Properties

Label 363.3.h.k.251.4
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.23612624896000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.4
Root \(-0.0676410 - 0.503753i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.k.269.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.51626 + 0.817582i) q^{2} +(2.47152 + 1.70046i) q^{3} +(2.42705 + 1.76336i) q^{4} +(2.68999 - 0.874032i) q^{5} +(4.82873 + 6.29947i) q^{6} +(6.05413 + 4.39858i) q^{7} +(-1.55513 - 2.14046i) q^{8} +(3.21687 + 8.40546i) q^{9} +7.48331 q^{10} +(3.00000 + 8.48528i) q^{12} +(6.93741 - 21.3512i) q^{13} +(11.6376 + 16.0177i) q^{14} +(8.13464 + 2.41404i) q^{15} +(-5.87132 - 18.0701i) q^{16} +(-20.1301 + 6.54066i) q^{17} +(1.22232 + 23.7804i) q^{18} +(-12.1083 + 8.79716i) q^{19} +(8.06998 + 2.62210i) q^{20} +(7.48331 + 21.1660i) q^{21} +31.1127i q^{23} +(-0.203788 - 7.93464i) q^{24} +(-13.7533 + 9.99235i) q^{25} +(34.9127 - 48.0532i) q^{26} +(-6.34258 + 26.2445i) q^{27} +(6.93741 + 21.3512i) q^{28} +(12.4411 - 17.1237i) q^{29} +(18.4952 + 12.7251i) q^{30} +(9.27051 - 28.5317i) q^{31} -39.6863i q^{32} -56.0000 q^{34} +(20.1301 + 6.54066i) q^{35} +(-7.01431 + 26.0730i) q^{36} +(8.09017 + 5.87785i) q^{37} +(-37.6599 + 12.2364i) q^{38} +(53.4528 - 40.9731i) q^{39} +(-6.05413 - 4.39858i) q^{40} +(-24.8821 - 34.2473i) q^{41} +(1.52501 + 59.3774i) q^{42} -14.9666 q^{43} +(16.0000 + 19.7990i) q^{45} +(-25.4372 + 78.2876i) q^{46} +(21.6126 + 29.7472i) q^{47} +(16.2163 - 54.6446i) q^{48} +(2.16312 + 6.65740i) q^{49} +(-42.7764 + 13.8989i) q^{50} +(-60.8741 - 18.0650i) q^{51} +(54.4872 - 39.5872i) q^{52} +(40.3499 + 13.1105i) q^{53} +(-37.4166 + 60.8523i) q^{54} -19.7990i q^{56} +(-44.8851 + 1.15280i) q^{57} +(45.3050 - 32.9160i) q^{58} +(-19.9501 + 27.4589i) q^{59} +(15.4864 + 20.2033i) q^{60} +(-30.0621 - 92.5217i) q^{61} +(46.6540 - 64.2137i) q^{62} +(-17.4968 + 65.0374i) q^{63} +(8.96149 - 27.5806i) q^{64} -63.4980i q^{65} -42.0000 q^{67} +(-60.3902 - 19.6220i) q^{68} +(-52.9059 + 76.8958i) q^{69} +(45.3050 + 32.9160i) q^{70} +(61.8699 - 20.1027i) q^{71} +(12.9889 - 19.9572i) q^{72} +(-60.5413 - 43.9858i) q^{73} +(15.5513 + 21.4046i) q^{74} +(-50.9832 + 1.30942i) q^{75} -44.8999 q^{76} +(168.000 - 59.3970i) q^{78} +(6.93741 - 21.3512i) q^{79} +(-31.5876 - 43.4767i) q^{80} +(-60.3035 + 54.0785i) q^{81} +(-34.6099 - 106.518i) q^{82} +(-20.1301 + 6.54066i) q^{83} +(-19.1608 + 64.5667i) q^{84} +(-48.4330 + 35.1887i) q^{85} +(-37.6599 - 12.2364i) q^{86} +(59.8665 - 21.1660i) q^{87} +62.2254i q^{89} +(24.0728 + 62.9007i) q^{90} +(135.915 - 98.7479i) q^{91} +(-54.8628 + 75.5121i) q^{92} +(71.4293 - 54.7527i) q^{93} +(30.0621 + 92.5217i) q^{94} +(-24.8821 + 34.2473i) q^{95} +(67.4849 - 98.0856i) q^{96} +(22.8673 - 70.3782i) q^{97} +18.5203i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 12 q^{4} + 28 q^{9} + 48 q^{12} + 32 q^{15} + 76 q^{16} - 68 q^{25} - 92 q^{27} - 120 q^{31} - 896 q^{34} - 84 q^{36} + 40 q^{37} + 224 q^{42} + 256 q^{45} - 76 q^{48} - 28 q^{49} + 224 q^{58}+ \cdots - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51626 + 0.817582i 1.25813 + 0.408791i 0.860828 0.508897i \(-0.169947\pi\)
0.397302 + 0.917688i \(0.369947\pi\)
\(3\) 2.47152 + 1.70046i 0.823842 + 0.566820i
\(4\) 2.42705 + 1.76336i 0.606763 + 0.440839i
\(5\) 2.68999 0.874032i 0.537999 0.174806i −0.0273993 0.999625i \(-0.508723\pi\)
0.565398 + 0.824818i \(0.308723\pi\)
\(6\) 4.82873 + 6.29947i 0.804788 + 1.04991i
\(7\) 6.05413 + 4.39858i 0.864876 + 0.628369i 0.929207 0.369560i \(-0.120491\pi\)
−0.0643314 + 0.997929i \(0.520491\pi\)
\(8\) −1.55513 2.14046i −0.194392 0.267557i
\(9\) 3.21687 + 8.40546i 0.357430 + 0.933940i
\(10\) 7.48331 0.748331
\(11\) 0 0
\(12\) 3.00000 + 8.48528i 0.250000 + 0.707107i
\(13\) 6.93741 21.3512i 0.533647 1.64240i −0.212907 0.977073i \(-0.568293\pi\)
0.746554 0.665325i \(-0.231707\pi\)
\(14\) 11.6376 + 16.0177i 0.831254 + 1.14412i
\(15\) 8.13464 + 2.41404i 0.542310 + 0.160936i
\(16\) −5.87132 18.0701i −0.366958 1.12938i
\(17\) −20.1301 + 6.54066i −1.18412 + 0.384745i −0.833896 0.551921i \(-0.813895\pi\)
−0.350225 + 0.936665i \(0.613895\pi\)
\(18\) 1.22232 + 23.7804i 0.0679068 + 1.32113i
\(19\) −12.1083 + 8.79716i −0.637277 + 0.463009i −0.858914 0.512121i \(-0.828860\pi\)
0.221637 + 0.975129i \(0.428860\pi\)
\(20\) 8.06998 + 2.62210i 0.403499 + 0.131105i
\(21\) 7.48331 + 21.1660i 0.356348 + 1.00791i
\(22\) 0 0
\(23\) 31.1127i 1.35273i 0.736568 + 0.676363i \(0.236445\pi\)
−0.736568 + 0.676363i \(0.763555\pi\)
\(24\) −0.203788 7.93464i −0.00849115 0.330610i
\(25\) −13.7533 + 9.99235i −0.550132 + 0.399694i
\(26\) 34.9127 48.0532i 1.34279 1.84820i
\(27\) −6.34258 + 26.2445i −0.234910 + 0.972017i
\(28\) 6.93741 + 21.3512i 0.247765 + 0.762542i
\(29\) 12.4411 17.1237i 0.429002 0.590471i −0.538722 0.842484i \(-0.681093\pi\)
0.967724 + 0.252013i \(0.0810925\pi\)
\(30\) 18.4952 + 12.7251i 0.616507 + 0.424169i
\(31\) 9.27051 28.5317i 0.299049 0.920377i −0.682783 0.730622i \(-0.739230\pi\)
0.981831 0.189756i \(-0.0607696\pi\)
\(32\) 39.6863i 1.24020i
\(33\) 0 0
\(34\) −56.0000 −1.64706
\(35\) 20.1301 + 6.54066i 0.575145 + 0.186876i
\(36\) −7.01431 + 26.0730i −0.194842 + 0.724249i
\(37\) 8.09017 + 5.87785i 0.218653 + 0.158861i 0.691720 0.722166i \(-0.256853\pi\)
−0.473067 + 0.881026i \(0.656853\pi\)
\(38\) −37.6599 + 12.2364i −0.991050 + 0.322012i
\(39\) 53.4528 40.9731i 1.37058 1.05059i
\(40\) −6.05413 4.39858i −0.151353 0.109965i
\(41\) −24.8821 34.2473i −0.606881 0.835301i 0.389435 0.921054i \(-0.372670\pi\)
−0.996316 + 0.0857534i \(0.972670\pi\)
\(42\) 1.52501 + 59.3774i 0.0363097 + 1.41375i
\(43\) −14.9666 −0.348061 −0.174031 0.984740i \(-0.555679\pi\)
−0.174031 + 0.984740i \(0.555679\pi\)
\(44\) 0 0
\(45\) 16.0000 + 19.7990i 0.355556 + 0.439978i
\(46\) −25.4372 + 78.2876i −0.552982 + 1.70190i
\(47\) 21.6126 + 29.7472i 0.459843 + 0.632919i 0.974476 0.224491i \(-0.0720720\pi\)
−0.514634 + 0.857410i \(0.672072\pi\)
\(48\) 16.2163 54.6446i 0.337840 1.13843i
\(49\) 2.16312 + 6.65740i 0.0441453 + 0.135865i
\(50\) −42.7764 + 13.8989i −0.855528 + 0.277978i
\(51\) −60.8741 18.0650i −1.19361 0.354216i
\(52\) 54.4872 39.5872i 1.04783 0.761293i
\(53\) 40.3499 + 13.1105i 0.761319 + 0.247368i 0.663845 0.747870i \(-0.268924\pi\)
0.0974744 + 0.995238i \(0.468924\pi\)
\(54\) −37.4166 + 60.8523i −0.692900 + 1.12689i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) −44.8851 + 1.15280i −0.787458 + 0.0202245i
\(58\) 45.3050 32.9160i 0.781120 0.567517i
\(59\) −19.9501 + 27.4589i −0.338137 + 0.465406i −0.943896 0.330242i \(-0.892870\pi\)
0.605759 + 0.795648i \(0.292870\pi\)
\(60\) 15.4864 + 20.2033i 0.258107 + 0.336721i
\(61\) −30.0621 92.5217i −0.492822 1.51675i −0.820324 0.571899i \(-0.806207\pi\)
0.327502 0.944850i \(-0.393793\pi\)
\(62\) 46.6540 64.2137i 0.752484 1.03571i
\(63\) −17.4968 + 65.0374i −0.277726 + 1.03234i
\(64\) 8.96149 27.5806i 0.140023 0.430947i
\(65\) 63.4980i 0.976893i
\(66\) 0 0
\(67\) −42.0000 −0.626866 −0.313433 0.949610i \(-0.601479\pi\)
−0.313433 + 0.949610i \(0.601479\pi\)
\(68\) −60.3902 19.6220i −0.888091 0.288558i
\(69\) −52.9059 + 76.8958i −0.766752 + 1.11443i
\(70\) 45.3050 + 32.9160i 0.647214 + 0.470228i
\(71\) 61.8699 20.1027i 0.871407 0.283137i 0.161022 0.986951i \(-0.448521\pi\)
0.710385 + 0.703814i \(0.248521\pi\)
