Properties

Label 363.3.h.k.251.3
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.23612624896000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.3
Root \(-2.75764 + 0.370279i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.k.269.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.51626 + 0.817582i) q^{2} +(-0.853491 - 2.87603i) q^{3} +(2.42705 + 1.76336i) q^{4} +(-2.68999 + 0.874032i) q^{5} +(0.203788 - 7.93464i) q^{6} +(-6.05413 - 4.39858i) q^{7} +(-1.55513 - 2.14046i) q^{8} +(-7.54311 + 4.90933i) q^{9} -7.48331 q^{10} +(3.00000 - 8.48528i) q^{12} +(-6.93741 + 21.3512i) q^{13} +(-11.6376 - 16.0177i) q^{14} +(4.80963 + 6.99053i) q^{15} +(-5.87132 - 18.0701i) q^{16} +(-20.1301 + 6.54066i) q^{17} +(-22.9942 + 6.18604i) q^{18} +(12.1083 - 8.79716i) q^{19} +(-8.06998 - 2.62210i) q^{20} +(-7.48331 + 21.1660i) q^{21} -31.1127i q^{23} +(-4.82873 + 6.29947i) q^{24} +(-13.7533 + 9.99235i) q^{25} +(-34.9127 + 48.0532i) q^{26} +(20.5574 + 17.5041i) q^{27} +(-6.93741 - 21.3512i) q^{28} +(12.4411 - 17.1237i) q^{29} +(6.38694 + 21.5222i) q^{30} +(9.27051 - 28.5317i) q^{31} -39.6863i q^{32} -56.0000 q^{34} +(20.1301 + 6.54066i) q^{35} +(-26.9644 - 1.38598i) q^{36} +(8.09017 + 5.87785i) q^{37} +(37.6599 - 12.2364i) q^{38} +(67.3276 + 1.72920i) q^{39} +(6.05413 + 4.39858i) q^{40} +(-24.8821 - 34.2473i) q^{41} +(-36.1349 + 47.1409i) q^{42} +14.9666 q^{43} +(16.0000 - 19.7990i) q^{45} +(25.4372 - 78.2876i) q^{46} +(-21.6126 - 29.7472i) q^{47} +(-46.9590 + 32.3087i) q^{48} +(2.16312 + 6.65740i) q^{49} +(-42.7764 + 13.8989i) q^{50} +(35.9920 + 52.3123i) q^{51} +(-54.4872 + 39.5872i) q^{52} +(-40.3499 - 13.1105i) q^{53} +(37.4166 + 60.8523i) q^{54} +19.7990i q^{56} +(-35.6352 - 27.3154i) q^{57} +(45.3050 - 32.9160i) q^{58} +(19.9501 - 27.4589i) q^{59} +(-0.653574 + 25.4475i) q^{60} +(30.0621 + 92.5217i) q^{61} +(46.6540 - 64.2137i) q^{62} +(67.2610 + 3.45725i) q^{63} +(8.96149 - 27.5806i) q^{64} -63.4980i q^{65} -42.0000 q^{67} +(-60.3902 - 19.6220i) q^{68} +(-89.4811 + 26.5544i) q^{69} +(45.3050 + 32.9160i) q^{70} +(-61.8699 + 20.1027i) q^{71} +(22.2388 + 8.51104i) q^{72} +(60.5413 + 43.9858i) q^{73} +(15.5513 + 21.4046i) q^{74} +(40.4766 + 31.0265i) q^{75} +44.8999 q^{76} +(168.000 + 59.3970i) q^{78} +(-6.93741 + 21.3512i) q^{79} +(31.5876 + 43.4767i) q^{80} +(32.7969 - 74.0632i) q^{81} +(-34.6099 - 106.518i) q^{82} +(-20.1301 + 6.54066i) q^{83} +(-55.4856 + 38.1752i) q^{84} +(48.4330 - 35.1887i) q^{85} +(37.6599 + 12.2364i) q^{86} +(-59.8665 - 21.1660i) q^{87} -62.2254i q^{89} +(56.4474 - 36.7381i) q^{90} +(135.915 - 98.7479i) q^{91} +(54.8628 - 75.5121i) q^{92} +(-89.9703 - 2.31073i) q^{93} +(-30.0621 - 92.5217i) q^{94} +(-24.8821 + 34.2473i) q^{95} +(-114.139 + 33.8719i) q^{96} +(22.8673 - 70.3782i) q^{97} +18.5203i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 12 q^{4} + 28 q^{9} + 48 q^{12} + 32 q^{15} + 76 q^{16} - 68 q^{25} - 92 q^{27} - 120 q^{31} - 896 q^{34} - 84 q^{36} + 40 q^{37} + 224 q^{42} + 256 q^{45} - 76 q^{48} - 28 q^{49} + 224 q^{58}+ \cdots - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51626 + 0.817582i 1.25813 + 0.408791i 0.860828 0.508897i \(-0.169947\pi\)
0.397302 + 0.917688i \(0.369947\pi\)
\(3\) −0.853491 2.87603i −0.284497 0.958677i
\(4\) 2.42705 + 1.76336i 0.606763 + 0.440839i
\(5\) −2.68999 + 0.874032i −0.537999 + 0.174806i −0.565398 0.824818i \(-0.691277\pi\)
0.0273993 + 0.999625i \(0.491277\pi\)
\(6\) 0.203788 7.93464i 0.0339646 1.32244i
\(7\) −6.05413 4.39858i −0.864876 0.628369i 0.0643314 0.997929i \(-0.479509\pi\)
−0.929207 + 0.369560i \(0.879509\pi\)
\(8\) −1.55513 2.14046i −0.194392 0.267557i
\(9\) −7.54311 + 4.90933i −0.838123 + 0.545481i
\(10\) −7.48331 −0.748331
\(11\) 0 0
\(12\) 3.00000 8.48528i 0.250000 0.707107i
\(13\) −6.93741 + 21.3512i −0.533647 + 1.64240i 0.212907 + 0.977073i \(0.431707\pi\)
−0.746554 + 0.665325i \(0.768293\pi\)
\(14\) −11.6376 16.0177i −0.831254 1.14412i
\(15\) 4.80963 + 6.99053i 0.320642 + 0.466035i
\(16\) −5.87132 18.0701i −0.366958 1.12938i
\(17\) −20.1301 + 6.54066i −1.18412 + 0.384745i −0.833896 0.551921i \(-0.813895\pi\)
−0.350225 + 0.936665i \(0.613895\pi\)
\(18\) −22.9942 + 6.18604i −1.27746 + 0.343669i
\(19\) 12.1083 8.79716i 0.637277 0.463009i −0.221637 0.975129i \(-0.571140\pi\)
0.858914 + 0.512121i \(0.171140\pi\)
\(20\) −8.06998 2.62210i −0.403499 0.131105i
\(21\) −7.48331 + 21.1660i −0.356348 + 1.00791i
\(22\) 0 0
\(23\) 31.1127i 1.35273i −0.736568 0.676363i \(-0.763555\pi\)
0.736568 0.676363i \(-0.236445\pi\)
\(24\) −4.82873 + 6.29947i −0.201197 + 0.262478i
\(25\) −13.7533 + 9.99235i −0.550132 + 0.399694i
\(26\) −34.9127 + 48.0532i −1.34279 + 1.84820i
\(27\) 20.5574 + 17.5041i 0.761384 + 0.648301i
\(28\) −6.93741 21.3512i −0.247765 0.762542i
\(29\) 12.4411 17.1237i 0.429002 0.590471i −0.538722 0.842484i \(-0.681093\pi\)
0.967724 + 0.252013i \(0.0810925\pi\)
\(30\) 6.38694 + 21.5222i 0.212898 + 0.717408i
\(31\) 9.27051 28.5317i 0.299049 0.920377i −0.682783 0.730622i \(-0.739230\pi\)
0.981831 0.189756i \(-0.0607696\pi\)
\(32\) 39.6863i 1.24020i
\(33\) 0 0
\(34\) −56.0000 −1.64706
\(35\) 20.1301 + 6.54066i 0.575145 + 0.186876i
\(36\) −26.9644 1.38598i −0.749011 0.0384995i
\(37\) 8.09017 + 5.87785i 0.218653 + 0.158861i 0.691720 0.722166i \(-0.256853\pi\)
−0.473067 + 0.881026i \(0.656853\pi\)
\(38\) 37.6599 12.2364i 0.991050 0.322012i
\(39\) 67.3276 + 1.72920i 1.72635 + 0.0443383i
\(40\) 6.05413 + 4.39858i 0.151353 + 0.109965i
\(41\) −24.8821 34.2473i −0.606881 0.835301i 0.389435 0.921054i \(-0.372670\pi\)
−0.996316 + 0.0857534i \(0.972670\pi\)
\(42\) −36.1349 + 47.1409i −0.860355 + 1.12240i
\(43\) 14.9666 0.348061 0.174031 0.984740i \(-0.444321\pi\)
0.174031 + 0.984740i \(0.444321\pi\)
\(44\) 0 0
\(45\) 16.0000 19.7990i 0.355556 0.439978i
\(46\) 25.4372 78.2876i 0.552982 1.70190i
\(47\) −21.6126 29.7472i −0.459843 0.632919i 0.514634 0.857410i \(-0.327928\pi\)
−0.974476 + 0.224491i \(0.927928\pi\)
\(48\) −46.9590 + 32.3087i −0.978312 + 0.673099i
\(49\) 2.16312 + 6.65740i 0.0441453 + 0.135865i
\(50\) −42.7764 + 13.8989i −0.855528 + 0.277978i
\(51\) 35.9920 + 52.3123i 0.705725 + 1.02573i
\(52\) −54.4872 + 39.5872i −1.04783 + 0.761293i
\(53\) −40.3499 13.1105i −0.761319 0.247368i −0.0974744 0.995238i \(-0.531076\pi\)
−0.663845 + 0.747870i \(0.731076\pi\)
\(54\) 37.4166 + 60.8523i 0.692900 + 1.12689i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) −35.6352 27.3154i −0.625179 0.479218i
\(58\) 45.3050 32.9160i 0.781120 0.567517i
\(59\) 19.9501 27.4589i 0.338137 0.465406i −0.605759 0.795648i \(-0.707130\pi\)
0.943896 + 0.330242i \(0.107130\pi\)
\(60\) −0.653574 + 25.4475i −0.0108929 + 0.424124i
\(61\) 30.0621 + 92.5217i 0.492822 + 1.51675i 0.820324 + 0.571899i \(0.193793\pi\)
−0.327502 + 0.944850i \(0.606207\pi\)
\(62\) 46.6540 64.2137i 0.752484 1.03571i
\(63\) 67.2610 + 3.45725i 1.06764 + 0.0548770i
\(64\) 8.96149 27.5806i 0.140023 0.430947i
\(65\) 63.4980i 0.976893i
\(66\) 0 0
\(67\) −42.0000 −0.626866 −0.313433 0.949610i \(-0.601479\pi\)
−0.313433 + 0.949610i \(0.601479\pi\)
\(68\) −60.3902 19.6220i −0.888091 0.288558i
\(69\) −89.4811 + 26.5544i −1.29683 + 0.384846i
\(70\) 45.3050 + 32.9160i 0.647214 + 0.470228i
\(71\) −61.8699 + 20.1027i −0.871407 + 0.283137i −0.710385 0.703814i \(-0.751479\pi\)
−0.161022 + 0.986951i \(0.551479\pi\)
