0.0942755i \(-0.0300535\pi\)
\(3\) −2.99901 + 0.0770245i −0.999670 + 0.0256748i
\(4\) −0.927051 2.85317i −0.231763 0.713292i
\(5\) 1.66251 + 2.28825i 0.332502 + 0.457649i 0.942233 0.334959i \(-0.108723\pi\)
−0.609731 + 0.792608i \(0.708723\pi\)
\(6\) −4.49900 + 6.53904i −0.749833 + 1.08984i
\(7\) −2.31247 7.11706i −0.330353 1.01672i −0.968966 0.247194i \(-0.920491\pi\)
0.638613 0.769528i \(-0.279509\pi\)
\(8\) 2.51626 + 0.817582i 0.314532 + 0.102198i
\(9\) 8.98813 0.461994i 0.998682 0.0513327i
\(10\) 7.48331 0.748331
\(11\) 0 0
\(12\) 3.00000 + 8.48528i 0.250000 + 0.707107i
\(13\) −18.1624 13.1957i −1.39711 1.01506i −0.995043 0.0994457i \(-0.968293\pi\)
−0.402064 0.915612i \(-0.631707\pi\)
\(14\) −18.8300 6.11822i −1.34500 0.437016i
\(15\) −5.16213 6.73442i −0.344142 0.448961i
\(16\) 15.3713 11.1679i 0.960708 0.697995i
\(17\) −12.4411 17.1237i −0.731828 1.00727i −0.999047 0.0436386i \(-0.986105\pi\)
0.267220 0.963636i \(-0.413895\pi\)
\(18\) 12.9889 19.9572i 0.721604 1.10873i
\(19\) 4.62494 14.2341i 0.243418 0.749164i −0.752475 0.658621i \(-0.771140\pi\)
0.995893 0.0905424i \(-0.0288601\pi\)
\(20\) 4.98752 6.86474i 0.249376 0.343237i
\(21\) 7.48331 + 21.1660i 0.356348 + 1.00791i
\(22\) 0 0
\(23\) 31.1127i 1.35273i 0.736568 + 0.676363i \(0.236445\pi\)
−0.736568 + 0.676363i \(0.763555\pi\)
\(24\) −7.60926 2.25812i −0.317053 0.0940885i
\(25\) 5.25329 16.1680i 0.210132 0.646718i
\(26\) −56.4899 + 18.3547i −2.17269 + 0.705949i
\(27\) −26.9199 + 2.07783i −0.997034 + 0.0769568i
\(28\) −18.1624 + 13.1957i −0.648657 + 0.471277i
\(29\) −20.1301 + 6.54066i −0.694140 + 0.225540i −0.634776 0.772696i \(-0.718907\pi\)
−0.0593647 + 0.998236i \(0.518907\pi\)
\(30\) −22.4425 + 0.576398i −0.748085 + 0.0192133i
\(31\) −24.2705 17.6336i −0.782920 0.568824i 0.122934 0.992415i \(-0.460770\pi\)
−0.905854 + 0.423590i \(0.860770\pi\)
\(32\) 39.6863i 1.24020i
\(33\) 0 0
\(34\) −56.0000 −1.64706
\(35\) 12.4411 17.1237i 0.355459 0.489247i
\(36\) −9.65061 25.2164i −0.268072 0.700455i
\(37\) −3.09017 9.51057i −0.0835181 0.257042i 0.900574 0.434704i \(-0.143147\pi\)
−0.984092 + 0.177661i \(0.943147\pi\)
\(38\) −23.2751 32.0354i −0.612503 0.843038i
\(39\) 55.4856 + 38.1752i 1.42271 + 0.978852i
\(40\) 2.31247 + 7.11706i 0.0578118 + 0.177926i
\(41\) 40.2601 + 13.0813i 0.981955 + 0.319056i 0.755632 0.654996i \(-0.227330\pi\)
0.226322 + 0.974052i \(0.427330\pi\)
\(42\) 56.9425 + 16.8983i 1.35577 + 0.402339i
\(43\) −14.9666 −0.348061 −0.174031 0.984740i \(-0.555679\pi\)
−0.174031 + 0.984740i \(0.555679\pi\)
\(44\) 0 0
\(45\) 16.0000 + 19.7990i 0.355556 + 0.439978i
\(46\) 66.5954 + 48.3844i 1.44773 + 1.05183i
\(47\) −34.9699 11.3624i −0.744041 0.241754i −0.0876258 0.996153i \(-0.527928\pi\)
−0.656415 + 0.754400i \(0.727928\pi\)
\(48\) −45.2386 + 34.6767i −0.942470 + 0.722431i
\(49\) −5.66312 + 4.11450i −0.115574 + 0.0839693i
\(50\) −26.4373 36.3878i −0.528745 0.727756i
\(51\) 38.6298 + 50.3958i 0.757448 + 0.988153i
\(52\) −20.8122 + 64.0535i −0.400235 + 1.23180i
\(53\) 24.9376 34.3237i 0.470521 0.647617i −0.506128 0.862458i \(-0.668924\pi\)
0.976649 + 0.214842i \(0.0689236\pi\)
\(54\) −37.4166 + 60.8523i −0.692900 + 1.12689i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) −12.7739 + 43.0445i −0.224103 + 0.755166i
\(58\) −17.3050 + 53.2592i −0.298361 + 0.918261i
\(59\) 32.2799 10.4884i 0.547117 0.177769i −0.0223991 0.999749i \(-0.507130\pi\)
0.569517 + 0.821980i \(0.307130\pi\)
\(60\) −14.4289 + 20.9716i −0.240481 + 0.349526i
\(61\) 78.7037 57.1816i 1.29022 0.937403i 0.290414 0.956901i \(-0.406207\pi\)
0.999810 + 0.0194983i \(0.00620689\pi\)
\(62\) −75.4878 + 24.5275i −1.21754 + 0.395604i
\(63\) −24.0728 62.9007i −0.382109 0.998424i
\(64\) −23.4615 17.0458i −0.366586 0.266340i
\(65\) 63.4980i 0.976893i
\(66\) 0 0
\(67\) −42.0000 −0.626866 −0.313433 0.949610i \(-0.601479\pi\)
−0.313433 + 0.949610i \(0.601479\pi\)
\(68\) −37.3232 + 51.3710i −0.548871 + 0.755456i
\(69\) −2.39644 93.3073i −0.0347310 1.35228i
\(70\) −17.3050 53.2592i −0.247214 0.760845i
\(71\) 38.2377 + 52.6296i 0.538559 + 0.741263i 0.988405 0.151844i \(-0.0485210\pi\)
−0.449846 + 0.893106i \(0.648521\pi\)
\(72\) 22.9942 + 6.18604i 0.319364 + 0.0859172i
\(73\) 23.1247 + 71.1706i 0.316777 + 0.974939i 0.975017 + 0.222131i \(0.0713012\pi\)
−0.658240 + 0.752808i \(0.728699\pi\)
\(74\) −25.1626 8.17582i −0.340035 0.110484i
\(75\) −14.5093 + 48.8925i −0.193458 + 0.651900i
\(76\) −44.8999 −0.590788
\(77\) 0 0
\(78\) 168.000 59.3970i 2.15385 0.761500i
\(79\) −18.1624 13.1957i −0.229904 0.167035i 0.466870 0.884326i \(-0.345382\pi\)
−0.696773 + 0.717291i \(0.745382\pi\)
\(80\) 51.1099 + 16.6066i 0.638874 + 0.207583i
\(81\) 80.5731 8.30494i 0.994730 0.102530i
\(82\) 90.6099 65.8319i 1.10500 0.802829i
\(83\) −12.4411 17.1237i −0.149892 0.206309i 0.727467 0.686142i \(-0.240697\pi\)
−0.877360 + 0.479833i \(0.840697\pi\)
\(84\) 53.4528 40.9731i 0.636343 0.487775i
\(85\) 18.4998 56.9364i 0.217644 0.669840i
\(86\) −23.2751 + 32.0354i −0.270641 + 0.372505i
\(87\) 59.8665 21.1660i 0.688121 0.243287i
\(88\) 0 0
\(89\) 62.2254i 0.699162i 0.936906 + 0.349581i \(0.113676\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(90\) 67.2610 3.45725i 0.747345 0.0384139i
\(91\) −51.9149 + 159.777i −0.570493 + 1.75580i
\(92\) 88.7698 28.8431i 0.964889 0.313511i
\(93\) 74.1457 + 51.0138i 0.797266 + 0.548536i
\(94\) −78.7037 + 57.1816i −0.837273 + 0.608315i
\(95\) 40.2601 13.0813i 0.423791 0.137698i
\(96\) 3.05681 + 119.020i 0.0318418 + 1.23979i
\(97\) −59.8673 43.4961i −0.617188 0.448413i 0.234750 0.972056i \(-0.424573\pi\)
−0.851938 + 0.523642i \(0.824573\pi\)
\(98\) 18.5203i 0.188982i
\(99\) 0 0
\(100\) −51.0000 −0.510000
\(101\) 87.0875 119.866i 0.862252 1.18679i −0.118775 0.992921i \(-0.537897\pi\)
0.981028 0.193867i \(-0.0621031\pi\)
\(102\) 167.945 4.31337i 1.64652 0.0422879i
\(103\) 10.5066 + 32.3359i 0.102006 + 0.313941i 0.989016 0.147808i \(-0.0472219\pi\)
−0.887010 + 0.461749i \(0.847222\pi\)
\(104\) −34.9127 48.0532i −0.335699 0.462050i
\(105\) −35.9920 + 52.3123i −0.342781 + 0.498213i
\(106\) −34.6871 106.756i −0.327237 1.00713i
\(107\) 40.2601 + 13.0813i 0.376263 + 0.122255i 0.491042 0.871136i \(-0.336616\pi\)
−0.114779 + 0.993391i \(0.536616\pi\)
\(108\) 30.8846 + 74.8809i 0.285968 + 0.693341i
\(109\) 67.3498 0.617888 0.308944 0.951080i \(-0.400024\pi\)
0.308944 + 0.951080i \(0.400024\pi\)
\(110\) 0 0
\(111\) 10.0000 + 28.2843i 0.0900901 + 0.254813i
\(112\) −115.028 83.5731i −1.02704 0.746188i
\(113\) 112.980 + 36.7093i 0.999821 + 0.324861i 0.762794 0.646642i \(-0.223827\pi\)
0.237027 + 0.971503i \(0.423827\pi\)
\(114\) 72.2698 + 94.2819i 0.633946 + 0.827034i
\(115\) −71.1935 + 51.7251i −0.619074 + 0.449783i
\(116\) 37.3232 + 51.3710i 0.321752 + 0.442853i
\(117\) −169.342 110.214i −1.44737 0.942002i
\(118\) 27.7497 85.4047i 0.235167 0.723768i
\(119\) −93.1004 + 128.142i −0.782357 + 1.07682i
\(120\) −7.48331 21.1660i −0.0623610 0.176383i