\(72\) 12.9889 19.9572i 0.180401 0.277183i
\(73\) −60.5413 43.9858i −0.829333 0.602545i 0.0900377 0.995938i \(-0.471301\pi\)
−0.919370 + 0.393393i \(0.871301\pi\)
\(74\) 15.5513 + 21.4046i 0.210153 + 0.289251i
\(75\) −50.9832 + 1.30942i −0.679776 + 0.0174589i
\(76\) −44.8999 −0.590788
\(77\) 0 0
\(78\) 168.000 59.3970i 2.15385 0.761500i
\(79\) 6.93741 21.3512i 0.0878154 0.270268i −0.897499 0.441016i \(-0.854618\pi\)
0.985315 + 0.170748i \(0.0546183\pi\)
\(80\) −31.5876 43.4767i −0.394846 0.543458i
\(81\) −60.3035 + 54.0785i −0.744488 + 0.667636i
\(82\) −34.6099 106.518i −0.422072 1.29900i
\(83\) −20.1301 + 6.54066i −0.242531 + 0.0788031i −0.427760 0.903892i \(-0.640697\pi\)
0.185229 + 0.982695i \(0.440697\pi\)
\(84\) −19.1608 + 64.5667i −0.228105 + 0.768652i
\(85\) −48.4330 + 35.1887i −0.569800 + 0.413984i
\(86\) −37.6599 12.2364i −0.437906 0.142284i
\(87\) 59.8665 21.1660i 0.688121 0.243287i
\(88\) 0 0
\(89\) 62.2254i 0.699162i 0.936906 + 0.349581i \(0.113676\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(90\) 24.0728 + 62.9007i 0.267476 + 0.698897i
\(91\) 135.915 98.7479i 1.49357 1.08514i
\(92\) −54.8628 + 75.5121i −0.596334 + 0.820784i
\(93\) 71.4293 54.7527i 0.768057 0.588738i
\(94\) 30.0621 + 92.5217i 0.319810 + 0.984274i
\(95\) −24.8821 + 34.2473i −0.261917 + 0.360498i
\(96\) 67.4849 98.0856i 0.702968 1.02172i
\(97\) 22.8673 70.3782i 0.235745 0.725548i −0.761277 0.648427i \(-0.775427\pi\)
0.997022 0.0771212i \(-0.0245728\pi\)
\(98\) 18.5203i 0.188982i
\(99\) 0 0
\(100\) −51.0000 −0.510000
\(101\) 140.911 + 45.7846i 1.39515 + 0.453313i 0.907620 0.419792i \(-0.137897\pi\)
0.487533 + 0.873105i \(0.337897\pi\)
\(102\) −138.405 95.2258i −1.35692 0.933586i
\(103\) −27.5066 19.9847i −0.267054 0.194026i 0.446197 0.894935i \(-0.352778\pi\)
−0.713251 + 0.700909i \(0.752778\pi\)
\(104\) −56.4899 + 18.3547i −0.543172 + 0.176487i
\(105\) 38.6298 + 50.3958i 0.367903 + 0.479960i
\(106\) 90.8119 + 65.9787i 0.856716 + 0.622441i
\(107\) −24.8821 34.2473i −0.232543 0.320068i 0.676759 0.736205i \(-0.263384\pi\)
−0.909302 + 0.416136i \(0.863384\pi\)
\(108\) −61.6721 + 52.5124i −0.571038 + 0.486226i
\(109\) 67.3498 0.617888 0.308944 0.951080i \(-0.400024\pi\)
0.308944 + 0.951080i \(0.400024\pi\)
\(110\) 0 0
\(111\) 10.0000 + 28.2843i 0.0900901 + 0.254813i
\(112\) 43.9370 135.224i 0.392294 1.20736i
\(113\) −69.8253 96.1063i −0.617923 0.850498i 0.379276 0.925283i \(-0.376173\pi\)
−0.997200 + 0.0747850i \(0.976173\pi\)
\(114\) −113.885 33.7965i −0.998991 0.296461i
\(115\) 27.1935 + 83.6930i 0.236465 + 0.727765i
\(116\) 60.3902 19.6220i 0.520605 0.169155i
\(117\) 201.783 10.3717i 1.72464 0.0886474i
\(118\) −72.6495 + 52.7830i −0.615674 + 0.447313i
\(119\) −150.640 48.9458i −1.26588 0.411309i
\(120\) −7.48331 21.1660i −0.0623610 0.176383i
\(121\) 0 0
\(122\) 257.387i 2.10973i
\(123\) −3.26060 126.954i −0.0265090 1.03215i
\(124\) 72.8115 52.9007i 0.587190 0.426618i
\(125\) −69.8253 + 96.1063i −0.558603 + 0.768851i
\(126\) −97.1998 + 149.346i −0.771427 + 1.18528i
\(127\) 20.8122 + 64.0535i 0.163876 + 0.504358i 0.998952 0.0457767i \(-0.0145763\pi\)
−0.835076 + 0.550135i \(0.814576\pi\)
\(128\) −48.2091 + 66.3542i −0.376634 + 0.518392i
\(129\) −36.9904 25.4502i −0.286747 0.197288i
\(130\) 51.9149 159.777i 0.399345 1.22906i
\(131\) 232.826i 1.77730i 0.458587 + 0.888649i \(0.348356\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(132\) 0 0
\(133\) −112.000 −0.842105
\(134\) −105.683 34.3384i −0.788678 0.256257i
\(135\) 5.87700 + 76.1411i 0.0435333 + 0.564008i
\(136\) 45.3050 + 32.9160i 0.333125 + 0.242029i
\(137\) 150.640 48.9458i 1.09956 0.357269i 0.297626 0.954682i \(-0.403805\pi\)
0.801933 + 0.597414i \(0.203805\pi\)
\(138\) −195.994 + 150.235i −1.42024 + 1.08866i
\(139\) 72.6495 + 52.7830i 0.522659 + 0.379734i 0.817604 0.575780i \(-0.195302\pi\)
−0.294946 + 0.955514i \(0.595302\pi\)
\(140\) 37.3232 + 51.3710i 0.266594 + 0.366936i
\(141\) 2.83216 + 110.272i 0.0200862 + 0.782073i
\(142\) 172.116 1.21209
\(143\) 0 0
\(144\) 133.000 107.480i 0.923611 0.746390i
\(145\) 18.4998 56.9364i 0.127585 0.392665i
\(146\) −116.376 160.177i −0.797093 1.09710i
\(147\) −5.97444 + 20.1322i −0.0406424 + 0.136954i
\(148\) 9.27051 + 28.5317i 0.0626386 + 0.192782i
\(149\) −20.1301 + 6.54066i −0.135101 + 0.0438970i −0.375787 0.926706i \(-0.622628\pi\)
0.240686 + 0.970603i \(0.422628\pi\)
\(150\) −129.357 38.3881i −0.862383 0.255921i
\(151\) 54.4872 39.5872i 0.360842 0.262167i −0.392561 0.919726i \(-0.628411\pi\)
0.753403 + 0.657559i \(0.228411\pi\)
\(152\) 37.6599 + 12.2364i 0.247763 + 0.0805030i
\(153\) −119.733 148.162i −0.782569 0.968380i
\(154\) 0 0
\(155\) 84.8528i 0.547438i
\(156\) 201.983 5.18759i 1.29476 0.0332538i
\(157\) −69.5755 + 50.5495i −0.443156 + 0.321972i −0.786888 0.617096i \(-0.788309\pi\)
0.343732 + 0.939068i \(0.388309\pi\)
\(158\) 34.9127 48.0532i 0.220966 0.304134i
\(159\) 77.4320 + 101.016i 0.486993 + 0.635323i
\(160\) −34.6871 106.756i −0.216794 0.667224i
\(161\) −136.852 + 188.360i −0.850011 + 1.16994i
\(162\) −195.953 + 86.7725i −1.20959 + 0.535633i
\(163\) −4.32624 + 13.3148i −0.0265413 + 0.0816858i −0.963450 0.267889i \(-0.913674\pi\)
0.936908 + 0.349575i \(0.113674\pi\)
\(164\) 126.996i 0.774366i
\(165\) 0 0
\(166\) −56.0000 −0.337349
\(167\) −80.5203 26.1626i −0.482157 0.156662i 0.0578456 0.998326i \(-0.481577\pi\)
−0.540003 + 0.841663i \(0.681577\pi\)
\(168\) 33.6674 48.9337i 0.200401 0.291272i
\(169\) −271.021 196.908i −1.60367 1.16514i
\(170\) −150.640 + 48.9458i −0.886116 + 0.287916i
\(171\) −112.895 73.4761i −0.660204 0.429685i
\(172\) −36.3248 26.3915i −0.211191 0.153439i
\(173\) 111.970 + 154.113i 0.647223 + 0.890826i 0.998975 0.0452670i \(-0.0144139\pi\)
−0.351752 + 0.936093i \(0.614414\pi\)
\(174\) 167.945 4.31337i 0.965199 0.0247895i
\(175\) −127.216 −0.726951
\(176\) 0 0
\(177\) −96.0000 + 33.9411i −0.542373 + 0.191758i
\(178\) −50.8744 + 156.575i −0.285811 + 0.879636i
\(179\) 186.201 + 256.284i 1.04023 + 1.43175i 0.896983 + 0.442064i \(0.145754\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(180\) 3.92015 + 76.2668i 0.0217786 + 0.423705i
\(181\) −80.9625 249.177i −0.447306 1.37667i −0.879935 0.475095i \(-0.842414\pi\)
0.432628 0.901572i \(-0.357586\pi\)
\(182\) 422.732 137.354i 2.32270 0.754691i
\(183\) 83.0302 279.789i 0.453717 1.52890i
\(184\) 66.5954 48.3844i 0.361932 0.262959i
\(185\) 26.8999 + 8.74032i 0.145405 + 0.0472450i
\(186\) 224.499 79.3725i 1.20699 0.426734i
\(187\) 0 0
\(188\) 110.309i 0.586748i
\(189\) −153.837 + 130.989i −0.813953 + 0.693063i
\(190\) −90.6099 + 65.8319i −0.476894 + 0.346484i
\(191\) 34.9127 48.0532i 0.182789 0.251587i −0.707783 0.706430i \(-0.750305\pi\)
0.890572 + 0.454843i \(0.150305\pi\)
\(192\) 69.0483 52.9276i 0.359627 0.275664i
\(193\) 46.2494 + 142.341i 0.239634 + 0.737519i 0.996473 + 0.0839167i \(0.0267430\pi\)
−0.756838 + 0.653602i \(0.773257\pi\)
\(194\) 115.080 158.394i 0.593195 0.816463i
\(195\) 107.976 156.937i 0.553722 0.804805i
\(196\) −6.48936 + 19.9722i −0.0331090 + 0.101899i
\(197\) 232.826i 1.18186i 0.806723 + 0.590929i \(0.201239\pi\)
−0.806723 + 0.590929i \(0.798761\pi\)
\(198\) 0 0
\(199\) 222.000 1.11558 0.557789 0.829983i \(-0.311650\pi\)
0.557789 + 0.829983i \(0.311650\pi\)
\(200\) 42.7764 + 13.8989i 0.213882 + 0.0694945i