\(72\) 22.2388 + 8.51104i 0.308872 + 0.118209i
\(73\) 60.5413 + 43.9858i 0.829333 + 0.602545i 0.919370 0.393393i \(-0.128699\pi\)
−0.0900377 + 0.995938i \(0.528699\pi\)
\(74\) 15.5513 + 21.4046i 0.210153 + 0.289251i
\(75\) 40.4766 + 31.0265i 0.539688 + 0.413687i
\(76\) 44.8999 0.590788
\(77\) 0 0
\(78\) 168.000 + 59.3970i 2.15385 + 0.761500i
\(79\) −6.93741 + 21.3512i −0.0878154 + 0.270268i −0.985315 0.170748i \(-0.945382\pi\)
0.897499 + 0.441016i \(0.145382\pi\)
\(80\) 31.5876 + 43.4767i 0.394846 + 0.543458i
\(81\) 32.7969 74.0632i 0.404900 0.914361i
\(82\) −34.6099 106.518i −0.422072 1.29900i
\(83\) −20.1301 + 6.54066i −0.242531 + 0.0788031i −0.427760 0.903892i \(-0.640697\pi\)
0.185229 + 0.982695i \(0.440697\pi\)
\(84\) −55.4856 + 38.1752i −0.660543 + 0.454467i
\(85\) 48.4330 35.1887i 0.569800 0.413984i
\(86\) 37.6599 + 12.2364i 0.437906 + 0.142284i
\(87\) −59.8665 21.1660i −0.688121 0.243287i
\(88\) 0 0
\(89\) 62.2254i 0.699162i −0.936906 0.349581i \(-0.886324\pi\)
0.936906 0.349581i \(-0.113676\pi\)
\(90\) 56.4474 36.7381i 0.627194 0.408201i
\(91\) 135.915 98.7479i 1.49357 1.08514i
\(92\) 54.8628 75.5121i 0.596334 0.820784i
\(93\) −89.9703 2.31073i −0.967423 0.0248466i
\(94\) −30.0621 92.5217i −0.319810 0.984274i
\(95\) −24.8821 + 34.2473i −0.261917 + 0.360498i
\(96\) −114.139 + 33.8719i −1.18895 + 0.352832i
\(97\) 22.8673 70.3782i 0.235745 0.725548i −0.761277 0.648427i \(-0.775427\pi\)
0.997022 0.0771212i \(-0.0245728\pi\)
\(98\) 18.5203i 0.188982i
\(99\) 0 0
\(100\) −51.0000 −0.510000
\(101\) 140.911 + 45.7846i 1.39515 + 0.453313i 0.907620 0.419792i \(-0.137897\pi\)
0.487533 + 0.873105i \(0.337897\pi\)
\(102\) 47.7955 + 161.058i 0.468583 + 1.57900i
\(103\) −27.5066 19.9847i −0.267054 0.194026i 0.446197 0.894935i \(-0.352778\pi\)
−0.713251 + 0.700909i \(0.752778\pi\)
\(104\) 56.4899 18.3547i 0.543172 0.176487i
\(105\) 1.63030 63.4771i 0.0155267 0.604544i
\(106\) −90.8119 65.9787i −0.856716 0.622441i
\(107\) −24.8821 34.2473i −0.232543 0.320068i 0.676759 0.736205i \(-0.263384\pi\)
−0.909302 + 0.416136i \(0.863384\pi\)
\(108\) 19.0277 + 78.7334i 0.176183 + 0.729013i
\(109\) −67.3498 −0.617888 −0.308944 0.951080i \(-0.599976\pi\)
−0.308944 + 0.951080i \(0.599976\pi\)
\(110\) 0 0
\(111\) 10.0000 28.2843i 0.0900901 0.254813i
\(112\) −43.9370 + 135.224i −0.392294 + 1.20736i
\(113\) 69.8253 + 96.1063i 0.617923 + 0.850498i 0.997200 0.0747850i \(-0.0238271\pi\)
−0.379276 + 0.925283i \(0.623827\pi\)
\(114\) −67.3348 97.8674i −0.590656 0.858486i
\(115\) 27.1935 + 83.6930i 0.236465 + 0.727765i
\(116\) 60.3902 19.6220i 0.520605 0.169155i
\(117\) −52.4903 195.112i −0.448635 1.66763i
\(118\) 72.6495 52.7830i 0.615674 0.447313i
\(119\) 150.640 + 48.9458i 1.26588 + 0.411309i
\(120\) 7.48331 21.1660i 0.0623610 0.176383i
\(121\) 0 0
\(122\) 257.387i 2.10973i
\(123\) −77.2597 + 100.792i −0.628128 + 0.819444i
\(124\) 72.8115 52.9007i 0.587190 0.426618i
\(125\) 69.8253 96.1063i 0.558603 0.768851i
\(126\) 166.420 + 63.6908i 1.32079 + 0.505482i
\(127\) −20.8122 64.0535i −0.163876 0.504358i 0.835076 0.550135i \(-0.185424\pi\)
−0.998952 + 0.0457767i \(0.985424\pi\)
\(128\) −48.2091 + 66.3542i −0.376634 + 0.518392i
\(129\) −12.7739 43.0445i −0.0990223 0.333678i
\(130\) 51.9149 159.777i 0.399345 1.22906i
\(131\) 232.826i 1.77730i 0.458587 + 0.888649i \(0.348356\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(132\) 0 0
\(133\) −112.000 −0.842105
\(134\) −105.683 34.3384i −0.788678 0.256257i
\(135\) −70.5984 29.1182i −0.522951 0.215691i
\(136\) 45.3050 + 32.9160i 0.333125 + 0.242029i
\(137\) −150.640 + 48.9458i −1.09956 + 0.357269i −0.801933 0.597414i \(-0.796195\pi\)
−0.297626 + 0.954682i \(0.596195\pi\)
\(138\) −246.868 6.34038i −1.78890 0.0459448i
\(139\) −72.6495 52.7830i −0.522659 0.379734i 0.294946 0.955514i \(-0.404698\pi\)
−0.817604 + 0.575780i \(0.804698\pi\)
\(140\) 37.3232 + 51.3710i 0.266594 + 0.366936i
\(141\) −67.1077 + 87.5475i −0.475941 + 0.620904i
\(142\) −172.116 −1.21209
\(143\) 0 0
\(144\) 133.000 + 107.480i 0.923611 + 0.746390i
\(145\) −18.4998 + 56.9364i −0.127585 + 0.392665i
\(146\) 116.376 + 160.177i 0.797093 + 1.09710i
\(147\) 17.3007 11.9032i 0.117692 0.0809743i
\(148\) 9.27051 + 28.5317i 0.0626386 + 0.192782i
\(149\) −20.1301 + 6.54066i −0.135101 + 0.0438970i −0.375787 0.926706i \(-0.622628\pi\)
0.240686 + 0.970603i \(0.422628\pi\)
\(150\) 76.4829 + 111.164i 0.509886 + 0.741091i
\(151\) −54.4872 + 39.5872i −0.360842 + 0.262167i −0.753403 0.657559i \(-0.771589\pi\)
0.392561 + 0.919726i \(0.371589\pi\)
\(152\) −37.6599 12.2364i −0.247763 0.0805030i
\(153\) 119.733 148.162i 0.782569 0.968380i
\(154\) 0 0
\(155\) 84.8528i 0.547438i
\(156\) 160.358 + 122.919i 1.02794 + 0.787945i
\(157\) −69.5755 + 50.5495i −0.443156 + 0.321972i −0.786888 0.617096i \(-0.788309\pi\)
0.343732 + 0.939068i \(0.388309\pi\)
\(158\) −34.9127 + 48.0532i −0.220966 + 0.304134i
\(159\) −3.26787 + 127.237i −0.0205527 + 0.800234i
\(160\) 34.6871 + 106.756i 0.216794 + 0.667224i
\(161\) −136.852 + 188.360i −0.850011 + 1.16994i
\(162\) 143.078 159.548i 0.883200 0.984865i
\(163\) −4.32624 + 13.3148i −0.0265413 + 0.0816858i −0.963450 0.267889i \(-0.913674\pi\)
0.936908 + 0.349575i \(0.113674\pi\)
\(164\) 126.996i 0.774366i
\(165\) 0 0
\(166\) −56.0000 −0.337349
\(167\) −80.5203 26.1626i −0.482157 0.156662i 0.0578456 0.998326i \(-0.481577\pi\)
−0.540003 + 0.841663i \(0.681577\pi\)
\(168\) 56.9425 16.8983i 0.338943 0.100585i
\(169\) −271.021 196.908i −1.60367 1.16514i
\(170\) 150.640 48.9458i 0.886116 0.287916i
\(171\) −48.1457 + 125.801i −0.281554 + 0.735681i
\(172\) 36.3248 + 26.3915i 0.211191 + 0.153439i
\(173\) 111.970 + 154.113i 0.647223 + 0.890826i 0.998975 0.0452670i \(-0.0144139\pi\)
−0.351752 + 0.936093i \(0.614414\pi\)
\(174\) −133.335 102.205i −0.766291 0.587385i
\(175\) 127.216 0.726951
\(176\) 0 0
\(177\) −96.0000 33.9411i −0.542373 0.191758i
\(178\) 50.8744 156.575i 0.285811 0.879636i
\(179\) −186.201 256.284i −1.04023 1.43175i −0.896983 0.442064i \(-0.854246\pi\)
−0.143245 0.989687i \(-0.545754\pi\)
\(180\) 73.7455 19.8395i 0.409697 0.110219i
\(181\) −80.9625 249.177i −0.447306 1.37667i −0.879935 0.475095i \(-0.842414\pi\)
0.432628 0.901572i \(-0.357586\pi\)
\(182\) 422.732 137.354i 2.32270 0.754691i
\(183\) 240.438 165.426i 1.31387 0.903967i
\(184\) −66.5954 + 48.3844i −0.361932 + 0.262959i
\(185\) −26.8999 8.74032i −0.145405 0.0472450i
\(186\) −224.499 79.3725i −1.20699 0.426734i
\(187\) 0 0
\(188\) 110.309i 0.586748i
\(189\) −47.4635 196.396i −0.251130 1.03913i
\(190\) −90.6099 + 65.8319i −0.476894 + 0.346484i
\(191\) −34.9127 + 48.0532i −0.182789 + 0.251587i −0.890572 0.454843i \(-0.849695\pi\)
0.707783 + 0.706430i \(0.249695\pi\)
\(192\) −86.9713 2.23371i −0.452976 0.0116339i
\(193\) −46.2494 142.341i −0.239634 0.737519i −0.996473 0.0839167i \(-0.973257\pi\)
0.756838 0.653602i \(-0.226743\pi\)
\(194\) 115.080 158.394i 0.593195 0.816463i
\(195\) −182.622 + 54.1950i −0.936525 + 0.277923i
\(196\) −6.48936 + 19.9722i −0.0331090 + 0.101899i
\(197\) 232.826i 1.18186i 0.806723 + 0.590929i \(0.201239\pi\)
−0.806723 + 0.590929i \(0.798761\pi\)
\(198\) 0 0
\(199\) 222.000 1.11558 0.557789 0.829983i \(-0.311650\pi\)
0.557789 + 0.829983i \(0.311650\pi\)
\(200\) 42.7764 + 13.8989i 0.213882 + 0.0694945i
\(201\) 35.8466 + 120.793i 0.178341 + 0.600962i
