Properties

Label 363.3.h.k.245.4
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.23612624896000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.4
Root \(-1.20431 + 2.50824i\) of defining polynomial
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.k.323.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.55513 + 2.14046i) q^{2} +(2.38098 - 1.82509i) q^{3} +(-0.927051 + 2.85317i) q^{4} +(-1.66251 + 2.28825i) q^{5} +(7.60926 + 2.25812i) q^{6} +(2.31247 - 7.11706i) q^{7} +(2.51626 - 0.817582i) q^{8} +(2.33810 - 8.69099i) q^{9} -7.48331 q^{10} +(3.00000 + 8.48528i) q^{12} +(18.1624 - 13.1957i) q^{13} +(18.8300 - 6.11822i) q^{14} +(0.217858 + 8.48248i) q^{15} +(15.3713 + 11.1679i) q^{16} +(-12.4411 + 17.1237i) q^{17} +(22.2388 - 8.51104i) q^{18} +(-4.62494 - 14.2341i) q^{19} +(-4.98752 - 6.86474i) q^{20} +(-7.48331 - 21.1660i) q^{21} +31.1127i q^{23} +(4.49900 - 6.53904i) q^{24} +(5.25329 + 16.1680i) q^{25} +(56.4899 + 18.3547i) q^{26} +(-10.2949 - 24.9603i) q^{27} +(18.1624 + 13.1957i) q^{28} +(-20.1301 - 6.54066i) q^{29} +(-17.8176 + 13.6577i) q^{30} +(-24.2705 + 17.6336i) q^{31} +39.6863i q^{32} -56.0000 q^{34} +(12.4411 + 17.1237i) q^{35} +(22.6293 + 14.7280i) q^{36} +(-3.09017 + 9.51057i) q^{37} +(23.2751 - 32.0354i) q^{38} +(19.1608 - 64.5667i) q^{39} +(-2.31247 + 7.11706i) q^{40} +(40.2601 - 13.0813i) q^{41} +(33.6674 - 48.9337i) q^{42} +14.9666 q^{43} +(16.0000 + 19.7990i) q^{45} +(-66.5954 + 48.3844i) q^{46} +(34.9699 - 11.3624i) q^{47} +(56.9812 - 1.46346i) q^{48} +(-5.66312 - 4.11450i) q^{49} +(-26.4373 + 36.3878i) q^{50} +(1.63030 + 63.4771i) q^{51} +(20.8122 + 64.0535i) q^{52} +(-24.9376 - 34.3237i) q^{53} +(37.4166 - 60.8523i) q^{54} -19.7990i q^{56} +(-36.9904 - 25.4502i) q^{57} +(-17.3050 - 53.2592i) q^{58} +(-32.2799 - 10.4884i) q^{59} +(-24.4039 - 7.24211i) q^{60} +(-78.7037 - 57.1816i) q^{61} +(-75.4878 - 24.5275i) q^{62} +(-56.4474 - 36.7381i) q^{63} +(-23.4615 + 17.0458i) q^{64} +63.4980i q^{65} -42.0000 q^{67} +(-37.3232 - 51.3710i) q^{68} +(56.7834 + 74.0786i) q^{69} +(-17.3050 + 53.2592i) q^{70} +(-38.2377 + 52.6296i) q^{71} +(-1.22232 - 23.7804i) q^{72} +(-23.1247 + 71.1706i) q^{73} +(-25.1626 + 8.17582i) q^{74} +(42.0159 + 28.9078i) q^{75} +44.8999 q^{76} +(168.000 - 59.3970i) q^{78} +(18.1624 - 13.1957i) q^{79} +(-51.1099 + 16.6066i) q^{80} +(-70.0665 - 40.6409i) q^{81} +(90.6099 + 65.8319i) q^{82} +(-12.4411 + 17.1237i) q^{83} +(67.3276 - 1.72920i) q^{84} +(-18.4998 - 56.9364i) q^{85} +(23.2751 + 32.0354i) q^{86} +(-59.8665 + 21.1660i) q^{87} +62.2254i q^{89} +(-17.4968 + 65.0374i) q^{90} +(-51.9149 - 159.777i) q^{91} +(-88.7698 - 28.8431i) q^{92} +(-25.6047 + 86.2809i) q^{93} +(78.7037 + 57.1816i) q^{94} +(40.2601 + 13.0813i) q^{95} +(72.4310 + 94.4921i) q^{96} +(-59.8673 + 43.4961i) q^{97} -18.5203i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 12 q^{4} + 28 q^{9} + 48 q^{12} + 32 q^{15} + 76 q^{16} - 68 q^{25} - 92 q^{27} - 120 q^{31} - 896 q^{34} - 84 q^{36} + 40 q^{37} + 224 q^{42} + 256 q^{45} - 76 q^{48} - 28 q^{49} + 224 q^{58}+ \cdots - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55513 + 2.14046i 0.777567 + 1.07023i 0.995546 + 0.0942755i \(0.0300535\pi\)
−0.217979 + 0.975953i \(0.569947\pi\)
\(3\) 2.38098 1.82509i 0.793659 0.608363i
\(4\) −0.927051 + 2.85317i −0.231763 + 0.713292i
\(5\) −1.66251 + 2.28825i −0.332502 + 0.457649i −0.942233 0.334959i \(-0.891277\pi\)
0.609731 + 0.792608i \(0.291277\pi\)
\(6\) 7.60926 + 2.25812i 1.26821 + 0.376354i
\(7\) 2.31247 7.11706i 0.330353 1.01672i −0.638613 0.769528i \(-0.720491\pi\)
0.968966 0.247194i \(-0.0795085\pi\)
\(8\) 2.51626 0.817582i 0.314532 0.102198i
\(9\) 2.33810 8.69099i 0.259789 0.965665i
\(10\) −7.48331 −0.748331
\(11\) 0 0
\(12\) 3.00000 + 8.48528i 0.250000 + 0.707107i
\(13\) 18.1624 13.1957i 1.39711 1.01506i 0.402064 0.915612i \(-0.368293\pi\)
0.995043 0.0994457i \(-0.0317070\pi\)
\(14\) 18.8300 6.11822i 1.34500 0.437016i
\(15\) 0.217858 + 8.48248i 0.0145239 + 0.565499i
\(16\) 15.3713 + 11.1679i 0.960708 + 0.697995i
\(17\) −12.4411 + 17.1237i −0.731828 + 1.00727i 0.267220 + 0.963636i \(0.413895\pi\)
−0.999047 + 0.0436386i \(0.986105\pi\)
\(18\) 22.2388 8.51104i 1.23549 0.472835i
\(19\) −4.62494 14.2341i −0.243418 0.749164i −0.995893 0.0905424i \(-0.971140\pi\)
0.752475 0.658621i \(-0.228860\pi\)
\(20\) −4.98752 6.86474i −0.249376 0.343237i
\(21\) −7.48331 21.1660i −0.356348 1.00791i
\(22\) 0 0
\(23\) 31.1127i 1.35273i 0.736568 + 0.676363i \(0.236445\pi\)
−0.736568 + 0.676363i \(0.763555\pi\)
\(24\) 4.49900 6.53904i 0.187458 0.272460i
\(25\) 5.25329 + 16.1680i 0.210132 + 0.646718i
\(26\) 56.4899 + 18.3547i 2.17269 + 0.705949i
\(27\) −10.2949 24.9603i −0.381291 0.924455i
\(28\) 18.1624 + 13.1957i 0.648657 + 0.471277i
\(29\) −20.1301 6.54066i −0.694140 0.225540i −0.0593647 0.998236i \(-0.518907\pi\)
−0.634776 + 0.772696i \(0.718907\pi\)
\(30\) −17.8176 + 13.6577i −0.593920 + 0.455257i
\(31\) −24.2705 + 17.6336i −0.782920 + 0.568824i −0.905854 0.423590i \(-0.860770\pi\)
0.122934 + 0.992415i \(0.460770\pi\)
\(32\) 39.6863i 1.24020i
\(33\) 0 0
\(34\) −56.0000 −1.64706
\(35\) 12.4411 + 17.1237i 0.355459 + 0.489247i
\(36\) 22.6293 + 14.7280i 0.628592 + 0.409111i
\(37\) −3.09017 + 9.51057i −0.0835181 + 0.257042i −0.984092 0.177661i \(-0.943147\pi\)
0.900574 + 0.434704i \(0.143147\pi\)
\(38\) 23.2751 32.0354i 0.612503 0.843038i
\(39\) 19.1608 64.5667i 0.491303 1.65556i
\(40\) −2.31247 + 7.11706i −0.0578118 + 0.177926i
\(41\) 40.2601 13.0813i 0.981955 0.319056i 0.226322 0.974052i \(-0.427330\pi\)
0.755632 + 0.654996i \(0.227330\pi\)
\(42\) 33.6674 48.9337i 0.801605 1.16509i
\(43\) 14.9666 0.348061 0.174031 0.984740i \(-0.444321\pi\)
0.174031 + 0.984740i \(0.444321\pi\)
\(44\) 0 0
\(45\) 16.0000 + 19.7990i 0.355556 + 0.439978i
\(46\) −66.5954 + 48.3844i −1.44773 + 1.05183i
\(47\) 34.9699 11.3624i 0.744041 0.241754i 0.0876258 0.996153i \(-0.472072\pi\)
0.656415 + 0.754400i \(0.272072\pi\)
\(48\) 56.9812 1.46346i 1.18711 0.0304889i
\(49\) −5.66312 4.11450i −0.115574 0.0839693i
\(50\) −26.4373 + 36.3878i −0.528745 + 0.727756i
\(51\) 1.63030 + 63.4771i 0.0319667 + 1.24465i
\(52\) 20.8122 + 64.0535i 0.400235 + 1.23180i
\(53\) −24.9376 34.3237i −0.470521 0.647617i 0.506128 0.862458i \(-0.331076\pi\)
−0.976649 + 0.214842i \(0.931076\pi\)
\(54\) 37.4166 60.8523i 0.692900 1.12689i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) −36.9904 25.4502i −0.648954 0.446494i
\(58\) −17.3050 53.2592i −0.298361 0.918261i
\(59\) −32.2799 10.4884i −0.547117 0.177769i 0.0223991 0.999749i \(-0.492870\pi\)
−0.569517 + 0.821980i \(0.692870\pi\)
\(60\) −24.4039 7.24211i −0.406732 0.120702i
\(61\) −78.7037 57.1816i −1.29022 0.937403i −0.290414 0.956901i \(-0.593793\pi\)
−0.999810 + 0.0194983i \(0.993793\pi\)
\(62\) −75.4878 24.5275i −1.21754 0.395604i
\(63\) −56.4474 36.7381i −0.895991 0.583144i
\(64\) −23.4615 + 17.0458i −0.366586 + 0.266340i
\(65\) 63.4980i 0.976893i
\(66\) 0 0
\(67\) −42.0000 −0.626866 −0.313433 0.949610i \(-0.601479\pi\)
−0.313433 + 0.949610i \(0.601479\pi\)
\(68\) −37.3232 51.3710i −0.548871 0.755456i
\(69\) 56.7834 + 74.0786i 0.822948 + 1.07360i
\(70\) −17.3050 + 53.2592i −0.247214 + 0.760845i
\(71\) −38.2377 + 52.6296i −0.538559 + 0.741263i −0.988405 0.151844i \(-0.951479\pi\)
0.449846 + 0.893106i \(0.351479\pi\)