\(121\) 0 0
\(122\) 257.387i 2.10973i
\(123\) −121.748 36.1300i −0.989823 0.293740i
\(124\) −27.8115 + 85.5951i −0.224287 + 0.690283i
\(125\) 112.980 36.7093i 0.903838 0.293675i
\(126\) −172.073 46.2921i −1.36566 0.367398i
\(127\) −54.4872 + 39.5872i −0.429033 + 0.311711i −0.781262 0.624203i \(-0.785424\pi\)
0.352229 + 0.935914i \(0.385424\pi\)
\(128\) 78.0040 25.3450i 0.609406 0.198008i
\(129\) 44.8851 1.15280i 0.347946 0.00893641i
\(130\) −135.915 98.7479i −1.04550 0.759599i
\(131\) 232.826i 1.77730i 0.458587 + 0.888649i \(0.348356\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(132\) 0 0
\(133\) −112.000 −0.842105
\(134\) −65.3156 + 89.8992i −0.487430 + 0.670890i
\(135\) −49.5092 58.1450i −0.366735 0.430704i
\(136\) −17.3050 53.2592i −0.127242 0.391612i
\(137\) 93.1004 + 128.142i 0.679565 + 0.935341i 0.999929 0.0119535i \(-0.00380500\pi\)
−0.320363 + 0.947295i \(0.603805\pi\)
\(138\) −203.447 139.976i −1.47425 1.01432i
\(139\) −27.7497 85.4047i −0.199638 0.614422i −0.999891 0.0147598i \(-0.995302\pi\)
0.800253 0.599662i \(-0.204698\pi\)
\(140\) −60.3902 19.6220i −0.431359 0.140157i
\(141\) 105.750 + 31.3825i 0.750003 + 0.222571i
\(142\) 172.116 1.21209
\(143\) 0 0
\(144\) 133.000 107.480i 0.923611 0.746390i
\(145\) −48.4330 35.1887i −0.334021 0.242680i
\(146\) 188.300 + 61.1822i 1.28972 + 0.419056i
\(147\) 16.6668 12.7756i 0.113380 0.0869090i
\(148\) −24.2705 + 17.6336i −0.163990 + 0.119146i
\(149\) −12.4411 17.1237i −0.0834971 0.114924i 0.765225 0.643763i \(-0.222628\pi\)
−0.848722 + 0.528839i \(0.822628\pi\)
\(150\) 82.0884 + 107.091i 0.547256 + 0.713940i
\(151\) −20.8122 + 64.0535i −0.137829 + 0.424195i −0.996019 0.0891369i \(-0.971589\pi\)
0.858190 + 0.513332i \(0.171589\pi\)
\(152\) 23.2751 32.0354i 0.153126 0.210759i
\(153\) −119.733 148.162i −0.782569 0.968380i
\(154\) 0 0
\(155\) 84.8528i 0.547438i
\(156\) 57.4825 193.700i 0.368477 1.24167i
\(157\) 26.5755 81.7909i 0.169270 0.520961i −0.830055 0.557681i \(-0.811691\pi\)
0.999326 + 0.0367205i \(0.0116911\pi\)
\(158\) −56.4899 + 18.3547i −0.357531 + 0.116169i
\(159\) −72.1444 + 104.858i −0.453739 + 0.659484i
\(160\) 90.8119 65.9787i 0.567575 0.412367i
\(161\) 221.431 71.9472i 1.37535 0.446877i
\(162\) 107.526 185.379i 0.663738 1.14431i
\(163\) 11.3262 + 8.22899i 0.0694861 + 0.0504846i 0.621986 0.783028i \(-0.286326\pi\)
−0.552500 + 0.833513i \(0.686326\pi\)
\(164\) 126.996i 0.774366i
\(165\) 0 0
\(166\) −56.0000 −0.337349
\(167\) −49.7643 + 68.4946i −0.297990 + 0.410148i −0.931589 0.363514i \(-0.881577\pi\)
0.633599 + 0.773662i \(0.281577\pi\)
\(168\) 1.52501 + 59.3774i 0.00907742 + 0.353437i
\(169\) 103.521 + 318.604i 0.612548 + 1.88523i
\(170\) −93.1004 128.142i −0.547650 0.753775i
\(171\) 34.9935 130.075i 0.204641 0.760671i
\(172\) 13.8748 + 42.7023i 0.0806676 + 0.248269i
\(173\) −181.171 58.8659i −1.04723 0.340265i −0.265649 0.964070i \(-0.585586\pi\)
−0.781580 + 0.623804i \(0.785586\pi\)
\(174\) 47.7955 161.058i 0.274687 0.925619i
\(175\) −127.216 −0.726951
\(176\) 0 0
\(177\) −96.0000 + 33.9411i −0.542373 + 0.191758i
\(178\) 133.191 + 96.7688i 0.748263 + 0.543645i
\(179\) −301.279 97.8916i −1.68312 0.546880i −0.697611 0.716477i \(-0.745754\pi\)
−0.985514 + 0.169596i \(0.945754\pi\)
\(180\) 41.6571 64.0054i 0.231428 0.355585i
\(181\) 211.962 154.000i 1.17106 0.850827i 0.179927 0.983680i \(-0.442414\pi\)
0.991136 + 0.132853i \(0.0424137\pi\)
\(182\) 261.262 + 359.597i 1.43551 + 1.97581i
\(183\) −231.629 + 177.550i −1.26573 + 0.970220i
\(184\) −25.4372 + 78.2876i −0.138246 + 0.425476i
\(185\) 16.6251 22.8825i 0.0898653 0.123689i
\(186\) 224.499 79.3725i 1.20699 0.426734i
\(187\) 0 0
\(188\) 110.309i 0.586748i
\(189\) 77.0396 + 186.786i 0.407617 + 0.988284i
\(190\) 34.6099 106.518i 0.182157 0.560623i
\(191\) −56.4899 + 18.3547i −0.295759 + 0.0960978i −0.453138 0.891440i \(-0.649695\pi\)
0.157379 + 0.987538i \(0.449695\pi\)
\(192\) 71.6742 + 49.3134i 0.373303 + 0.256840i
\(193\) −121.083 + 87.9716i −0.627371 + 0.455812i −0.855488 0.517822i \(-0.826743\pi\)
0.228118 + 0.973634i \(0.426743\pi\)
\(194\) −186.203 + 60.5011i −0.959810 + 0.311861i
\(195\) 4.89090 + 190.431i 0.0250815 + 0.976571i
\(196\) 16.9894 + 12.3435i 0.0866804 + 0.0629770i
\(197\) 232.826i 1.18186i 0.806723 + 0.590929i \(0.201239\pi\)
−0.806723 + 0.590929i \(0.798761\pi\)
\(198\) 0 0
\(199\) 222.000 1.11558 0.557789 0.829983i \(-0.311650\pi\)
0.557789 + 0.829983i \(0.311650\pi\)
\(200\) 26.4373 36.3878i 0.132186 0.181939i
\(201\) 125.958 3.23503i 0.626659 0.0160947i
\(202\) −121.135 372.814i −0.599677 1.84561i
\(203\) 93.1004 + 128.142i 0.458623 + 0.631240i
\(204\) 107.976 156.937i 0.529294 0.769299i
\(205\) 36.9995 + 113.873i 0.180486 + 0.555477i
\(206\) 85.5528 + 27.7978i 0.415305 + 0.134941i
\(207\) 14.3739 + 279.645i 0.0694391 + 1.35094i
\(208\) −426.549 −2.05072
\(209\) 0 0
\(210\) 56.0000 + 158.392i 0.266667 + 0.754247i
\(211\) 314.815 + 228.726i 1.49201 + 1.08401i 0.973430 + 0.228983i \(0.0735400\pi\)
0.518582 + 0.855028i \(0.326460\pi\)
\(212\) −121.050 39.3314i −0.570989 0.185526i
\(213\) −118.729 154.892i −0.557413 0.727191i
\(214\) 90.6099 65.8319i 0.423411 0.307626i
\(215\) −24.8821 34.2473i −0.115731 0.159290i
\(216\) −69.4363 16.7809i −0.321464 0.0776893i
\(217\) −69.3741 + 213.512i −0.319697 + 0.983925i
\(218\) 104.738 144.159i 0.480449 0.661282i
\(219\) −74.8331 211.660i −0.341704 0.966484i
\(220\) 0 0
\(221\) 475.176i 2.15012i
\(222\) 76.0926 + 22.5812i 0.342760 + 0.101717i
\(223\) −14.2148 + 43.7486i −0.0637434 + 0.196182i −0.977856 0.209278i \(-0.932889\pi\)
0.914113 + 0.405460i \(0.132889\pi\)
\(224\) −282.449 + 91.7734i −1.26093 + 0.409703i
\(225\) 39.7478 147.747i 0.176657 0.656652i
\(226\) 254.273 184.740i 1.12510 0.817436i
\(227\) 201.301 65.4066i 0.886787 0.288135i 0.170015 0.985442i \(-0.445619\pi\)
0.716773 + 0.697307i \(0.245619\pi\)
\(228\) 134.655 3.45839i 0.590593 0.0151684i
\(229\) −95.4640 69.3587i −0.416873 0.302876i 0.359505 0.933143i \(-0.382945\pi\)
−0.776379 + 0.630267i \(0.782945\pi\)
\(230\) 232.826i 1.01229i
\(231\) 0 0
\(232\) −56.0000 −0.241379
\(233\) −49.7643 + 68.4946i −0.213581 + 0.293968i −0.902343 0.431019i \(-0.858154\pi\)
0.688762 + 0.724987i \(0.258154\pi\)
\(234\) −499.259 + 191.072i −2.13358 + 0.816548i
\(235\) −32.1378 98.9099i −0.136756 0.420893i
\(236\) −59.8503 82.3768i −0.253603 0.349054i
\(237\) 55.4856 + 38.1752i 0.234116 + 0.161077i
\(238\) 129.498 + 398.555i 0.544111 + 1.67460i
\(239\) 40.2601 + 13.0813i 0.168452 + 0.0547335i 0.392029 0.919953i \(-0.371773\pi\)
−0.223577 + 0.974686i \(0.571773\pi\)
\(240\) −154.558 45.8667i −0.643993 0.191111i
\(241\) 149.666 0.621022 0.310511 0.950570i \(-0.399500\pi\)
0.310511 + 0.950570i \(0.399500\pi\)
\(242\) 0 0
\(243\) −241.000 + 31.1127i −0.991770 + 0.128036i
\(244\) −236.111 171.545i −0.967668 0.703052i
\(245\) −18.8300 6.11822i −0.0768570 0.0249723i