\(202\) 317.135 + 230.412i 1.56997 + 1.14065i
\(203\) −150.640 + 48.9458i −0.742067 + 0.241112i
\(204\) −4.89090 + 190.431i −0.0239750 + 0.933487i
\(205\) 96.8661 + 70.3773i 0.472517 + 0.343304i
\(206\) −52.8745 72.7756i −0.256673 0.353279i
\(207\) 152.743 + 234.686i 0.737887 + 1.13375i
\(208\) 426.549 2.05072
\(209\) 0 0
\(210\) 56.0000 158.392i 0.266667 0.754247i
\(211\) 120.249 370.087i 0.569898 1.75397i −0.0830307 0.996547i \(-0.526460\pi\)
0.652929 0.757419i \(-0.273540\pi\)
\(212\) −74.8128 102.971i −0.352891 0.485713i
\(213\) 110.621 + 160.782i 0.519350 + 0.754846i
\(214\) −34.6099 106.518i −0.161729 0.497749i
\(215\) −40.2601 + 13.0813i −0.187256 + 0.0608433i
\(216\) 5.49743 71.2234i 0.0254511 0.329738i
\(217\) −181.624 + 131.957i −0.836976 + 0.608099i
\(218\) −169.470 55.0640i −0.777384 0.252587i
\(219\) 74.8331 211.660i 0.341704 0.966484i
\(220\) 0 0
\(221\) 475.176i 2.15012i
\(222\) 48.2873 62.9947i 0.217510 0.283760i
\(223\) 37.2148 27.0381i 0.166882 0.121247i −0.501209 0.865326i \(-0.667111\pi\)
0.668092 + 0.744079i \(0.267111\pi\)
\(224\) −174.563 + 240.266i −0.779301 + 1.07262i
\(225\) 54.6868 142.893i 0.243052 0.635079i
\(226\) 97.1238 + 298.916i 0.429751 + 1.32264i
\(227\) −124.411 + 171.237i −0.548065 + 0.754346i −0.989748 0.142825i \(-0.954381\pi\)
0.441683 + 0.897171i \(0.354381\pi\)
\(228\) −38.3216 129.133i −0.168077 0.566375i
\(229\) 36.4640 112.225i 0.159231 0.490064i −0.839334 0.543617i \(-0.817055\pi\)
0.998565 + 0.0535527i \(0.0170545\pi\)
\(230\) 232.826i 1.01229i
\(231\) 0 0
\(232\) −56.0000 −0.241379
\(233\) −80.5203 26.1626i −0.345581 0.112286i 0.131084 0.991371i \(-0.458154\pi\)
−0.476664 + 0.879085i \(0.658154\pi\)
\(234\) 27.4411 533.868i 0.117270 2.28149i
\(235\) 84.1378 + 61.1297i 0.358033 + 0.260126i
\(236\) 96.8398 31.4652i 0.410338 0.133327i
\(237\) 67.3276 + 1.72920i 0.284083 + 0.00729618i
\(238\) 339.031 + 246.321i 1.42450 + 1.03496i
\(239\) −24.8821 34.2473i −0.104109 0.143294i 0.753784 0.657123i \(-0.228227\pi\)
−0.857893 + 0.513829i \(0.828227\pi\)
\(240\) 98.0805 127.954i 0.408669 0.533142i
\(241\) −149.666 −0.621022 −0.310511 0.950570i \(-0.600500\pi\)
−0.310511 + 0.950570i \(0.600500\pi\)
\(242\) 0 0
\(243\) −241.000 31.1127i −0.991770 0.128036i
\(244\) −90.1864 + 277.565i −0.369616 + 1.13756i
\(245\) −11.6376 16.0177i −0.0475002 0.0653784i
\(246\) −276.811 + 190.452i −1.12525 + 0.774193i
\(247\) 103.830 + 319.555i 0.420363 + 1.29374i
\(248\) −75.4878 + 24.5275i −0.304386 + 0.0989011i
\(249\) 35.9920 + 52.3123i 0.144546 + 0.210090i
\(250\) 254.273 184.740i 1.01709 0.738962i
\(251\) 48.4199 + 15.7326i 0.192908 + 0.0626796i 0.403878 0.914813i \(-0.367662\pi\)
−0.210970 + 0.977493i \(0.567662\pi\)
\(252\) 157.150 + 126.996i 0.623610 + 0.503953i
\(253\) 0 0
\(254\) 178.191i 0.701539i
\(255\) −142.541 109.262i −0.558984 0.428477i
\(256\) −269.403 + 195.732i −1.05235 + 0.764580i
\(257\) 56.5253 77.8004i 0.219943 0.302725i −0.684760 0.728769i \(-0.740093\pi\)
0.904703 + 0.426044i \(0.140093\pi\)
\(258\) 3.05001 118.755i 0.0118218 0.460290i
\(259\) −23.1247 71.1706i −0.0892846 0.274790i
\(260\) 111.970 154.113i 0.430652 0.592742i
\(261\) −9.77858 + 190.243i −0.0374658 + 0.728900i
\(262\) −190.354 + 585.851i −0.726544 + 2.23607i
\(263\) 465.652i 1.77054i −0.465077 0.885270i \(-0.653973\pi\)
0.465077 0.885270i \(-0.346027\pi\)
\(264\) 0 0
\(265\) 120.000 0.452830
\(266\) −281.821 91.5692i −1.05948 0.344245i
\(267\) −178.962 + 53.1088i −0.670270 + 0.198909i
\(268\) −101.936 74.0609i −0.380359 0.276347i
\(269\) 352.389 114.498i 1.31000 0.425644i 0.430949 0.902376i \(-0.358179\pi\)
0.879048 + 0.476733i \(0.158179\pi\)
\(270\) −153.837 130.989i −0.569767 0.485144i
\(271\) −272.436 197.936i −1.00530 0.730392i −0.0420805 0.999114i \(-0.513399\pi\)
−0.963218 + 0.268722i \(0.913399\pi\)
\(272\) 236.380 + 325.350i 0.869045 + 1.19614i
\(273\) −400.004 306.615i −1.46522 1.12313i
\(274\) −419.066 −1.52944
\(275\) 0 0
\(276\) −264.000 93.3381i −0.956522 0.338182i
\(277\) −6.93741 + 21.3512i −0.0250448 + 0.0770800i −0.962798 0.270223i \(-0.912903\pi\)
0.937753 + 0.347303i \(0.112903\pi\)
\(278\) −139.651 192.213i −0.502340 0.691412i
\(279\) 70.1431 + 260.730i 0.251409 + 0.934515i
\(280\) −17.3050 53.2592i −0.0618034 0.190211i
\(281\) −20.1301 + 6.54066i −0.0716373 + 0.0232764i −0.344616 0.938744i \(-0.611991\pi\)
0.272979 + 0.962020i \(0.411991\pi\)
\(282\) −240.438 + 165.426i −0.852615 + 0.586617i
\(283\) 145.299 105.566i 0.513424 0.373025i −0.300697 0.953720i \(-0.597219\pi\)
0.814121 + 0.580695i \(0.197219\pi\)
\(284\) −185.610 60.3082i −0.653555 0.212353i
\(285\) 119.733 + 42.3320i 0.420116 + 0.148533i
\(286\) 0 0
\(287\) 316.784i 1.10378i
\(288\) 194.833 + 299.358i 0.676504 + 1.03944i
\(289\) 128.634 93.4579i 0.445099 0.323384i
\(290\) −93.1004 + 128.142i −0.321036 + 0.441868i
\(291\) −221.927 5.69981i −0.762635 0.0195870i
\(292\) 69.3741 + 213.512i 0.237583 + 0.731204i
\(293\) 12.4411 17.1237i 0.0424610 0.0584425i −0.787259 0.616623i \(-0.788500\pi\)
0.829720 + 0.558180i \(0.188500\pi\)
\(294\) 53.2648 15.8069i 0.181173 0.0537649i
\(295\) −29.6656 + 91.3014i −0.100561 + 0.309496i
\(296\) 26.4575i 0.0893835i
\(297\) 0 0
\(298\) −56.0000 −0.187919
\(299\) 664.292 + 215.842i 2.22171 + 0.721879i
\(300\) 43.5280 + 146.678i 0.145093 + 0.488925i
\(301\) −90.6099 65.8319i −0.301030 0.218711i
\(302\) −169.470 + 55.0640i −0.561158 + 0.182331i
\(303\) 11.4121 444.340i 0.0376637 1.46647i
\(304\) −230.057 167.146i −0.756766 0.549823i
\(305\) −161.734 222.608i −0.530275 0.729861i
\(306\) 422.414 274.923i 1.38044 0.898440i
\(307\) −149.666 −0.487512 −0.243756 0.969837i \(-0.578380\pi\)
−0.243756 + 0.969837i \(0.578380\pi\)
\(308\) 0 0
\(309\) −34.0000 + 96.1665i −0.110032 + 0.311219i
\(310\) −69.3741 + 213.512i −0.223788 + 0.688747i
\(311\) 14.9626 + 20.5942i 0.0481112 + 0.0662193i 0.832395 0.554183i \(-0.186969\pi\)
−0.784284 + 0.620402i \(0.786969\pi\)
\(312\) −101.002 146.801i −0.323725 0.470516i
\(313\) 122.989 + 378.520i 0.392935 + 1.20933i 0.930558 + 0.366145i \(0.119323\pi\)
−0.537622 + 0.843186i \(0.680677\pi\)
\(314\) −216.398 + 70.3121i −0.689166 + 0.223924i
\(315\) −183.954 + 49.4883i −0.583980 + 0.157106i
\(316\) −54.4872 + 39.5872i −0.172428 + 0.125276i
\(317\) −395.429 128.483i −1.24741 0.405308i −0.390418 0.920638i \(-0.627670\pi\)
−0.856992 + 0.515329i \(0.827670\pi\)
\(318\) −112.250 + 317.490i −0.352987 + 0.998397i
\(319\) 0 0
\(320\) 82.0244i 0.256326i
\(321\) −77.2597 + 100.792i −0.240684 + 0.313992i
\(322\) −498.354 + 362.076i −1.54768 + 1.12446i
\(323\) −186.201 + 256.284i −0.576473 + 0.793447i
\(324\) 210.200 121.923i 0.648764 0.376304i
\(325\) −117.936 362.970i −0.362880 1.11683i
\(326\) −21.7719 + 29.9664i −0.0667849 + 0.0919215i
\(327\) 57.4825 + 193.700i 0.175787 + 0.592355i
\(328\) −34.6099 + 106.518i −0.105518 + 0.324751i
\(329\) 275.158i 0.836347i
\(330\) 0 0
\(331\) 178.000 0.537764 0.268882 0.963173i \(-0.413346\pi\)
0.268882 + 0.963173i \(0.413346\pi\)
\(332\) −60.3902 19.6220i −0.181898 0.0591023i
\(333\) −89.8813 4.61994i −0.269914 0.0138737i
\(334\) −181.220 131.664i −0.542574 0.394203i
\(335\) 112.980 36.7093i 0.337253 0.109580i
\(336\) 426.408 + 10.9516i 1.26907 + 0.0325940i
\(337\) −205.840 149.552i −0.610802 0.443774i 0.238894 0.971046i \(-0.423215\pi\)