\(72\) −1.22232 23.7804i −0.0169767 0.330283i
\(73\) −23.1247 + 71.1706i −0.316777 + 0.974939i 0.658240 + 0.752808i \(0.271301\pi\)
−0.975017 + 0.222131i \(0.928699\pi\)
\(74\) −25.1626 + 8.17582i −0.340035 + 0.110484i
\(75\) 42.0159 + 28.9078i 0.560212 + 0.385438i
\(76\) 44.8999 0.590788
\(77\) 0 0
\(78\) 168.000 59.3970i 2.15385 0.761500i
\(79\) 18.1624 13.1957i 0.229904 0.167035i −0.466870 0.884326i \(-0.654618\pi\)
0.696773 + 0.717291i \(0.254618\pi\)
\(80\) −51.1099 + 16.6066i −0.638874 + 0.207583i
\(81\) −70.0665 40.6409i −0.865019 0.501739i
\(82\) 90.6099 + 65.8319i 1.10500 + 0.802829i
\(83\) −12.4411 + 17.1237i −0.149892 + 0.206309i −0.877360 0.479833i \(-0.840697\pi\)
0.727467 + 0.686142i \(0.240697\pi\)
\(84\) 67.3276 1.72920i 0.801519 0.0205857i
\(85\) −18.4998 56.9364i −0.217644 0.669840i
\(86\) 23.2751 + 32.0354i 0.270641 + 0.372505i
\(87\) −59.8665 + 21.1660i −0.688121 + 0.243287i
\(88\) 0 0
\(89\) 62.2254i 0.699162i 0.936906 + 0.349581i \(0.113676\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(90\) −17.4968 + 65.0374i −0.194408 + 0.722638i
\(91\) −51.9149 159.777i −0.570493 1.75580i
\(92\) −88.7698 28.8431i −0.964889 0.313511i
\(93\) −25.6047 + 86.2809i −0.275320 + 0.927752i
\(94\) 78.7037 + 57.1816i 0.837273 + 0.608315i
\(95\) 40.2601 + 13.0813i 0.423791 + 0.137698i
\(96\) 72.4310 + 94.4921i 0.754489 + 0.984293i
\(97\) −59.8673 + 43.4961i −0.617188 + 0.448413i −0.851938 0.523642i \(-0.824573\pi\)
0.234750 + 0.972056i \(0.424573\pi\)
\(98\) 18.5203i 0.188982i
\(99\) 0 0
\(100\) −51.0000 −0.510000
\(101\) 87.0875 + 119.866i 0.862252 + 1.18679i 0.981028 + 0.193867i \(0.0621031\pi\)
−0.118775 + 0.992921i \(0.537897\pi\)
\(102\) −133.335 + 102.205i −1.30720 + 1.00201i
\(103\) 10.5066 32.3359i 0.102006 0.313941i −0.887010 0.461749i \(-0.847222\pi\)
0.989016 + 0.147808i \(0.0472219\pi\)
\(104\) 34.9127 48.0532i 0.335699 0.462050i
\(105\) 60.8741 + 18.0650i 0.579753 + 0.172048i
\(106\) 34.6871 106.756i 0.327237 1.00713i
\(107\) 40.2601 13.0813i 0.376263 0.122255i −0.114779 0.993391i \(-0.536616\pi\)
0.491042 + 0.871136i \(0.336616\pi\)
\(108\) 80.7598 6.23350i 0.747776 0.0577176i
\(109\) −67.3498 −0.617888 −0.308944 0.951080i \(-0.599976\pi\)
−0.308944 + 0.951080i \(0.599976\pi\)
\(110\) 0 0
\(111\) 10.0000 + 28.2843i 0.0900901 + 0.254813i
\(112\) 115.028 83.5731i 1.02704 0.746188i
\(113\) −112.980 + 36.7093i −0.999821 + 0.324861i −0.762794 0.646642i \(-0.776173\pi\)
−0.237027 + 0.971503i \(0.576173\pi\)
\(114\) −3.05001 118.755i −0.0267545 1.04171i
\(115\) −71.1935 51.7251i −0.619074 0.449783i
\(116\) 37.3232 51.3710i 0.321752 0.442853i
\(117\) −72.2185 188.702i −0.617252 1.61284i
\(118\) −27.7497 85.4047i −0.235167 0.723768i
\(119\) 93.1004 + 128.142i 0.782357 + 1.07682i
\(120\) 7.48331 + 21.1660i 0.0623610 + 0.176383i
\(121\) 0 0
\(122\) 257.387i 2.10973i
\(123\) 71.9839 104.625i 0.585235 0.850607i
\(124\) −27.8115 85.5951i −0.224287 0.690283i
\(125\) −112.980 36.7093i −0.903838 0.293675i
\(126\) −9.14702 177.956i −0.0725954 1.41235i
\(127\) 54.4872 + 39.5872i 0.429033 + 0.311711i 0.781262 0.624203i \(-0.214576\pi\)
−0.352229 + 0.935914i \(0.614576\pi\)
\(128\) 78.0040 + 25.3450i 0.609406 + 0.198008i
\(129\) 35.6352 27.3154i 0.276242 0.211747i
\(130\) −135.915 + 98.7479i −1.04550 + 0.759599i
\(131\) 232.826i 1.77730i −0.458587 0.888649i \(-0.651644\pi\)
0.458587 0.888649i \(-0.348356\pi\)
\(132\) 0 0
\(133\) −112.000 −0.842105
\(134\) −65.3156 89.8992i −0.487430 0.670890i
\(135\) 74.2305 + 17.9395i 0.549856 + 0.132885i
\(136\) −17.3050 + 53.2592i −0.127242 + 0.391612i
\(137\) −93.1004 + 128.142i −0.679565 + 0.935341i −0.999929 0.0119535i \(-0.996195\pi\)
0.320363 + 0.947295i \(0.396195\pi\)
\(138\) −70.2563 + 236.745i −0.509104 + 1.71554i
\(139\) 27.7497 85.4047i 0.199638 0.614422i −0.800253 0.599662i \(-0.795302\pi\)
0.999891 0.0147598i \(-0.00469838\pi\)
\(140\) −60.3902 + 19.6220i −0.431359 + 0.140157i
\(141\) 62.5252 90.8769i 0.443441 0.644517i
\(142\) −172.116 −1.21209
\(143\) 0 0
\(144\) 133.000 107.480i 0.923611 0.746390i
\(145\) 48.4330 35.1887i 0.334021 0.242680i
\(146\) −188.300 + 61.1822i −1.28972 + 0.419056i
\(147\) −20.9931 + 0.539171i −0.142810 + 0.00366783i
\(148\) −24.2705 17.6336i −0.163990 0.119146i
\(149\) −12.4411 + 17.1237i −0.0834971 + 0.114924i −0.848722 0.528839i \(-0.822628\pi\)
0.765225 + 0.643763i \(0.222628\pi\)
\(150\) 3.46439 + 134.889i 0.0230959 + 0.899259i
\(151\) 20.8122 + 64.0535i 0.137829 + 0.424195i 0.996019 0.0891369i \(-0.0284109\pi\)
−0.858190 + 0.513332i \(0.828411\pi\)
\(152\) −23.2751 32.0354i −0.153126 0.210759i
\(153\) 119.733 + 148.162i 0.782569 + 0.968380i
\(154\) 0 0
\(155\) 84.8528i 0.547438i
\(156\) 166.457 + 114.526i 1.06703 + 0.734139i
\(157\) 26.5755 + 81.7909i 0.169270 + 0.520961i 0.999326 0.0367205i \(-0.0116911\pi\)
−0.830055 + 0.557681i \(0.811691\pi\)
\(158\) 56.4899 + 18.3547i 0.357531 + 0.116169i
\(159\) −122.020 36.2105i −0.767419 0.227739i
\(160\) −90.8119 65.9787i −0.567575 0.412367i
\(161\) 221.431 + 71.9472i 1.37535 + 0.446877i
\(162\) −21.9728 213.176i −0.135635 1.31590i
\(163\) 11.3262 8.22899i 0.0694861 0.0504846i −0.552500 0.833513i \(-0.686326\pi\)
0.621986 + 0.783028i \(0.286326\pi\)
\(164\) 126.996i 0.774366i
\(165\) 0 0
\(166\) −56.0000 −0.337349
\(167\) −49.7643 68.4946i −0.297990 0.410148i 0.633599 0.773662i \(-0.281577\pi\)
−0.931589 + 0.363514i \(0.881577\pi\)
\(168\) −36.1349 47.1409i −0.215089 0.280601i
\(169\) 103.521 318.604i 0.612548 1.88523i
\(170\) 93.1004 128.142i 0.547650 0.753775i
\(171\) −134.522 + 6.91450i −0.786679 + 0.0404357i
\(172\) −13.8748 + 42.7023i −0.0806676 + 0.248269i
\(173\) −181.171 + 58.8659i −1.04723 + 0.340265i −0.781580 0.623804i \(-0.785586\pi\)
−0.265649 + 0.964070i \(0.585586\pi\)
\(174\) −138.405 95.2258i −0.795433 0.547275i
\(175\) 127.216 0.726951
\(176\) 0 0
\(177\) −96.0000 + 33.9411i −0.542373 + 0.191758i
\(178\) −133.191 + 96.7688i −0.748263 + 0.543645i
\(179\) 301.279 97.8916i 1.68312 0.546880i 0.697611 0.716477i \(-0.254246\pi\)
0.985514 + 0.169596i \(0.0542463\pi\)
\(180\) −71.3227 + 27.2960i −0.396237 + 0.151645i
\(181\) 211.962 + 154.000i 1.17106 + 0.850827i 0.991136 0.132853i \(-0.0424137\pi\)
0.179927 + 0.983680i \(0.442414\pi\)
\(182\) 261.262 359.597i 1.43551 1.97581i
\(183\) −291.753 + 7.49318i −1.59428 + 0.0409463i
\(184\) 25.4372 + 78.2876i 0.138246 + 0.425476i
\(185\) −16.6251 22.8825i −0.0898653 0.123689i
\(186\) −224.499 + 79.3725i −1.20699 + 0.426734i
\(187\) 0 0
\(188\) 110.309i 0.586748i
\(189\) −201.450 + 15.5491i −1.06587 + 0.0822702i
\(190\) 34.6099 + 106.518i 0.182157 + 0.560623i
\(191\) 56.4899 + 18.3547i 0.295759 + 0.0960978i 0.453138 0.891440i \(-0.350305\pi\)
−0.157379 + 0.987538i \(0.550305\pi\)
\(192\) −24.7512 + 83.4049i −0.128913 + 0.434400i
\(193\) 121.083 + 87.9716i 0.627371 + 0.455812i 0.855488 0.517822i \(-0.173257\pi\)
−0.228118 + 0.973634i \(0.573257\pi\)
\(194\) −186.203 60.5011i −0.959810 0.311861i
\(195\) 115.890 + 151.187i 0.594305 + 0.775320i
\(196\) 16.9894 12.3435i 0.0866804 0.0629770i
\(197\) 232.826i 1.18186i −0.806723 0.590929i \(-0.798761\pi\)
0.806723 0.590929i \(-0.201239\pi\)
\(198\) 0 0
\(199\) 222.000 1.11558 0.557789 0.829983i \(-0.311650\pi\)
0.557789 + 0.829983i \(0.311650\pi\)
\(200\) 26.4373 + 36.3878i 0.132186 + 0.181939i