\(246\) −266.669 + 204.410i −1.08402 + 0.830935i
\(247\) −271.830 + 197.496i −1.10053 + 0.799578i
\(248\) −46.6540 64.2137i −0.188121 0.258926i
\(249\) 38.6298 + 50.3958i 0.155140 + 0.202393i
\(250\) 97.1238 298.916i 0.388495 1.19567i
\(251\) −29.9251 + 41.1884i −0.119224 + 0.164097i −0.864457 0.502706i \(-0.832338\pi\)
0.745234 + 0.666803i \(0.232338\pi\)
\(252\) −157.150 + 126.996i −0.623610 + 0.503953i
\(253\) 0 0
\(254\) 178.191i 0.701539i
\(255\) −51.0955 + 172.178i −0.200375 + 0.675208i
\(256\) 102.903 316.702i 0.401964 1.23712i
\(257\) 91.4598 29.7171i 0.355875 0.115631i −0.125623 0.992078i \(-0.540093\pi\)
0.481498 + 0.876447i \(0.340093\pi\)
\(258\) 67.3348 97.8674i 0.260988 0.379331i
\(259\) −60.5413 + 43.9858i −0.233750 + 0.169829i
\(260\) −181.171 + 58.8659i −0.696810 + 0.226407i
\(261\) −177.910 + 68.0883i −0.681648 + 0.260875i
\(262\) 498.354 + 362.076i 1.90212 + 1.38197i
\(263\) 465.652i 1.77054i −0.465077 0.885270i \(-0.653973\pi\)
0.465077 0.885270i \(-0.346027\pi\)
\(264\) 0 0
\(265\) 120.000 0.452830
\(266\) −174.175 + 239.731i −0.654793 + 0.901245i
\(267\) −4.79288 186.615i −0.0179509 0.698931i
\(268\) 38.9361 + 119.833i 0.145284 + 0.447139i
\(269\) −217.789 299.760i −0.809623 1.11435i −0.991381 0.131007i \(-0.958179\pi\)
0.181759 0.983343i \(-0.441821\pi\)
\(270\) −201.450 + 15.5491i −0.746112 + 0.0575892i
\(271\) −104.061 320.267i −0.383990 1.18180i −0.937211 0.348764i \(-0.886601\pi\)
0.553221 0.833035i \(-0.313399\pi\)
\(272\) −382.471 124.272i −1.40614 0.456884i
\(273\) 143.386 483.173i 0.525225 1.76987i
\(274\) 419.066 1.52944
\(275\) 0 0
\(276\) −264.000 + 93.3381i −0.956522 + 0.338182i
\(277\) −18.1624 13.1957i −0.0655682 0.0476381i 0.554518 0.832171i \(-0.312903\pi\)
−0.620087 + 0.784533i \(0.712903\pi\)
\(278\) −225.960 73.4187i −0.812804 0.264096i
\(279\) −226.293 147.280i −0.811087 0.527885i
\(280\) 45.3050 32.9160i 0.161803 0.117557i
\(281\) −12.4411 17.1237i −0.0442743 0.0609383i 0.786306 0.617837i \(-0.211991\pi\)
−0.830580 + 0.556899i \(0.811991\pi\)
\(282\) 231.629 177.550i 0.821379 0.629611i
\(283\) 55.4993 170.809i 0.196111 0.603567i −0.803851 0.594830i \(-0.797219\pi\)
0.999962 0.00873607i \(-0.00278081\pi\)
\(284\) 114.713 157.889i 0.403919 0.555947i
\(285\) −119.733 + 42.3320i −0.420116 + 0.148533i
\(286\) 0 0
\(287\) 316.784i 1.10378i
\(288\) −18.3348 356.706i −0.0636626 1.23856i
\(289\) −49.1337 + 151.218i −0.170013 + 0.523246i
\(290\) −150.640 + 48.9458i −0.519447 + 0.168779i
\(291\) 182.893 + 125.834i 0.628498 + 0.432419i
\(292\) 181.624 131.957i 0.622000 0.451909i
\(293\) −20.1301 + 6.54066i −0.0687033 + 0.0223231i −0.343167 0.939274i \(-0.611500\pi\)
0.274464 + 0.961597i \(0.411500\pi\)
\(294\) −1.42651 55.5425i −0.00485209 0.188920i
\(295\) 77.6656 + 56.4274i 0.263273 + 0.191279i
\(296\) 26.4575i 0.0893835i
\(297\) 0 0
\(298\) −56.0000 −0.187919
\(299\) 410.555 565.081i 1.37309 1.88990i
\(300\) 152.950 3.92825i 0.509832 0.0130942i
\(301\) 34.6099 + 106.518i 0.114983 + 0.353881i
\(302\) 104.738 + 144.159i 0.346815 + 0.477349i
\(303\) −251.944 + 366.186i −0.831497 + 1.20854i
\(304\) −87.8739 270.448i −0.289059 0.889632i
\(305\) 261.691 + 85.0285i 0.858003 + 0.278782i
\(306\) −503.336 + 25.8717i −1.64489 + 0.0845480i
\(307\) 149.666 0.487512 0.243756 0.969837i \(-0.421620\pi\)
0.243756 + 0.969837i \(0.421620\pi\)
\(308\) 0 0
\(309\) −34.0000 96.1665i −0.110032 0.311219i
\(310\) −181.624 131.957i −0.585883 0.425669i
\(311\) 24.2099 + 7.86629i 0.0778455 + 0.0252935i 0.347681 0.937613i \(-0.386969\pi\)
−0.269835 + 0.962906i \(0.586969\pi\)
\(312\) 108.405 + 141.423i 0.347451 + 0.453278i
\(313\) −321.989 + 233.939i −1.02872 + 0.747407i −0.968052 0.250751i \(-0.919323\pi\)
−0.0606664 + 0.998158i \(0.519323\pi\)
\(314\) −133.741 184.079i −0.425928 0.586240i
\(315\) 103.911 159.657i 0.329876 0.506849i
\(316\) −20.8122 + 64.0535i −0.0658615 + 0.202701i
\(317\) 244.389 336.372i 0.770942 1.06111i −0.225282 0.974294i \(-0.572330\pi\)
0.996224 0.0868172i \(-0.0276696\pi\)
\(318\) 112.250 + 317.490i 0.352987 + 0.998397i
\(319\) 0 0
\(320\) 82.0244i 0.256326i
\(321\) −121.748 36.1300i −0.379278 0.112554i
\(322\) 190.354 585.851i 0.591163 1.81941i
\(323\) −301.279 + 97.8916i −0.932753 + 0.303070i
\(324\) −98.3908 222.190i −0.303675 0.685771i
\(325\) −308.761 + 224.328i −0.950033 + 0.690239i
\(326\) 35.2276 11.4461i 0.108060 0.0351109i
\(327\) −201.983 + 5.18759i −0.617685 + 0.0158642i
\(328\) 90.6099 + 65.8319i 0.276250 + 0.200707i
\(329\) 275.158i 0.836347i
\(330\) 0 0
\(331\) 178.000 0.537764 0.268882 0.963173i \(-0.413346\pi\)
0.268882 + 0.963173i \(0.413346\pi\)
\(332\) −37.3232 + 51.3710i −0.112419 + 0.154732i
\(333\) −32.1687 84.0546i −0.0966027 0.252416i
\(334\) 69.2198 + 213.037i 0.207245 + 0.637834i
\(335\) −69.8253 96.1063i −0.208434 0.286885i
\(336\) 351.409 + 241.777i 1.04586 + 0.719573i
\(337\) −78.6240 241.980i −0.233306 0.718041i −0.997342 0.0728675i \(-0.976785\pi\)
0.764036 0.645174i \(-0.223215\pi\)
\(338\) 842.947 + 273.890i 2.49393 + 0.810325i
\(339\) −341.655 101.390i −1.00783 0.299084i
\(340\) −179.600 −0.528234
\(341\) 0 0
\(342\) −224.000 277.186i −0.654971 0.810485i
\(343\) −254.273 184.740i −0.741322 0.538602i
\(344\) −37.6599 12.2364i −0.109477 0.0355711i
\(345\) 209.526 160.608i 0.607322 0.465530i
\(346\) −407.745 + 296.244i −1.17845 + 0.856196i
\(347\) −286.145 393.844i −0.824624 1.13500i −0.988900 0.148583i \(-0.952529\pi\)
0.164276 0.986414i \(-0.447471\pi\)
\(348\) −115.890 151.187i −0.333016 0.434446i
\(349\) −20.8122 + 64.0535i −0.0596339 + 0.183534i −0.976436 0.215808i \(-0.930761\pi\)
0.916802 + 0.399342i \(0.130761\pi\)
\(350\) −197.838 + 272.301i −0.565253 + 0.778004i
\(351\) 516.349 + 317.490i 1.47108 + 0.904530i
\(352\) 0 0
\(353\) 124.451i 0.352552i −0.984341 0.176276i \(-0.943595\pi\)
0.984341 0.176276i \(-0.0564051\pi\)
\(354\) −76.6433 + 258.267i −0.216506 + 0.729568i
\(355\) −56.8591 + 174.994i −0.160167 + 0.492942i
\(356\) 177.540 57.6861i 0.498707 0.162040i
\(357\) 269.339 391.470i 0.754451 1.09655i
\(358\) −678.062 + 492.641i −1.89403 + 1.37609i
\(359\) −241.561 + 78.4879i −0.672871 + 0.218629i −0.625472 0.780247i \(-0.715093\pi\)
−0.0473997 + 0.998876i \(0.515093\pi\)
\(360\) 24.0728 + 62.9007i 0.0668690 + 0.174724i
\(361\) 110.835 + 80.5266i 0.307023 + 0.223065i
\(362\) 693.187i 1.91488i
\(363\) 0 0
\(364\) 504.000 1.38462
\(365\) −124.411 + 171.237i −0.340851 + 0.469141i
\(366\) 19.8251 + 771.906i 0.0541669 + 2.10903i
\(367\) −43.8804 135.050i −0.119565 0.367984i 0.873307 0.487171i \(-0.161971\pi\)
−0.992872 + 0.119187i \(0.961971\pi\)
\(368\) 347.464 + 478.243i 0.944196 + 1.29957i
\(369\) 367.907 + 98.9766i 0.997038 + 0.268229i
\(370\) −23.1247 71.1706i −0.0624992 0.192353i
\(371\) −301.951 98.1099i −0.813884 0.264447i
\(372\) 76.8142 258.843i 0.206490 0.695814i
\(373\) −426.549 −1.14356 −0.571781 0.820406i \(-0.693747\pi\)
−0.571781 + 0.820406i \(0.693747\pi\)