\(201\) −103.804 71.4193i −0.516438 0.355320i
\(202\) 317.135 + 230.412i 1.56997 + 1.14065i
\(203\) 150.640 48.9458i 0.742067 0.241112i
\(204\) −115.890 151.187i −0.568086 0.741114i
\(205\) −96.8661 70.3773i −0.472517 0.343304i
\(206\) −52.8745 72.7756i −0.256673 0.353279i
\(207\) −261.517 + 100.085i −1.26336 + 0.483505i
\(208\) −426.549 −2.05072
\(209\) 0 0
\(210\) 56.0000 + 158.392i 0.266667 + 0.754247i
\(211\) −120.249 + 370.087i −0.569898 + 1.75397i 0.0830307 + 0.996547i \(0.473540\pi\)
−0.652929 + 0.757419i \(0.726460\pi\)
\(212\) 74.8128 + 102.971i 0.352891 + 0.485713i
\(213\) 187.097 + 55.5228i 0.878389 + 0.260671i
\(214\) −34.6099 106.518i −0.161729 0.497749i
\(215\) −40.2601 + 13.0813i −0.187256 + 0.0608433i
\(216\) 66.0387 27.2376i 0.305735 0.126100i
\(217\) 181.624 131.957i 0.836976 0.608099i
\(218\) 169.470 + 55.0640i 0.777384 + 0.252587i
\(219\) −74.8331 211.660i −0.341704 0.966484i
\(220\) 0 0
\(221\) 475.176i 2.15012i
\(222\) 2.03788 + 79.3464i 0.00917962 + 0.357416i
\(223\) 37.2148 27.0381i 0.166882 0.121247i −0.501209 0.865326i \(-0.667111\pi\)
0.668092 + 0.744079i \(0.267111\pi\)
\(224\) 174.563 240.266i 0.779301 1.07262i
\(225\) −128.233 83.4586i −0.569924 0.370927i
\(226\) −97.1238 298.916i −0.429751 1.32264i
\(227\) −124.411 + 171.237i −0.548065 + 0.754346i −0.989748 0.142825i \(-0.954381\pi\)
0.441683 + 0.897171i \(0.354381\pi\)
\(228\) −110.971 76.3505i −0.486716 0.334871i
\(229\) 36.4640 112.225i 0.159231 0.490064i −0.839334 0.543617i \(-0.817055\pi\)
0.998565 + 0.0535527i \(0.0170545\pi\)
\(230\) 232.826i 1.01229i
\(231\) 0 0
\(232\) −56.0000 −0.241379
\(233\) −80.5203 26.1626i −0.345581 0.112286i 0.131084 0.991371i \(-0.458154\pi\)
−0.476664 + 0.879085i \(0.658154\pi\)
\(234\) 516.218 + 138.876i 2.20606 + 0.593488i
\(235\) 84.1378 + 61.1297i 0.358033 + 0.260126i
\(236\) −96.8398 + 31.4652i −0.410338 + 0.133327i
\(237\) 53.4528 40.9731i 0.225539 0.172882i
\(238\) −339.031 246.321i −1.42450 1.03496i
\(239\) −24.8821 34.2473i −0.104109 0.143294i 0.753784 0.657123i \(-0.228227\pi\)
−0.857893 + 0.513829i \(0.828227\pi\)
\(240\) −4.13930 161.167i −0.0172471 0.671530i
\(241\) 149.666 0.621022 0.310511 0.950570i \(-0.399500\pi\)
0.310511 + 0.950570i \(0.399500\pi\)
\(242\) 0 0
\(243\) −241.000 + 31.1127i −0.991770 + 0.128036i
\(244\) 90.1864 277.565i 0.369616 1.13756i
\(245\) 11.6376 + 16.0177i 0.0475002 + 0.0653784i
\(246\) 95.5910 322.115i 0.388581 1.30941i
\(247\) 103.830 + 319.555i 0.420363 + 1.29374i
\(248\) −75.4878 + 24.5275i −0.304386 + 0.0989011i
\(249\) −60.8741 18.0650i −0.244474 0.0725502i
\(250\) −254.273 + 184.740i −1.01709 + 0.738962i
\(251\) −48.4199 15.7326i −0.192908 0.0626796i 0.210970 0.977493i \(-0.432338\pi\)
−0.403878 + 0.914813i \(0.632338\pi\)
\(252\) −157.150 + 126.996i −0.623610 + 0.503953i
\(253\) 0 0
\(254\) 178.191i 0.701539i
\(255\) −179.540 + 4.61119i −0.704080 + 0.0180831i
\(256\) −269.403 + 195.732i −1.05235 + 0.764580i
\(257\) −56.5253 + 77.8004i −0.219943 + 0.302725i −0.904703 0.426044i \(-0.859907\pi\)
0.684760 + 0.728769i \(0.259907\pi\)
\(258\) −72.2698 94.2819i −0.280116 0.365434i
\(259\) 23.1247 + 71.1706i 0.0892846 + 0.274790i
\(260\) 111.970 154.113i 0.430652 0.592742i
\(261\) 183.954 + 49.4883i 0.704803 + 0.189610i
\(262\) −190.354 + 585.851i −0.726544 + 2.23607i
\(263\) 465.652i 1.77054i −0.465077 0.885270i \(-0.653973\pi\)
0.465077 0.885270i \(-0.346027\pi\)
\(264\) 0 0
\(265\) 120.000 0.452830
\(266\) −281.821 91.5692i −1.05948 0.344245i
\(267\) −105.812 + 153.792i −0.396299 + 0.575999i
\(268\) −101.936 74.0609i −0.380359 0.276347i
\(269\) −352.389 + 114.498i −1.31000 + 0.425644i −0.879048 0.476733i \(-0.841821\pi\)
−0.430949 + 0.902376i \(0.641821\pi\)
\(270\) −47.4635 + 196.396i −0.175791 + 0.727391i
\(271\) 272.436 + 197.936i 1.00530 + 0.730392i 0.963218 0.268722i \(-0.0866014\pi\)
0.0420805 + 0.999114i \(0.486601\pi\)
\(272\) 236.380 + 325.350i 0.869045 + 1.19614i
\(273\) 503.834 12.9401i 1.84555 0.0473997i
\(274\) 419.066 1.52944
\(275\) 0 0
\(276\) −264.000 + 93.3381i −0.956522 + 0.338182i
\(277\) 6.93741 21.3512i 0.0250448 0.0770800i −0.937753 0.347303i \(-0.887097\pi\)
0.962798 + 0.270223i \(0.0870975\pi\)
\(278\) 139.651 + 192.213i 0.502340 + 0.691412i
\(279\) 269.644 13.8598i 0.966466 0.0496768i
\(280\) −17.3050 53.2592i −0.0618034 0.190211i
\(281\) −20.1301 + 6.54066i −0.0716373 + 0.0232764i −0.344616 0.938744i \(-0.611991\pi\)
0.272979 + 0.962020i \(0.411991\pi\)
\(282\) −83.0302 + 279.789i −0.294433 + 0.992160i
\(283\) −145.299 + 105.566i −0.513424 + 0.373025i −0.814121 0.580695i \(-0.802781\pi\)
0.300697 + 0.953720i \(0.402781\pi\)
\(284\) 185.610 + 60.3082i 0.653555 + 0.212353i
\(285\) −119.733 + 42.3320i −0.420116 + 0.148533i
\(286\) 0 0
\(287\) 316.784i 1.10378i
\(288\) 333.581 127.666i 1.15827 0.443283i
\(289\) 128.634 93.4579i 0.445099 0.323384i
\(290\) 93.1004 128.142i 0.321036 0.441868i
\(291\) 176.192 135.057i 0.605472 0.464112i
\(292\) −69.3741 213.512i −0.237583 0.731204i
\(293\) 12.4411 17.1237i 0.0424610 0.0584425i −0.787259 0.616623i \(-0.788500\pi\)
0.829720 + 0.558180i \(0.188500\pi\)
\(294\) −31.4930 + 45.7733i −0.107119 + 0.155691i
\(295\) −29.6656 + 91.3014i −0.100561 + 0.309496i
\(296\) 26.4575i 0.0893835i
\(297\) 0 0
\(298\) −56.0000 −0.187919
\(299\) 664.292 + 215.842i 2.22171 + 0.721879i
\(300\) −126.048 86.7235i −0.420159 0.289078i
\(301\) −90.6099 65.8319i −0.301030 0.218711i
\(302\) 169.470 55.0640i 0.561158 0.182331i
\(303\) 270.409 + 352.770i 0.892439 + 1.16426i
\(304\) 230.057 + 167.146i 0.756766 + 0.549823i
\(305\) −161.734 222.608i −0.530275 0.729861i
\(306\) −180.145 470.706i −0.588708 1.53825i
\(307\) 149.666 0.487512 0.243756 0.969837i \(-0.421620\pi\)
0.243756 + 0.969837i \(0.421620\pi\)
\(308\) 0 0
\(309\) −34.0000 96.1665i −0.110032 0.311219i
\(310\) 69.3741 213.512i 0.223788 0.688747i
\(311\) −14.9626 20.5942i −0.0481112 0.0662193i 0.784284 0.620402i \(-0.213031\pi\)
−0.832395 + 0.554183i \(0.813031\pi\)
\(312\) −170.828 50.6948i −0.547524 0.162483i
\(313\) 122.989 + 378.520i 0.392935 + 1.20933i 0.930558 + 0.366145i \(0.119323\pi\)
−0.537622 + 0.843186i \(0.680677\pi\)
\(314\) −216.398 + 70.3121i −0.689166 + 0.223924i
\(315\) 9.77858 + 190.243i 0.0310431 + 0.603946i
\(316\) 54.4872 39.5872i 0.172428 0.125276i
\(317\) 395.429 + 128.483i 1.24741 + 0.405308i 0.856992 0.515329i \(-0.172330\pi\)
0.390418 + 0.920638i \(0.372330\pi\)
\(318\) 112.250 + 317.490i 0.352987 + 0.998397i
\(319\) 0 0
\(320\) 82.0244i 0.256326i
\(321\) −3.26060 126.954i −0.0101576 0.395496i
\(322\) −498.354 + 362.076i −1.54768 + 1.12446i
\(323\) 186.201 256.284i 0.576473 0.793447i
\(324\) −241.719 + 24.9148i −0.746047 + 0.0768976i
\(325\) 117.936 + 362.970i 0.362880 + 1.11683i
\(326\) −21.7719 + 29.9664i −0.0667849 + 0.0919215i
\(327\) 166.457 + 114.526i 0.509042 + 0.350232i
\(328\) −34.6099 + 106.518i −0.105518 + 0.324751i
\(329\) 275.158i 0.836347i
\(330\) 0 0
\(331\) 178.000 0.537764 0.268882 0.963173i \(-0.413346\pi\)
0.268882 + 0.963173i \(0.413346\pi\)
\(332\) −60.3902 19.6220i −0.181898 0.0591023i
\(333\) −23.3810 + 86.9099i −0.0702133 + 0.260991i
\(334\) −181.220 131.664i −0.542574 0.394203i
\(335\) −112.980 + 36.7093i −0.337253 + 0.109580i
\(336\) 338.534 259.497i 1.00754 0.772311i