\(201\) −100.001 + 76.6537i −0.497518 + 0.381362i
\(202\) −121.135 + 372.814i −0.599677 + 1.84561i
\(203\) −93.1004 + 128.142i −0.458623 + 0.631240i
\(204\) −182.622 54.1950i −0.895207 0.265662i
\(205\) −36.9995 + 113.873i −0.180486 + 0.555477i
\(206\) 85.5528 27.7978i 0.415305 0.134941i
\(207\) 270.400 + 72.7447i 1.30628 + 0.351424i
\(208\) 426.549 2.05072
\(209\) 0 0
\(210\) 56.0000 + 158.392i 0.266667 + 0.754247i
\(211\) −314.815 + 228.726i −1.49201 + 1.08401i −0.518582 + 0.855028i \(0.673540\pi\)
−0.973430 + 0.228983i \(0.926460\pi\)
\(212\) 121.050 39.3314i 0.570989 0.185526i
\(213\) 5.01074 + 195.097i 0.0235246 + 0.915949i
\(214\) 90.6099 + 65.8319i 0.423411 + 0.307626i
\(215\) −24.8821 + 34.2473i −0.115731 + 0.159290i
\(216\) −46.3116 54.3897i −0.214406 0.251804i
\(217\) 69.3741 + 213.512i 0.319697 + 0.983925i
\(218\) −104.738 144.159i −0.480449 0.661282i
\(219\) 74.8331 + 211.660i 0.341704 + 0.966484i
\(220\) 0 0
\(221\) 475.176i 2.15012i
\(222\) −44.9900 + 65.3904i −0.202657 + 0.294551i
\(223\) −14.2148 43.7486i −0.0637434 0.196182i 0.914113 0.405460i \(-0.132889\pi\)
−0.977856 + 0.209278i \(0.932889\pi\)
\(224\) 282.449 + 91.7734i 1.26093 + 0.409703i
\(225\) 152.798 7.85391i 0.679103 0.0349062i
\(226\) −254.273 184.740i −1.12510 0.817436i
\(227\) 201.301 + 65.4066i 0.886787 + 0.288135i 0.716773 0.697307i \(-0.245619\pi\)
0.170015 + 0.985442i \(0.445619\pi\)
\(228\) 106.906 81.9463i 0.468884 0.359413i
\(229\) −95.4640 + 69.3587i −0.416873 + 0.302876i −0.776379 0.630267i \(-0.782945\pi\)
0.359505 + 0.933143i \(0.382945\pi\)
\(230\) 232.826i 1.01229i
\(231\) 0 0
\(232\) −56.0000 −0.241379
\(233\) −49.7643 68.4946i −0.213581 0.293968i 0.688762 0.724987i \(-0.258154\pi\)
−0.902343 + 0.431019i \(0.858154\pi\)
\(234\) 291.599 448.038i 1.24615 1.91469i
\(235\) −32.1378 + 98.9099i −0.136756 + 0.420893i
\(236\) 59.8503 82.3768i 0.253603 0.349054i
\(237\) 19.1608 64.5667i 0.0808473 0.272433i
\(238\) −129.498 + 398.555i −0.544111 + 1.67460i
\(239\) 40.2601 13.0813i 0.168452 0.0547335i −0.223577 0.974686i \(-0.571773\pi\)
0.392029 + 0.919953i \(0.371773\pi\)
\(240\) −91.3829 + 132.820i −0.380762 + 0.553417i
\(241\) −149.666 −0.621022 −0.310511 0.950570i \(-0.600500\pi\)
−0.310511 + 0.950570i \(0.600500\pi\)
\(242\) 0 0
\(243\) −241.000 + 31.1127i −0.991770 + 0.128036i
\(244\) 236.111 171.545i 0.967668 0.703052i
\(245\) 18.8300 6.11822i 0.0768570 0.0249723i
\(246\) 335.889 8.62674i 1.36540 0.0350681i
\(247\) −271.830 197.496i −1.10053 0.799578i
\(248\) −46.6540 + 64.2137i −0.188121 + 0.258926i
\(249\) 1.63030 + 63.4771i 0.00654739 + 0.254928i
\(250\) −97.1238 298.916i −0.388495 1.19567i
\(251\) 29.9251 + 41.1884i 0.119224 + 0.164097i 0.864457 0.502706i \(-0.167662\pi\)
−0.745234 + 0.666803i \(0.767662\pi\)
\(252\) 157.150 126.996i 0.623610 0.503953i
\(253\) 0 0
\(254\) 178.191i 0.701539i
\(255\) −147.962 101.801i −0.580241 0.399218i
\(256\) 102.903 + 316.702i 0.401964 + 1.23712i
\(257\) −91.4598 29.7171i −0.355875 0.115631i 0.125623 0.992078i \(-0.459907\pi\)
−0.481498 + 0.876447i \(0.659907\pi\)
\(258\) 113.885 + 33.7965i 0.441415 + 0.130994i
\(259\) 60.5413 + 43.9858i 0.233750 + 0.169829i
\(260\) −181.171 58.8659i −0.696810 0.226407i
\(261\) −103.911 + 159.657i −0.398126 + 0.611714i
\(262\) 498.354 362.076i 1.90212 1.38197i
\(263\) 465.652i 1.77054i 0.465077 + 0.885270i \(0.346027\pi\)
−0.465077 + 0.885270i \(0.653973\pi\)
\(264\) 0 0
\(265\) 120.000 0.452830
\(266\) −174.175 239.731i −0.654793 0.901245i
\(267\) 113.567 + 148.157i 0.425344 + 0.554896i
\(268\) 38.9361 119.833i 0.145284 0.447139i
\(269\) 217.789 299.760i 0.809623 1.11435i −0.181759 0.983343i \(-0.558179\pi\)
0.991381 0.131007i \(-0.0418210\pi\)
\(270\) 77.0396 + 186.786i 0.285332 + 0.691799i
\(271\) 104.061 320.267i 0.383990 1.18180i −0.553221 0.833035i \(-0.686601\pi\)
0.937211 0.348764i \(-0.113399\pi\)
\(272\) −382.471 + 124.272i −1.40614 + 0.456884i
\(273\) −415.216 285.677i −1.52094 1.04644i
\(274\) −419.066 −1.52944
\(275\) 0 0
\(276\) −264.000 + 93.3381i −0.956522 + 0.338182i
\(277\) 18.1624 13.1957i 0.0655682 0.0476381i −0.554518 0.832171i \(-0.687097\pi\)
0.620087 + 0.784533i \(0.287097\pi\)
\(278\) 225.960 73.4187i 0.812804 0.264096i
\(279\) 96.5061 + 252.164i 0.345900 + 0.903813i
\(280\) 45.3050 + 32.9160i 0.161803 + 0.117557i
\(281\) −12.4411 + 17.1237i −0.0442743 + 0.0609383i −0.830580 0.556899i \(-0.811991\pi\)
0.786306 + 0.617837i \(0.211991\pi\)
\(282\) 291.753 7.49318i 1.03459 0.0265716i
\(283\) −55.4993 170.809i −0.196111 0.603567i −0.999962 0.00873607i \(-0.997219\pi\)
0.803851 0.594830i \(-0.202781\pi\)
\(284\) −114.713 157.889i −0.403919 0.555947i
\(285\) 119.733 42.3320i 0.420116 0.148533i
\(286\) 0 0
\(287\) 316.784i 1.10378i
\(288\) 344.913 + 92.7906i 1.19761 + 0.322190i
\(289\) −49.1337 151.218i −0.170013 0.523246i
\(290\) 150.640 + 48.9458i 0.519447 + 0.168779i
\(291\) −63.1583 + 212.826i −0.217039 + 0.731362i
\(292\) −181.624 131.957i −0.622000 0.451909i
\(293\) −20.1301 6.54066i −0.0687033 0.0223231i 0.274464 0.961597i \(-0.411500\pi\)
−0.343167 + 0.939274i \(0.611500\pi\)
\(294\) −33.8011 44.0963i −0.114970 0.149987i
\(295\) 77.6656 56.4274i 0.263273 0.191279i
\(296\) 26.4575i 0.0893835i
\(297\) 0 0
\(298\) −56.0000 −0.187919
\(299\) 410.555 + 565.081i 1.37309 + 1.88990i
\(300\) −121.430 + 93.0795i −0.404766 + 0.310265i
\(301\) 34.6099 106.518i 0.114983 0.353881i
\(302\) −104.738 + 144.159i −0.346815 + 0.477349i
\(303\) 426.119 + 126.455i 1.40633 + 0.417343i
\(304\) 87.8739 270.448i 0.289059 0.889632i
\(305\) 261.691 85.0285i 0.858003 0.278782i
\(306\) −130.934 + 486.695i −0.427888 + 1.59051i
\(307\) −149.666 −0.487512 −0.243756 0.969837i \(-0.578380\pi\)
−0.243756 + 0.969837i \(0.578380\pi\)
\(308\) 0 0
\(309\) −34.0000 96.1665i −0.110032 0.311219i
\(310\) 181.624 131.957i 0.585883 0.425669i
\(311\) −24.2099 + 7.86629i −0.0778455 + 0.0252935i −0.347681 0.937613i \(-0.613031\pi\)
0.269835 + 0.962906i \(0.413031\pi\)
\(312\) −4.57502 178.132i −0.0146635 0.570936i
\(313\) −321.989 233.939i −1.02872 0.747407i −0.0606664 0.998158i \(-0.519323\pi\)
−0.968052 + 0.250751i \(0.919323\pi\)
\(314\) −133.741 + 184.079i −0.425928 + 0.586240i
\(315\) 177.910 68.0883i 0.564794 0.216153i
\(316\) 20.8122 + 64.0535i 0.0658615 + 0.202701i
\(317\) −244.389 336.372i −0.770942 1.06111i −0.996224 0.0868172i \(-0.972330\pi\)
0.225282 0.974294i \(-0.427670\pi\)
\(318\) −112.250 317.490i −0.352987 0.998397i
\(319\) 0 0
\(320\) 82.0244i 0.256326i
\(321\) 71.9839 104.625i 0.224249 0.325933i
\(322\) 190.354 + 585.851i 0.591163 + 1.81941i
\(323\) 301.279 + 97.8916i 0.932753 + 0.303070i
\(324\) 180.911 162.236i 0.558366 0.500727i
\(325\) 308.761 + 224.328i 0.950033 + 0.690239i
\(326\) 35.2276 + 11.4461i 0.108060 + 0.0351109i
\(327\) −160.358 + 122.919i −0.490393 + 0.375900i
\(328\) 90.6099 65.8319i 0.276250 0.200707i
\(329\) 275.158i 0.836347i
\(330\) 0 0
\(331\) 178.000 0.537764 0.268882 0.963173i \(-0.413346\pi\)
0.268882 + 0.963173i \(0.413346\pi\)
\(332\) −37.3232 51.3710i −0.112419 0.154732i
\(333\) 75.4311 + 49.0933i 0.226520 + 0.147427i
\(334\) 69.2198 213.037i 0.207245 0.637834i
\(335\) 69.8253 96.1063i 0.208434 0.286885i
\(336\) 121.352 408.923i 0.361166 1.21703i
\(337\) 78.6240 241.980i 0.233306 0.718041i −0.764036 0.645174i \(-0.776785\pi\)