\(374\) 0 0
\(375\) −336.000 + 118.794i −0.896000 + 0.316784i
\(376\) −78.7037 57.1816i −0.209318 0.152079i
\(377\) 451.919 + 146.837i 1.19872 + 0.389489i
\(378\) 519.614 + 125.577i 1.37464 + 0.332213i
\(379\) 283.156 205.725i 0.747113 0.542810i −0.147817 0.989015i \(-0.547225\pi\)
0.894931 + 0.446205i \(0.147225\pi\)
\(380\) −74.6464 102.742i −0.196438 0.270374i
\(381\) 160.358 122.919i 0.420888 0.322623i
\(382\) −48.5619 + 149.458i −0.127125 + 0.391252i
\(383\) −304.239 + 418.749i −0.794357 + 1.09334i 0.199194 + 0.979960i \(0.436168\pi\)
−0.993552 + 0.113379i \(0.963832\pi\)
\(384\) −231.983 + 82.0183i −0.604122 + 0.213589i
\(385\) 0 0
\(386\) 395.980i 1.02585i
\(387\) −134.522 + 6.91450i −0.347602 + 0.0178669i
\(388\) −68.6018 + 211.135i −0.176809 + 0.544161i
\(389\) 416.949 135.475i 1.07185 0.348265i 0.280641 0.959813i \(-0.409453\pi\)
0.791207 + 0.611548i \(0.209453\pi\)
\(390\) 415.216 + 285.677i 1.06466 + 0.732506i
\(391\) 532.763 387.075i 1.36257 0.989962i
\(392\) −17.6138 + 5.72307i −0.0449332 + 0.0145997i
\(393\) −17.9333 698.248i −0.0456318 1.77671i
\(394\) 498.354 + 362.076i 1.26486 + 0.918974i
\(395\) 63.4980i 0.160755i
\(396\) 0 0
\(397\) 442.000 1.11335 0.556675 0.830730i \(-0.312077\pi\)
0.556675 + 0.830730i \(0.312077\pi\)
\(398\) 345.240 475.182i 0.867436 1.19392i
\(399\) 335.889 8.62674i 0.841828 0.0216209i
\(400\) −99.8125 307.191i −0.249531 0.767978i
\(401\) −309.226 425.614i −0.771138 1.06138i −0.996205 0.0870374i \(-0.972260\pi\)
0.225067 0.974343i \(-0.427740\pi\)
\(402\) 188.958 274.640i 0.470044 0.683183i
\(403\) 208.122 + 640.535i 0.516433 + 1.58942i
\(404\) −422.732 137.354i −1.04637 0.339985i
\(405\) 152.957 + 170.564i 0.377672 + 0.421146i
\(406\) 419.066 1.03218
\(407\) 0 0
\(408\) 56.0000 + 158.392i 0.137255 + 0.388215i
\(409\) 181.624 + 131.957i 0.444068 + 0.322634i 0.787249 0.616635i \(-0.211504\pi\)
−0.343181 + 0.939269i \(0.611504\pi\)
\(410\) 301.279 + 97.8916i 0.734828 + 0.238760i
\(411\) −289.079 377.128i −0.703356 0.917585i
\(412\) 82.5197 59.9541i 0.200291 0.145520i
\(413\) −149.293 205.484i −0.361484 0.497540i
\(414\) 620.922 + 404.119i 1.49981 + 0.976132i
\(415\) 18.4998 56.9364i 0.0445778 0.137196i
\(416\) −523.690 + 720.797i −1.25887 + 1.73269i
\(417\) 89.7998 + 253.992i 0.215347 + 0.609094i
\(418\) 0 0
\(419\) 684.479i 1.63360i −0.576919 0.816801i \(-0.695745\pi\)
0.576919 0.816801i \(-0.304255\pi\)
\(420\) 182.622 + 54.1950i 0.434815 + 0.129036i
\(421\) −82.1985 + 252.981i −0.195246 + 0.600905i 0.804728 + 0.593644i \(0.202311\pi\)
−0.999974 + 0.00726102i \(0.997689\pi\)
\(422\) 979.158 318.148i 2.32028 0.753904i
\(423\) −319.564 85.9710i −0.755470 0.203241i
\(424\) 90.8119 65.9787i 0.214179 0.155610i
\(425\) −342.211 + 111.191i −0.805203 + 0.261626i
\(426\) −516.179 + 13.2572i −1.21169 + 0.0311201i
\(427\) −588.964 427.908i −1.37931 1.00213i
\(428\) 126.996i 0.296720i
\(429\) 0 0
\(430\) −112.000 −0.260465
\(431\) −323.468 + 445.215i −0.750505 + 1.03298i 0.247440 + 0.968903i \(0.420411\pi\)
−0.997945 + 0.0640786i \(0.979589\pi\)
\(432\) −390.590 + 332.579i −0.904143 + 0.769858i
\(433\) 228.055 + 701.880i 0.526685 + 1.62097i 0.760960 + 0.648799i \(0.224728\pi\)
−0.234275 + 0.972170i \(0.575272\pi\)
\(434\) 349.127 + 480.532i 0.804439 + 1.10722i
\(435\) 147.962 + 101.801i 0.340142 + 0.234024i
\(436\) −62.4367 192.160i −0.143204 0.440735i
\(437\) 442.862 + 143.894i 1.01341 + 0.329278i
\(438\) −569.425 168.983i −1.30006 0.385805i
\(439\) −426.549 −0.971638 −0.485819 0.874060i \(-0.661479\pi\)
−0.485819 + 0.874060i \(0.661479\pi\)
\(440\) 0 0
\(441\) −49.0000 + 39.5980i −0.111111 + 0.0897913i
\(442\) 1017.09 + 738.962i 2.30112 + 1.67186i
\(443\) 112.980 + 36.7093i 0.255033 + 0.0828653i 0.433743 0.901036i \(-0.357192\pi\)
−0.178710 + 0.983902i \(0.557192\pi\)
\(444\) 71.4293 54.7527i 0.160877 0.123317i
\(445\) −142.387 + 103.450i −0.319971 + 0.232472i
\(446\) 71.5361 + 98.4611i 0.160395 + 0.220765i
\(447\) 38.6298 + 50.3958i 0.0864202 + 0.112742i
\(448\) −67.0617 + 206.395i −0.149691 + 0.460702i
\(449\) 299.251 411.884i 0.666484 0.917337i −0.333190 0.942860i \(-0.608125\pi\)
0.999674 + 0.0255229i \(0.00812508\pi\)
\(450\) −254.433 314.844i −0.565406 0.699654i
\(451\) 0 0
\(452\) 356.382i 0.788455i
\(453\) 57.4825 193.700i 0.126893 0.427594i
\(454\) 173.050 532.592i 0.381166 1.17311i
\(455\) −451.919 + 146.837i −0.993229 + 0.322720i
\(456\) −67.3348 + 97.8674i −0.147664 + 0.214621i
\(457\) 544.872 395.872i 1.19228 0.866242i 0.198776 0.980045i \(-0.436303\pi\)
0.993503 + 0.113803i \(0.0363034\pi\)
\(458\) −296.919 + 96.4747i −0.648294 + 0.210643i
\(459\) 370.493 + 435.117i 0.807174 + 0.947968i
\(460\) 213.580 + 155.175i 0.464305 + 0.337338i
\(461\) 698.478i 1.51514i −0.652755 0.757569i \(-0.726387\pi\)
0.652755 0.757569i \(-0.273613\pi\)
\(462\) 0 0
\(463\) 882.000 1.90497 0.952484 0.304589i \(-0.0985192\pi\)
0.952484 + 0.304589i \(0.0985192\pi\)
\(464\) −236.380 + 325.350i −0.509440 + 0.701184i
\(465\) 6.53574 + 254.475i 0.0140554 + 0.547257i
\(466\) 69.2198 + 213.037i 0.148540 + 0.457160i
\(467\) 312.551 + 430.190i 0.669275 + 0.921178i 0.999744 0.0226389i \(-0.00720679\pi\)
−0.330469 + 0.943817i \(0.607207\pi\)
\(468\) −157.471 + 585.337i −0.336476 + 1.25072i
\(469\) 97.1238 + 298.916i 0.207087 + 0.637348i
\(470\) −261.691 85.0285i −0.556789 0.180912i
\(471\) −73.4002 + 247.339i −0.155839 + 0.525135i
\(472\) 89.7998 0.190254
\(473\) 0 0
\(474\) 168.000 59.3970i 0.354430 0.125310i
\(475\) −205.840 149.552i −0.433348 0.314846i
\(476\) 451.919 + 146.837i 0.949410 + 0.308482i
\(477\) 208.285 320.027i 0.436657 0.670916i
\(478\) 90.6099 65.8319i 0.189560 0.137724i
\(479\) 398.114 + 547.957i 0.831136 + 1.14396i 0.987710 + 0.156295i \(0.0499549\pi\)
−0.156574 + 0.987666i \(0.550045\pi\)
\(480\) −267.264 + 204.866i −0.556800 + 0.426804i
\(481\) −69.3741 + 213.512i −0.144229 + 0.443891i
\(482\) 232.751 320.354i 0.482886 0.664636i
\(483\) −658.532 + 232.826i −1.36342 + 0.482042i
\(484\) 0 0
\(485\) 209.304i 0.431554i
\(486\) −308.192 + 564.235i −0.634139 + 1.16098i
\(487\) 108.156 332.870i 0.222086 0.683511i −0.776488 0.630132i \(-0.783001\pi\)
0.998574 0.0533790i \(-0.0169992\pi\)
\(488\) 244.789 79.5369i 0.501618 0.162985i
\(489\) −34.6013 23.8064i −0.0707594 0.0486839i
\(490\) −42.3789 + 30.7901i −0.0864876 + 0.0628369i
\(491\) −241.561 + 78.4879i −0.491977 + 0.159853i −0.544490 0.838767i \(-0.683277\pi\)
0.0525130 + 0.998620i \(0.483277\pi\)
\(492\) 9.78180 + 380.863i 0.0198817 + 0.774111i
\(493\) 362.440 + 263.328i 0.735172 + 0.534133i
\(494\) 888.972i 1.79954i
\(495\) 0 0
\(496\) −570.000 −1.14919
\(497\) 286.145 393.844i 0.575744 0.792443i
\(498\) 167.945 4.31337i 0.337238 0.00866139i
\(499\) −30.2837 93.2035i −0.0606887 0.186781i 0.916116 0.400914i \(-0.131307\pi\)
−0.976804 + 0.214133i \(0.931307\pi\)
\(500\) −209.476 288.319i −0.418952 0.576638i
\(501\) 143.968 209.249i 0.287361 0.417663i