\(337\) 205.840 + 149.552i 0.610802 + 0.443774i 0.849697 0.527272i \(-0.176785\pi\)
−0.238894 + 0.971046i \(0.576785\pi\)
\(338\) −520.970 717.053i −1.54133 2.12146i
\(339\) −9.15004 356.264i −0.0269913 1.05093i
\(340\) −179.600 −0.528234
\(341\) 0 0
\(342\) −224.000 277.186i −0.654971 0.810485i
\(343\) 97.1238 298.916i 0.283160 0.871476i
\(344\) 23.2751 + 32.0354i 0.0676602 + 0.0931263i
\(345\) −75.1072 + 253.091i −0.217702 + 0.733596i
\(346\) 155.745 + 479.332i 0.450129 + 1.38535i
\(347\) −462.992 + 150.435i −1.33427 + 0.433531i −0.887372 0.461054i \(-0.847471\pi\)
−0.446898 + 0.894585i \(0.647471\pi\)
\(348\) 182.622 + 54.1950i 0.524777 + 0.155733i
\(349\) 54.4872 39.5872i 0.156124 0.113430i −0.506981 0.861957i \(-0.669239\pi\)
0.663104 + 0.748527i \(0.269239\pi\)
\(350\) −320.109 104.010i −0.914598 0.297171i
\(351\) 516.349 + 317.490i 1.47108 + 0.904530i
\(352\) 0 0
\(353\) 124.451i 0.352552i −0.984341 0.176276i \(-0.943595\pi\)
0.984341 0.176276i \(-0.0564051\pi\)
\(354\) −269.311 + 6.91678i −0.760764 + 0.0195389i
\(355\) 148.859 108.152i 0.419321 0.304655i
\(356\) −109.726 + 151.024i −0.308218 + 0.424225i
\(357\) −289.079 377.128i −0.809746 1.05638i
\(358\) 258.997 + 797.110i 0.723455 + 2.22656i
\(359\) 149.293 205.484i 0.415857 0.572379i −0.548777 0.835969i \(-0.684907\pi\)
0.964635 + 0.263590i \(0.0849065\pi\)
\(360\) 17.4968 65.0374i 0.0486021 0.180659i
\(361\) −42.3353 + 130.295i −0.117272 + 0.360927i
\(362\) 693.187i 1.91488i
\(363\) 0 0
\(364\) 504.000 1.38462
\(365\) −201.301 65.4066i −0.551509 0.179196i
\(366\) 437.676 636.138i 1.19584 1.73808i
\(367\) 114.880 + 83.4655i 0.313026 + 0.227426i 0.733194 0.680020i \(-0.238029\pi\)
−0.420168 + 0.907446i \(0.638029\pi\)
\(368\) 562.209 182.673i 1.52774 0.496393i
\(369\) 207.822 319.315i 0.563203 0.865352i
\(370\) 60.5413 + 43.9858i 0.163625 + 0.118881i
\(371\) 186.616 + 256.855i 0.503008 + 0.692331i
\(372\) 269.911 6.93220i 0.725567 0.0186350i
\(373\) −426.549 −1.14356 −0.571781 0.820406i \(-0.693747\pi\)
−0.571781 + 0.820406i \(0.693747\pi\)
\(374\) 0 0
\(375\) −336.000 + 118.794i −0.896000 + 0.316784i
\(376\) 30.0621 92.5217i 0.0799525 0.246068i
\(377\) −279.301 384.425i −0.740852 1.01970i
\(378\) −494.189 + 203.828i −1.30738 + 0.539227i
\(379\) −108.156 332.870i −0.285372 0.878284i −0.986287 0.165040i \(-0.947225\pi\)
0.700915 0.713245i \(-0.252775\pi\)
\(380\) −120.780 + 39.2439i −0.317843 + 0.103274i
\(381\) −57.4825 + 193.700i −0.150873 + 0.508399i
\(382\) 127.137 92.3702i 0.332819 0.241807i
\(383\) −492.269 159.948i −1.28530 0.417618i −0.414854 0.909888i \(-0.636168\pi\)
−0.870443 + 0.492269i \(0.836168\pi\)
\(384\) −231.983 + 82.0183i −0.604122 + 0.213589i
\(385\) 0 0
\(386\) 395.980i 1.02585i
\(387\) −48.1457 125.801i −0.124407 0.325068i
\(388\) 179.602 130.488i 0.462891 0.336310i
\(389\) −257.689 + 354.678i −0.662439 + 0.911769i −0.999559 0.0296928i \(-0.990547\pi\)
0.337120 + 0.941462i \(0.390547\pi\)
\(390\) 400.004 306.615i 1.02565 0.786192i
\(391\) −203.497 626.301i −0.520454 1.60179i
\(392\) 10.8859 14.9832i 0.0277702 0.0382225i
\(393\) −395.912 + 575.436i −1.00741 + 1.46421i
\(394\) −190.354 + 585.851i −0.483133 + 1.48693i
\(395\) 63.4980i 0.160755i
\(396\) 0 0
\(397\) 442.000 1.11335 0.556675 0.830730i \(-0.312077\pi\)
0.556675 + 0.830730i \(0.312077\pi\)
\(398\) 558.610 + 181.503i 1.40354 + 0.456038i
\(399\) −276.811 190.452i −0.693761 0.477322i
\(400\) 261.312 + 189.855i 0.653281 + 0.474637i
\(401\) −500.339 + 162.570i −1.24773 + 0.405411i −0.857106 0.515140i \(-0.827740\pi\)
−0.390622 + 0.920551i \(0.627740\pi\)
\(402\) −202.807 264.578i −0.504494 0.658154i
\(403\) −544.872 395.872i −1.35204 0.982314i
\(404\) 261.262 + 359.597i 0.646689 + 0.890091i
\(405\) −114.950 + 198.178i −0.283826 + 0.489329i
\(406\) 419.066 1.03218
\(407\) 0 0
\(408\) 56.0000 + 158.392i 0.137255 + 0.388215i
\(409\) −69.3741 + 213.512i −0.169619 + 0.522033i −0.999347 0.0361345i \(-0.988496\pi\)
0.829728 + 0.558168i \(0.188496\pi\)
\(410\) −186.201 256.284i −0.454148 0.625082i
\(411\) 455.540 + 135.186i 1.10837 + 0.328920i
\(412\) −31.5197 97.0078i −0.0765042 0.235456i
\(413\) −241.561 + 78.4879i −0.584893 + 0.190043i
\(414\) −739.871 + 38.0297i −1.78713 + 0.0918593i
\(415\) −48.4330 + 35.1887i −0.116706 + 0.0847919i
\(416\) −847.348 275.320i −2.03689 0.661827i
\(417\) 89.7998 + 253.992i 0.215347 + 0.609094i
\(418\) 0 0
\(419\) 684.479i 1.63360i −0.576919 0.816801i \(-0.695745\pi\)
0.576919 0.816801i \(-0.304255\pi\)
\(420\) 4.89090 + 190.431i 0.0116450 + 0.453408i
\(421\) 215.199 156.351i 0.511160 0.371380i −0.302103 0.953275i \(-0.597689\pi\)
0.813264 + 0.581895i \(0.197689\pi\)
\(422\) −605.153 + 832.921i −1.43401 + 1.97375i
\(423\) −180.514 + 277.357i −0.426747 + 0.655690i
\(424\) −34.6871 106.756i −0.0818091 0.251783i
\(425\) 211.498 291.102i 0.497643 0.684946i
\(426\) 425.390 + 292.677i 0.998567 + 0.687035i
\(427\) 224.964 692.369i 0.526849 1.62147i
\(428\) 126.996i 0.296720i
\(429\) 0 0
\(430\) −112.000 −0.260465
\(431\) −523.382 170.057i −1.21434 0.394564i −0.369324 0.929301i \(-0.620411\pi\)
−0.845019 + 0.534737i \(0.820411\pi\)
\(432\) 511.479 39.4788i 1.18398 0.0913862i
\(433\) −597.055 433.786i −1.37888 1.00181i −0.996984 0.0776084i \(-0.975272\pi\)
−0.381895 0.924206i \(-0.624728\pi\)
\(434\) 564.899 183.547i 1.30161 0.422919i
\(435\) 142.541 109.262i 0.327680 0.251176i
\(436\) 163.461 + 118.762i 0.374912 + 0.272389i
\(437\) −273.704 376.721i −0.626324 0.862061i
\(438\) −15.2501 593.774i −0.0348175 1.35565i
\(439\) −426.549 −0.971638 −0.485819 0.874060i \(-0.661479\pi\)
−0.485819 + 0.874060i \(0.661479\pi\)
\(440\) 0 0
\(441\) −49.0000 + 39.5980i −0.111111 + 0.0897913i
\(442\) −388.495 + 1195.67i −0.878948 + 2.70513i
\(443\) −69.8253 96.1063i −0.157619 0.216944i 0.722902 0.690950i \(-0.242808\pi\)
−0.880522 + 0.474006i \(0.842808\pi\)
\(444\) −25.6047 + 86.2809i −0.0576683 + 0.194326i
\(445\) 54.3870 + 167.386i 0.122218 + 0.376148i
\(446\) 115.748 37.6088i 0.259524 0.0843246i
\(447\) −60.8741 18.0650i −0.136184 0.0404139i
\(448\) 175.570 127.559i 0.391897 0.284730i
\(449\) 484.199 + 157.326i 1.07839 + 0.350391i 0.793751 0.608242i \(-0.208125\pi\)
0.284643 + 0.958634i \(0.408125\pi\)
\(450\) −254.433 314.844i −0.565406 0.699654i
\(451\) 0 0
\(452\) 356.382i 0.788455i
\(453\) 201.983 5.18759i 0.445878 0.0114516i
\(454\) −453.050 + 329.160i −0.997906 + 0.725021i
\(455\) 279.301 384.425i 0.613849 0.844891i
\(456\) 72.2698 + 94.2819i 0.158486 + 0.206759i
\(457\) −208.122 640.535i −0.455410 1.40161i −0.870653 0.491898i \(-0.836303\pi\)
0.415243 0.909711i \(-0.363697\pi\)
\(458\) 183.506 252.574i 0.400668 0.551472i
\(459\) −43.9794 569.788i −0.0958158 1.24137i
\(460\) −81.5805 + 251.079i −0.177349 + 0.545824i
\(461\) 698.478i 1.51514i −0.652755 0.757569i \(-0.726387\pi\)
0.652755 0.757569i \(-0.273613\pi\)
\(462\) 0 0
\(463\) 882.000 1.90497 0.952484 0.304589i \(-0.0985192\pi\)
0.952484 + 0.304589i \(0.0985192\pi\)
\(464\) −382.471 124.272i −0.824292 0.267829i
\(465\) 144.289 209.716i 0.310299 0.451002i
\(466\) −181.220 131.664i −0.388884 0.282541i
\(467\) 505.719 164.318i 1.08291 0.351859i 0.287407 0.957809i \(-0.407207\pi\)
0.795503 + 0.605950i \(0.207207\pi\)
\(468\) 508.027 + 330.643i 1.08553 + 0.706501i
\(469\) −254.273 184.740i −0.542161 0.393903i
\(470\) 161.734 + 222.608i 0.344115 + 0.473633i