−0.849697 + 0.527272i \(0.823215\pi\)
\(338\) −520.970 717.053i −1.54133 2.12146i
\(339\) 216.809 282.846i 0.639556 0.834353i
\(340\) 179.600 0.528234
\(341\) 0 0
\(342\) −224.000 + 277.186i −0.654971 + 0.810485i
\(343\) −97.1238 + 298.916i −0.283160 + 0.871476i
\(344\) −23.2751 32.0354i −0.0676602 0.0931263i
\(345\) 217.494 149.641i 0.630418 0.433741i
\(346\) 155.745 + 479.332i 0.450129 + 1.38535i
\(347\) −462.992 + 150.435i −1.33427 + 0.433531i −0.887372 0.461054i \(-0.847471\pi\)
−0.446898 + 0.894585i \(0.647471\pi\)
\(348\) −107.976 156.937i −0.310276 0.450968i
\(349\) −54.4872 + 39.5872i −0.156124 + 0.113430i −0.663104 0.748527i \(-0.730761\pi\)
0.506981 + 0.861957i \(0.330761\pi\)
\(350\) 320.109 + 104.010i 0.914598 + 0.297171i
\(351\) −516.349 + 317.490i −1.47108 + 0.904530i
\(352\) 0 0
\(353\) 124.451i 0.352552i 0.984341 + 0.176276i \(0.0564051\pi\)
−0.984341 + 0.176276i \(0.943595\pi\)
\(354\) −213.811 163.893i −0.603986 0.462973i
\(355\) 148.859 108.152i 0.419321 0.304655i
\(356\) 109.726 151.024i 0.308218 0.424225i
\(357\) 12.2001 475.019i 0.0341738 1.33059i
\(358\) −258.997 797.110i −0.723455 2.22656i
\(359\) 149.293 205.484i 0.415857 0.572379i −0.548777 0.835969i \(-0.684907\pi\)
0.964635 + 0.263590i \(0.0849065\pi\)
\(360\) −67.2610 3.45725i −0.186836 0.00960347i
\(361\) −42.3353 + 130.295i −0.117272 + 0.360927i
\(362\) 693.187i 1.91488i
\(363\) 0 0
\(364\) 504.000 1.38462
\(365\) −201.301 65.4066i −0.551509 0.179196i
\(366\) 740.253 219.677i 2.02255 0.600211i
\(367\) 114.880 + 83.4655i 0.313026 + 0.227426i 0.733194 0.680020i \(-0.238029\pi\)
−0.420168 + 0.907446i \(0.638029\pi\)
\(368\) −562.209 + 182.673i −1.52774 + 0.496393i
\(369\) 355.820 + 136.177i 0.964282 + 0.369042i
\(370\) −60.5413 43.9858i −0.163625 0.118881i
\(371\) 186.616 + 256.855i 0.503008 + 0.692331i
\(372\) −214.288 164.258i −0.576043 0.441554i
\(373\) 426.549 1.14356 0.571781 0.820406i \(-0.306253\pi\)
0.571781 + 0.820406i \(0.306253\pi\)
\(374\) 0 0
\(375\) −336.000 118.794i −0.896000 0.316784i
\(376\) −30.0621 + 92.5217i −0.0799525 + 0.246068i
\(377\) 279.301 + 384.425i 0.740852 + 1.01970i
\(378\) 41.1390 532.987i 0.108833 1.41002i
\(379\) −108.156 332.870i −0.285372 0.878284i −0.986287 0.165040i \(-0.947225\pi\)
0.700915 0.713245i \(-0.252775\pi\)
\(380\) −120.780 + 39.2439i −0.317843 + 0.103274i
\(381\) −166.457 + 114.526i −0.436894 + 0.300592i
\(382\) −127.137 + 92.3702i −0.332819 + 0.241807i
\(383\) 492.269 + 159.948i 1.28530 + 0.417618i 0.870443 0.492269i \(-0.163832\pi\)
0.414854 + 0.909888i \(0.363832\pi\)
\(384\) 231.983 + 82.0183i 0.604122 + 0.213589i
\(385\) 0 0
\(386\) 395.980i 1.02585i
\(387\) −112.895 + 73.4761i −0.291718 + 0.189861i
\(388\) 179.602 130.488i 0.462891 0.336310i
\(389\) 257.689 354.678i 0.662439 0.911769i −0.337120 0.941462i \(-0.609453\pi\)
0.999559 + 0.0296928i \(0.00945289\pi\)
\(390\) −503.834 12.9401i −1.29188 0.0331798i
\(391\) 203.497 + 626.301i 0.520454 + 1.60179i
\(392\) 10.8859 14.9832i 0.0277702 0.0382225i
\(393\) 669.615 198.715i 1.70386 0.505636i
\(394\) −190.354 + 585.851i −0.483133 + 1.48693i
\(395\) 63.4980i 0.160755i
\(396\) 0 0
\(397\) 442.000 1.11335 0.556675 0.830730i \(-0.312077\pi\)
0.556675 + 0.830730i \(0.312077\pi\)
\(398\) 558.610 + 181.503i 1.40354 + 0.456038i
\(399\) 95.5910 + 322.115i 0.239576 + 0.807307i
\(400\) 261.312 + 189.855i 0.653281 + 0.474637i
\(401\) 500.339 162.570i 1.24773 0.405411i 0.390622 0.920551i \(-0.372260\pi\)
0.857106 + 0.515140i \(0.172260\pi\)
\(402\) −8.55908 + 333.255i −0.0212912 + 0.828992i
\(403\) 544.872 + 395.872i 1.35204 + 0.982314i
\(404\) 261.262 + 359.597i 0.646689 + 0.890091i
\(405\) −23.4899 + 227.895i −0.0579998 + 0.562704i
\(406\) −419.066 −1.03218
\(407\) 0 0
\(408\) 56.0000 158.392i 0.137255 0.388215i
\(409\) 69.3741 213.512i 0.169619 0.522033i −0.829728 0.558168i \(-0.811504\pi\)
0.999347 + 0.0361345i \(0.0115045\pi\)
\(410\) 186.201 + 256.284i 0.454148 + 0.625082i
\(411\) 269.339 + 391.470i 0.655326 + 0.952481i
\(412\) −31.5197 97.0078i −0.0765042 0.235456i
\(413\) −241.561 + 78.4879i −0.584893 + 0.190043i
\(414\) 192.464 + 715.411i 0.464890 + 1.72805i
\(415\) 48.4330 35.1887i 0.116706 0.0847919i
\(416\) 847.348 + 275.320i 2.03689 + 0.661827i
\(417\) −89.7998 + 253.992i −0.215347 + 0.609094i
\(418\) 0 0
\(419\) 684.479i 1.63360i 0.576919 + 0.816801i \(0.304255\pi\)
−0.576919 + 0.816801i \(0.695745\pi\)
\(420\) 115.890 151.187i 0.275927 0.359970i
\(421\) 215.199 156.351i 0.511160 0.371380i −0.302103 0.953275i \(-0.597689\pi\)
0.813264 + 0.581895i \(0.197689\pi\)
\(422\) 605.153 832.921i 1.43401 1.97375i
\(423\) 309.065 + 118.283i 0.730650 + 0.279628i
\(424\) 34.6871 + 106.756i 0.0818091 + 0.251783i
\(425\) 211.498 291.102i 0.497643 0.684946i
\(426\) 146.900 + 495.012i 0.344835 + 1.16200i
\(427\) 224.964 692.369i 0.526849 1.62147i
\(428\) 126.996i 0.296720i
\(429\) 0 0
\(430\) −112.000 −0.260465
\(431\) −523.382 170.057i −1.21434 0.394564i −0.369324 0.929301i \(-0.620411\pi\)
−0.845019 + 0.534737i \(0.820411\pi\)
\(432\) 195.602 474.245i 0.452783 1.09779i
\(433\) −597.055 433.786i −1.37888 1.00181i −0.996984 0.0776084i \(-0.975272\pi\)
−0.381895 0.924206i \(-0.624728\pi\)
\(434\) −564.899 + 183.547i −1.30161 + 0.422919i
\(435\) 179.540 + 4.61119i 0.412736 + 0.0106004i
\(436\) −163.461 118.762i −0.374912 0.272389i
\(437\) −273.704 376.721i −0.626324 0.862061i
\(438\) 361.349 471.409i 0.824998 1.07628i
\(439\) 426.549 0.971638 0.485819 0.874060i \(-0.338521\pi\)
0.485819 + 0.874060i \(0.338521\pi\)
\(440\) 0 0
\(441\) −49.0000 39.5980i −0.111111 0.0897913i
\(442\) 388.495 1195.67i 0.878948 2.70513i
\(443\) 69.8253 + 96.1063i 0.157619 + 0.216944i 0.880522 0.474006i \(-0.157192\pi\)
−0.722902 + 0.690950i \(0.757192\pi\)
\(444\) 74.1457 51.0138i 0.166995 0.114896i
\(445\) 54.3870 + 167.386i 0.122218 + 0.376148i
\(446\) 115.748 37.6088i 0.259524 0.0843246i
\(447\) 35.9920 + 52.3123i 0.0805189 + 0.117030i
\(448\) −175.570 + 127.559i −0.391897 + 0.284730i
\(449\) −484.199 157.326i −1.07839 0.350391i −0.284643 0.958634i \(-0.591875\pi\)
−0.793751 + 0.608242i \(0.791875\pi\)
\(450\) 254.433 314.844i 0.565406 0.699654i
\(451\) 0 0
\(452\) 356.382i 0.788455i
\(453\) 160.358 + 122.919i 0.353992 + 0.271345i
\(454\) −453.050 + 329.160i −0.997906 + 0.725021i
\(455\) −279.301 + 384.425i −0.613849 + 0.844891i
\(456\) −3.05001 + 118.755i −0.00668863 + 0.260427i
\(457\) 208.122 + 640.535i 0.455410 + 1.40161i 0.870653 + 0.491898i \(0.163697\pi\)
−0.415243 + 0.909711i \(0.636303\pi\)
\(458\) 183.506 252.574i 0.400668 0.551472i
\(459\) −528.310 217.901i −1.15100 0.474730i
\(460\) −81.5805 + 251.079i −0.177349 + 0.545824i
\(461\) 698.478i 1.51514i −0.652755 0.757569i \(-0.726387\pi\)
0.652755 0.757569i \(-0.273613\pi\)
\(462\) 0 0
\(463\) 882.000 1.90497 0.952484 0.304589i \(-0.0985192\pi\)
0.952484 + 0.304589i \(0.0985192\pi\)
\(464\) −382.471 124.272i −0.824292 0.267829i
\(465\) 244.039 72.4211i 0.524816 0.155744i
\(466\) −181.220 131.664i −0.388884 0.282541i
\(467\) −505.719 + 164.318i −1.08291 + 0.351859i −0.795503 0.605950i \(-0.792793\pi\)
−0.287407 + 0.957809i \(0.592793\pi\)
\(468\) 216.656 566.106i 0.462939 1.20963i
\(469\) 254.273 + 184.740i 0.542161 + 0.393903i
\(470\) 161.734 + 222.608i 0.344115 + 0.473633i