\(502\) 41.6245 + 128.107i 0.0829173 + 0.255193i
\(503\) 483.122 + 156.976i 0.960481 + 0.312079i 0.746967 0.664861i \(-0.231509\pi\)
0.213514 + 0.976940i \(0.431509\pi\)
\(504\) −9.14702 177.956i −0.0181489 0.353087i
\(505\) 419.066 0.829833
\(506\) 0 0
\(507\) −335.000 947.523i −0.660750 1.86888i
\(508\) 163.461 + 118.762i 0.321775 + 0.233783i
\(509\) −153.330 49.8198i −0.301237 0.0978779i 0.154499 0.987993i \(-0.450624\pi\)
−0.455736 + 0.890115i \(0.650624\pi\)
\(510\) 289.079 + 377.128i 0.566822 + 0.739466i
\(511\) 453.050 329.160i 0.886594 0.644148i
\(512\) −325.023 447.356i −0.634810 0.873742i
\(513\) −94.9270 + 392.791i −0.185043 + 0.765675i
\(514\) 78.6240 241.980i 0.152965 0.470778i
\(515\) −56.5253 + 77.8004i −0.109758 + 0.151069i
\(516\) −44.8999 126.996i −0.0870153 0.246116i
\(517\) 0 0
\(518\) 197.990i 0.382220i
\(519\) 547.867 + 162.585i 1.05562 + 0.313266i
\(520\) 51.9149 159.777i 0.0998363 0.307264i
\(521\) −145.260 + 47.1977i −0.278809 + 0.0905907i −0.445084 0.895489i \(-0.646826\pi\)
0.166275 + 0.986079i \(0.446826\pi\)
\(522\) −130.934 + 486.695i −0.250831 + 0.932367i
\(523\) 12.1083 8.79716i 0.0231515 0.0168206i −0.576149 0.817344i \(-0.695445\pi\)
0.599301 + 0.800524i \(0.295445\pi\)
\(524\) 664.292 215.842i 1.26773 0.411912i
\(525\) 381.523 9.79877i 0.726711 0.0186643i
\(526\) −996.709 724.151i −1.89488 1.37671i
\(527\) 634.980i 1.20490i
\(528\) 0 0
\(529\) −439.000 −0.829868
\(530\) 186.616 256.855i 0.352106 0.484632i
\(531\) 285.291 109.184i 0.537271 0.205620i
\(532\) 103.830 + 319.555i 0.195169 + 0.600667i
\(533\) −558.603 768.851i −1.04803 1.44250i
\(534\) −406.894 279.952i −0.761974 0.524254i
\(535\) 36.9995 + 113.873i 0.0691580 + 0.212847i
\(536\) −105.683 34.3384i −0.197170 0.0640643i
\(537\) 911.080 + 270.372i 1.69661 + 0.503486i
\(538\) −980.314 −1.82215
\(539\) 0 0
\(540\) −120.000 + 195.161i −0.222222 + 0.361410i
\(541\) −417.735 303.502i −0.772153 0.561002i 0.130461 0.991453i \(-0.458354\pi\)
−0.902614 + 0.430451i \(0.858354\pi\)
\(542\) −847.348 275.320i −1.56337 0.507971i
\(543\) −623.816 + 478.173i −1.14883 + 0.880614i
\(544\) −679.574 + 493.740i −1.24922 + 0.907610i
\(545\) 111.970 + 154.113i 0.205449 + 0.282776i
\(546\) −811.227 1058.31i −1.48576 1.93830i
\(547\) 208.122 640.535i 0.380480 1.17100i −0.559227 0.829015i \(-0.688902\pi\)
0.939707 0.341982i \(-0.111098\pi\)
\(548\) 279.301 384.425i 0.509674 0.701506i
\(549\) 680.982 550.316i 1.24040 1.00240i
\(550\) 0 0
\(551\) 316.784i 0.574925i
\(552\) 70.2563 236.745i 0.127276 0.428885i
\(553\) −51.9149 + 159.777i −0.0938786 + 0.288929i
\(554\) −56.4899 + 18.3547i −0.101967 + 0.0331312i
\(555\) −48.0963 + 69.9053i −0.0866600 + 0.125955i
\(556\) −217.949 + 158.349i −0.391994 + 0.284800i
\(557\) 422.732 137.354i 0.758943 0.246596i 0.0961183 0.995370i \(-0.469357\pi\)
0.662825 + 0.748774i \(0.269357\pi\)
\(558\) −667.163 + 255.331i −1.19563 + 0.457583i
\(559\) 271.830 + 197.496i 0.486279 + 0.353302i
\(560\) 402.154i 0.718132i
\(561\) 0 0
\(562\) −56.0000 −0.0996441
\(563\) −323.468 + 445.215i −0.574543 + 0.790791i −0.993084 0.117407i \(-0.962542\pi\)
0.418541 + 0.908198i \(0.362542\pi\)
\(564\) −8.49647 330.817i −0.0150647 0.586555i
\(565\) 103.830 + 319.555i 0.183769 + 0.565584i
\(566\) −279.301 384.425i −0.493465 0.679197i
\(567\) −245.430 554.238i −0.432857 0.977493i
\(568\) 53.1868 + 163.692i 0.0936388 + 0.288191i
\(569\) −1066.89 346.655i −1.87503 0.609235i −0.989474 0.144708i \(-0.953776\pi\)
−0.885559 0.464528i \(-0.846224\pi\)
\(570\) −95.5910 + 322.115i −0.167703 + 0.565115i
\(571\) 808.198 1.41541 0.707704 0.706509i \(-0.249731\pi\)
0.707704 + 0.706509i \(0.249731\pi\)
\(572\) 0 0
\(573\) 168.000 59.3970i 0.293194 0.103660i
\(574\) −678.062 492.641i −1.18129 0.858260i
\(575\) 503.029 + 163.444i 0.874833 + 0.284250i
\(576\) −218.750 142.371i −0.379774 0.247171i
\(577\) −250.795 + 182.213i −0.434654 + 0.315795i −0.783507 0.621383i \(-0.786571\pi\)
0.348853 + 0.937177i \(0.386571\pi\)
\(578\) 247.266 + 340.333i 0.427796 + 0.588811i
\(579\) 356.352 273.154i 0.615461 0.471769i
\(580\) −55.4993 + 170.809i −0.0956885 + 0.294499i
\(581\) −93.1004 + 128.142i −0.160242 + 0.220554i
\(582\) 553.765 195.786i 0.951487 0.336401i
\(583\) 0 0
\(584\) 197.990i 0.339024i
\(585\) −29.3357 570.729i −0.0501466 0.975605i
\(586\) −17.3050 + 53.2592i −0.0295306 + 0.0908859i
\(587\) −914.598 + 297.171i −1.55809 + 0.506254i −0.956296 0.292399i \(-0.905546\pi\)
−0.601792 + 0.798653i \(0.705546\pi\)
\(588\) −51.9020 35.7097i −0.0882687 0.0607307i
\(589\) −363.248 + 263.915i −0.616719 + 0.448073i
\(590\) 241.561 78.4879i 0.409425 0.133030i
\(591\) −17.9333 698.248i −0.0303440 1.18147i
\(592\) −153.713 111.679i −0.259651 0.188647i
\(593\) 232.826i 0.392624i −0.980541 0.196312i \(-0.937103\pi\)
0.980541 0.196312i \(-0.0628966\pi\)
\(594\) 0 0
\(595\) −448.000 −0.752941
\(596\) −37.3232 + 51.3710i −0.0626228 + 0.0861929i
\(597\) −665.780 + 17.0994i −1.11521 + 0.0286423i
\(598\) −571.063 1757.55i −0.954956 2.93905i
\(599\) 513.715 + 707.068i 0.857621 + 1.18041i 0.982132 + 0.188196i \(0.0602639\pi\)
−0.124511 + 0.992218i \(0.539736\pi\)
\(600\) −76.4829 + 111.164i −0.127472 + 0.185273i
\(601\) −180.373 555.130i −0.300121 0.923678i −0.981453 0.191703i \(-0.938599\pi\)
0.681332 0.731975i \(-0.261401\pi\)
\(602\) 281.821 + 91.5692i 0.468141 + 0.152108i
\(603\) −377.502 + 19.4038i −0.626039 + 0.0321787i
\(604\) 202.049 0.334519
\(605\) 0 0
\(606\) 392.000 + 1108.74i 0.646865 + 1.82961i
\(607\) −684.117 497.040i −1.12705 0.818846i −0.141783 0.989898i \(-0.545284\pi\)
−0.985262 + 0.171051i \(0.945284\pi\)
\(608\) −564.899 183.547i −0.929110 0.301886i
\(609\) −289.079 377.128i −0.474679 0.619257i
\(610\) 588.964 427.908i 0.965515 0.701488i
\(611\) 485.202 + 667.823i 0.794111 + 1.09300i
\(612\) −311.733 + 478.972i −0.509367 + 0.782635i
\(613\) 182.685 562.247i 0.298018 0.917206i −0.684173 0.729320i \(-0.739836\pi\)
0.982191 0.187886i \(-0.0601635\pi\)
\(614\) 232.751 320.354i 0.379073 0.521750i
\(615\) −119.733 338.656i −0.194688 0.550660i
\(616\) 0 0
\(617\) 435.578i 0.705961i 0.935631 + 0.352980i \(0.114832\pi\)
−0.935631 + 0.352980i \(0.885168\pi\)
\(618\) −258.715 76.7762i −0.418633 0.124233i
\(619\) −258.956 + 796.985i −0.418346 + 1.28754i 0.490877 + 0.871229i \(0.336676\pi\)
−0.909224 + 0.416308i \(0.863324\pi\)
\(620\) −242.099 + 78.6629i −0.390483 + 0.126876i
\(621\) −64.6470 837.552i −0.104101 1.34871i
\(622\) 54.4872 39.5872i 0.0875999 0.0636451i
\(623\) 442.862 143.894i 0.710853 0.230970i
\(624\) 1279.22 32.8547i 2.05004 0.0526518i
\(625\) −72.0025 52.3129i −0.115204 0.0837006i
\(626\) 1053.01i 1.68212i
\(627\) 0 0
\(628\) −258.000 −0.410828
\(629\) −124.411 + 171.237i −0.197791 + 0.272236i
\(630\) −180.145 470.706i −0.285944 0.747152i
\(631\) 78.4903 + 241.568i 0.124390 + 0.382834i 0.993790 0.111276i \(-0.0354938\pi\)
−0.869399 + 0.494110i \(0.835494\pi\)