\(471\) −257.915 + 6.62410i −0.547590 + 0.0140639i
\(472\) 89.7998 0.190254
\(473\) 0 0
\(474\) 168.000 59.3970i 0.354430 0.125310i
\(475\) 78.6240 241.980i 0.165524 0.509431i
\(476\) −279.301 384.425i −0.586767 0.807616i
\(477\) 19.6008 + 381.334i 0.0410918 + 0.799443i
\(478\) −34.6099 106.518i −0.0724057 0.222842i
\(479\) 644.162 209.301i 1.34481 0.436954i 0.453864 0.891071i \(-0.350045\pi\)
0.890942 + 0.454117i \(0.150045\pi\)
\(480\) 95.8041 322.834i 0.199592 0.672570i
\(481\) 181.624 131.957i 0.377596 0.274340i
\(482\) 376.599 + 122.364i 0.781326 + 0.253868i
\(483\) −658.532 + 232.826i −1.36342 + 0.482042i
\(484\) 0 0
\(485\) 209.304i 0.431554i
\(486\) −631.856 118.750i −1.30011 0.244341i
\(487\) −283.156 + 205.725i −0.581429 + 0.422433i −0.839239 0.543763i \(-0.816999\pi\)
0.257810 + 0.966196i \(0.416999\pi\)
\(488\) −151.288 + 208.230i −0.310017 + 0.426702i
\(489\) −33.3337 + 25.5512i −0.0681670 + 0.0522520i
\(490\) 16.1873 + 49.8194i 0.0330353 + 0.101672i
\(491\) 149.293 205.484i 0.304059 0.418501i −0.629458 0.777034i \(-0.716723\pi\)
0.933517 + 0.358533i \(0.116723\pi\)
\(492\) 215.952 313.874i 0.438926 0.637955i
\(493\) −138.440 + 426.073i −0.280811 + 0.864246i
\(494\) 888.972i 1.79954i
\(495\) 0 0
\(496\) −570.000 −1.14919
\(497\) 462.992 + 150.435i 0.931573 + 0.302686i
\(498\) −138.405 95.2258i −0.277922 0.191216i
\(499\) 79.2837 + 57.6030i 0.158885 + 0.115437i 0.664387 0.747389i \(-0.268693\pi\)
−0.505502 + 0.862825i \(0.668693\pi\)
\(500\) −338.939 + 110.128i −0.677879 + 0.220256i
\(501\) −154.519 201.583i −0.308422 0.402362i
\(502\) −108.974 79.1745i −0.217080 0.157718i
\(503\) −298.586 410.968i −0.593610 0.817034i 0.401495 0.915861i \(-0.368491\pi\)
−0.995105 + 0.0988277i \(0.968491\pi\)
\(504\) 166.420 63.6908i 0.330198 0.126371i
\(505\) 419.066 0.829833
\(506\) 0 0
\(507\) −335.000 947.523i −0.660750 1.86888i
\(508\) −62.4367 + 192.160i −0.122907 + 0.378269i
\(509\) 94.7629 + 130.430i 0.186175 + 0.256248i 0.891894 0.452244i \(-0.149376\pi\)
−0.705720 + 0.708491i \(0.749376\pi\)
\(510\) −455.540 135.186i −0.893216 0.265071i
\(511\) −173.050 532.592i −0.338649 1.04225i
\(512\) −525.898 + 170.875i −1.02714 + 0.333740i
\(513\) −154.079 373.571i −0.300349 0.728209i
\(514\) −205.840 + 149.552i −0.400468 + 0.290957i
\(515\) −91.4598 29.7171i −0.177592 0.0577031i
\(516\) −44.8999 126.996i −0.0870153 0.246116i
\(517\) 0 0
\(518\) 197.990i 0.382220i
\(519\) 14.6727 + 571.294i 0.0282711 + 1.10076i
\(520\) −135.915 + 98.7479i −0.261375 + 0.189900i
\(521\) 89.7754 123.565i 0.172314 0.237169i −0.714122 0.700021i \(-0.753174\pi\)
0.886436 + 0.462852i \(0.153174\pi\)
\(522\) 422.414 + 274.923i 0.809222 + 0.526672i
\(523\) −4.62494 14.2341i −0.00884310 0.0272163i 0.946538 0.322593i \(-0.104555\pi\)
−0.955381 + 0.295377i \(0.904555\pi\)
\(524\) −410.555 + 565.081i −0.783502 + 1.07840i
\(525\) −314.418 216.326i −0.598892 0.412050i
\(526\) 380.709 1171.70i 0.723781 2.22757i
\(527\) 634.980i 1.20490i
\(528\) 0 0
\(529\) −439.000 −0.829868
\(530\) 301.951 + 98.1099i 0.569719 + 0.185113i
\(531\) −294.982 79.3579i −0.555521 0.149450i
\(532\) −271.830 197.496i −0.510958 0.371233i
\(533\) −903.838 + 293.675i −1.69576 + 0.550985i
\(534\) −391.987 + 300.470i −0.734058 + 0.562677i
\(535\) −96.8661 70.3773i −0.181058 0.131546i
\(536\) 65.3156 + 89.8992i 0.121857 + 0.167722i
\(537\) 24.4001 + 950.038i 0.0454378 + 1.76916i
\(538\) −980.314 −1.82215
\(539\) 0 0
\(540\) −120.000 + 195.161i −0.222222 + 0.361410i
\(541\) 159.561 491.077i 0.294936 0.907721i −0.688307 0.725420i \(-0.741646\pi\)
0.983243 0.182301i \(-0.0583544\pi\)
\(542\) 523.690 + 720.797i 0.966218 + 1.32988i
\(543\) 223.615 753.520i 0.411813 1.38770i
\(544\) 259.574 + 798.887i 0.477159 + 1.46854i
\(545\) 181.171 58.8659i 0.332423 0.108011i
\(546\) 1278.36 + 379.365i 2.34131 + 0.694807i
\(547\) −544.872 + 395.872i −0.996109 + 0.723716i −0.961250 0.275677i \(-0.911098\pi\)
−0.0348585 + 0.999392i \(0.511098\pi\)
\(548\) 451.919 + 146.837i 0.824670 + 0.267951i
\(549\) 680.982 550.316i 1.24040 1.00240i
\(550\) 0 0
\(551\) 316.784i 0.574925i
\(552\) 246.868 6.34038i 0.447225 0.0114862i
\(553\) 135.915 98.7479i 0.245777 0.178568i
\(554\) 34.9127 48.0532i 0.0630192 0.0867386i
\(555\) 51.6213 + 67.3442i 0.0930114 + 0.121341i
\(556\) 83.2490 + 256.214i 0.149728 + 0.460817i
\(557\) −261.262 + 359.597i −0.469053 + 0.645596i −0.976355 0.216172i \(-0.930643\pi\)
0.507302 + 0.861768i \(0.330643\pi\)
\(558\) 689.826 + 185.581i 1.23625 + 0.332583i
\(559\) −103.830 + 319.555i −0.185742 + 0.571655i
\(560\) 402.154i 0.718132i
\(561\) 0 0
\(562\) −56.0000 −0.0996441
\(563\) −523.382 170.057i −0.929630 0.302055i −0.195219 0.980760i \(-0.562542\pi\)
−0.734411 + 0.678704i \(0.762542\pi\)
\(564\) −187.575 + 272.631i −0.332581 + 0.483388i
\(565\) −271.830 197.496i −0.481115 0.349550i
\(566\) −451.919 + 146.837i −0.798443 + 0.259430i
\(567\) −602.954 + 62.1485i −1.06341 + 0.109609i
\(568\) −139.245 101.167i −0.245150 0.178112i
\(569\) 659.377 + 907.554i 1.15883 + 1.59500i 0.715445 + 0.698669i \(0.246224\pi\)
0.443389 + 0.896329i \(0.353776\pi\)
\(570\) −335.889 + 8.62674i −0.589279 + 0.0151346i
\(571\) 808.198 1.41541 0.707704 0.706509i \(-0.249731\pi\)
0.707704 + 0.706509i \(0.249731\pi\)
\(572\) 0 0
\(573\) 168.000 59.3970i 0.293194 0.103660i
\(574\) 258.997 797.110i 0.451214 1.38869i
\(575\) −310.889 427.902i −0.540676 0.744177i
\(576\) 260.656 13.3978i 0.452528 0.0232601i
\(577\) 95.7953 + 294.828i 0.166023 + 0.510966i 0.999110 0.0421754i \(-0.0134288\pi\)
−0.833087 + 0.553142i \(0.813429\pi\)
\(578\) 400.085 129.996i 0.692189 0.224906i
\(579\) −127.739 + 430.445i −0.220620 + 0.743428i
\(580\) 145.299 105.566i 0.250516 0.182010i
\(581\) −150.640 48.9458i −0.259277 0.0842441i
\(582\) 553.765 195.786i 0.951487 0.336401i
\(583\) 0 0
\(584\) 197.990i 0.339024i
\(585\) 533.730 204.265i 0.912359 0.349171i
\(586\) 45.3050 32.9160i 0.0773122 0.0561706i
\(587\) 565.253 778.004i 0.962952 1.32539i 0.0174238 0.999848i \(-0.494454\pi\)
0.945528 0.325541i \(-0.105546\pi\)
\(588\) −50.0005 + 38.3269i −0.0850349 + 0.0651817i
\(589\) 138.748 + 427.023i 0.235566 + 0.724997i
\(590\) −149.293 + 205.484i −0.253039 + 0.348278i
\(591\) −395.912 + 575.436i −0.669901 + 0.973664i
\(592\) 58.7132 180.701i 0.0991778 0.305238i
\(593\) 232.826i 0.392624i −0.980541 0.196312i \(-0.937103\pi\)
0.980541 0.196312i \(-0.0628966\pi\)
\(594\) 0 0
\(595\) −448.000 −0.752941
\(596\) −60.3902 19.6220i −0.101326 0.0329228i
\(597\) 548.678 + 377.502i 0.919059 + 0.632332i
\(598\) 1495.06 + 1086.23i 2.50011 + 1.81643i
\(599\) 831.208 270.076i 1.38766 0.450878i 0.482480 0.875907i \(-0.339736\pi\)
0.905180 + 0.425029i \(0.139736\pi\)
\(600\) 82.0884 + 107.091i 0.136814 + 0.178485i
\(601\) 472.222 + 343.089i 0.785727 + 0.570864i 0.906692 0.421793i \(-0.138599\pi\)
−0.120965 + 0.992657i \(0.538599\pi\)
\(602\) −174.175 239.731i −0.289327 0.398225i
\(603\) −135.109 353.029i −0.224061 0.585455i
\(604\) 202.049 0.334519
\(605\) 0 0
\(606\) 392.000 + 1108.74i 0.646865 + 1.82961i
\(607\) 261.309 804.227i 0.430493 1.32492i −0.467142 0.884182i \(-0.654716\pi\)
0.897635 0.440739i \(-0.145284\pi\)
\(608\) 349.127 + 480.532i 0.574221 + 0.790348i
\(609\) 455.540 + 135.186i 0.748013 + 0.221980i
\(610\) −224.964 692.369i −0.368794 1.13503i