0.997342 0.0728675i \(-0.0232150\pi\)
\(338\) 842.947 273.890i 2.49393 0.810325i
\(339\) −202.004 + 293.602i −0.595883 + 0.866083i
\(340\) 179.600 0.528234
\(341\) 0 0
\(342\) −224.000 277.186i −0.654971 0.810485i
\(343\) 254.273 184.740i 0.741322 0.538602i
\(344\) 37.6599 12.2364i 0.109477 0.0355711i
\(345\) −263.913 + 6.77815i −0.764965 + 0.0196468i
\(346\) −407.745 296.244i −1.17845 0.856196i
\(347\) −286.145 + 393.844i −0.824624 + 1.13500i 0.164276 + 0.986414i \(0.447471\pi\)
−0.988900 + 0.148583i \(0.952529\pi\)
\(348\) −4.89090 190.431i −0.0140543 0.547216i
\(349\) 20.8122 + 64.0535i 0.0596339 + 0.183534i 0.976436 0.215808i \(-0.0692385\pi\)
−0.916802 + 0.399342i \(0.869239\pi\)
\(350\) 197.838 + 272.301i 0.565253 + 0.778004i
\(351\) −516.349 317.490i −1.47108 0.904530i
\(352\) 0 0
\(353\) 124.451i 0.352552i −0.984341 0.176276i \(-0.943595\pi\)
0.984341 0.176276i \(-0.0564051\pi\)
\(354\) −221.942 152.701i −0.626956 0.431359i
\(355\) −56.8591 174.994i −0.160167 0.492942i
\(356\) −177.540 57.6861i −0.498707 0.162040i
\(357\) 455.540 + 135.186i 1.27602 + 0.378672i
\(358\) 678.062 + 492.641i 1.89403 + 1.37609i
\(359\) −241.561 78.4879i −0.672871 0.218629i −0.0473997 0.998876i \(-0.515093\pi\)
−0.625472 + 0.780247i \(0.715093\pi\)
\(360\) 56.4474 + 36.7381i 0.156798 + 0.102050i
\(361\) 110.835 80.5266i 0.307023 0.223065i
\(362\) 693.187i 1.91488i
\(363\) 0 0
\(364\) 504.000 1.38462
\(365\) −124.411 171.237i −0.340851 0.469141i
\(366\) −469.754 612.832i −1.28348 1.67440i
\(367\) −43.8804 + 135.050i −0.119565 + 0.367984i −0.992872 0.119187i \(-0.961971\pi\)
0.873307 + 0.487171i \(0.161971\pi\)
\(368\) −347.464 + 478.243i −0.944196 + 1.29957i
\(369\) −19.5572 380.486i −0.0530004 1.03113i
\(370\) 23.1247 71.1706i 0.0624992 0.192353i
\(371\) −301.951 + 98.1099i −0.813884 + 0.264447i
\(372\) −222.437 153.041i −0.597950 0.411402i
\(373\) 426.549 1.14356 0.571781 0.820406i \(-0.306253\pi\)
0.571781 + 0.820406i \(0.306253\pi\)
\(374\) 0 0
\(375\) −336.000 + 118.794i −0.896000 + 0.316784i
\(376\) 78.7037 57.1816i 0.209318 0.152079i
\(377\) −451.919 + 146.837i −1.19872 + 0.389489i
\(378\) −346.564 407.015i −0.916837 1.07676i
\(379\) 283.156 + 205.725i 0.747113 + 0.542810i 0.894931 0.446205i \(-0.147225\pi\)
−0.147817 + 0.989015i \(0.547225\pi\)
\(380\) −74.6464 + 102.742i −0.196438 + 0.270374i
\(381\) 201.983 5.18759i 0.530139 0.0136157i
\(382\) 48.5619 + 149.458i 0.127125 + 0.391252i
\(383\) 304.239 + 418.749i 0.794357 + 1.09334i 0.993552 + 0.113379i \(0.0361675\pi\)
−0.199194 + 0.979960i \(0.563832\pi\)
\(384\) 231.983 82.0183i 0.604122 0.213589i
\(385\) 0 0
\(386\) 395.980i 1.02585i
\(387\) 34.9935 130.075i 0.0904226 0.336111i
\(388\) −68.6018 211.135i −0.176809 0.544161i
\(389\) −416.949 135.475i −1.07185 0.348265i −0.280641 0.959813i \(-0.590547\pi\)
−0.791207 + 0.611548i \(0.790547\pi\)
\(390\) −143.386 + 483.173i −0.367658 + 1.23891i
\(391\) −532.763 387.075i −1.36257 0.989962i
\(392\) −17.6138 5.72307i −0.0449332 0.0145997i
\(393\) −424.928 554.354i −1.08124 1.41057i
\(394\) 498.354 362.076i 1.26486 0.918974i
\(395\) 63.4980i 0.160755i
\(396\) 0 0
\(397\) 442.000 1.11335 0.556675 0.830730i \(-0.312077\pi\)
0.556675 + 0.830730i \(0.312077\pi\)
\(398\) 345.240 + 475.182i 0.867436 + 1.19392i
\(399\) −266.669 + 204.410i −0.668344 + 0.512306i
\(400\) −99.8125 + 307.191i −0.249531 + 0.767978i
\(401\) 309.226 425.614i 0.771138 1.06138i −0.225067 0.974343i \(-0.572260\pi\)
0.996205 0.0870374i \(-0.0277400\pi\)
\(402\) −319.589 94.8412i −0.794998 0.235923i
\(403\) −208.122 + 640.535i −0.516433 + 1.58942i
\(404\) −422.732 + 137.354i −1.04637 + 0.339985i
\(405\) 209.482 92.7637i 0.517241 0.229046i
\(406\) −419.066 −1.03218
\(407\) 0 0
\(408\) 56.0000 + 158.392i 0.137255 + 0.388215i
\(409\) −181.624 + 131.957i −0.444068 + 0.322634i −0.787249 0.616635i \(-0.788496\pi\)
0.343181 + 0.939269i \(0.388496\pi\)
\(410\) −301.279 + 97.8916i −0.734828 + 0.238760i
\(411\) 12.2001 + 475.019i 0.0296838 + 1.15576i
\(412\) 82.5197 + 59.9541i 0.200291 + 0.145520i
\(413\) −149.293 + 205.484i −0.361484 + 0.497540i
\(414\) 264.801 + 691.908i 0.639617 + 1.67127i
\(415\) −18.4998 56.9364i −0.0445778 0.137196i
\(416\) 523.690 + 720.797i 1.25887 + 1.73269i
\(417\) −89.7998 253.992i −0.215347 0.609094i
\(418\) 0 0
\(419\) 684.479i 1.63360i −0.576919 0.816801i \(-0.695745\pi\)
0.576919 0.816801i \(-0.304255\pi\)
\(420\) −107.976 + 156.937i −0.257085 + 0.373659i
\(421\) −82.1985 252.981i −0.195246 0.600905i −0.999974 0.00726102i \(-0.997689\pi\)
0.804728 0.593644i \(-0.202311\pi\)
\(422\) −979.158 318.148i −2.32028 0.753904i
\(423\) −16.9873 330.490i −0.0401592 0.781299i
\(424\) −90.8119 65.9787i −0.214179 0.155610i
\(425\) −342.211 111.191i −0.805203 0.261626i
\(426\) −409.805 + 314.127i −0.961983 + 0.737388i
\(427\) −588.964 + 427.908i −1.37931 + 1.00213i
\(428\) 126.996i 0.296720i
\(429\) 0 0
\(430\) −112.000 −0.260465
\(431\) −323.468 445.215i −0.750505 1.03298i −0.997945 0.0640786i \(-0.979589\pi\)
0.247440 0.968903i \(-0.420411\pi\)
\(432\) 120.509 498.645i 0.278956 1.15427i
\(433\) 228.055 701.880i 0.526685 1.62097i −0.234275 0.972170i \(-0.575272\pi\)
0.760960 0.648799i \(-0.224728\pi\)
\(434\) −349.127 + 480.532i −0.804439 + 1.10722i
\(435\) 51.0955 172.178i 0.117461 0.395811i
\(436\) 62.4367 192.160i 0.143204 0.440735i
\(437\) 442.862 143.894i 1.01341 0.329278i
\(438\) −336.674 + 489.337i −0.768662 + 1.11721i
\(439\) 426.549 0.971638 0.485819 0.874060i \(-0.338521\pi\)
0.485819 + 0.874060i \(0.338521\pi\)
\(440\) 0 0
\(441\) −49.0000 + 39.5980i −0.111111 + 0.0897913i
\(442\) −1017.09 + 738.962i −2.30112 + 1.67186i
\(443\) −112.980 + 36.7093i −0.255033 + 0.0828653i −0.433743 0.901036i \(-0.642808\pi\)
0.178710 + 0.983902i \(0.442808\pi\)
\(444\) −89.9703 + 2.31073i −0.202636 + 0.00520436i
\(445\) −142.387 103.450i −0.319971 0.232472i
\(446\) 71.5361 98.4611i 0.160395 0.220765i
\(447\) 1.63030 + 63.4771i 0.00364721 + 0.142007i
\(448\) 67.0617 + 206.395i 0.149691 + 0.460702i
\(449\) −299.251 411.884i −0.666484 0.917337i 0.333190 0.942860i \(-0.391875\pi\)
−0.999674 + 0.0255229i \(0.991875\pi\)
\(450\) 254.433 + 314.844i 0.565406 + 0.699654i
\(451\) 0 0
\(452\) 356.382i 0.788455i
\(453\) 166.457 + 114.526i 0.367454 + 0.252816i
\(454\) 173.050 + 532.592i 0.381166 + 1.17311i
\(455\) 451.919 + 146.837i 0.993229 + 0.322720i
\(456\) −113.885 33.7965i −0.249748 0.0741152i
\(457\) −544.872 395.872i −1.19228 0.866242i −0.198776 0.980045i \(-0.563697\pi\)
−0.993503 + 0.113803i \(0.963697\pi\)
\(458\) −296.919 96.4747i −0.648294 0.210643i
\(459\) 555.491 + 134.247i 1.21022 + 0.292477i
\(460\) 213.580 155.175i 0.464305 0.337338i
\(461\) 698.478i 1.51514i 0.652755 + 0.757569i \(0.273613\pi\)
−0.652755 + 0.757569i \(0.726387\pi\)
\(462\) 0 0
\(463\) 882.000 1.90497 0.952484 0.304589i \(-0.0985192\pi\)
0.952484 + 0.304589i \(0.0985192\pi\)
\(464\) −236.380 325.350i −0.509440 0.701184i
\(465\) −154.864 202.033i −0.333041 0.434479i
\(466\) 69.2198 213.037i 0.148540 0.457160i
\(467\) −312.551 + 430.190i −0.669275 + 0.921178i −0.999744 0.0226389i \(-0.992793\pi\)
0.330469 + 0.943817i \(0.392793\pi\)
\(468\) 605.349 31.1152i 1.29348 0.0664856i
\(469\) −97.1238 + 298.916i −0.207087 + 0.637348i
\(470\) −261.691 + 85.0285i −0.556789 + 0.180912i