\(632\) −34.9127 48.0532i −0.0552416 0.0760335i
\(633\) −961.750 661.704i −1.51935 1.04535i
\(634\) −339.933 1046.21i −0.536172 1.65017i
\(635\) −181.171 58.8659i −0.285308 0.0927022i
\(636\) 366.059 + 108.632i 0.575564 + 0.170804i
\(637\) 157.150 0.246703
\(638\) 0 0
\(639\) 368.000 + 455.377i 0.575900 + 0.712640i
\(640\) 187.678 + 136.356i 0.293247 + 0.213056i
\(641\) 112.980 + 36.7093i 0.176255 + 0.0572689i 0.395815 0.918330i \(-0.370462\pi\)
−0.219560 + 0.975599i \(0.570462\pi\)
\(642\) −266.669 + 204.410i −0.415373 + 0.318396i
\(643\) 354.349 257.450i 0.551088 0.400389i −0.277099 0.960841i \(-0.589373\pi\)
0.828186 + 0.560453i \(0.189373\pi\)
\(644\) −410.555 565.081i −0.637508 0.877455i
\(645\) 77.2597 + 100.792i 0.119782 + 0.156266i
\(646\) −258.997 + 797.110i −0.400924 + 1.23392i
\(647\) −194.513 + 267.725i −0.300639 + 0.413794i −0.932433 0.361342i \(-0.882319\pi\)
0.631794 + 0.775136i \(0.282319\pi\)
\(648\) 209.533 + 44.9778i 0.323353 + 0.0694101i
\(649\) 0 0
\(650\) 1009.75i 1.55346i
\(651\) 191.608 645.667i 0.294329 0.991808i
\(652\) 12.9787 39.9444i 0.0199060 0.0612644i
\(653\) 594.489 193.161i 0.910396 0.295806i 0.183875 0.982950i \(-0.441136\pi\)
0.726521 + 0.687144i \(0.241136\pi\)
\(654\) −303.007 + 440.403i −0.463313 + 0.673399i
\(655\) −532.763 + 387.075i −0.813379 + 0.590955i
\(656\) 764.943 248.545i 1.16607 0.378880i
\(657\) 240.728 + 629.007i 0.366406 + 0.957393i
\(658\) 588.964 + 427.908i 0.895083 + 0.650316i
\(659\) 465.652i 0.706604i 0.935509 + 0.353302i \(0.114941\pi\)
−0.935509 + 0.353302i \(0.885059\pi\)
\(660\) 0 0
\(661\) −394.000 −0.596067 −0.298033 0.954555i \(-0.596331\pi\)
−0.298033 + 0.954555i \(0.596331\pi\)
\(662\) 276.814 381.001i 0.418148 0.575531i
\(663\) −36.6002 1425.06i −0.0552039 2.14941i
\(664\) −17.3050 53.2592i −0.0260617 0.0802096i
\(665\) −186.201 256.284i −0.280001 0.385389i
\(666\) −229.942 61.8604i −0.345258 0.0928835i
\(667\) −203.497 626.301i −0.305094 0.938982i
\(668\) 241.561 + 78.4879i 0.361618 + 0.117497i
\(669\) 39.2606 132.297i 0.0586855 0.197754i
\(670\) −314.299 −0.469103
\(671\) 0 0
\(672\) 840.000 296.985i 1.25000 0.441942i
\(673\) 714.387 + 519.033i 1.06150 + 0.771222i 0.974365 0.224974i \(-0.0722298\pi\)
0.0871319 + 0.996197i \(0.472230\pi\)
\(674\) −640.219 208.020i −0.949879 0.308634i
\(675\) −107.824 + 446.156i −0.159739 + 0.660972i
\(676\) 813.062 590.724i 1.20275 0.873852i
\(677\) 534.966 + 736.317i 0.790201 + 1.08762i 0.994083 + 0.108623i \(0.0346440\pi\)
−0.203882 + 0.978995i \(0.565356\pi\)
\(678\) −748.339 + 573.624i −1.10375 + 0.846053i
\(679\) −171.123 + 526.662i −0.252022 + 0.775644i
\(680\) 93.1004 128.142i 0.136912 0.188444i
\(681\) −598.665 + 211.660i −0.879097 + 0.310808i
\(682\) 0 0
\(683\) 435.578i 0.637742i −0.947798 0.318871i \(-0.896696\pi\)
0.947798 0.318871i \(-0.103304\pi\)
\(684\) −403.566 + 20.7435i −0.590009 + 0.0303268i
\(685\) −138.440 + 426.073i −0.202102 + 0.622005i
\(686\) −790.858 + 256.965i −1.15285 + 0.374585i
\(687\) 291.640 + 200.654i 0.424512 + 0.292073i
\(688\) −230.057 + 167.146i −0.334385 + 0.242945i
\(689\) −905.853 + 294.330i −1.31474 + 0.427184i
\(690\) −17.9333 698.248i −0.0259903 1.01195i
\(691\) −344.641 250.397i −0.498757 0.362368i 0.309785 0.950807i \(-0.399743\pi\)
−0.808542 + 0.588438i \(0.799743\pi\)
\(692\) 571.482i 0.825841i
\(693\) 0 0
\(694\) −1288.00 −1.85591
\(695\) 149.293 205.484i 0.214810 0.295660i
\(696\) 167.945 4.31337i 0.241300 0.00619737i
\(697\) −276.879 852.147i −0.397244 1.22259i
\(698\) 104.738 + 144.159i 0.150054 + 0.206532i
\(699\) 143.968 209.249i 0.205963 0.299355i
\(700\) 117.936 + 362.970i 0.168480 + 0.518528i
\(701\) 261.691 + 85.0285i 0.373311 + 0.121296i 0.489663 0.871912i \(-0.337120\pi\)
−0.116352 + 0.993208i \(0.537120\pi\)
\(702\) 1482.57 611.483i 2.11192 0.871058i
\(703\) −149.666 −0.212897
\(704\) 0 0
\(705\) 104.000 + 294.156i 0.147518 + 0.417243i
\(706\) −266.382 193.538i −0.377311 0.274133i
\(707\) −1054.48 342.621i −1.49148 0.484612i
\(708\) 185.837 + 242.439i 0.262481 + 0.342428i
\(709\) 33.9787 24.6870i 0.0479248 0.0348194i −0.563565 0.826072i \(-0.690571\pi\)
0.611490 + 0.791252i \(0.290571\pi\)
\(710\) 286.145 + 393.844i 0.403021 + 0.554710i
\(711\) −169.342 110.214i −0.238175 0.155013i
\(712\) −50.8744 + 156.575i −0.0714528 + 0.219909i
\(713\) 548.628 755.121i 0.769464 1.05908i
\(714\) −419.066 1185.30i −0.586927 1.66008i
\(715\) 0 0
\(716\) 950.352i 1.32731i
\(717\) −121.748 36.1300i −0.169802 0.0503905i
\(718\) −207.659 + 639.110i −0.289219 + 0.890125i
\(719\) −411.569 + 133.727i −0.572419 + 0.185990i −0.580901 0.813974i \(-0.697300\pi\)
0.00848270 + 0.999964i \(0.497300\pi\)
\(720\) 467.055 + 125.650i 0.648687 + 0.174514i
\(721\) 205.840 149.552i 0.285493 0.207423i
\(722\) 344.727 112.009i 0.477462 0.155137i
\(723\) −448.851 + 11.5280i −0.620817 + 0.0159446i
\(724\) −635.887 461.999i −0.878297 0.638120i
\(725\) 359.822i 0.496306i
\(726\) 0 0
\(727\) 1102.00 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(728\) −261.262 + 359.597i −0.358877 + 0.493952i
\(729\) 720.365 111.870i 0.988155 0.153457i
\(730\) 173.050 + 532.592i 0.237054 + 0.729578i
\(731\) 186.201 + 256.284i 0.254721 + 0.350593i
\(732\) 721.313 + 496.278i 0.985400 + 0.677976i
\(733\) 150.311 + 462.609i 0.205062 + 0.631117i 0.999711 + 0.0240470i \(0.00765515\pi\)
−0.794649 + 0.607070i \(0.792345\pi\)
\(734\) −357.309 116.097i −0.486797 0.158170i
\(735\) 56.9425 + 16.8983i 0.0774728 + 0.0229908i
\(736\) 1234.75 1.67765
\(737\) 0 0
\(738\) 784.000 633.568i 1.06233 0.858493i
\(739\) 847.578 + 615.801i 1.14693 + 0.833290i 0.988069 0.154011i \(-0.0492193\pi\)
0.158857 + 0.987302i \(0.449219\pi\)
\(740\) −80.6998 26.2210i −0.109054 0.0354337i
\(741\) 800.008 613.230i 1.07963 0.827571i
\(742\) −679.574 + 493.740i −0.915868 + 0.665417i
\(743\) −149.293 205.484i −0.200932 0.276560i 0.696646 0.717416i \(-0.254675\pi\)
−0.897578 + 0.440856i \(0.854675\pi\)
\(744\) 144.862 + 188.984i 0.194707 + 0.254011i
\(745\) 18.4998 56.9364i 0.0248319 0.0764248i
\(746\) −663.341 + 913.010i −0.889197 + 1.22387i
\(747\) −119.733 148.162i −0.160285 0.198343i
\(748\) 0 0
\(749\) 316.784i 0.422942i
\(750\) −268.251 + 903.934i −0.357669 + 1.20525i
\(751\) 108.156 332.870i 0.144016 0.443235i −0.852867 0.522128i \(-0.825138\pi\)
0.996883 + 0.0788925i \(0.0251384\pi\)
\(752\) −664.429 + 215.886i −0.883549 + 0.287082i
\(753\) 86.5733 125.829i 0.114971 0.167104i
\(754\) 1017.09 738.962i 1.34893 0.980055i
\(755\) −181.171 + 58.8659i −0.239961 + 0.0779681i
\(756\) 461.512 392.967i 0.610465 0.519798i
\(757\) −237.851 172.809i −0.314202 0.228281i 0.419495 0.907757i \(-0.362207\pi\)
−0.733697 + 0.679476i \(0.762207\pi\)
\(758\) 926.013i 1.22165i
\(759\) 0 0
\(760\) 112.000 0.147368
\(761\) −460.320 + 633.576i −0.604888 + 0.832557i −0.996145 0.0877249i \(-0.972040\pi\)
0.391257 + 0.920281i \(0.372040\pi\)
\(762\) −13.7251 534.397i −0.0180119 0.701308i