\(611\) 785.073 255.086i 1.28490 0.417489i
\(612\) −29.3357 570.729i −0.0479342 0.932563i
\(613\) −478.276 + 347.488i −0.780222 + 0.566865i −0.905046 0.425314i \(-0.860164\pi\)
0.124824 + 0.992179i \(0.460164\pi\)
\(614\) 376.599 + 122.364i 0.613354 + 0.199291i
\(615\) −119.733 338.656i −0.194688 0.550660i
\(616\) 0 0
\(617\) 435.578i 0.705961i 0.935631 + 0.352980i \(0.114832\pi\)
−0.935631 + 0.352980i \(0.885168\pi\)
\(618\) −6.92878 269.778i −0.0112116 0.436533i
\(619\) 677.956 492.564i 1.09524 0.795742i 0.114967 0.993369i \(-0.463324\pi\)
0.980277 + 0.197628i \(0.0633237\pi\)
\(620\) 149.626 205.942i 0.241332 0.332165i
\(621\) −816.536 197.335i −1.31487 0.317769i
\(622\) −20.8122 64.0535i −0.0334602 0.102980i
\(623\) −273.704 + 376.721i −0.439331 + 0.604688i
\(624\) −1054.23 725.330i −1.68947 1.16239i
\(625\) 27.5025 84.6440i 0.0440040 0.135430i
\(626\) 1053.01i 1.68212i
\(627\) 0 0
\(628\) −258.000 −0.410828
\(629\) −201.301 65.4066i −0.320033 0.103985i
\(630\) −130.934 + 486.695i −0.207831 + 0.772532i
\(631\) −205.490 149.297i −0.325658 0.236605i 0.412928 0.910764i \(-0.364506\pi\)
−0.738586 + 0.674159i \(0.764506\pi\)
\(632\) −56.4899 + 18.3547i −0.0893827 + 0.0290422i
\(633\) −926.515 + 710.201i −1.46369 + 1.12196i
\(634\) 889.957 + 646.592i 1.40372 + 1.01986i
\(635\) 111.970 + 154.113i 0.176330 + 0.242698i
\(636\) 9.80361 + 381.712i 0.0154145 + 0.600176i
\(637\) 157.150 0.246703
\(638\) 0 0
\(639\) 368.000 + 455.377i 0.575900 + 0.712640i
\(640\) −71.6866 + 220.629i −0.112010 + 0.344732i
\(641\) −69.8253 96.1063i −0.108932 0.149932i 0.751070 0.660222i \(-0.229538\pi\)
−0.860002 + 0.510290i \(0.829538\pi\)
\(642\) 95.5910 322.115i 0.148896 0.501737i
\(643\) −135.349 416.563i −0.210497 0.647843i −0.999443 0.0333799i \(-0.989373\pi\)
0.788946 0.614463i \(-0.210627\pi\)
\(644\) −664.292 + 215.842i −1.03151 + 0.335158i
\(645\) −121.748 36.1300i −0.188757 0.0560155i
\(646\) 678.062 492.641i 1.04963 0.762602i
\(647\) −314.729 102.262i −0.486444 0.158055i 0.0555189 0.998458i \(-0.482319\pi\)
−0.541963 + 0.840402i \(0.682319\pi\)
\(648\) 209.533 + 44.9778i 0.323353 + 0.0694101i
\(649\) 0 0
\(650\) 1009.75i 1.55346i
\(651\) 673.276 17.2920i 1.03422 0.0265621i
\(652\) −33.9787 + 24.6870i −0.0521146 + 0.0378635i
\(653\) −367.414 + 505.702i −0.562656 + 0.774429i −0.991661 0.128873i \(-0.958864\pi\)
0.429005 + 0.903302i \(0.358864\pi\)
\(654\) 325.214 + 424.268i 0.497269 + 0.648729i
\(655\) 203.497 + 626.301i 0.310683 + 0.956185i
\(656\) −472.761 + 650.699i −0.720672 + 0.991919i
\(657\) 174.968 650.374i 0.266313 0.989915i
\(658\) −224.964 + 692.369i −0.341891 + 1.05223i
\(659\) 465.652i 0.706604i 0.935509 + 0.353302i \(0.114941\pi\)
−0.935509 + 0.353302i \(0.885059\pi\)
\(660\) 0 0
\(661\) −394.000 −0.596067 −0.298033 0.954555i \(-0.596331\pi\)
−0.298033 + 0.954555i \(0.596331\pi\)
\(662\) 447.894 + 145.530i 0.676577 + 0.219833i
\(663\) −808.018 + 1174.41i −1.21873 + 1.77136i
\(664\) 45.3050 + 32.9160i 0.0682303 + 0.0495723i
\(665\) −301.279 + 97.8916i −0.453052 + 0.147205i
\(666\) −129.889 + 199.572i −0.195028 + 0.299657i
\(667\) 532.763 + 387.075i 0.798746 + 0.580323i
\(668\) −149.293 205.484i −0.223492 0.307611i
\(669\) 137.955 3.54313i 0.206210 0.00529615i
\(670\) −314.299 −0.469103
\(671\) 0 0
\(672\) 840.000 296.985i 1.25000 0.441942i
\(673\) −272.872 + 839.813i −0.405456 + 1.24786i 0.515059 + 0.857155i \(0.327770\pi\)
−0.920514 + 0.390709i \(0.872230\pi\)
\(674\) 395.677 + 544.602i 0.587058 + 0.808016i
\(675\) −175.012 424.325i −0.259278 0.628629i
\(676\) −310.562 955.812i −0.459411 1.41392i
\(677\) 865.593 281.248i 1.27857 0.415433i 0.410495 0.911863i \(-0.365356\pi\)
0.868077 + 0.496430i \(0.165356\pi\)
\(678\) 268.251 903.934i 0.395651 1.33324i
\(679\) 448.006 325.495i 0.659802 0.479374i
\(680\) 150.640 + 48.9458i 0.221529 + 0.0719791i
\(681\) −598.665 + 211.660i −0.879097 + 0.310808i
\(682\) 0 0
\(683\) 435.578i 0.637742i −0.947798 0.318871i \(-0.896696\pi\)
0.947798 0.318871i \(-0.103304\pi\)
\(684\) −144.437 377.404i −0.211165 0.551761i
\(685\) 362.440 263.328i 0.529109 0.384420i
\(686\) 488.777 672.744i 0.712503 0.980677i
\(687\) 280.955 215.360i 0.408960 0.313480i
\(688\) 87.8739 + 270.448i 0.127724 + 0.393093i
\(689\) 559.848 770.565i 0.812552 1.11838i
\(690\) −395.912 + 575.436i −0.573785 + 0.833965i
\(691\) 131.641 405.150i 0.190508 0.586324i −0.809491 0.587132i \(-0.800257\pi\)
1.00000 0.000807501i \(0.000257036\pi\)
\(692\) 571.482i 0.825841i
\(693\) 0 0
\(694\) −1288.00 −1.85591
\(695\) 241.561 + 78.4879i 0.347570 + 0.112932i
\(696\) −138.405 95.2258i −0.198858 0.136819i
\(697\) 724.879 + 526.656i 1.04000 + 0.755603i
\(698\) 169.470 55.0640i 0.242793 0.0788883i
\(699\) −154.519 201.583i −0.221058 0.288388i
\(700\) −308.761 224.328i −0.441087 0.320468i
\(701\) −161.734 222.608i −0.230719 0.317557i 0.677924 0.735132i \(-0.262880\pi\)
−0.908642 + 0.417575i \(0.862880\pi\)
\(702\) 1039.69 + 1221.04i 1.48104 + 1.73938i
\(703\) −149.666 −0.212897
\(704\) 0 0
\(705\) 104.000 + 294.156i 0.147518 + 0.417243i
\(706\) 101.749 313.150i 0.144120 0.443556i
\(707\) 651.703 + 896.992i 0.921786 + 1.26873i
\(708\) −292.847 86.9053i −0.413626 0.122748i
\(709\) −12.9787 39.9444i −0.0183057 0.0563390i 0.941486 0.337051i \(-0.109429\pi\)
−0.959792 + 0.280712i \(0.909429\pi\)
\(710\) 462.992 150.435i 0.652101 0.211880i
\(711\) 201.783 10.3717i 0.283802 0.0145876i
\(712\) 133.191 96.7688i 0.187066 0.135911i
\(713\) 887.698 + 288.431i 1.24502 + 0.404531i
\(714\) −419.066 1185.30i −0.586927 1.66008i
\(715\) 0 0
\(716\) 950.352i 1.32731i
\(717\) −3.26060 126.954i −0.00454756 0.177063i
\(718\) 543.659 394.992i 0.757186 0.550128i
\(719\) 254.364 350.102i 0.353774 0.486928i −0.594627 0.804002i \(-0.702700\pi\)
0.948401 + 0.317073i \(0.102700\pi\)
\(720\) 263.828 405.367i 0.366428 0.563010i
\(721\) −78.6240 241.980i −0.109049 0.335617i
\(722\) −213.053 + 293.243i −0.295088 + 0.406153i
\(723\) 369.904 + 254.502i 0.511624 + 0.352008i
\(724\) 242.887 747.530i 0.335480 1.03250i
\(725\) 359.822i 0.496306i
\(726\) 0 0
\(727\) 1102.00 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(728\) −422.732 137.354i −0.580675 0.188673i
\(729\) −648.543 332.915i −0.889634 0.456674i
\(730\) −453.050 329.160i −0.620616 0.450904i
\(731\) 301.279 97.8916i 0.412147 0.133915i
\(732\) 694.886 532.651i 0.949298 0.727665i
\(733\) −393.518 285.908i −0.536860 0.390052i 0.286058 0.958212i \(-0.407655\pi\)
−0.822918 + 0.568161i \(0.807655\pi\)
\(734\) 220.829 + 303.945i 0.300857 + 0.414094i
\(735\) 1.52501 + 59.3774i 0.00207484 + 0.0807856i
\(736\) 1234.75 1.67765
\(737\) 0 0
\(738\) 784.000 633.568i 1.06233 0.858493i
\(739\) −323.746 + 996.388i −0.438087 + 1.34829i 0.451804 + 0.892117i \(0.350781\pi\)
−0.889890 + 0.456175i \(0.849219\pi\)
\(740\) 49.8752 + 68.6474i 0.0673990 + 0.0927667i
\(741\) −286.773 + 966.346i −0.387008 + 1.30411i
\(742\) 259.574 + 798.887i 0.349831 + 1.07667i
\(743\) −241.561 + 78.4879i −0.325116 + 0.105636i −0.467027 0.884243i \(-0.654675\pi\)
0.141912 + 0.989879i \(0.454675\pi\)
\(744\) −228.278 67.7437i −0.306825 0.0910534i
\(745\) −48.4330 + 35.1887i −0.0650108 + 0.0472331i
\(746\) −1073.31 348.739i −1.43875 0.467478i
\(747\) −119.733 148.162i −0.160285 0.198343i
\(748\) 0 0
\(749\) 316.784i 0.422942i