\(471\) 204.764 + 156.958i 0.434743 + 0.333243i
\(472\) −89.7998 −0.190254
\(473\) 0 0
\(474\) 168.000 + 59.3970i 0.354430 + 0.125310i
\(475\) −78.6240 + 241.980i −0.165524 + 0.509431i
\(476\) 279.301 + 384.425i 0.586767 + 0.807616i
\(477\) 368.727 99.1973i 0.773013 0.207961i
\(478\) −34.6099 106.518i −0.0724057 0.222842i
\(479\) 644.162 209.301i 1.34481 0.436954i 0.453864 0.891071i \(-0.350045\pi\)
0.890942 + 0.454117i \(0.150045\pi\)
\(480\) 277.428 190.876i 0.577975 0.397659i
\(481\) −181.624 + 131.957i −0.377596 + 0.274340i
\(482\) −376.599 122.364i −0.781326 0.253868i
\(483\) 658.532 + 232.826i 1.36342 + 0.482042i
\(484\) 0 0
\(485\) 209.304i 0.431554i
\(486\) −580.981 275.325i −1.19543 0.566512i
\(487\) −283.156 + 205.725i −0.581429 + 0.422433i −0.839239 0.543763i \(-0.816999\pi\)
0.257810 + 0.966196i \(0.416999\pi\)
\(488\) 151.288 208.230i 0.310017 0.426702i
\(489\) 41.9862 + 1.07834i 0.0858613 + 0.00220520i
\(490\) −16.1873 49.8194i −0.0330353 0.101672i
\(491\) 149.293 205.484i 0.304059 0.418501i −0.629458 0.777034i \(-0.716723\pi\)
0.933517 + 0.358533i \(0.116723\pi\)
\(492\) −365.245 + 108.390i −0.742367 + 0.220305i
\(493\) −138.440 + 426.073i −0.280811 + 0.864246i
\(494\) 888.972i 1.79954i
\(495\) 0 0
\(496\) −570.000 −1.14919
\(497\) 462.992 + 150.435i 0.931573 + 0.302686i
\(498\) 47.7955 + 161.058i 0.0959749 + 0.323409i
\(499\) 79.2837 + 57.6030i 0.158885 + 0.115437i 0.664387 0.747389i \(-0.268693\pi\)
−0.505502 + 0.862825i \(0.668693\pi\)
\(500\) 338.939 110.128i 0.677879 0.220256i
\(501\) −6.52120 + 253.908i −0.0130164 + 0.506803i
\(502\) 108.974 + 79.1745i 0.217080 + 0.157718i
\(503\) −298.586 410.968i −0.593610 0.817034i 0.401495 0.915861i \(-0.368491\pi\)
−0.995105 + 0.0988277i \(0.968491\pi\)
\(504\) −97.1998 149.346i −0.192857 0.296321i
\(505\) −419.066 −0.829833
\(506\) 0 0
\(507\) −335.000 + 947.523i −0.660750 + 1.86888i
\(508\) 62.4367 192.160i 0.122907 0.378269i
\(509\) −94.7629 130.430i −0.186175 0.256248i 0.705720 0.708491i \(-0.250624\pi\)
−0.891894 + 0.452244i \(0.850624\pi\)
\(510\) −269.339 391.470i −0.528116 0.767587i
\(511\) −173.050 532.592i −0.338649 1.04225i
\(512\) −525.898 + 170.875i −1.02714 + 0.333740i
\(513\) 402.901 + 31.0982i 0.785381 + 0.0606202i
\(514\) 205.840 149.552i 0.400468 0.290957i
\(515\) 91.4598 + 29.7171i 0.177592 + 0.0577031i
\(516\) 44.8999 126.996i 0.0870153 0.246116i
\(517\) 0 0
\(518\) 197.990i 0.382220i
\(519\) 347.669 453.562i 0.669882 0.873915i
\(520\) −135.915 + 98.7479i −0.261375 + 0.189900i
\(521\) −89.7754 + 123.565i −0.172314 + 0.237169i −0.886436 0.462852i \(-0.846826\pi\)
0.714122 + 0.700021i \(0.246826\pi\)
\(522\) −180.145 + 470.706i −0.345105 + 0.901735i
\(523\) 4.62494 + 14.2341i 0.00884310 + 0.0272163i 0.955381 0.295377i \(-0.0954453\pi\)
−0.946538 + 0.322593i \(0.895445\pi\)
\(524\) −410.555 + 565.081i −0.783502 + 1.07840i
\(525\) −108.578 365.878i −0.206815 0.696911i
\(526\) 380.709 1171.70i 0.723781 2.22757i
\(527\) 634.980i 1.20490i
\(528\) 0 0
\(529\) −439.000 −0.829868
\(530\) 301.951 + 98.1099i 0.569719 + 0.185113i
\(531\) −15.6806 + 305.067i −0.0295303 + 0.574515i
\(532\) −271.830 197.496i −0.510958 0.371233i
\(533\) 903.838 293.675i 1.69576 0.550985i
\(534\) −493.736 12.6808i −0.924599 0.0237467i
\(535\) 96.8661 + 70.3773i 0.181058 + 0.131546i
\(536\) 65.3156 + 89.8992i 0.121857 + 0.167722i
\(537\) −578.159 + 754.255i −1.07665 + 1.40457i
\(538\) 980.314 1.82215
\(539\) 0 0
\(540\) −120.000 195.161i −0.222222 0.361410i
\(541\) −159.561 + 491.077i −0.294936 + 0.907721i 0.688307 + 0.725420i \(0.258354\pi\)
−0.983243 + 0.182301i \(0.941646\pi\)
\(542\) −523.690 720.797i −0.966218 1.32988i
\(543\) −647.539 + 445.521i −1.19252 + 0.820480i
\(544\) 259.574 + 798.887i 0.477159 + 1.46854i
\(545\) 181.171 58.8659i 0.332423 0.108011i
\(546\) −755.831 1098.56i −1.38431 2.01201i
\(547\) 544.872 395.872i 0.996109 0.723716i 0.0348585 0.999392i \(-0.488902\pi\)
0.961250 + 0.275677i \(0.0889019\pi\)
\(548\) −451.919 146.837i −0.824670 0.267951i
\(549\) −680.982 550.316i −1.24040 1.00240i
\(550\) 0 0
\(551\) 316.784i 0.574925i
\(552\) 195.994 + 150.235i 0.355061 + 0.272165i
\(553\) 135.915 98.7479i 0.245777 0.178568i
\(554\) −34.9127 + 48.0532i −0.0630192 + 0.0867386i
\(555\) −2.17858 + 84.8248i −0.00392537 + 0.152838i
\(556\) −83.2490 256.214i −0.149728 0.460817i
\(557\) −261.262 + 359.597i −0.469053 + 0.645596i −0.976355 0.216172i \(-0.930643\pi\)
0.507302 + 0.861768i \(0.330643\pi\)
\(558\) −36.6697 + 713.411i −0.0657163 + 1.27851i
\(559\) −103.830 + 319.555i −0.185742 + 0.571655i
\(560\) 402.154i 0.718132i
\(561\) 0 0
\(562\) −56.0000 −0.0996441
\(563\) −523.382 170.057i −0.929630 0.302055i −0.195219 0.980760i \(-0.562542\pi\)
−0.734411 + 0.678704i \(0.762542\pi\)
\(564\) −317.251 + 94.1474i −0.562502 + 0.166928i
\(565\) −271.830 197.496i −0.481115 0.349550i
\(566\) 451.919 146.837i 0.798443 0.259430i
\(567\) −524.330 + 304.128i −0.924744 + 0.536382i
\(568\) 139.245 + 101.167i 0.245150 + 0.178112i
\(569\) 659.377 + 907.554i 1.15883 + 1.59500i 0.715445 + 0.698669i \(0.246224\pi\)
0.443389 + 0.896329i \(0.353776\pi\)
\(570\) 266.669 + 204.410i 0.467841 + 0.358614i
\(571\) −808.198 −1.41541 −0.707704 0.706509i \(-0.750269\pi\)
−0.707704 + 0.706509i \(0.750269\pi\)
\(572\) 0 0
\(573\) 168.000 + 59.3970i 0.293194 + 0.103660i
\(574\) −258.997 + 797.110i −0.451214 + 1.38869i
\(575\) 310.889 + 427.902i 0.540676 + 0.744177i
\(576\) 67.8050 + 252.039i 0.117717 + 0.437567i
\(577\) 95.7953 + 294.828i 0.166023 + 0.510966i 0.999110 0.0421754i \(-0.0134288\pi\)
−0.833087 + 0.553142i \(0.813429\pi\)
\(578\) 400.085 129.996i 0.692189 0.224906i
\(579\) −369.904 + 254.502i −0.638867 + 0.439554i
\(580\) −145.299 + 105.566i −0.250516 + 0.182010i
\(581\) 150.640 + 48.9458i 0.259277 + 0.0842441i
\(582\) −553.765 195.786i −0.951487 0.336401i
\(583\) 0 0
\(584\) 197.990i 0.339024i
\(585\) 311.733 + 478.972i 0.532877 + 0.818756i
\(586\) 45.3050 32.9160i 0.0773122 0.0561706i
\(587\) −565.253 + 778.004i −0.962952 + 1.32539i −0.0174238 + 0.999848i \(0.505546\pi\)
−0.945528 + 0.325541i \(0.894454\pi\)
\(588\) 62.9792 + 1.61751i 0.107108 + 0.00275087i
\(589\) −138.748 427.023i −0.235566 0.724997i
\(590\) −149.293 + 205.484i −0.253039 + 0.348278i
\(591\) 669.615 198.715i 1.13302 0.336235i
\(592\) 58.7132 180.701i 0.0991778 0.305238i
\(593\) 232.826i 0.392624i −0.980541 0.196312i \(-0.937103\pi\)
0.980541 0.196312i \(-0.0628966\pi\)
\(594\) 0 0
\(595\) −448.000 −0.752941
\(596\) −60.3902 19.6220i −0.101326 0.0329228i
\(597\) −189.475 638.479i −0.317378 1.06948i
\(598\) 1495.06 + 1086.23i 2.50011 + 1.81643i
\(599\) −831.208 + 270.076i −1.38766 + 0.450878i −0.905180 0.425029i \(-0.860264\pi\)
−0.482480 + 0.875907i \(0.660264\pi\)
\(600\) 3.46439 134.889i 0.00577398 0.224815i
\(601\) −472.222 343.089i −0.785727 0.570864i 0.120965 0.992657i \(-0.461401\pi\)
−0.906692 + 0.421793i \(0.861401\pi\)
\(602\) −174.175 239.731i −0.289327 0.398225i
\(603\) 316.810 206.192i 0.525391 0.341943i
\(604\) −202.049 −0.334519
\(605\) 0 0
\(606\) 392.000 1108.74i 0.646865 1.82961i
\(607\) −261.309 + 804.227i −0.430493 + 1.32492i 0.467142 + 0.884182i \(0.345284\pi\)
−0.897635 + 0.440739i \(0.854716\pi\)
\(608\) −349.127 480.532i −0.574221 0.790348i
\(609\) 269.339 + 391.470i 0.442265 + 0.642807i
\(610\) −224.964 692.369i −0.368794 1.13503i