\(471\) 212.551 + 146.240i 0.451276 + 0.310487i
\(472\) −89.7998 −0.190254
\(473\) 0 0
\(474\) 168.000 59.3970i 0.354430 0.125310i
\(475\) 205.840 149.552i 0.433348 0.314846i
\(476\) −451.919 + 146.837i −0.949410 + 0.308482i
\(477\) −356.613 + 136.480i −0.747617 + 0.286122i
\(478\) 90.6099 + 65.8319i 0.189560 + 0.137724i
\(479\) 398.114 547.957i 0.831136 1.14396i −0.156574 0.987666i \(-0.550045\pi\)
0.987710 0.156295i \(-0.0499549\pi\)
\(480\) −336.638 + 8.64598i −0.701329 + 0.0180124i
\(481\) 69.3741 + 213.512i 0.144229 + 0.443891i
\(482\) −232.751 320.354i −0.482886 0.664636i
\(483\) 658.532 232.826i 1.36342 0.482042i
\(484\) 0 0
\(485\) 209.304i 0.431554i
\(486\) −441.383 467.466i −0.908195 0.961864i
\(487\) 108.156 + 332.870i 0.222086 + 0.683511i 0.998574 + 0.0533790i \(0.0169992\pi\)
−0.776488 + 0.630132i \(0.783001\pi\)
\(488\) −244.789 79.5369i −0.501618 0.162985i
\(489\) 11.9489 40.2644i 0.0244353 0.0823404i
\(490\) 42.3789 + 30.7901i 0.0864876 + 0.0628369i
\(491\) −241.561 78.4879i −0.491977 0.159853i 0.0525130 0.998620i \(-0.483277\pi\)
−0.544490 + 0.838767i \(0.683277\pi\)
\(492\) 231.779 + 302.375i 0.471096 + 0.614583i
\(493\) 362.440 263.328i 0.735172 0.534133i
\(494\) 888.972i 1.79954i
\(495\) 0 0
\(496\) −570.000 −1.14919
\(497\) 286.145 + 393.844i 0.575744 + 0.792443i
\(498\) −133.335 + 102.205i −0.267740 + 0.205231i
\(499\) −30.2837 + 93.2035i −0.0606887 + 0.186781i −0.976804 0.214133i \(-0.931307\pi\)
0.916116 + 0.400914i \(0.131307\pi\)
\(500\) 209.476 288.319i 0.418952 0.576638i
\(501\) −243.496 72.2600i −0.486021 0.144231i
\(502\) −41.6245 + 128.107i −0.0829173 + 0.255193i
\(503\) 483.122 156.976i 0.960481 0.312079i 0.213514 0.976940i \(-0.431509\pi\)
0.746967 + 0.664861i \(0.231509\pi\)
\(504\) −172.073 46.2921i −0.341414 0.0918494i
\(505\) −419.066 −0.829833
\(506\) 0 0
\(507\) −335.000 947.523i −0.660750 1.86888i
\(508\) −163.461 + 118.762i −0.321775 + 0.233783i
\(509\) 153.330 49.8198i 0.301237 0.0978779i −0.154499 0.987993i \(-0.549376\pi\)
0.455736 + 0.890115i \(0.349376\pi\)
\(510\) −12.2001 475.019i −0.0239217 0.931410i
\(511\) 453.050 + 329.160i 0.886594 + 0.644148i
\(512\) −325.023 + 447.356i −0.634810 + 0.873742i
\(513\) −307.674 + 261.978i −0.599755 + 0.510678i
\(514\) −78.6240 241.980i −0.152965 0.470778i
\(515\) 56.5253 + 77.8004i 0.109758 + 0.151069i
\(516\) 44.8999 + 126.996i 0.0870153 + 0.246116i
\(517\) 0 0
\(518\) 197.990i 0.382220i
\(519\) −323.928 + 470.811i −0.624138 + 0.907150i
\(520\) 51.9149 + 159.777i 0.0998363 + 0.307264i
\(521\) 145.260 + 47.1977i 0.278809 + 0.0905907i 0.445084 0.895489i \(-0.353174\pi\)
−0.166275 + 0.986079i \(0.553174\pi\)
\(522\) −503.336 + 25.8717i −0.964244 + 0.0495626i
\(523\) −12.1083 8.79716i −0.0231515 0.0168206i 0.576149 0.817344i \(-0.304555\pi\)
−0.599301 + 0.800524i \(0.704555\pi\)
\(524\) 664.292 + 215.842i 1.26773 + 0.411912i
\(525\) 302.899 232.181i 0.576951 0.442250i
\(526\) −996.709 + 724.151i −1.89488 + 1.37671i
\(527\) 634.980i 1.20490i
\(528\) 0 0
\(529\) −439.000 −0.829868
\(530\) 186.616 + 256.855i 0.352106 + 0.484632i
\(531\) −166.628 + 256.022i −0.313801 + 0.482150i
\(532\) 103.830 319.555i 0.195169 0.600667i
\(533\) 558.603 768.851i 1.04803 1.44250i
\(534\) −140.513 + 473.489i −0.263132 + 0.886684i
\(535\) −36.9995 + 113.873i −0.0691580 + 0.212847i
\(536\) −105.683 + 34.3384i −0.197170 + 0.0640643i
\(537\) 538.678 782.939i 1.00313 1.45799i
\(538\) 980.314 1.82215
\(539\) 0 0
\(540\) −120.000 + 195.161i −0.222222 + 0.361410i
\(541\) 417.735 303.502i 0.772153 0.561002i −0.130461 0.991453i \(-0.541646\pi\)
0.902614 + 0.430451i \(0.141646\pi\)
\(542\) 847.348 275.320i 1.56337 0.507971i
\(543\) 785.741 20.1804i 1.44704 0.0371647i
\(544\) −679.574 493.740i −1.24922 0.907610i
\(545\) 111.970 154.113i 0.205449 0.282776i
\(546\) −34.2363 1333.02i −0.0627039 2.44143i
\(547\) −208.122 640.535i −0.380480 1.17100i −0.939707 0.341982i \(-0.888902\pi\)
0.559227 0.829015i \(-0.311098\pi\)
\(548\) −279.301 384.425i −0.509674 0.701506i
\(549\) −680.982 + 550.316i −1.24040 + 1.00240i
\(550\) 0 0
\(551\) 316.784i 0.574925i
\(552\) 203.447 + 139.976i 0.368564 + 0.253579i
\(553\) −51.9149 159.777i −0.0938786 0.288929i
\(554\) 56.4899 + 18.3547i 0.101967 + 0.0331312i
\(555\) −81.3464 24.1404i −0.146570 0.0434962i
\(556\) 217.949 + 158.349i 0.391994 + 0.284800i
\(557\) 422.732 + 137.354i 0.758943 + 0.246596i 0.662825 0.748774i \(-0.269357\pi\)
0.0961183 + 0.995370i \(0.469357\pi\)
\(558\) −389.666 + 598.716i −0.698326 + 1.07297i
\(559\) 271.830 197.496i 0.486279 0.353302i
\(560\) 402.154i 0.718132i
\(561\) 0 0
\(562\) −56.0000 −0.0996441
\(563\) −323.468 445.215i −0.574543 0.790791i 0.418541 0.908198i \(-0.362542\pi\)
−0.993084 + 0.117407i \(0.962542\pi\)
\(564\) 201.323 + 262.642i 0.356956 + 0.465678i
\(565\) 103.830 319.555i 0.183769 0.565584i
\(566\) 279.301 384.425i 0.493465 0.679197i
\(567\) −451.270 + 404.687i −0.795891 + 0.713733i
\(568\) −53.1868 + 163.692i −0.0936388 + 0.288191i
\(569\) −1066.89 + 346.655i −1.87503 + 0.609235i −0.885559 + 0.464528i \(0.846224\pi\)
−0.989474 + 0.144708i \(0.953776\pi\)
\(570\) 276.811 + 190.452i 0.485633 + 0.334126i
\(571\) −808.198 −1.41541 −0.707704 0.706509i \(-0.750269\pi\)
−0.707704 + 0.706509i \(0.750269\pi\)
\(572\) 0 0
\(573\) 168.000 59.3970i 0.293194 0.103660i
\(574\) 678.062 492.641i 1.18129 0.858260i
\(575\) −503.029 + 163.444i −0.874833 + 0.284250i
\(576\) 93.2892 + 243.758i 0.161960 + 0.423192i
\(577\) −250.795 182.213i −0.434654 0.315795i 0.348853 0.937177i \(-0.386571\pi\)
−0.783507 + 0.621383i \(0.786571\pi\)
\(578\) 247.266 340.333i 0.427796 0.588811i
\(579\) 448.851 11.5280i 0.775217 0.0199101i
\(580\) 55.4993 + 170.809i 0.0956885 + 0.294499i
\(581\) 93.1004 + 128.142i 0.160242 + 0.220554i
\(582\) −553.765 + 195.786i −0.951487 + 0.336401i
\(583\) 0 0
\(584\) 197.990i 0.339024i
\(585\) 551.861 + 148.465i 0.943352 + 0.253786i
\(586\) −17.3050 53.2592i −0.0295306 0.0908859i
\(587\) 914.598 + 297.171i 1.55809 + 0.506254i 0.956296 0.292399i \(-0.0944536\pi\)
0.601792 + 0.798653i \(0.294454\pi\)
\(588\) 17.9233 60.3966i 0.0304818 0.102715i
\(589\) 363.248 + 263.915i 0.616719 + 0.448073i
\(590\) 241.561 + 78.4879i 0.409425 + 0.133030i
\(591\) −424.928 554.354i −0.718999 0.937993i
\(592\) −153.713 + 111.679i −0.259651 + 0.188647i
\(593\) 232.826i 0.392624i 0.980541 + 0.196312i \(0.0628966\pi\)
−0.980541 + 0.196312i \(0.937103\pi\)
\(594\) 0 0
\(595\) −448.000 −0.752941
\(596\) −37.3232 51.3710i −0.0626228 0.0861929i
\(597\) 528.577 405.170i 0.885388 0.678676i
\(598\) −571.063 + 1757.55i −0.954956 + 2.93905i
\(599\) −513.715 + 707.068i −0.857621 + 1.18041i 0.124511 + 0.992218i \(0.460264\pi\)
−0.982132 + 0.188196i \(0.939736\pi\)
\(600\) 129.357 + 38.3881i 0.215596 + 0.0639802i
\(601\) 180.373 555.130i 0.300121 0.923678i −0.681332 0.731975i \(-0.738599\pi\)
0.981453 0.191703i \(-0.0614011\pi\)
\(602\) 281.821 91.5692i 0.468141 0.152108i
\(603\) −98.2003 + 365.021i −0.162853 + 0.605342i
\(604\) −202.049 −0.334519
\(605\) 0 0
\(606\) 392.000 + 1108.74i 0.646865 + 1.82961i
\(607\) 684.117 497.040i 1.12705 0.818846i 0.141783 0.989898i \(-0.454716\pi\)
0.985262 + 0.171051i \(0.0547164\pi\)
\(608\) 564.899 183.547i 0.929110 0.301886i
\(609\) 12.2001 + 475.019i 0.0200329 + 0.779999i
\(610\) 588.964 + 427.908i 0.965515 + 0.701488i