\(750\) −942.587 + 24.2087i −1.25678 + 0.0322783i
\(751\) −283.156 + 205.725i −0.377039 + 0.273935i −0.760124 0.649779i \(-0.774862\pi\)
0.383085 + 0.923713i \(0.374862\pi\)
\(752\) 410.639 565.197i 0.546063 0.751591i
\(753\) −92.9183 121.220i −0.123398 0.160982i
\(754\) −388.495 1195.67i −0.515246 1.58576i
\(755\) 111.970 154.113i 0.148304 0.204123i
\(756\) −604.351 + 46.6472i −0.799406 + 0.0617027i
\(757\) 90.8510 279.611i 0.120015 0.369367i −0.872945 0.487818i \(-0.837793\pi\)
0.992960 + 0.118451i \(0.0377930\pi\)
\(758\) 926.013i 1.22165i
\(759\) 0 0
\(760\) 112.000 0.147368
\(761\) −744.813 242.004i −0.978729 0.318008i −0.224394 0.974498i \(-0.572040\pi\)
−0.754335 + 0.656490i \(0.772040\pi\)
\(762\) −303.007 + 440.403i −0.397646 + 0.577957i
\(763\) 407.745 + 296.244i 0.534397 + 0.388262i
\(764\) 169.470 55.0640i 0.221819 0.0720733i
\(765\) −451.580 293.905i −0.590300 0.384189i
\(766\) −1107.91 804.941i −1.44635 1.05084i
\(767\) 447.878 + 616.452i 0.583935 + 0.803718i
\(768\) −998.671 + 25.6491i −1.30035 + 0.0333973i
\(769\) −838.131 −1.08990 −0.544949 0.838469i \(-0.683451\pi\)
−0.544949 + 0.838469i \(0.683451\pi\)
\(770\) 0 0
\(771\) −272.000 + 96.1665i −0.352789 + 0.124730i
\(772\) −138.748 + 427.023i −0.179726 + 0.553139i
\(773\) 241.064 + 331.796i 0.311855 + 0.429231i 0.935959 0.352110i \(-0.114536\pi\)
−0.624104 + 0.781341i \(0.714536\pi\)
\(774\) −18.2940 355.912i −0.0236357 0.459835i
\(775\) 157.599 + 485.039i 0.203353 + 0.625857i
\(776\) −186.203 + 60.5011i −0.239953 + 0.0779653i
\(777\) −63.8694 + 215.222i −0.0822000 + 0.276992i
\(778\) −938.390 + 681.780i −1.20616 + 0.876324i
\(779\) 602.559 + 195.783i 0.773503 + 0.251326i
\(780\) 538.799 190.494i 0.690768 0.244223i
\(781\) 0 0
\(782\) 1742.31i 2.22802i
\(783\) 370.493 + 435.117i 0.473171 + 0.555705i
\(784\) 107.599 78.1754i 0.137244 0.0997136i
\(785\) −142.976 + 196.789i −0.182135 + 0.250687i
\(786\) −1466.68 + 1124.25i −1.86601 + 1.43035i
\(787\) 97.1238 + 298.916i 0.123410 + 0.379817i 0.993608 0.112885i \(-0.0360091\pi\)
−0.870198 + 0.492702i \(0.836009\pi\)
\(788\) −410.555 + 565.081i −0.521009 + 0.717108i
\(789\) 791.823 1150.87i 1.00358 1.45865i
\(790\) 51.9149 159.777i 0.0657150 0.202250i
\(791\) 888.972i 1.12386i
\(792\) 0 0
\(793\) −2184.00 −2.75410
\(794\) 1112.19 + 361.371i 1.40074 + 0.455128i
\(795\) 296.583 + 204.055i 0.373060 + 0.256673i
\(796\) 538.805 + 391.465i 0.676891 + 0.491790i
\(797\) −234.029 + 76.0408i −0.293638 + 0.0954088i −0.452132 0.891951i \(-0.649336\pi\)
0.158494 + 0.987360i \(0.449336\pi\)
\(798\) −540.818 705.541i −0.677717 0.884137i
\(799\) −629.629 457.453i −0.788022 0.572531i
\(800\) 396.559 + 545.817i 0.495699 + 0.682271i
\(801\) −523.033 + 200.171i −0.652975 + 0.249901i
\(802\) −1391.90 −1.73553
\(803\) 0 0
\(804\) −126.000 356.382i −0.156716 0.443261i
\(805\) −203.497 + 626.301i −0.252792 + 0.778013i
\(806\) −1047.38 1441.59i −1.29948 1.78858i
\(807\) −1065.64 316.239i −1.32049 0.391870i
\(808\) −121.135 372.814i −0.149919 0.461404i
\(809\) −241.561 + 78.4879i −0.298592 + 0.0970184i −0.454482 0.890756i \(-0.650176\pi\)
0.155890 + 0.987774i \(0.450176\pi\)
\(810\) −451.270 + 404.687i −0.557124 + 0.499613i
\(811\) 787.037 571.816i 0.970452 0.705075i 0.0148976 0.999889i \(-0.495258\pi\)
0.955555 + 0.294814i \(0.0952578\pi\)
\(812\) 451.919 + 146.837i 0.556550 + 0.180834i
\(813\) 336.749 + 952.470i 0.414206 + 1.17155i
\(814\) 0 0
\(815\) 39.5980i 0.0485865i
\(816\) 30.9757 + 1206.06i 0.0379604 + 1.47802i
\(817\) 181.220 131.664i 0.221811 0.161155i
\(818\) −349.127 + 480.532i −0.426805 + 0.587447i
\(819\) 1267.24 + 824.768i 1.54730 + 1.00704i
\(820\) −110.999 341.619i −0.135364 0.416608i
\(821\) 286.145 393.844i 0.348532 0.479713i −0.598377 0.801215i \(-0.704188\pi\)
0.946909 + 0.321502i \(0.104188\pi\)
\(822\) 1035.73 + 712.604i 1.26001 + 0.866915i
\(823\) 321.996 991.001i 0.391246 1.20413i −0.540600 0.841280i \(-0.681803\pi\)
0.931847 0.362853i \(-0.118197\pi\)
\(824\) 89.9555i 0.109169i
\(825\) 0 0
\(826\) −672.000 −0.813559
\(827\) −1187.67 385.899i −1.43612 0.466625i −0.515437 0.856927i \(-0.672370\pi\)
−0.920687 + 0.390303i \(0.872370\pi\)
\(828\) −811.200 218.234i −0.979710 0.263568i
\(829\) −953.022 692.411i −1.14960 0.835236i −0.161176 0.986926i \(-0.551529\pi\)
−0.988428 + 0.151689i \(0.951529\pi\)
\(830\) −150.640 + 48.9458i −0.181494 + 0.0589708i
\(831\) 53.4528 40.9731i 0.0643235 0.0493058i
\(832\) −526.709 382.677i −0.633064 0.459948i
\(833\) −87.0875 119.866i −0.104547 0.143896i
\(834\) 18.3001 + 712.529i 0.0219425 + 0.854351i
\(835\) −239.466 −0.286786
\(836\) 0 0
\(837\) 690.000 + 424.264i 0.824373 + 0.506887i
\(838\) 559.618 1722.33i 0.667802 2.05528i
\(839\) −600.165 826.057i −0.715334 0.984573i −0.999666 0.0258470i \(-0.991772\pi\)
0.284332 0.958726i \(-0.408228\pi\)
\(840\) 47.7955 161.058i 0.0568994 0.191735i
\(841\) 121.444 + 373.765i 0.144404 + 0.444430i
\(842\) 669.325 217.477i 0.794923 0.258286i
\(843\) −60.8741 18.0650i −0.0722113 0.0214294i
\(844\) −944.444 + 686.179i −1.11901 + 0.813008i
\(845\) −901.148 292.801i −1.06645 0.346510i
\(846\) −680.982 + 550.316i −0.804943 + 0.650492i
\(847\) 0 0
\(848\) 806.102i 0.950592i
\(849\) −538.621 + 13.8336i −0.634418 + 0.0162939i
\(850\) 770.184 559.572i 0.906099 0.658319i
\(851\) −182.876 + 251.707i −0.214895 + 0.295778i
\(852\) 356.187 + 464.675i 0.418060 + 0.545393i
\(853\) −182.685 562.247i −0.214168 0.659141i −0.999212 0.0397007i \(-0.987360\pi\)
0.785044 0.619440i \(-0.212640\pi\)
\(854\) 1132.14 1558.25i 1.32569 1.82465i
\(855\) −367.907 98.9766i −0.430301 0.115762i
\(856\) −34.6099 + 106.518i −0.0404321 + 0.124437i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 706.000 0.821886 0.410943 0.911661i \(-0.365200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(860\) −120.780 39.2439i −0.140442 0.0456325i
\(861\) 538.678 782.939i 0.625643 0.909337i
\(862\) −1177.93 855.815i −1.36651 0.992825i
\(863\) −470.749 + 152.956i −0.545480 + 0.177237i −0.568777 0.822491i \(-0.692583\pi\)
0.0232978 + 0.999729i \(0.492583\pi\)
\(864\) 1041.54 + 251.713i 1.20549 + 0.291335i
\(865\) 435.897 + 316.698i 0.503927 + 0.366125i
\(866\) −1147.69 1579.66i −1.32528 1.82409i
\(867\) 476.843 12.2469i 0.549992 0.0141256i
\(868\) 673.498 0.775920
\(869\) 0 0
\(870\) 448.000 158.392i 0.514943 0.182060i
\(871\) −291.371 + 896.749i −0.334525 + 1.02956i
\(872\) −104.738 144.159i −0.120112 0.165320i
\(873\) 665.122 34.1876i 0.761881 0.0391610i
\(874\) −380.709 1171.70i −0.435594 1.34062i
\(875\) −845.463 + 274.708i −0.966243 + 0.313952i
\(876\) 191.608 645.667i 0.218731 0.737063i
\(877\) −78.7037 + 57.1816i −0.0897419 + 0.0652013i −0.631751 0.775171i \(-0.717664\pi\)
0.542010 + 0.840372i \(0.317664\pi\)
\(878\) −1073.31 348.739i −1.22245 0.397197i
\(879\) 59.8665 21.1660i 0.0681075 0.0240796i
\(880\) 0 0
\(881\) 1493.41i 1.69513i 0.530692 + 0.847565i \(0.321932\pi\)
−0.530692 + 0.847565i \(0.678068\pi\)
\(882\) −155.671 + 59.5773i −0.176498 + 0.0675479i
\(883\) −69.5755 + 50.5495i −0.0787944 + 0.0572475i −0.626485 0.779433i \(-0.715507\pi\)
0.547691 + 0.836681i \(0.315507\pi\)
\(884\) −837.904 + 1153.28i −0.947855 + 1.30461i
\(885\) −228.574 + 175.209i −0.258275 + 0.197976i
\(886\) −97.1238 298.916i −0.109621 0.337377i