\(611\) 785.073 255.086i 1.28490 0.417489i
\(612\) 551.861 148.465i 0.901733 0.242590i
\(613\) 478.276 347.488i 0.780222 0.566865i −0.124824 0.992179i \(-0.539836\pi\)
0.905046 + 0.425314i \(0.139836\pi\)
\(614\) −376.599 122.364i −0.613354 0.199291i
\(615\) 119.733 338.656i 0.194688 0.550660i
\(616\) 0 0
\(617\) 435.578i 0.705961i −0.935631 0.352980i \(-0.885168\pi\)
0.935631 0.352980i \(-0.114832\pi\)
\(618\) −164.177 + 214.182i −0.265658 + 0.346573i
\(619\) 677.956 492.564i 1.09524 0.795742i 0.114967 0.993369i \(-0.463324\pi\)
0.980277 + 0.197628i \(0.0633237\pi\)
\(620\) −149.626 + 205.942i −0.241332 + 0.332165i
\(621\) 544.601 639.595i 0.876974 1.02994i
\(622\) 20.8122 + 64.0535i 0.0334602 + 0.102980i
\(623\) −273.704 + 376.721i −0.439331 + 0.604688i
\(624\) −364.056 1226.77i −0.583422 1.96597i
\(625\) 27.5025 84.6440i 0.0440040 0.135430i
\(626\) 1053.01i 1.68212i
\(627\) 0 0
\(628\) −258.000 −0.410828
\(629\) −201.301 65.4066i −0.320033 0.103985i
\(630\) −503.336 25.8717i −0.798945 0.0410662i
\(631\) −205.490 149.297i −0.325658 0.236605i 0.412928 0.910764i \(-0.364506\pi\)
−0.738586 + 0.674159i \(0.764506\pi\)
\(632\) 56.4899 18.3547i 0.0893827 0.0290422i
\(633\) −1167.01 29.9727i −1.84362 0.0473503i
\(634\) −889.957 646.592i −1.40372 1.01986i
\(635\) 111.970 + 154.113i 0.176330 + 0.242698i
\(636\) −232.296 + 303.049i −0.365245 + 0.476492i
\(637\) −157.150 −0.246703
\(638\) 0 0
\(639\) 368.000 455.377i 0.575900 0.712640i
\(640\) 71.6866 220.629i 0.112010 0.344732i
\(641\) 69.8253 + 96.1063i 0.108932 + 0.149932i 0.860002 0.510290i \(-0.170462\pi\)
−0.751070 + 0.660222i \(0.770462\pi\)
\(642\) −276.811 + 190.452i −0.431169 + 0.296654i
\(643\) −135.349 416.563i −0.210497 0.647843i −0.999443 0.0333799i \(-0.989373\pi\)
0.788946 0.614463i \(-0.210627\pi\)
\(644\) −664.292 + 215.842i −1.03151 + 0.335158i
\(645\) 71.9839 + 104.625i 0.111603 + 0.162209i
\(646\) −678.062 + 492.641i −1.04963 + 0.762602i
\(647\) 314.729 + 102.262i 0.486444 + 0.158055i 0.541963 0.840402i \(-0.317681\pi\)
−0.0555189 + 0.998458i \(0.517681\pi\)
\(648\) −209.533 + 44.9778i −0.323353 + 0.0694101i
\(649\) 0 0
\(650\) 1009.75i 1.55346i
\(651\) 534.528 + 409.731i 0.821088 + 0.629388i
\(652\) −33.9787 + 24.6870i −0.0521146 + 0.0378635i
\(653\) 367.414 505.702i 0.562656 0.774429i −0.429005 0.903302i \(-0.641136\pi\)
0.991661 + 0.128873i \(0.0411359\pi\)
\(654\) −13.7251 + 534.397i −0.0209863 + 0.817120i
\(655\) −203.497 626.301i −0.310683 0.956185i
\(656\) −472.761 + 650.699i −0.720672 + 0.991919i
\(657\) −672.610 34.5725i −1.02376 0.0526218i
\(658\) −224.964 + 692.369i −0.341891 + 1.05223i
\(659\) 465.652i 0.706604i 0.935509 + 0.353302i \(0.114941\pi\)
−0.935509 + 0.353302i \(0.885059\pi\)
\(660\) 0 0
\(661\) −394.000 −0.596067 −0.298033 0.954555i \(-0.596331\pi\)
−0.298033 + 0.954555i \(0.596331\pi\)
\(662\) 447.894 + 145.530i 0.676577 + 0.219833i
\(663\) −1366.62 + 405.558i −2.06127 + 0.611702i
\(664\) 45.3050 + 32.9160i 0.0682303 + 0.0495723i
\(665\) 301.279 97.8916i 0.453052 0.147205i
\(666\) −222.388 85.1104i −0.333915 0.127793i
\(667\) −532.763 387.075i −0.798746 0.580323i
\(668\) −149.293 205.484i −0.223492 0.307611i
\(669\) −109.525 83.9541i −0.163714 0.125492i
\(670\) 314.299 0.469103
\(671\) 0 0
\(672\) 840.000 + 296.985i 1.25000 + 0.441942i
\(673\) 272.872 839.813i 0.405456 1.24786i −0.515059 0.857155i \(-0.672230\pi\)
0.920514 0.390709i \(-0.127770\pi\)
\(674\) −395.677 544.602i −0.587058 0.808016i
\(675\) −457.639 35.3232i −0.677983 0.0523306i
\(676\) −310.562 955.812i −0.459411 1.41392i
\(677\) 865.593 281.248i 1.27857 0.415433i 0.410495 0.911863i \(-0.365356\pi\)
0.868077 + 0.496430i \(0.165356\pi\)
\(678\) 776.798 534.453i 1.14572 0.788279i
\(679\) −448.006 + 325.495i −0.659802 + 0.479374i
\(680\) −150.640 48.9458i −0.221529 0.0719791i
\(681\) 598.665 + 211.660i 0.879097 + 0.310808i
\(682\) 0 0
\(683\) 435.578i 0.637742i 0.947798 + 0.318871i \(0.103304\pi\)
−0.947798 + 0.318871i \(0.896696\pi\)
\(684\) −338.685 + 220.428i −0.495153 + 0.322264i
\(685\) 362.440 263.328i 0.529109 0.384420i
\(686\) −488.777 + 672.744i −0.712503 + 0.980677i
\(687\) −353.883 9.08889i −0.515114 0.0132298i
\(688\) −87.8739 270.448i −0.127724 0.393093i
\(689\) 559.848 770.565i 0.812552 1.11838i
\(690\) 669.615 198.715i 0.970457 0.287993i
\(691\) 131.641 405.150i 0.190508 0.586324i −0.809491 0.587132i \(-0.800257\pi\)
1.00000 0.000807501i \(0.000257036\pi\)
\(692\) 571.482i 0.825841i
\(693\) 0 0
\(694\) −1288.00 −1.85591
\(695\) 241.561 + 78.4879i 0.347570 + 0.112932i
\(696\) 47.7955 + 161.058i 0.0686717 + 0.231405i
\(697\) 724.879 + 526.656i 1.04000 + 0.755603i
\(698\) −169.470 + 55.0640i −0.242793 + 0.0788883i
\(699\) −6.52120 + 253.908i −0.00932933 + 0.363245i
\(700\) 308.761 + 224.328i 0.441087 + 0.320468i
\(701\) −161.734 222.608i −0.230719 0.317557i 0.677924 0.735132i \(-0.262880\pi\)
−0.908642 + 0.417575i \(0.862880\pi\)
\(702\) −1558.84 + 376.730i −2.22057 + 0.536652i
\(703\) 149.666 0.212897
\(704\) 0 0
\(705\) 104.000 294.156i 0.147518 0.417243i
\(706\) −101.749 + 313.150i −0.144120 + 0.443556i
\(707\) −651.703 896.992i −0.921786 1.26873i
\(708\) −173.147 251.659i −0.244557 0.355451i
\(709\) −12.9787 39.9444i −0.0183057 0.0563390i 0.941486 0.337051i \(-0.109429\pi\)
−0.959792 + 0.280712i \(0.909429\pi\)
\(710\) 462.992 150.435i 0.652101 0.211880i
\(711\) −52.4903 195.112i −0.0738260 0.274419i
\(712\) −133.191 + 96.7688i −0.187066 + 0.135911i
\(713\) −887.698 288.431i −1.24502 0.404531i
\(714\) 419.066 1185.30i 0.586927 1.66008i
\(715\) 0 0
\(716\) 950.352i 1.32731i
\(717\) −77.2597 + 100.792i −0.107754 + 0.140574i
\(718\) 543.659 394.992i 0.757186 0.550128i
\(719\) −254.364 + 350.102i −0.353774 + 0.486928i −0.948401 0.317073i \(-0.897300\pi\)
0.594627 + 0.804002i \(0.297300\pi\)
\(720\) −451.710 172.875i −0.627376 0.240104i
\(721\) 78.6240 + 241.980i 0.109049 + 0.335617i
\(722\) −213.053 + 293.243i −0.295088 + 0.406153i
\(723\) 127.739 + 430.445i 0.176679 + 0.595359i
\(724\) 242.887 747.530i 0.335480 1.03250i
\(725\) 359.822i 0.496306i
\(726\) 0 0
\(727\) 1102.00 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(728\) −422.732 137.354i −0.580675 0.188673i
\(729\) 116.210 + 719.678i 0.159410 + 0.987212i
\(730\) −453.050 329.160i −0.620616 0.450904i
\(731\) −301.279 + 97.8916i −0.412147 + 0.133915i
\(732\) 875.259 + 22.4795i 1.19571 + 0.0307097i
\(733\) 393.518 + 285.908i 0.536860 + 0.390052i 0.822918 0.568161i \(-0.192345\pi\)
−0.286058 + 0.958212i \(0.592345\pi\)
\(734\) 220.829 + 303.945i 0.300857 + 0.414094i
\(735\) −36.1349 + 47.1409i −0.0491631 + 0.0641373i
\(736\) −1234.75 −1.67765
\(737\) 0 0
\(738\) 784.000 + 633.568i 1.06233 + 0.858493i
\(739\) 323.746 996.388i 0.438087 1.34829i −0.451804 0.892117i \(-0.649219\pi\)
0.889890 0.456175i \(-0.150781\pi\)
\(740\) −49.8752 68.6474i −0.0673990 0.0927667i
\(741\) 830.432 571.355i 1.12069 0.771059i
\(742\) 259.574 + 798.887i 0.349831 + 1.07667i
\(743\) −241.561 + 78.4879i −0.325116 + 0.105636i −0.467027 0.884243i \(-0.654675\pi\)
0.141912 + 0.989879i \(0.454675\pi\)
\(744\) 134.970 + 196.171i 0.181411 + 0.263671i
\(745\) 48.4330 35.1887i 0.0650108 0.0472331i
\(746\) 1073.31 + 348.739i 1.43875 + 0.467478i
\(747\) 119.733 148.162i 0.160285 0.198343i
\(748\) 0 0
\(749\) 316.784i 0.422942i