\(611\) 485.202 667.823i 0.794111 1.09300i
\(612\) −533.730 + 204.265i −0.872108 + 0.333766i
\(613\) −182.685 562.247i −0.298018 0.917206i −0.982191 0.187886i \(-0.939836\pi\)
0.684173 0.729320i \(-0.260164\pi\)
\(614\) −232.751 320.354i −0.379073 0.521750i
\(615\) 119.733 + 338.656i 0.194688 + 0.550660i
\(616\) 0 0
\(617\) 435.578i 0.705961i 0.935631 + 0.352980i \(0.114832\pi\)
−0.935631 + 0.352980i \(0.885168\pi\)
\(618\) 152.966 222.327i 0.247518 0.359753i
\(619\) −258.956 796.985i −0.418346 1.28754i −0.909224 0.416308i \(-0.863324\pi\)
0.490877 0.871229i \(-0.336676\pi\)
\(620\) 242.099 + 78.6629i 0.390483 + 0.126876i
\(621\) 776.582 320.301i 1.25053 0.515782i
\(622\) −54.4872 39.5872i −0.0875999 0.0636451i
\(623\) 442.862 + 143.894i 0.710853 + 0.230970i
\(624\) 1015.60 778.490i 1.62757 1.24758i
\(625\) −72.0025 + 52.3129i −0.115204 + 0.0837006i
\(626\) 1053.01i 1.68212i
\(627\) 0 0
\(628\) −258.000 −0.410828
\(629\) −124.411 171.237i −0.197791 0.272236i
\(630\) 422.414 + 274.923i 0.670498 + 0.436385i
\(631\) 78.4903 241.568i 0.124390 0.382834i −0.869399 0.494110i \(-0.835494\pi\)
0.993790 + 0.111276i \(0.0354938\pi\)
\(632\) 34.9127 48.0532i 0.0552416 0.0760335i
\(633\) −332.121 + 1119.16i −0.524678 + 1.76802i
\(634\) 339.933 1046.21i 0.536172 1.65017i
\(635\) −181.171 + 58.8659i −0.285308 + 0.0927022i
\(636\) 216.433 314.574i 0.340304 0.494613i
\(637\) −157.150 −0.246703
\(638\) 0 0
\(639\) 368.000 + 455.377i 0.575900 + 0.712640i
\(640\) −187.678 + 136.356i −0.293247 + 0.213056i
\(641\) −112.980 + 36.7093i −0.176255 + 0.0572689i −0.395815 0.918330i \(-0.629538\pi\)
0.219560 + 0.975599i \(0.429538\pi\)
\(642\) 335.889 8.62674i 0.523192 0.0134373i
\(643\) 354.349 + 257.450i 0.551088 + 0.400389i 0.828186 0.560453i \(-0.189373\pi\)
−0.277099 + 0.960841i \(0.589373\pi\)
\(644\) −410.555 + 565.081i −0.637508 + 0.877455i
\(645\) 3.26060 + 126.954i 0.00505520 + 0.196828i
\(646\) 258.997 + 797.110i 0.400924 + 1.23392i
\(647\) 194.513 + 267.725i 0.300639 + 0.413794i 0.932433 0.361342i \(-0.117681\pi\)
−0.631794 + 0.775136i \(0.717681\pi\)
\(648\) −209.533 44.9778i −0.323353 0.0694101i
\(649\) 0 0
\(650\) 1009.75i 1.55346i
\(651\) 554.856 + 381.752i 0.852313 + 0.586409i
\(652\) 12.9787 + 39.9444i 0.0199060 + 0.0612644i
\(653\) −594.489 193.161i −0.910396 0.295806i −0.183875 0.982950i \(-0.558864\pi\)
−0.726521 + 0.687144i \(0.758864\pi\)
\(654\) −512.483 152.084i −0.783612 0.232545i
\(655\) 532.763 + 387.075i 0.813379 + 0.590955i
\(656\) 764.943 + 248.545i 1.16607 + 0.378880i
\(657\) 564.474 + 367.381i 0.859170 + 0.559179i
\(658\) 588.964 427.908i 0.895083 0.650316i
\(659\) 465.652i 0.706604i −0.935509 0.353302i \(-0.885059\pi\)
0.935509 0.353302i \(-0.114941\pi\)
\(660\) 0 0
\(661\) −394.000 −0.596067 −0.298033 0.954555i \(-0.596331\pi\)
−0.298033 + 0.954555i \(0.596331\pi\)
\(662\) 276.814 + 381.001i 0.418148 + 0.575531i
\(663\) 867.238 + 1131.38i 1.30805 + 1.70646i
\(664\) −17.3050 + 53.2592i −0.0260617 + 0.0802096i
\(665\) 186.201 256.284i 0.280001 0.385389i
\(666\) 12.2232 + 237.804i 0.0183532 + 0.357063i
\(667\) 203.497 626.301i 0.305094 0.938982i
\(668\) 241.561 78.4879i 0.361618 0.117497i
\(669\) −113.690 78.2212i −0.169940 0.116923i
\(670\) 314.299 0.469103
\(671\) 0 0
\(672\) 840.000 296.985i 1.25000 0.441942i
\(673\) −714.387 + 519.033i −1.06150 + 0.771222i −0.974365 0.224974i \(-0.927770\pi\)
−0.0871319 + 0.996197i \(0.527770\pi\)
\(674\) 640.219 208.020i 0.949879 0.308634i
\(675\) 349.475 297.570i 0.517741 0.440845i
\(676\) 813.062 + 590.724i 1.20275 + 0.873852i
\(677\) 534.966 736.317i 0.790201 1.08762i −0.203882 0.978995i \(-0.565356\pi\)
0.994083 0.108623i \(-0.0346440\pi\)
\(678\) −942.587 + 24.2087i −1.39025 + 0.0357061i
\(679\) 171.123 + 526.662i 0.252022 + 0.775644i
\(680\) −93.1004 128.142i −0.136912 0.188444i
\(681\) 598.665 211.660i 0.879097 0.310808i
\(682\) 0 0
\(683\) 435.578i 0.637742i −0.947798 0.318871i \(-0.896696\pi\)
0.947798 0.318871i \(-0.103304\pi\)
\(684\) 104.981 390.224i 0.153480 0.570503i
\(685\) −138.440 426.073i −0.202102 0.622005i
\(686\) 790.858 + 256.965i 1.15285 + 0.374585i
\(687\) −100.712 + 339.372i −0.146597 + 0.493991i
\(688\) 230.057 + 167.146i 0.334385 + 0.242945i
\(689\) −905.853 294.330i −1.31474 0.427184i
\(690\) −424.928 554.354i −0.615838 0.803411i
\(691\) −344.641 + 250.397i −0.498757 + 0.362368i −0.808542 0.588438i \(-0.799743\pi\)
0.309785 + 0.950807i \(0.399743\pi\)
\(692\) 571.482i 0.825841i
\(693\) 0 0
\(694\) −1288.00 −1.85591
\(695\) 149.293 + 205.484i 0.214810 + 0.295660i
\(696\) −133.335 + 102.205i −0.191573 + 0.146846i
\(697\) −276.879 + 852.147i −0.397244 + 1.22259i
\(698\) −104.738 + 144.159i −0.150054 + 0.206532i
\(699\) −243.496 72.2600i −0.348350 0.103376i
\(700\) −117.936 + 362.970i −0.168480 + 0.518528i
\(701\) 261.691 85.0285i 0.373311 0.121296i −0.116352 0.993208i \(-0.537120\pi\)
0.489663 + 0.871912i \(0.337120\pi\)
\(702\) −123.417 1598.96i −0.175808 2.27772i
\(703\) 149.666 0.212897
\(704\) 0 0
\(705\) 104.000 + 294.156i 0.147518 + 0.417243i
\(706\) 266.382 193.538i 0.377311 0.274133i
\(707\) 1054.48 342.621i 1.49148 0.484612i
\(708\) −7.84289 305.369i −0.0110775 0.431313i
\(709\) 33.9787 + 24.6870i 0.0479248 + 0.0348194i 0.611490 0.791252i \(-0.290571\pi\)
−0.563565 + 0.826072i \(0.690571\pi\)
\(710\) 286.145 393.844i 0.403021 0.554710i
\(711\) −72.2185 188.702i −0.101573 0.265404i
\(712\) 50.8744 + 156.575i 0.0714528 + 0.219909i
\(713\) −548.628 755.121i −0.769464 1.05908i
\(714\) 419.066 + 1185.30i 0.586927 + 1.66008i
\(715\) 0 0
\(716\) 950.352i 1.32731i
\(717\) 71.9839 104.625i 0.100396 0.145920i
\(718\) −207.659 639.110i −0.289219 0.890125i
\(719\) 411.569 + 133.727i 0.572419 + 0.185990i 0.580901 0.813974i \(-0.302700\pi\)
−0.00848270 + 0.999964i \(0.502700\pi\)
\(720\) 24.8276 + 483.023i 0.0344828 + 0.670866i
\(721\) −205.840 149.552i −0.285493 0.207423i
\(722\) 344.727 + 112.009i 0.477462 + 0.155137i
\(723\) −356.352 + 273.154i −0.492880 + 0.377807i
\(724\) −635.887 + 461.999i −0.878297 + 0.638120i
\(725\) 359.822i 0.496306i
\(726\) 0 0
\(727\) 1102.00 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(728\) −261.262 359.597i −0.358877 0.493952i
\(729\) −517.032 + 513.925i −0.709235 + 0.704973i
\(730\) 173.050 532.592i 0.237054 0.729578i
\(731\) −186.201 + 256.284i −0.254721 + 0.350593i
\(732\) 249.091 839.368i 0.340288 1.14668i
\(733\) −150.311 + 462.609i −0.205062 + 0.631117i 0.794649 + 0.607070i \(0.207655\pi\)
−0.999711 + 0.0240470i \(0.992345\pi\)
\(734\) −357.309 + 116.097i −0.486797 + 0.158170i
\(735\) 33.6674 48.9337i 0.0458060 0.0665765i
\(736\) −1234.75 −1.67765
\(737\) 0 0
\(738\) 784.000 633.568i 1.06233 0.858493i
\(739\) −847.578 + 615.801i −1.14693 + 0.833290i −0.988069 0.154011i \(-0.950781\pi\)
−0.158857 + 0.987302i \(0.550781\pi\)
\(740\) 80.6998 26.2210i 0.109054 0.0354337i
\(741\) −1007.67 + 25.8802i −1.35988 + 0.0349261i
\(742\) −679.574 493.740i −0.915868 0.665417i
\(743\) −149.293 + 205.484i −0.200932 + 0.276560i −0.897578 0.440856i \(-0.854675\pi\)
0.696646 + 0.717416i \(0.254675\pi\)
\(744\) 6.11363 + 238.039i 0.00821724 + 0.319945i
\(745\) −18.4998 56.9364i −0.0248319 0.0764248i
\(746\) 663.341 + 913.010i 0.889197 + 1.22387i
\(747\) 119.733 + 148.162i 0.160285 + 0.198343i
\(748\) 0 0