\(887\) 149.293 205.484i 0.168312 0.231662i −0.716526 0.697560i \(-0.754269\pi\)
0.884838 + 0.465899i \(0.154269\pi\)
\(888\) 44.9900 65.3904i 0.0506644 0.0736378i
\(889\) −155.745 + 479.332i −0.175191 + 0.539182i
\(890\) 465.652i 0.523205i
\(891\) 0 0
\(892\) 138.000 0.154709
\(893\) −523.382 170.057i −0.586094 0.190433i
\(894\) −138.405 95.2258i −0.154816 0.106517i
\(895\) 724.879 + 526.656i 0.809921 + 0.588442i
\(896\) −583.729 + 189.665i −0.651483 + 0.211680i
\(897\) 1274.78 + 1663.06i 1.42116 + 1.85403i
\(898\) 1089.74 + 791.745i 1.21352 + 0.881676i
\(899\) −373.232 513.710i −0.415164 0.571424i
\(900\) −164.060 428.678i −0.182289 0.476309i
\(901\) −897.998 −0.996668
\(902\) 0 0
\(903\) −112.000 316.784i −0.124031 0.350813i
\(904\) −97.1238 + 298.916i −0.107438 + 0.330660i
\(905\) −435.577 599.520i −0.481301 0.662453i
\(906\) 512.483 + 152.084i 0.565654 + 0.167863i
\(907\) −298.510 918.721i −0.329118 1.01292i −0.969547 0.244905i \(-0.921243\pi\)
0.640429 0.768018i \(-0.278757\pi\)
\(908\) −603.902 + 196.220i −0.665090 + 0.216101i
\(909\) 68.4501 + 1331.70i 0.0753026 + 1.46502i
\(910\) 1017.09 738.962i 1.11769 0.812046i
\(911\) −1379.97 448.378i −1.51478 0.492183i −0.570494 0.821302i \(-0.693248\pi\)
−0.944288 + 0.329119i \(0.893248\pi\)
\(912\) 284.366 + 804.308i 0.311805 + 0.881917i
\(913\) 0 0
\(914\) 1781.91i 1.94957i
\(915\) −21.1939 825.202i −0.0231627 0.901860i
\(916\) 286.392 208.076i 0.312655 0.227157i
\(917\) −1024.10 + 1409.56i −1.11680 + 1.53714i
\(918\) 355.184 1469.69i 0.386911 1.60097i
\(919\) 122.561 + 377.204i 0.133363 + 0.410450i 0.995332 0.0965115i \(-0.0307685\pi\)
−0.861968 + 0.506962i \(0.830768\pi\)
\(920\) 136.852 188.360i 0.148752 0.204739i
\(921\) 369.904 + 254.502i 0.401633 + 0.276332i
\(922\) 571.063 1757.55i 0.619375 1.90624i
\(923\) 1460.45i 1.58229i
\(924\) 0 0
\(925\) −170.000 −0.183784
\(926\) 2219.34 + 721.107i 2.39670 + 0.778734i
\(927\) 79.4955 295.494i 0.0857557 0.318763i
\(928\) −679.574 493.740i −0.732300 0.532047i
\(929\) 1452.60 471.977i 1.56361 0.508049i 0.605843 0.795584i \(-0.292836\pi\)
0.957770 + 0.287535i \(0.0928358\pi\)
\(930\) 534.528 409.731i 0.574761 0.440571i
\(931\) −84.7578 61.5801i −0.0910395 0.0661441i
\(932\) −149.293 205.484i −0.160185 0.220476i
\(933\) −1.96072 76.3424i −0.00210153 0.0818246i
\(934\) 1406.86 1.50628
\(935\) 0 0
\(936\) −336.000 415.779i −0.358974 0.444208i
\(937\) 388.495 1195.67i 0.414616 1.27606i −0.497978 0.867190i \(-0.665924\pi\)
0.912594 0.408867i \(-0.134076\pi\)
\(938\) −488.777 672.744i −0.521085 0.717211i
\(939\) −339.689 + 1144.66i −0.361756 + 1.21902i
\(940\) 96.4133 + 296.730i 0.102567 + 0.315670i
\(941\) −462.992 + 150.435i −0.492021 + 0.159867i −0.544510 0.838754i \(-0.683284\pi\)
0.0524893 + 0.998621i \(0.483284\pi\)
\(942\) −654.397 194.199i −0.694689 0.206156i
\(943\) 1065.53 774.150i 1.12993 0.820944i
\(944\) 613.319 + 199.279i 0.649702 + 0.211101i
\(945\) −299.333 + 486.818i −0.316754 + 0.515152i
\(946\) 0 0
\(947\) 435.578i 0.459955i 0.973196 + 0.229978i \(0.0738653\pi\)
−0.973196 + 0.229978i \(0.926135\pi\)
\(948\) 201.983 5.18759i 0.213062 0.00547214i
\(949\) −1359.15 + 987.479i −1.43219 + 1.04055i
\(950\) 395.677 544.602i 0.416502 0.573266i
\(951\) 758.833 + 989.960i 0.797932 + 1.04097i
\(952\) 129.498 + 398.555i 0.136028 + 0.418650i
\(953\) −945.521 + 1301.40i −0.992152 + 1.36558i −0.0621339 + 0.998068i \(0.519791\pi\)
−0.930018 + 0.367513i \(0.880209\pi\)
\(954\) −262.451 + 975.561i −0.275106 + 1.02260i
\(955\) 51.9149 159.777i 0.0543611 0.167306i
\(956\) 126.996i 0.132841i
\(957\) 0 0
\(958\) 1792.00 1.87056
\(959\) 1127.28 + 366.277i 1.17548 + 0.381936i
\(960\) 139.479 202.725i 0.145291 0.211172i
\(961\) 49.3500 + 35.8549i 0.0513528 + 0.0373100i
\(962\) 564.899 183.547i 0.587213 0.190797i
\(963\) 207.822 319.315i 0.215807 0.331584i
\(964\) 363.248 + 263.915i 0.376813 + 0.273771i
\(965\) 248.821 + 342.473i 0.257846 + 0.354895i
\(966\) −1847.39 + 47.4471i −1.91241 + 0.0491171i
\(967\) 1055.15 1.09116 0.545578 0.838060i \(-0.316310\pi\)
0.545578 + 0.838060i \(0.316310\pi\)
\(968\) 0 0
\(969\) 896.000 316.784i 0.924665 0.326918i
\(970\) 171.123 526.662i 0.176415 0.542951i
\(971\) 149.626 + 205.942i 0.154094 + 0.212093i 0.879084 0.476667i \(-0.158155\pi\)
−0.724989 + 0.688760i \(0.758155\pi\)
\(972\) −639.782 349.457i −0.658212 0.359523i
\(973\) 207.659 + 639.110i 0.213422 + 0.656845i
\(974\) −880.691 + 286.154i −0.904200 + 0.293792i
\(975\) −325.734 + 1097.63i −0.334086 + 1.12578i
\(976\) −1495.37 + 1086.45i −1.53214 + 1.11317i
\(977\) 1371.90 + 445.756i 1.40419 + 0.456250i 0.910544 0.413411i \(-0.135663\pi\)
0.493649 + 0.869661i \(0.335663\pi\)
\(978\) −104.766 + 37.0405i −0.107123 + 0.0378737i
\(979\) 0 0
\(980\) 59.3970i 0.0606092i
\(981\) 216.656 + 566.106i 0.220852 + 0.577071i
\(982\) 543.659 394.992i 0.553625 0.402232i
\(983\) −403.989 + 556.044i −0.410976 + 0.565660i −0.963456 0.267866i \(-0.913682\pi\)
0.552480 + 0.833526i \(0.313682\pi\)
\(984\) −266.669 + 204.410i −0.271006 + 0.207734i
\(985\) 203.497 + 626.301i 0.206596 + 0.635838i
\(986\) −696.700 + 958.925i −0.706592 + 0.972541i
\(987\) −467.896 + 680.060i −0.474058 + 0.689017i
\(988\) −311.489 + 958.665i −0.315272 + 0.970309i
\(989\) 465.652i 0.470831i
\(990\) 0 0
\(991\) 574.000 0.579213 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) −1132.32 367.912i −1.14145 0.370879i
\(993\) 439.931 + 302.682i 0.443033 + 0.304816i
\(994\) 1042.01 + 757.067i 1.04830 + 0.761637i
\(995\) 597.179 194.035i 0.600180 0.195010i
\(996\) −115.890 151.187i −0.116355 0.151795i
\(997\) 1071.58 + 778.549i 1.07481 + 0.780892i 0.976770 0.214291i \(-0.0687442\pi\)
0.0980354 + 0.995183i \(0.468744\pi\)
\(998\) 152.403 + 209.765i 0.152709 + 0.210185i
\(999\) −205.574 + 175.041i −0.205779 + 0.175217i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.k.251.4 16
3.2 odd 2 inner 363.3.h.k.251.1 16
11.2 odd 10 inner 363.3.h.k.245.4 16
11.3 even 5 inner 363.3.h.k.323.3 16
11.4 even 5 363.3.b.i.122.3 yes 4
11.5 even 5 inner 363.3.h.k.269.1 16
11.6 odd 10 inner 363.3.h.k.269.3 16
11.7 odd 10 363.3.b.i.122.1 4
11.8 odd 10 inner 363.3.h.k.323.1 16
11.9 even 5 inner 363.3.h.k.245.2 16
11.10 odd 2 inner 363.3.h.k.251.2 16
33.2 even 10 inner 363.3.h.k.245.1 16
33.5 odd 10 inner 363.3.h.k.269.4 16
33.8 even 10 inner 363.3.h.k.323.4 16
33.14 odd 10 inner 363.3.h.k.323.2 16
33.17 even 10 inner 363.3.h.k.269.2 16
33.20 odd 10 inner 363.3.h.k.245.3 16
33.26 odd 10 363.3.b.i.122.2 yes 4
33.29 even 10 363.3.b.i.122.4 yes 4
33.32 even 2 inner 363.3.h.k.251.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.i.122.1 4 11.7 odd 10
363.3.b.i.122.2 yes 4 33.26 odd 10
363.3.b.i.122.3 yes 4 11.4 even 5
363.3.b.i.122.4 yes 4 33.29 even 10
363.3.h.k.245.1 16 33.2 even 10 inner
363.3.h.k.245.2 16 11.9 even 5 inner
363.3.h.k.245.3 16 33.20 odd 10 inner
363.3.h.k.245.4 16 11.2 odd 10 inner
363.3.h.k.251.1 16 3.2 odd 2 inner
363.3.h.k.251.2 16 11.10 odd 2 inner
363.3.h.k.251.3 16 33.32 even 2 inner
363.3.h.k.251.4 16 1.1 even 1 trivial
363.3.h.k.269.1 16 11.5 even 5 inner
363.3.h.k.269.2 16 33.17 even 10 inner
363.3.h.k.269.3 16 11.6 odd 10 inner
363.3.h.k.269.4 16 33.5 odd 10 inner
363.3.h.k.323.1 16 11.8 odd 10 inner
363.3.h.k.323.2 16 33.14 odd 10 inner
363.3.h.k.323.3 16 11.3 even 5 inner
363.3.h.k.323.4 16 33.8 even 10 inner