\(750\) −748.339 573.624i −0.997786 0.764832i
\(751\) −283.156 + 205.725i −0.377039 + 0.273935i −0.760124 0.649779i \(-0.774862\pi\)
0.383085 + 0.923713i \(0.374862\pi\)
\(752\) −410.639 + 565.197i −0.546063 + 0.751591i
\(753\) 3.92145 152.685i 0.00520776 0.202769i
\(754\) 388.495 + 1195.67i 0.515246 + 1.58576i
\(755\) 111.970 154.113i 0.148304 0.204123i
\(756\) 231.119 560.357i 0.305713 0.741213i
\(757\) 90.8510 279.611i 0.120015 0.369367i −0.872945 0.487818i \(-0.837793\pi\)
0.992960 + 0.118451i \(0.0377930\pi\)
\(758\) 926.013i 1.22165i
\(759\) 0 0
\(760\) 112.000 0.147368
\(761\) −744.813 242.004i −0.978729 0.318008i −0.224394 0.974498i \(-0.572040\pi\)
−0.754335 + 0.656490i \(0.772040\pi\)
\(762\) −512.483 + 152.084i −0.672549 + 0.199586i
\(763\) 407.745 + 296.244i 0.534397 + 0.388262i
\(764\) −169.470 + 55.0640i −0.221819 + 0.0720733i
\(765\) −192.583 + 503.206i −0.251742 + 0.657785i
\(766\) 1107.91 + 804.941i 1.44635 + 1.05084i
\(767\) 447.878 + 616.452i 0.583935 + 0.803718i
\(768\) 792.865 + 607.754i 1.03238 + 0.791347i
\(769\) 838.131 1.08990 0.544949 0.838469i \(-0.316549\pi\)
0.544949 + 0.838469i \(0.316549\pi\)
\(770\) 0 0
\(771\) −272.000 96.1665i −0.352789 0.124730i
\(772\) 138.748 427.023i 0.179726 0.553139i
\(773\) −241.064 331.796i −0.311855 0.429231i 0.624104 0.781341i \(-0.285464\pi\)
−0.935959 + 0.352110i \(0.885464\pi\)
\(774\) −344.146 + 92.5842i −0.444633 + 0.119618i
\(775\) 157.599 + 485.039i 0.203353 + 0.625857i
\(776\) −186.203 + 60.5011i −0.239953 + 0.0779653i
\(777\) −184.952 + 127.251i −0.238033 + 0.163772i
\(778\) 938.390 681.780i 1.20616 0.876324i
\(779\) −602.559 195.783i −0.773503 0.251326i
\(780\) −538.799 190.494i −0.690768 0.244223i
\(781\) 0 0
\(782\) 1742.31i 2.22802i
\(783\) 555.491 134.247i 0.709439 0.171452i
\(784\) 107.599 78.1754i 0.137244 0.0997136i
\(785\) 142.976 196.789i 0.182135 0.250687i
\(786\) 1847.39 + 47.4471i 2.35037 + 0.0603652i
\(787\) −97.1238 298.916i −0.123410 0.379817i 0.870198 0.492702i \(-0.163991\pi\)
−0.993608 + 0.112885i \(0.963991\pi\)
\(788\) −410.555 + 565.081i −0.521009 + 0.717108i
\(789\) −1339.23 + 397.430i −1.69738 + 0.503713i
\(790\) 51.9149 159.777i 0.0657150 0.202250i
\(791\) 888.972i 1.12386i
\(792\) 0 0
\(793\) −2184.00 −2.75410
\(794\) 1112.19 + 361.371i 1.40074 + 0.455128i
\(795\) −102.419 345.124i −0.128829 0.434118i
\(796\) 538.805 + 391.465i 0.676891 + 0.491790i
\(797\) 234.029 76.0408i 0.293638 0.0954088i −0.158494 0.987360i \(-0.550664\pi\)
0.452132 + 0.891951i \(0.350664\pi\)
\(798\) −22.8242 + 888.679i −0.0286018 + 1.11363i
\(799\) 629.629 + 457.453i 0.788022 + 0.572531i
\(800\) 396.559 + 545.817i 0.495699 + 0.682271i
\(801\) 305.485 + 469.373i 0.381380 + 0.585984i
\(802\) 1391.90 1.73553
\(803\) 0 0
\(804\) −126.000 + 356.382i −0.156716 + 0.443261i
\(805\) 203.497 626.301i 0.252792 0.778013i
\(806\) 1047.38 + 1441.59i 1.29948 + 1.78858i
\(807\) −630.061 915.759i −0.780745 1.13477i
\(808\) −121.135 372.814i −0.149919 0.461404i
\(809\) −241.561 + 78.4879i −0.298592 + 0.0970184i −0.454482 0.890756i \(-0.650176\pi\)
0.155890 + 0.987774i \(0.450176\pi\)
\(810\) −245.430 + 554.238i −0.303000 + 0.684245i
\(811\) −787.037 + 571.816i −0.970452 + 0.705075i −0.955555 0.294814i \(-0.904742\pi\)
−0.0148976 + 0.999889i \(0.504742\pi\)
\(812\) −451.919 146.837i −0.556550 0.180834i
\(813\) −336.749 + 952.470i −0.414206 + 1.17155i
\(814\) 0 0
\(815\) 39.5980i 0.0485865i
\(816\) 733.967 957.520i 0.899469 1.17343i
\(817\) 181.220 131.664i 0.221811 0.161155i
\(818\) 349.127 480.532i 0.426805 0.587447i
\(819\) −540.434 + 1412.12i −0.659871 + 1.72420i
\(820\) 110.999 + 341.619i 0.135364 + 0.416608i
\(821\) 286.145 393.844i 0.348532 0.479713i −0.598377 0.801215i \(-0.704188\pi\)
0.946909 + 0.321502i \(0.104188\pi\)
\(822\) 357.669 + 1205.25i 0.435120 + 1.46624i
\(823\) 321.996 991.001i 0.391246 1.20413i −0.540600 0.841280i \(-0.681803\pi\)
0.931847 0.362853i \(-0.118197\pi\)
\(824\) 89.9555i 0.109169i
\(825\) 0 0
\(826\) −672.000 −0.813559
\(827\) −1187.67 385.899i −1.43612 0.466625i −0.515437 0.856927i \(-0.672370\pi\)
−0.920687 + 0.390303i \(0.872370\pi\)
\(828\) −43.1217 + 838.935i −0.0520793 + 1.01321i
\(829\) −953.022 692.411i −1.14960 0.835236i −0.161176 0.986926i \(-0.551529\pi\)
−0.988428 + 0.151689i \(0.951529\pi\)
\(830\) 150.640 48.9458i 0.181494 0.0589708i
\(831\) 67.3276 + 1.72920i 0.0810200 + 0.00208086i
\(832\) 526.709 + 382.677i 0.633064 + 0.459948i
\(833\) −87.0875 119.866i −0.104547 0.143896i
\(834\) −433.619 + 565.691i −0.519927 + 0.678287i
\(835\) 239.466 0.286786
\(836\) 0 0
\(837\) 690.000 424.264i 0.824373 0.506887i
\(838\) −559.618 + 1722.33i −0.667802 + 2.05528i
\(839\) 600.165 + 826.057i 0.715334 + 0.984573i 0.999666 + 0.0258470i \(0.00822826\pi\)
−0.284332 + 0.958726i \(0.591772\pi\)
\(840\) −138.405 + 95.2258i −0.164768 + 0.113364i
\(841\) 121.444 + 373.765i 0.144404 + 0.444430i
\(842\) 669.325 217.477i 0.794923 0.258286i
\(843\) 35.9920 + 52.3123i 0.0426951 + 0.0620549i
\(844\) 944.444 686.179i 1.11901 0.813008i
\(845\) 901.148 + 292.801i 1.06645 + 0.346510i
\(846\) 680.982 + 550.316i 0.804943 + 0.650492i
\(847\) 0 0
\(848\) 806.102i 0.950592i
\(849\) −427.622 327.785i −0.503678 0.386084i
\(850\) 770.184 559.572i 0.906099 0.658319i
\(851\) 182.876 251.707i 0.214895 0.295778i
\(852\) −15.0322 + 585.291i −0.0176434 + 0.686962i
\(853\) 182.685 + 562.247i 0.214168 + 0.659141i 0.999212 + 0.0397007i \(0.0126405\pi\)
−0.785044 + 0.619440i \(0.787360\pi\)
\(854\) 1132.14 1558.25i 1.32569 1.82465i
\(855\) 19.5572 380.486i 0.0228739 0.445013i
\(856\) −34.6099 + 106.518i −0.0404321 + 0.124437i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 706.000 0.821886 0.410943 0.911661i \(-0.365200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(860\) −120.780 39.2439i −0.140442 0.0456325i
\(861\) 911.080 270.372i 1.05817 0.314021i
\(862\) −1177.93 855.815i −1.36651 0.992825i
\(863\) 470.749 152.956i 0.545480 0.177237i −0.0232978 0.999729i \(-0.507417\pi\)
0.568777 + 0.822491i \(0.307417\pi\)
\(864\) 694.674 815.845i 0.804021 0.944265i
\(865\) −435.897 316.698i −0.503927 0.366125i
\(866\) −1147.69 1579.66i −1.32528 1.82409i
\(867\) −378.575 290.189i −0.436650 0.334705i
\(868\) −673.498 −0.775920
\(869\) 0 0
\(870\) 448.000 + 158.392i 0.514943 + 0.182060i
\(871\) 291.371 896.749i 0.334525 1.02956i
\(872\) 104.738 + 144.159i 0.120112 + 0.165320i
\(873\) 173.020 + 643.133i 0.198190 + 0.736693i
\(874\) −380.709 1171.70i −0.435594 1.34062i
\(875\) −845.463 + 274.708i −0.966243 + 0.313952i
\(876\) 554.856 381.752i 0.633397 0.435790i
\(877\) 78.7037 57.1816i 0.0897419 0.0652013i −0.542010 0.840372i \(-0.682336\pi\)
0.631751 + 0.775171i \(0.282336\pi\)
\(878\) 1073.31 + 348.739i 1.22245 + 0.397197i
\(879\) −59.8665 21.1660i −0.0681075 0.0240796i
\(880\) 0 0
\(881\) 1493.41i 1.69513i −0.530692 0.847565i \(-0.678068\pi\)
0.530692 0.847565i \(-0.321932\pi\)
\(882\) −90.9221 139.700i −0.103086 0.158390i
\(883\) −69.5755 + 50.5495i −0.0787944 + 0.0572475i −0.626485 0.779433i \(-0.715507\pi\)
0.547691 + 0.836681i \(0.315507\pi\)
\(884\) 837.904 1153.28i 0.947855 1.30461i
\(885\) 287.905 + 7.39435i 0.325316 + 0.00835520i
\(886\) 97.1238 + 298.916i 0.109621 + 0.337377i
\(887\) 149.293 205.484i 0.168312 0.231662i −0.716526 0.697560i \(-0.754269\pi\)