\(749\) 316.784i 0.422942i
\(750\) −776.798 534.453i −1.03573 0.712604i
\(751\) 108.156 + 332.870i 0.144016 + 0.443235i 0.996883 0.0788925i \(-0.0251384\pi\)
−0.852867 + 0.522128i \(0.825138\pi\)
\(752\) 664.429 + 215.886i 0.883549 + 0.287082i
\(753\) 146.424 + 43.4527i 0.194454 + 0.0577060i
\(754\) −1017.09 738.962i −1.34893 0.980055i
\(755\) −181.171 58.8659i −0.239961 0.0779681i
\(756\) 142.391 589.187i 0.188347 0.779347i
\(757\) −237.851 + 172.809i −0.314202 + 0.228281i −0.733697 0.679476i \(-0.762207\pi\)
0.419495 + 0.907757i \(0.362207\pi\)
\(758\) 926.013i 1.22165i
\(759\) 0 0
\(760\) 112.000 0.147368
\(761\) −460.320 633.576i −0.604888 0.832557i 0.391257 0.920281i \(-0.372040\pi\)
−0.996145 + 0.0877249i \(0.972040\pi\)
\(762\) 325.214 + 424.268i 0.426790 + 0.556783i
\(763\) −155.745 + 479.332i −0.204121 + 0.628221i
\(764\) −104.738 + 144.159i −0.137092 + 0.188690i
\(765\) −538.088 + 27.6580i −0.703383 + 0.0361542i
\(766\) −423.182 + 1302.42i −0.552457 + 1.70029i
\(767\) −724.683 + 235.464i −0.944827 + 0.306993i
\(768\) 823.018 + 566.253i 1.07164 + 0.737309i
\(769\) 838.131 1.08990 0.544949 0.838469i \(-0.316549\pi\)
0.544949 + 0.838469i \(0.316549\pi\)
\(770\) 0 0
\(771\) −272.000 + 96.1665i −0.352789 + 0.124730i
\(772\) −363.248 + 263.915i −0.470528 + 0.341859i
\(773\) 390.049 126.735i 0.504591 0.163952i −0.0456497 0.998958i \(-0.514536\pi\)
0.550241 + 0.835006i \(0.314536\pi\)
\(774\) 332.839 127.382i 0.430025 0.164576i
\(775\) −412.599 299.770i −0.532385 0.386801i
\(776\) −115.080 + 158.394i −0.148299 + 0.204116i
\(777\) 224.425 5.76398i 0.288836 0.00741825i
\(778\) −358.433 1103.14i −0.460711 1.41792i
\(779\) −372.402 512.567i −0.478051 0.657981i
\(780\) −538.799 + 190.494i −0.690768 + 0.244223i
\(781\) 0 0
\(782\) 1742.31i 2.22802i
\(783\) 43.9794 + 569.788i 0.0561679 + 0.727698i
\(784\) −41.0993 126.491i −0.0524225 0.161340i
\(785\) −231.339 75.1668i −0.294700 0.0957538i
\(786\) 525.750 1771.64i 0.668894 2.25399i
\(787\) 254.273 + 184.740i 0.323092 + 0.234740i 0.737494 0.675354i \(-0.236009\pi\)
−0.414402 + 0.910094i \(0.636009\pi\)
\(788\) 664.292 + 215.842i 0.843011 + 0.273911i
\(789\) 849.857 + 1108.71i 1.07713 + 1.40521i
\(790\) −135.915 + 98.7479i −0.172044 + 0.124997i
\(791\) 888.972i 1.12386i
\(792\) 0 0
\(793\) −2184.00 −2.75410
\(794\) 687.369 + 946.082i 0.865704 + 1.19154i
\(795\) 285.717 219.011i 0.359393 0.275485i
\(796\) −205.805 + 633.404i −0.258549 + 0.795733i
\(797\) 144.638 199.077i 0.181478 0.249783i −0.708580 0.705631i \(-0.750664\pi\)
0.890058 + 0.455847i \(0.150664\pi\)
\(798\) −852.237 252.910i −1.06797 0.316930i
\(799\) −240.497 + 740.174i −0.300998 + 0.926375i
\(800\) −641.646 + 208.483i −0.802058 + 0.260604i
\(801\) 540.800 + 145.489i 0.675156 + 0.181635i
\(802\) 1391.90 1.73553
\(803\) 0 0
\(804\) −126.000 356.382i −0.156716 0.443261i
\(805\) −532.763 + 387.075i −0.661818 + 0.480839i
\(806\) −1694.70 + 550.640i −2.10260 + 0.683176i
\(807\) −28.5394 1111.21i −0.0353648 1.37696i
\(808\) 317.135 + 230.412i 0.392493 + 0.285163i
\(809\) −149.293 + 205.484i −0.184540 + 0.253997i −0.891257 0.453499i \(-0.850176\pi\)
0.706717 + 0.707497i \(0.250176\pi\)
\(810\) 524.330 + 304.128i 0.647321 + 0.375467i
\(811\) 300.621 + 925.217i 0.370680 + 1.14084i 0.946347 + 0.323151i \(0.104742\pi\)
−0.575668 + 0.817684i \(0.695258\pi\)
\(812\) −279.301 384.425i −0.343967 0.473430i
\(813\) −336.749 952.470i −0.414206 1.17155i
\(814\) 0 0
\(815\) 39.5980i 0.0485865i
\(816\) −683.847 + 993.934i −0.838048 + 1.21806i
\(817\) −69.2198 213.037i −0.0847244 0.260755i
\(818\) −564.899 183.547i −0.690585 0.224385i
\(819\) −1510.01 + 77.6151i −1.84372 + 0.0947681i
\(820\) −290.598 211.132i −0.354388 0.257478i
\(821\) −462.992 150.435i −0.563936 0.183234i 0.0131553 0.999913i \(-0.495812\pi\)
−0.577092 + 0.816679i \(0.695812\pi\)
\(822\) −997.786 + 764.832i −1.21385 + 0.930452i
\(823\) −842.996 + 612.472i −1.02430 + 0.744195i −0.967159 0.254172i \(-0.918197\pi\)
−0.0571370 + 0.998366i \(0.518197\pi\)
\(824\) 89.9555i 0.109169i
\(825\) 0 0
\(826\) −672.000 −0.813559
\(827\) −734.023 1010.30i −0.887573 1.22164i −0.974265 0.225405i \(-0.927630\pi\)
0.0866920 0.996235i \(-0.472370\pi\)
\(828\) −458.228 + 704.059i −0.553415 + 0.850313i
\(829\) 364.022 1120.34i 0.439110 1.35144i −0.449706 0.893177i \(-0.648471\pi\)
0.888816 0.458264i \(-0.151529\pi\)
\(830\) 93.1004 128.142i 0.112169 0.154388i
\(831\) 19.1608 64.5667i 0.0230575 0.0776976i
\(832\) −201.185 + 619.184i −0.241809 + 0.744211i
\(833\) 140.911 45.7846i 0.169160 0.0549635i
\(834\) 404.009 587.204i 0.484423 0.704082i
\(835\) 239.466 0.286786
\(836\) 0 0
\(837\) 690.000 + 424.264i 0.824373 + 0.506887i
\(838\) 1465.10 1064.46i 1.74833 1.27023i
\(839\) −971.088 + 315.526i −1.15743 + 0.376073i −0.823939 0.566678i \(-0.808228\pi\)
−0.333496 + 0.942752i \(0.608228\pi\)
\(840\) 167.945 4.31337i 0.199934 0.00513496i
\(841\) −317.944 231.000i −0.378054 0.274673i
\(842\) 413.666 569.362i 0.491289 0.676202i
\(843\) 1.63030 + 63.4771i 0.00193393 + 0.0752991i
\(844\) −360.746 1110.26i −0.427424 1.31547i
\(845\) 556.940 + 766.562i 0.659101 + 0.907174i
\(846\) 680.982 550.316i 0.804943 0.650492i
\(847\) 0 0
\(848\) 806.102i 0.950592i
\(849\) −443.885 305.402i −0.522832 0.359720i
\(850\) −294.184 905.406i −0.346099 1.06518i
\(851\) −295.899 96.1435i −0.347708 0.112977i
\(852\) −561.290 166.569i −0.658792 0.195503i
\(853\) −478.276 347.488i −0.560699 0.407372i 0.271016 0.962575i \(-0.412640\pi\)
−0.831715 + 0.555203i \(0.812640\pi\)
\(854\) −1831.84 595.200i −2.14501 0.696955i
\(855\) 207.822 319.315i 0.243067 0.373468i
\(856\) 90.6099 65.8319i 0.105853 0.0769065i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 706.000 0.821886 0.410943 0.911661i \(-0.365200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(860\) −74.6464 102.742i −0.0867982 0.119467i
\(861\) −578.159 754.255i −0.671497 0.876022i
\(862\) 449.929 1384.74i 0.521959 1.60642i
\(863\) 290.939 400.443i 0.337125 0.464013i −0.606474 0.795103i \(-0.707417\pi\)
0.943599 + 0.331091i \(0.107417\pi\)
\(864\) 990.581 408.564i 1.14651 0.472875i
\(865\) 166.498 512.428i 0.192483 0.592402i
\(866\) 1857.00 603.376i 2.14434 0.696739i
\(867\) −392.972 270.373i −0.453255 0.311849i
\(868\) −673.498 −0.775920
\(869\) 0 0
\(870\) 448.000 158.392i 0.514943 0.182060i
\(871\) −762.820 + 554.221i −0.875798 + 0.636305i
\(872\) −169.470 + 55.0640i −0.194346 + 0.0631468i
\(873\) 238.048 + 622.004i 0.272678 + 0.712490i
\(874\) 996.709 + 724.151i 1.14040 + 0.828549i
\(875\) −522.525 + 719.194i −0.597171 + 0.821936i
\(876\) −673.276 + 17.2920i −0.768580 + 0.0197397i
\(877\) −30.0621 92.5217i −0.0342784 0.105498i 0.932453 0.361290i \(-0.117664\pi\)
−0.966732 + 0.255792i \(0.917664\pi\)
\(878\) 663.341 + 913.010i 0.755513 + 1.03987i
\(879\) −59.8665 + 21.1660i −0.0681075 + 0.0240796i
\(880\) 0 0
\(881\) 1493.41i 1.69513i 0.530692 + 0.847565i \(0.321932\pi\)
−0.530692 + 0.847565i \(0.678068\pi\)
\(882\) −160.959 43.3023i −0.182494 0.0490956i
\(883\) 26.5755 + 81.7909i 0.0300968 + 0.0926284i 0.964977 0.262336i \(-0.0844929\pi\)
−0.934880 + 0.354965i \(0.884493\pi\)
\(884\) −1355.76 440.512i −1.53366 0.498317i
\(885\) 81.9351 276.099i 0.0925820 0.311976i
\(886\) −254.273 184.740i −0.286990 0.208511i