\(763\) −155.745 479.332i −0.204121 0.628221i
\(764\) 104.738 + 144.159i 0.137092 + 0.188690i
\(765\) 139.974 520.299i 0.182973 0.680130i
\(766\) 423.182 + 1302.42i 0.552457 + 1.70029i
\(767\) −724.683 235.464i −0.944827 0.306993i
\(768\) −284.212 + 957.718i −0.370068 + 1.24703i
\(769\) −838.131 −1.08990 −0.544949 0.838469i \(-0.683451\pi\)
−0.544949 + 0.838469i \(0.683451\pi\)
\(770\) 0 0
\(771\) −272.000 + 96.1665i −0.352789 + 0.124730i
\(772\) 363.248 + 263.915i 0.470528 + 0.341859i
\(773\) −390.049 126.735i −0.504591 0.163952i 0.0456497 0.998958i \(-0.485464\pi\)
−0.550241 + 0.835006i \(0.685464\pi\)
\(774\) −194.400 + 298.692i −0.251162 + 0.385907i
\(775\) −412.599 + 299.770i −0.532385 + 0.386801i
\(776\) −115.080 158.394i −0.148299 0.204116i
\(777\) 178.176 136.577i 0.229313 0.175775i
\(778\) 358.433 1103.14i 0.460711 1.41792i
\(779\) 372.402 512.567i 0.478051 0.657981i
\(780\) 538.799 190.494i 0.690768 0.244223i
\(781\) 0 0
\(782\) 1742.31i 2.22802i
\(783\) 528.310 217.901i 0.674725 0.278290i
\(784\) −41.0993 + 126.491i −0.0524225 + 0.161340i
\(785\) 231.339 75.1668i 0.294700 0.0957538i
\(786\) −1522.46 1047.48i −1.93697 1.33268i
\(787\) −254.273 + 184.740i −0.323092 + 0.234740i −0.737494 0.675354i \(-0.763991\pi\)
0.414402 + 0.910094i \(0.363991\pi\)
\(788\) 664.292 215.842i 0.843011 0.273911i
\(789\) 35.8666 + 1396.50i 0.0454583 + 1.76996i
\(790\) −135.915 98.7479i −0.172044 0.124997i
\(791\) 888.972i 1.12386i
\(792\) 0 0
\(793\) −2184.00 −2.75410
\(794\) 687.369 946.082i 0.865704 1.19154i
\(795\) −359.881 + 9.24294i −0.452681 + 0.0116263i
\(796\) −205.805 633.404i −0.258549 0.795733i
\(797\) −144.638 199.077i −0.181478 0.249783i 0.708580 0.705631i \(-0.249336\pi\)
−0.890058 + 0.455847i \(0.849336\pi\)
\(798\) 503.887 732.372i 0.631438 0.917760i
\(799\) 240.497 + 740.174i 0.300998 + 0.926375i
\(800\) −641.646 208.483i −0.802058 0.260604i
\(801\) 28.7478 + 559.290i 0.0358899 + 0.698240i
\(802\) −1391.90 −1.73553
\(803\) 0 0
\(804\) −126.000 356.382i −0.156716 0.443261i
\(805\) 532.763 + 387.075i 0.661818 + 0.480839i
\(806\) 1694.70 + 550.640i 2.10260 + 0.683176i
\(807\) 676.239 + 882.209i 0.837967 + 1.09320i
\(808\) 317.135 230.412i 0.392493 0.285163i
\(809\) −149.293 205.484i −0.184540 0.253997i 0.706717 0.707497i \(-0.250176\pi\)
−0.891257 + 0.453499i \(0.850176\pi\)
\(810\) 602.954 62.1485i 0.744388 0.0767265i
\(811\) −300.621 + 925.217i −0.370680 + 1.14084i 0.575668 + 0.817684i \(0.304742\pi\)
−0.946347 + 0.323151i \(0.895258\pi\)
\(812\) 279.301 384.425i 0.343967 0.473430i
\(813\) 336.749 + 952.470i 0.414206 + 1.17155i
\(814\) 0 0
\(815\) 39.5980i 0.0485865i
\(816\) 1156.61 + 343.235i 1.41741 + 0.420631i
\(817\) −69.2198 + 213.037i −0.0847244 + 0.260755i
\(818\) 564.899 183.547i 0.690585 0.224385i
\(819\) −392.801 + 1460.09i −0.479611 + 1.78277i
\(820\) 290.598 211.132i 0.354388 0.257478i
\(821\) −462.992 + 150.435i −0.563936 + 0.183234i −0.577092 0.816679i \(-0.695812\pi\)
0.0131553 + 0.999913i \(0.495812\pi\)
\(822\) −1256.78 + 32.2783i −1.52893 + 0.0392680i
\(823\) −842.996 612.472i −1.02430 0.744195i −0.0571370 0.998366i \(-0.518197\pi\)
−0.967159 + 0.254172i \(0.918197\pi\)
\(824\) 89.9555i 0.109169i
\(825\) 0 0
\(826\) −672.000 −0.813559
\(827\) −734.023 + 1010.30i −0.887573 + 1.22164i 0.0866920 + 0.996235i \(0.472370\pi\)
−0.974265 + 0.225405i \(0.927630\pi\)
\(828\) 784.550 300.256i 0.947524 0.362629i
\(829\) 364.022 + 1120.34i 0.439110 + 1.35144i 0.888816 + 0.458264i \(0.151529\pi\)
−0.449706 + 0.893177i \(0.648471\pi\)
\(830\) −93.1004 128.142i −0.112169 0.154388i
\(831\) 55.4856 + 38.1752i 0.0667697 + 0.0459389i
\(832\) 201.185 + 619.184i 0.241809 + 0.744211i
\(833\) 140.911 + 45.7846i 0.169160 + 0.0549635i
\(834\) 683.310 + 202.779i 0.819317 + 0.243140i
\(835\) −239.466 −0.286786
\(836\) 0 0
\(837\) 690.000 + 424.264i 0.824373 + 0.506887i
\(838\) −1465.10 1064.46i −1.74833 1.27023i
\(839\) 971.088 + 315.526i 1.15743 + 0.376073i 0.823939 0.566678i \(-0.191772\pi\)
0.333496 + 0.942752i \(0.391772\pi\)
\(840\) −133.335 + 102.205i −0.158732 + 0.121673i
\(841\) −317.944 + 231.000i −0.378054 + 0.274673i
\(842\) 413.666 + 569.362i 0.491289 + 0.676202i
\(843\) 38.6298 + 50.3958i 0.0458243 + 0.0597815i
\(844\) 360.746 1110.26i 0.427424 1.31547i
\(845\) −556.940 + 766.562i −0.659101 + 0.907174i
\(846\) −680.982 + 550.316i −0.804943 + 0.650492i
\(847\) 0 0
\(848\) 806.102i 0.950592i
\(849\) −153.287 + 516.534i −0.180550 + 0.608403i
\(850\) −294.184 + 905.406i −0.346099 + 1.06518i
\(851\) 295.899 96.1435i 0.347708 0.112977i
\(852\) −331.864 + 482.346i −0.389512 + 0.566134i
\(853\) 478.276 347.488i 0.560699 0.407372i −0.271016 0.962575i \(-0.587360\pi\)
0.831715 + 0.555203i \(0.187360\pi\)
\(854\) −1831.84 + 595.200i −2.14501 + 0.696955i
\(855\) 355.820 136.177i 0.416164 0.159271i
\(856\) 90.6099 + 65.8319i 0.105853 + 0.0769065i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 706.000 0.821886 0.410943 0.911661i \(-0.365200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(860\) −74.6464 + 102.742i −0.0867982 + 0.119467i
\(861\) 24.4001 + 950.038i 0.0283393 + 1.10341i
\(862\) 449.929 + 1384.74i 0.521959 + 1.60642i
\(863\) −290.939 400.443i −0.337125 0.464013i 0.606474 0.795103i \(-0.292583\pi\)
−0.943599 + 0.331091i \(0.892583\pi\)
\(864\) 82.4614 + 1068.35i 0.0954415 + 1.23652i
\(865\) −166.498 512.428i −0.192483 0.592402i
\(866\) 1857.00 + 603.376i 2.14434 + 0.696739i
\(867\) 135.705 457.289i 0.156523 0.527438i
\(868\) 673.498 0.775920
\(869\) 0 0
\(870\) 448.000 158.392i 0.514943 0.182060i
\(871\) 762.820 + 554.221i 0.875798 + 0.636305i
\(872\) 169.470 + 55.0640i 0.194346 + 0.0631468i
\(873\) −558.190 363.291i −0.639393 0.416140i
\(874\) 996.709 724.151i 1.14040 0.828549i
\(875\) −522.525 719.194i −0.597171 0.821936i
\(876\) −534.528 + 409.731i −0.610192 + 0.467730i
\(877\) 30.0621 92.5217i 0.0342784 0.105498i −0.932453 0.361290i \(-0.882336\pi\)
0.966732 + 0.255792i \(0.0823363\pi\)
\(878\) −663.341 + 913.010i −0.755513 + 1.03987i
\(879\) 59.8665 21.1660i 0.0681075 0.0240796i
\(880\) 0 0
\(881\) 1493.41i 1.69513i 0.530692 + 0.847565i \(0.321932\pi\)
−0.530692 + 0.847565i \(0.678068\pi\)
\(882\) 8.55626 + 166.463i 0.00970097 + 0.188733i
\(883\) 26.5755 81.7909i 0.0300968 0.0926284i −0.934880 0.354965i \(-0.884493\pi\)
0.964977 + 0.262336i \(0.0844929\pi\)
\(884\) 1355.76 440.512i 1.53366 0.498317i
\(885\) −237.266 163.244i −0.268098 0.184457i
\(886\) 254.273 184.740i 0.286990 0.208511i
\(887\) −241.561 + 78.4879i −0.272335 + 0.0884869i −0.442001 0.897015i \(-0.645731\pi\)
0.169666 + 0.985502i \(0.445731\pi\)
\(888\) 2.03788 + 79.3464i 0.00229491 + 0.0893540i
\(889\) 407.745 + 296.244i 0.458655 + 0.333233i
\(890\) 465.652i 0.523205i
\(891\) 0 0
\(892\) 138.000 0.154709
\(893\) −323.468 + 445.215i −0.362226 + 0.498561i
\(894\) 167.945 4.31337i 0.187858 0.00482480i
\(895\) −276.879 852.147i −0.309362 0.952119i