0.884838 + 0.465899i \(0.154269\pi\)
\(888\) −76.0926 + 22.5812i −0.0856899 + 0.0254293i
\(889\) −155.745 + 479.332i −0.175191 + 0.539182i
\(890\) 465.652i 0.523205i
\(891\) 0 0
\(892\) 138.000 0.154709
\(893\) −523.382 170.057i −0.586094 0.190433i
\(894\) 47.7955 + 161.058i 0.0534625 + 0.180154i
\(895\) 724.879 + 526.656i 0.809921 + 0.588442i
\(896\) 583.729 189.665i 0.651483 0.211680i
\(897\) 53.7999 2094.74i 0.0599776 2.33528i
\(898\) −1089.74 791.745i −1.21352 0.881676i
\(899\) −373.232 513.710i −0.415164 0.571424i
\(900\) 384.698 250.376i 0.427443 0.278195i
\(901\) 897.998 0.996668
\(902\) 0 0
\(903\) −112.000 + 316.784i −0.124031 + 0.350813i
\(904\) 97.1238 298.916i 0.107438 0.330660i
\(905\) 435.577 + 599.520i 0.481301 + 0.662453i
\(906\) 303.007 + 440.403i 0.334444 + 0.486096i
\(907\) −298.510 918.721i −0.329118 1.01292i −0.969547 0.244905i \(-0.921243\pi\)
0.640429 0.768018i \(-0.278757\pi\)
\(908\) −603.902 + 196.220i −0.665090 + 0.216101i
\(909\) −1287.67 + 346.418i −1.41658 + 0.381098i
\(910\) −1017.09 + 738.962i −1.11769 + 0.812046i
\(911\) 1379.97 + 448.378i 1.51478 + 0.492183i 0.944288 0.329119i \(-0.106752\pi\)
0.570494 + 0.821302i \(0.306752\pi\)
\(912\) −284.366 + 804.308i −0.311805 + 0.881917i
\(913\) 0 0
\(914\) 1781.91i 1.94957i
\(915\) −502.188 + 655.145i −0.548839 + 0.716006i
\(916\) 286.392 208.076i 0.312655 0.227157i
\(917\) 1024.10 1409.56i 1.11680 1.53714i
\(918\) −1151.21 980.232i −1.25404 1.06779i
\(919\) −122.561 377.204i −0.133363 0.410450i 0.861968 0.506962i \(-0.169232\pi\)
−0.995332 + 0.0965115i \(0.969232\pi\)
\(920\) 136.852 188.360i 0.148752 0.204739i
\(921\) 127.739 + 430.445i 0.138696 + 0.467367i
\(922\) 571.063 1757.55i 0.619375 1.90624i
\(923\) 1460.45i 1.58229i
\(924\) 0 0
\(925\) −170.000 −0.183784
\(926\) 2219.34 + 721.107i 2.39670 + 0.778734i
\(927\) 305.597 + 15.7078i 0.329662 + 0.0169448i
\(928\) −679.574 493.740i −0.732300 0.532047i
\(929\) −1452.60 + 471.977i −1.56361 + 0.508049i −0.957770 0.287535i \(-0.907164\pi\)
−0.605843 + 0.795584i \(0.707164\pi\)
\(930\) 673.276 + 17.2920i 0.723953 + 0.0185935i
\(931\) 84.7578 + 61.5801i 0.0910395 + 0.0661441i
\(932\) −149.293 205.484i −0.160185 0.220476i
\(933\) 46.4592 60.6098i 0.0497955 0.0649623i
\(934\) −1406.86 −1.50628
\(935\) 0 0
\(936\) −336.000 + 415.779i −0.358974 + 0.444208i
\(937\) −388.495 + 1195.67i −0.414616 + 1.27606i 0.497978 + 0.867190i \(0.334076\pi\)
−0.912594 + 0.408867i \(0.865924\pi\)
\(938\) 488.777 + 672.744i 0.521085 + 0.717211i
\(939\) 983.667 676.783i 1.04757 0.720749i
\(940\) 96.4133 + 296.730i 0.102567 + 0.315670i
\(941\) −462.992 + 150.435i −0.492021 + 0.159867i −0.544510 0.838754i \(-0.683284\pi\)
0.0524893 + 0.998621i \(0.483284\pi\)
\(942\) 386.914 + 562.357i 0.410736 + 0.596982i
\(943\) −1065.53 + 774.150i −1.12993 + 0.820944i
\(944\) −613.319 199.279i −0.649702 0.211101i
\(945\) 299.333 + 486.818i 0.316754 + 0.515152i
\(946\) 0 0
\(947\) 435.578i 0.459955i −0.973196 0.229978i \(-0.926135\pi\)
0.973196 0.229978i \(-0.0738653\pi\)
\(948\) 160.358 + 122.919i 0.169154 + 0.129662i
\(949\) −1359.15 + 987.479i −1.43219 + 1.04055i
\(950\) −395.677 + 544.602i −0.416502 + 0.573266i
\(951\) −32.0251 + 1246.93i −0.0336752 + 1.31117i
\(952\) −129.498 398.555i −0.136028 0.418650i
\(953\) −945.521 + 1301.40i −0.992152 + 1.36558i −0.0621339 + 0.998068i \(0.519791\pi\)
−0.930018 + 0.367513i \(0.880209\pi\)
\(954\) 1008.92 + 51.8587i 1.05756 + 0.0543593i
\(955\) 51.9149 159.777i 0.0543611 0.167306i
\(956\) 126.996i 0.132841i
\(957\) 0 0
\(958\) 1792.00 1.87056
\(959\) 1127.28 + 366.277i 1.17548 + 0.381936i
\(960\) 235.905 70.0071i 0.245734 0.0729240i
\(961\) 49.3500 + 35.8549i 0.0513528 + 0.0373100i
\(962\) −564.899 + 183.547i −0.587213 + 0.190797i
\(963\) 355.820 + 136.177i 0.369491 + 0.141409i
\(964\) −363.248 263.915i −0.376813 0.273771i
\(965\) 248.821 + 342.473i 0.257846 + 0.354895i
\(966\) 1466.68 + 1124.25i 1.51830 + 1.16382i
\(967\) −1055.15 −1.09116 −0.545578 0.838060i \(-0.683690\pi\)
−0.545578 + 0.838060i \(0.683690\pi\)
\(968\) 0 0
\(969\) 896.000 + 316.784i 0.924665 + 0.326918i
\(970\) −171.123 + 526.662i −0.176415 + 0.542951i
\(971\) −149.626 205.942i −0.154094 0.212093i 0.724989 0.688760i \(-0.241845\pi\)
−0.879084 + 0.476667i \(0.841845\pi\)
\(972\) −530.057 500.481i −0.545326 0.514898i
\(973\) 207.659 + 639.110i 0.213422 + 0.656845i
\(974\) −880.691 + 286.154i −0.904200 + 0.293792i
\(975\) −943.255 + 648.979i −0.967441 + 0.665620i
\(976\) 1495.37 1086.45i 1.53214 1.11317i
\(977\) −1371.90 445.756i −1.40419 0.456250i −0.493649 0.869661i \(-0.664337\pi\)
−0.910544 + 0.413411i \(0.864337\pi\)
\(978\) 104.766 + 37.0405i 0.107123 + 0.0378737i
\(979\) 0 0
\(980\) 59.3970i 0.0606092i
\(981\) 508.027 330.643i 0.517866 0.337047i
\(982\) 543.659 394.992i 0.553625 0.402232i
\(983\) 403.989 556.044i 0.410976 0.565660i −0.552480 0.833526i \(-0.686318\pi\)
0.963456 + 0.267866i \(0.0863185\pi\)
\(984\) 335.889 + 8.62674i 0.341351 + 0.00876701i
\(985\) −203.497 626.301i −0.206596 0.635838i
\(986\) −696.700 + 958.925i −0.706592 + 0.972541i
\(987\) 791.363 234.845i 0.801787 0.237938i
\(988\) −311.489 + 958.665i −0.315272 + 0.970309i
\(989\) 465.652i 0.470831i
\(990\) 0 0
\(991\) 574.000 0.579213 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) −1132.32 367.912i −1.14145 0.370879i
\(993\) −151.921 511.933i −0.152992 0.515542i
\(994\) 1042.01 + 757.067i 1.04830 + 0.761637i
\(995\) −597.179 + 194.035i −0.600180 + 0.195010i
\(996\) −4.89090 + 190.431i −0.00491054 + 0.191196i
\(997\) −1071.58 778.549i −1.07481 0.780892i −0.0980354 0.995183i \(-0.531256\pi\)
−0.976770 + 0.214291i \(0.931256\pi\)
\(998\) 152.403 + 209.765i 0.152709 + 0.210185i
\(999\) 63.4258 + 262.445i 0.0634893 + 0.262707i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.k.251.3 16
3.2 odd 2 inner 363.3.h.k.251.2 16
11.2 odd 10 inner 363.3.h.k.245.3 16
11.3 even 5 inner 363.3.h.k.323.4 16
11.4 even 5 363.3.b.i.122.4 yes 4
11.5 even 5 inner 363.3.h.k.269.2 16
11.6 odd 10 inner 363.3.h.k.269.4 16
11.7 odd 10 363.3.b.i.122.2 yes 4
11.8 odd 10 inner 363.3.h.k.323.2 16
11.9 even 5 inner 363.3.h.k.245.1 16
11.10 odd 2 inner 363.3.h.k.251.1 16
33.2 even 10 inner 363.3.h.k.245.2 16
33.5 odd 10 inner 363.3.h.k.269.3 16
33.8 even 10 inner 363.3.h.k.323.3 16
33.14 odd 10 inner 363.3.h.k.323.1 16
33.17 even 10 inner 363.3.h.k.269.1 16
33.20 odd 10 inner 363.3.h.k.245.4 16
33.26 odd 10 363.3.b.i.122.1 4
33.29 even 10 363.3.b.i.122.3 yes 4
33.32 even 2 inner 363.3.h.k.251.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.i.122.1 4 33.26 odd 10
363.3.b.i.122.2 yes 4 11.7 odd 10
363.3.b.i.122.3 yes 4 33.29 even 10
363.3.b.i.122.4 yes 4 11.4 even 5
363.3.h.k.245.1 16 11.9 even 5 inner
363.3.h.k.245.2 16 33.2 even 10 inner
363.3.h.k.245.3 16 11.2 odd 10 inner
363.3.h.k.245.4 16 33.20 odd 10 inner
363.3.h.k.251.1 16 11.10 odd 2 inner
363.3.h.k.251.2 16 3.2 odd 2 inner
363.3.h.k.251.3 16 1.1 even 1 trivial
363.3.h.k.251.4 16 33.32 even 2 inner
363.3.h.k.269.1 16 33.17 even 10 inner
363.3.h.k.269.2 16 11.5 even 5 inner
363.3.h.k.269.3 16 33.5 odd 10 inner
363.3.h.k.269.4 16 11.6 odd 10 inner
363.3.h.k.323.1 16 33.14 odd 10 inner
363.3.h.k.323.2 16 11.8 odd 10 inner
363.3.h.k.323.3 16 33.8 even 10 inner
363.3.h.k.323.4 16 11.3 even 5 inner