\(887\) −241.561 78.4879i −0.272335 0.0884869i 0.169666 0.985502i \(-0.445731\pi\)
−0.442001 + 0.897015i \(0.645731\pi\)
\(888\) 48.2873 + 62.9947i 0.0543776 + 0.0709400i
\(889\) 407.745 296.244i 0.458655 0.333233i
\(890\) 465.652i 0.523205i
\(891\) 0 0
\(892\) 138.000 0.154709
\(893\) −323.468 445.215i −0.362226 0.498561i
\(894\) −133.335 + 102.205i −0.149144 + 0.114323i
\(895\) −276.879 + 852.147i −0.309362 + 0.952119i
\(896\) 360.764 496.549i 0.402639 0.554184i
\(897\) 2008.85 + 596.145i 2.23952 + 0.664598i
\(898\) 416.245 1281.07i 0.463524 1.42658i
\(899\) 603.902 196.220i 0.671749 0.218264i
\(900\) −119.243 + 443.240i −0.132493 + 0.492489i
\(901\) 897.998 0.996668
\(902\) 0 0
\(903\) −112.000 316.784i −0.124031 0.350813i
\(904\) −254.273 + 184.740i −0.281276 + 0.204359i
\(905\) −704.778 + 228.996i −0.778761 + 0.253035i
\(906\) 13.7251 + 534.397i 0.0151491 + 0.589842i
\(907\) 781.510 + 567.801i 0.861643 + 0.626020i 0.928332 0.371753i \(-0.121243\pi\)
−0.0666883 + 0.997774i \(0.521243\pi\)
\(908\) −373.232 + 513.710i −0.411049 + 0.565760i
\(909\) 1245.37 476.618i 1.37004 0.524332i
\(910\) 388.495 + 1195.67i 0.426918 + 1.31392i
\(911\) 852.866 + 1173.87i 0.936187 + 1.28855i 0.957397 + 0.288776i \(0.0932483\pi\)
−0.0212096 + 0.999775i \(0.506752\pi\)
\(912\) −284.366 804.308i −0.311805 0.881917i
\(913\) 0 0
\(914\) 1781.91i 1.94957i
\(915\) 467.896 680.060i 0.511361 0.743235i
\(916\) −109.392 336.674i −0.119424 0.367548i
\(917\) −1657.04 538.404i −1.80702 0.587136i
\(918\) 576.512 + 1397.78i 0.628008 + 1.52263i
\(919\) 320.869 + 233.125i 0.349150 + 0.253672i 0.748512 0.663121i \(-0.230768\pi\)
−0.399362 + 0.916793i \(0.630768\pi\)
\(920\) −221.431 71.9472i −0.240686 0.0782035i
\(921\) −356.352 + 273.154i −0.386919 + 0.296584i
\(922\) −1495.06 + 1086.23i −1.62154 + 1.17812i
\(923\) 1460.45i 1.58229i
\(924\) 0 0
\(925\) −170.000 −0.183784
\(926\) 1371.63 + 1887.88i 1.48124 + 2.03875i
\(927\) −256.466 166.917i −0.276662 0.180062i
\(928\) 259.574 798.887i 0.279714 0.860870i
\(929\) −897.754 + 1235.65i −0.966366 + 1.33009i −0.0225050 + 0.999747i \(0.507164\pi\)
−0.943861 + 0.330342i \(0.892836\pi\)
\(930\) 191.608 645.667i 0.206030 0.694266i
\(931\) −32.3746 + 99.6388i −0.0347740 + 0.107023i
\(932\) 241.561 78.4879i 0.259185 0.0842145i
\(933\) −43.2867 + 62.9147i −0.0463951 + 0.0674327i
\(934\) −1406.86 −1.50628
\(935\) 0 0
\(936\) −336.000 415.779i −0.358974 0.444208i
\(937\) 1017.09 738.962i 1.08548 0.788647i 0.106849 0.994275i \(-0.465924\pi\)
0.978630 + 0.205629i \(0.0659239\pi\)
\(938\) −790.858 + 256.965i −0.843132 + 0.273950i
\(939\) −1193.61 + 30.6557i −1.27115 + 0.0326472i
\(940\) −252.413 183.389i −0.268525 0.195095i
\(941\) −286.145 + 393.844i −0.304086 + 0.418538i −0.933525 0.358511i \(-0.883284\pi\)
0.629440 + 0.777049i \(0.283284\pi\)
\(942\) 17.5257 + 682.379i 0.0186048 + 0.724394i
\(943\) 406.995 + 1252.60i 0.431596 + 1.32832i
\(944\) −379.052 521.720i −0.401538 0.552669i
\(945\) 299.333 486.818i 0.316754 0.515152i
\(946\) 0 0
\(947\) 435.578i 0.459955i 0.973196 + 0.229978i \(0.0738653\pi\)
−0.973196 + 0.229978i \(0.926135\pi\)
\(948\) 166.457 + 114.526i 0.175587 + 0.120808i
\(949\) 519.149 + 1597.77i 0.547048 + 1.68364i
\(950\) 640.219 + 208.020i 0.673914 + 0.218968i
\(951\) −1195.79 354.863i −1.25741 0.373148i
\(952\) 339.031 + 246.321i 0.356125 + 0.258740i
\(953\) 1529.89 + 497.090i 1.60534 + 0.521605i 0.968419 0.249327i \(-0.0802094\pi\)
0.636917 + 0.770932i \(0.280209\pi\)
\(954\) −846.712 551.071i −0.887538 0.577643i
\(955\) −135.915 + 98.7479i −0.142319 + 0.103401i
\(956\) 126.996i 0.132841i
\(957\) 0 0
\(958\) 1792.00 1.87056
\(959\) 696.700 + 958.925i 0.726486 + 0.999922i
\(960\) −149.702 195.298i −0.155939 0.203436i
\(961\) −18.8500 + 58.0144i −0.0196150 + 0.0603688i
\(962\) −349.127 + 480.532i −0.362917 + 0.499513i
\(963\) −19.5572 380.486i −0.0203086 0.395105i
\(964\) 138.748 427.023i 0.143930 0.442970i
\(965\) −402.601 + 130.813i −0.417204 + 0.135558i
\(966\) 1522.46 + 1047.48i 1.57604 + 1.08435i
\(967\) −1055.15 −1.09116 −0.545578 0.838060i \(-0.683690\pi\)
−0.545578 + 0.838060i \(0.683690\pi\)
\(968\) 0 0
\(969\) 896.000 316.784i 0.924665 0.326918i
\(970\) 448.006 325.495i 0.461861 0.335562i
\(971\) 242.099 78.6629i 0.249330 0.0810122i −0.181686 0.983357i \(-0.558155\pi\)
0.431016 + 0.902344i \(0.358155\pi\)
\(972\) 134.649 716.457i 0.138528 0.737096i
\(973\) −543.659 394.992i −0.558746 0.405952i
\(974\) −544.297 + 749.160i −0.558826 + 0.769158i
\(975\) 1144.57 29.3963i 1.17392 0.0301501i
\(976\) −571.180 1757.91i −0.585226 1.80114i
\(977\) −847.879 1167.01i −0.867839 1.19448i −0.979643 0.200748i \(-0.935663\pi\)
0.111804 0.993730i \(-0.464337\pi\)
\(978\) 104.766 37.0405i 0.107123 0.0378737i
\(979\) 0 0
\(980\) 59.3970i 0.0606092i
\(981\) −157.471 + 585.337i −0.160521 + 0.596673i
\(982\) −207.659 639.110i −0.211466 0.650825i
\(983\) −653.669 212.390i −0.664973 0.216063i −0.0429685 0.999076i \(-0.513682\pi\)
−0.622005 + 0.783014i \(0.713682\pi\)
\(984\) 95.5910 322.115i 0.0971453 0.327353i
\(985\) 532.763 + 387.075i 0.540876 + 0.392970i
\(986\) 1127.28 + 366.277i 1.14329 + 0.371477i
\(987\) −502.188 655.145i −0.508802 0.663774i
\(988\) 815.489 592.488i 0.825394 0.599684i
\(989\) 465.652i 0.470831i
\(990\) 0 0
\(991\) 574.000 0.579213 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) −699.810 963.206i −0.705454 0.970974i
\(993\) 423.814 324.866i 0.426802 0.327156i
\(994\) −398.014 + 1224.96i −0.400416 + 1.23235i
\(995\) −369.077 + 507.991i −0.370931 + 0.510543i
\(996\) −182.622 54.1950i −0.183356 0.0544126i
\(997\) 409.307 1259.72i 0.410539 1.26351i −0.505642 0.862744i \(-0.668744\pi\)
0.916181 0.400766i \(-0.131256\pi\)
\(998\) −246.593 + 80.1230i −0.247088 + 0.0802836i
\(999\) 269.199 20.7783i 0.269469 0.0207991i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.k.245.4 16
3.2 odd 2 inner 363.3.h.k.245.1 16
11.2 odd 10 363.3.b.i.122.3 yes 4
11.3 even 5 inner 363.3.h.k.269.3 16
11.4 even 5 inner 363.3.h.k.323.1 16
11.5 even 5 inner 363.3.h.k.251.2 16
11.6 odd 10 inner 363.3.h.k.251.4 16
11.7 odd 10 inner 363.3.h.k.323.3 16
11.8 odd 10 inner 363.3.h.k.269.1 16
11.9 even 5 363.3.b.i.122.1 4
11.10 odd 2 inner 363.3.h.k.245.2 16
33.2 even 10 363.3.b.i.122.2 yes 4
33.5 odd 10 inner 363.3.h.k.251.3 16
33.8 even 10 inner 363.3.h.k.269.4 16
33.14 odd 10 inner 363.3.h.k.269.2 16
33.17 even 10 inner 363.3.h.k.251.1 16
33.20 odd 10 363.3.b.i.122.4 yes 4
33.26 odd 10 inner 363.3.h.k.323.4 16
33.29 even 10 inner 363.3.h.k.323.2 16
33.32 even 2 inner 363.3.h.k.245.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.i.122.1 4 11.9 even 5
363.3.b.i.122.2 yes 4 33.2 even 10
363.3.b.i.122.3 yes 4 11.2 odd 10
363.3.b.i.122.4 yes 4 33.20 odd 10
363.3.h.k.245.1 16 3.2 odd 2 inner
363.3.h.k.245.2 16 11.10 odd 2 inner
363.3.h.k.245.3 16 33.32 even 2 inner
363.3.h.k.245.4 16 1.1 even 1 trivial
363.3.h.k.251.1 16 33.17 even 10 inner
363.3.h.k.251.2 16 11.5 even 5 inner
363.3.h.k.251.3 16 33.5 odd 10 inner
363.3.h.k.251.4 16 11.6 odd 10 inner
363.3.h.k.269.1 16 11.8 odd 10 inner
363.3.h.k.269.2 16 33.14 odd 10 inner
363.3.h.k.269.3 16 11.3 even 5 inner
363.3.h.k.269.4 16 33.8 even 10 inner
363.3.h.k.323.1 16 11.4 even 5 inner
363.3.h.k.323.2 16 33.29 even 10 inner
363.3.h.k.323.3 16 11.7 odd 10 inner
363.3.h.k.323.4 16 33.26 odd 10 inner