\(896\) −360.764 496.549i −0.402639 0.554184i
\(897\) −1187.73 + 1726.31i −1.32412 + 1.92453i
\(898\) −416.245 1281.07i −0.463524 1.42658i
\(899\) 603.902 + 196.220i 0.671749 + 0.218264i
\(900\) −458.395 + 23.5617i −0.509328 + 0.0261797i
\(901\) −897.998 −0.996668
\(902\) 0 0
\(903\) −112.000 316.784i −0.124031 0.350813i
\(904\) 254.273 + 184.740i 0.281276 + 0.204359i
\(905\) 704.778 + 228.996i 0.778761 + 0.253035i
\(906\) −325.214 424.268i −0.358956 0.468287i
\(907\) 781.510 567.801i 0.861643 0.626020i −0.0666883 0.997774i \(-0.521243\pi\)
0.928332 + 0.371753i \(0.121243\pi\)
\(908\) −373.232 513.710i −0.411049 0.565760i
\(909\) 727.377 1117.60i 0.800194 1.22949i
\(910\) −388.495 + 1195.67i −0.426918 + 1.31392i
\(911\) −852.866 + 1173.87i −0.936187 + 1.28855i 0.0212096 + 0.999775i \(0.493248\pi\)
−0.957397 + 0.288776i \(0.906752\pi\)
\(912\) 284.366 + 804.308i 0.311805 + 0.881917i
\(913\) 0 0
\(914\) 1781.91i 1.94957i
\(915\) −791.363 234.845i −0.864878 0.256661i
\(916\) −109.392 + 336.674i −0.119424 + 0.367548i
\(917\) 1657.04 538.404i 1.80702 0.587136i
\(918\) 1507.52 116.359i 1.64217 0.126752i
\(919\) −320.869 + 233.125i −0.349150 + 0.253672i −0.748512 0.663121i \(-0.769232\pi\)
0.399362 + 0.916793i \(0.369232\pi\)
\(920\) −221.431 + 71.9472i −0.240686 + 0.0782035i
\(921\) −448.851 + 11.5280i −0.487352 + 0.0125168i
\(922\) −1495.06 1086.23i −1.62154 1.17812i
\(923\) 1460.45i 1.58229i
\(924\) 0 0
\(925\) −170.000 −0.183784
\(926\) 1371.63 1887.88i 1.48124 2.03875i
\(927\) 109.374 + 285.786i 0.117987 + 0.308291i
\(928\) 259.574 + 798.887i 0.279714 + 0.860870i
\(929\) 897.754 + 1235.65i 0.966366 + 1.33009i 0.943861 + 0.330342i \(0.107164\pi\)
0.0225050 + 0.999747i \(0.492836\pi\)
\(930\) 554.856 + 381.752i 0.596619 + 0.410486i
\(931\) 32.3746 + 99.6388i 0.0347740 + 0.107023i
\(932\) 241.561 + 78.4879i 0.259185 + 0.0842145i
\(933\) −73.2118 21.7263i −0.0784692 0.0232865i
\(934\) 1406.86 1.50628
\(935\) 0 0
\(936\) −336.000 415.779i −0.358974 0.444208i
\(937\) −1017.09 738.962i −1.08548 0.788647i −0.106849 0.994275i \(-0.534076\pi\)
−0.978630 + 0.205629i \(0.934076\pi\)
\(938\) 790.858 + 256.965i 0.843132 + 0.273950i
\(939\) 947.629 726.385i 1.00919 0.773573i
\(940\) −252.413 + 183.389i −0.268525 + 0.195095i
\(941\) −286.145 393.844i −0.304086 0.418538i 0.629440 0.777049i \(-0.283284\pi\)
−0.933525 + 0.358511i \(0.883284\pi\)
\(942\) 415.271 + 541.755i 0.440840 + 0.575111i
\(943\) −406.995 + 1252.60i −0.431596 + 1.32832i
\(944\) 379.052 521.720i 0.401538 0.552669i
\(945\) −299.333 + 486.818i −0.316754 + 0.515152i
\(946\) 0 0
\(947\) 435.578i 0.459955i 0.973196 + 0.229978i \(0.0738653\pi\)
−0.973196 + 0.229978i \(0.926135\pi\)
\(948\) 57.4825 193.700i 0.0606355 0.204325i
\(949\) 519.149 1597.77i 0.547048 1.68364i
\(950\) −640.219 + 208.020i −0.673914 + 0.218968i
\(951\) −707.015 + 1027.61i −0.743444 + 1.08055i
\(952\) −339.031 + 246.321i −0.356125 + 0.258740i
\(953\) 1529.89 497.090i 1.60534 0.521605i 0.636917 0.770932i \(-0.280209\pi\)
0.968419 + 0.249327i \(0.0802094\pi\)
\(954\) −361.093 943.511i −0.378504 0.989005i
\(955\) −135.915 98.7479i −0.142319 0.103401i
\(956\) 126.996i 0.132841i
\(957\) 0 0
\(958\) 1792.00 1.87056
\(959\) 696.700 958.925i 0.726486 0.999922i
\(960\) 6.31788 + 245.992i 0.00658113 + 0.256242i
\(961\) −18.8500 58.0144i −0.0196150 0.0603688i
\(962\) 349.127 + 480.532i 0.362917 + 0.499513i
\(963\) 367.907 + 98.9766i 0.382043 + 0.102779i
\(964\) −138.748 427.023i −0.143930 0.442970i
\(965\) −402.601 130.813i −0.417204 0.135558i
\(966\) −525.750 + 1771.64i −0.544255 + 1.83399i
\(967\) 1055.15 1.09116 0.545578 0.838060i \(-0.316310\pi\)
0.545578 + 0.838060i \(0.316310\pi\)
\(968\) 0 0
\(969\) 896.000 316.784i 0.924665 0.326918i
\(970\) −448.006 325.495i −0.461861 0.335562i
\(971\) −242.099 78.6629i −0.249330 0.0810122i 0.181686 0.983357i \(-0.441845\pi\)
−0.431016 + 0.902344i \(0.641845\pi\)
\(972\) 312.189 + 658.771i 0.321182 + 0.677748i
\(973\) −543.659 + 394.992i −0.558746 + 0.405952i
\(974\) −544.297 749.160i −0.558826 0.769158i
\(975\) 908.698 696.543i 0.931998 0.714403i
\(976\) 571.180 1757.91i 0.585226 1.80114i
\(977\) 847.879 1167.01i 0.867839 1.19448i −0.111804 0.993730i \(-0.535663\pi\)
0.979643 0.200748i \(-0.0643372\pi\)
\(978\) −104.766 + 37.0405i −0.107123 + 0.0378737i
\(979\) 0 0
\(980\) 59.3970i 0.0606092i
\(981\) 605.349 31.1152i 0.617074 0.0317179i
\(982\) −207.659 + 639.110i −0.211466 + 0.650825i
\(983\) 653.669 212.390i 0.664973 0.216063i 0.0429685 0.999076i \(-0.486318\pi\)
0.622005 + 0.783014i \(0.286318\pi\)
\(984\) −276.811 190.452i −0.281312 0.193548i
\(985\) −532.763 + 387.075i −0.540876 + 0.392970i
\(986\) 1127.28 366.277i 1.14329 0.371477i
\(987\) −21.1939 825.202i −0.0214731 0.836071i
\(988\) 815.489 + 592.488i 0.825394 + 0.599684i
\(989\) 465.652i 0.470831i
\(990\) 0 0
\(991\) 574.000 0.579213 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) −699.810 + 963.206i −0.705454 + 0.970974i
\(993\) −533.824 + 13.7104i −0.537587 + 0.0138070i
\(994\) −398.014 1224.96i −0.400416 1.23235i
\(995\) 369.077 + 507.991i 0.370931 + 0.510543i
\(996\) 107.976 156.937i 0.108410 0.157567i
\(997\) −409.307 1259.72i −0.410539 1.26351i −0.916181 0.400766i \(-0.868744\pi\)
0.505642 0.862744i \(-0.331256\pi\)
\(998\) −246.593 80.1230i −0.247088 0.0802836i
\(999\) 102.949 + 249.603i 0.103052 + 0.249853i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.k.323.3 16
3.2 odd 2 inner 363.3.h.k.323.2 16
11.2 odd 10 inner 363.3.h.k.269.3 16
11.3 even 5 inner 363.3.h.k.245.2 16
11.4 even 5 inner 363.3.h.k.251.4 16
11.5 even 5 363.3.b.i.122.3 yes 4
11.6 odd 10 363.3.b.i.122.1 4
11.7 odd 10 inner 363.3.h.k.251.2 16
11.8 odd 10 inner 363.3.h.k.245.4 16
11.9 even 5 inner 363.3.h.k.269.1 16
11.10 odd 2 inner 363.3.h.k.323.1 16
33.2 even 10 inner 363.3.h.k.269.2 16
33.5 odd 10 363.3.b.i.122.2 yes 4
33.8 even 10 inner 363.3.h.k.245.1 16
33.14 odd 10 inner 363.3.h.k.245.3 16
33.17 even 10 363.3.b.i.122.4 yes 4
33.20 odd 10 inner 363.3.h.k.269.4 16
33.26 odd 10 inner 363.3.h.k.251.1 16
33.29 even 10 inner 363.3.h.k.251.3 16
33.32 even 2 inner 363.3.h.k.323.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.i.122.1 4 11.6 odd 10
363.3.b.i.122.2 yes 4 33.5 odd 10
363.3.b.i.122.3 yes 4 11.5 even 5
363.3.b.i.122.4 yes 4 33.17 even 10
363.3.h.k.245.1 16 33.8 even 10 inner
363.3.h.k.245.2 16 11.3 even 5 inner
363.3.h.k.245.3 16 33.14 odd 10 inner
363.3.h.k.245.4 16 11.8 odd 10 inner
363.3.h.k.251.1 16 33.26 odd 10 inner
363.3.h.k.251.2 16 11.7 odd 10 inner
363.3.h.k.251.3 16 33.29 even 10 inner
363.3.h.k.251.4 16 11.4 even 5 inner
363.3.h.k.269.1 16 11.9 even 5 inner
363.3.h.k.269.2 16 33.2 even 10 inner
363.3.h.k.269.3 16 11.2 odd 10 inner
363.3.h.k.269.4 16 33.20 odd 10 inner
363.3.h.k.323.1 16 11.10 odd 2 inner
363.3.h.k.323.2 16 3.2 odd 2 inner
363.3.h.k.323.3 16 1.1 even 1 trivial
363.3.h.k.323.4 16 33.32 even 2 inner