Properties

Label 363.3.h.k.245.2
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.23612624896000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.2
Root \(0.350821 + 0.367787i\) of defining polynomial
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.k.323.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55513 - 2.14046i) q^{2} +(2.38098 - 1.82509i) q^{3} +(-0.927051 + 2.85317i) q^{4} +(-1.66251 + 2.28825i) q^{5} +(-7.60926 - 2.25812i) q^{6} +(-2.31247 + 7.11706i) q^{7} +(-2.51626 + 0.817582i) q^{8} +(2.33810 - 8.69099i) q^{9} +7.48331 q^{10} +(3.00000 + 8.48528i) q^{12} +(-18.1624 + 13.1957i) q^{13} +(18.8300 - 6.11822i) q^{14} +(0.217858 + 8.48248i) q^{15} +(15.3713 + 11.1679i) q^{16} +(12.4411 - 17.1237i) q^{17} +(-22.2388 + 8.51104i) q^{18} +(4.62494 + 14.2341i) q^{19} +(-4.98752 - 6.86474i) q^{20} +(7.48331 + 21.1660i) q^{21} +31.1127i q^{23} +(-4.49900 + 6.53904i) q^{24} +(5.25329 + 16.1680i) q^{25} +(56.4899 + 18.3547i) q^{26} +(-10.2949 - 24.9603i) q^{27} +(-18.1624 - 13.1957i) q^{28} +(20.1301 + 6.54066i) q^{29} +(17.8176 - 13.6577i) q^{30} +(-24.2705 + 17.6336i) q^{31} -39.6863i q^{32} -56.0000 q^{34} +(-12.4411 - 17.1237i) q^{35} +(22.6293 + 14.7280i) q^{36} +(-3.09017 + 9.51057i) q^{37} +(23.2751 - 32.0354i) q^{38} +(-19.1608 + 64.5667i) q^{39} +(2.31247 - 7.11706i) q^{40} +(-40.2601 + 13.0813i) q^{41} +(33.6674 - 48.9337i) q^{42} -14.9666 q^{43} +(16.0000 + 19.7990i) q^{45} +(66.5954 - 48.3844i) q^{46} +(34.9699 - 11.3624i) q^{47} +(56.9812 - 1.46346i) q^{48} +(-5.66312 - 4.11450i) q^{49} +(26.4373 - 36.3878i) q^{50} +(-1.63030 - 63.4771i) q^{51} +(-20.8122 - 64.0535i) q^{52} +(-24.9376 - 34.3237i) q^{53} +(-37.4166 + 60.8523i) q^{54} -19.7990i q^{56} +(36.9904 + 25.4502i) q^{57} +(-17.3050 - 53.2592i) q^{58} +(-32.2799 - 10.4884i) q^{59} +(-24.4039 - 7.24211i) q^{60} +(78.7037 + 57.1816i) q^{61} +(75.4878 + 24.5275i) q^{62} +(56.4474 + 36.7381i) q^{63} +(-23.4615 + 17.0458i) q^{64} -63.4980i q^{65} -42.0000 q^{67} +(37.3232 + 51.3710i) q^{68} +(56.7834 + 74.0786i) q^{69} +(-17.3050 + 53.2592i) q^{70} +(-38.2377 + 52.6296i) q^{71} +(1.22232 + 23.7804i) q^{72} +(23.1247 - 71.1706i) q^{73} +(25.1626 - 8.17582i) q^{74} +(42.0159 + 28.9078i) q^{75} -44.8999 q^{76} +(168.000 - 59.3970i) q^{78} +(-18.1624 + 13.1957i) q^{79} +(-51.1099 + 16.6066i) q^{80} +(-70.0665 - 40.6409i) q^{81} +(90.6099 + 65.8319i) q^{82} +(12.4411 - 17.1237i) q^{83} +(-67.3276 + 1.72920i) q^{84} +(18.4998 + 56.9364i) q^{85} +(23.2751 + 32.0354i) q^{86} +(59.8665 - 21.1660i) q^{87} +62.2254i q^{89} +(17.4968 - 65.0374i) q^{90} +(-51.9149 - 159.777i) q^{91} +(-88.7698 - 28.8431i) q^{92} +(-25.6047 + 86.2809i) q^{93} +(-78.7037 - 57.1816i) q^{94} +(-40.2601 - 13.0813i) q^{95} +(-72.4310 - 94.4921i) q^{96} +(-59.8673 + 43.4961i) q^{97} +18.5203i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 12 q^{4} + 28 q^{9} + 48 q^{12} + 32 q^{15} + 76 q^{16} - 68 q^{25} - 92 q^{27} - 120 q^{31} - 896 q^{34} - 84 q^{36} + 40 q^{37} + 224 q^{42} + 256 q^{45} - 76 q^{48} - 28 q^{49} + 224 q^{58}+ \cdots - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55513 2.14046i −0.777567 1.07023i −0.995546 0.0942755i \(-0.969947\pi\)
0.217979 0.975953i \(-0.430053\pi\)
\(3\) 2.38098 1.82509i 0.793659 0.608363i
\(4\) −0.927051 + 2.85317i −0.231763 + 0.713292i
\(5\) −1.66251 + 2.28825i −0.332502 + 0.457649i −0.942233 0.334959i \(-0.891277\pi\)
0.609731 + 0.792608i \(0.291277\pi\)
\(6\) −7.60926 2.25812i −1.26821 0.376354i
\(7\) −2.31247 + 7.11706i −0.330353 + 1.01672i 0.638613 + 0.769528i \(0.279509\pi\)
−0.968966 + 0.247194i \(0.920491\pi\)
\(8\) −2.51626 + 0.817582i −0.314532 + 0.102198i
\(9\) 2.33810 8.69099i 0.259789 0.965665i
\(10\) 7.48331 0.748331
\(11\) 0 0
\(12\) 3.00000 + 8.48528i 0.250000 + 0.707107i
\(13\) −18.1624 + 13.1957i −1.39711 + 1.01506i −0.402064 + 0.915612i \(0.631707\pi\)
−0.995043 + 0.0994457i \(0.968293\pi\)
\(14\) 18.8300 6.11822i 1.34500 0.437016i
\(15\) 0.217858 + 8.48248i 0.0145239 + 0.565499i
\(16\) 15.3713 + 11.1679i 0.960708 + 0.697995i
\(17\) 12.4411 17.1237i 0.731828 1.00727i −0.267220 0.963636i \(-0.586105\pi\)
0.999047 0.0436386i \(-0.0138950\pi\)
\(18\) −22.2388 + 8.51104i −1.23549 + 0.472835i
\(19\) 4.62494 + 14.2341i 0.243418 + 0.749164i 0.995893 + 0.0905424i \(0.0288601\pi\)
−0.752475 + 0.658621i \(0.771140\pi\)
\(20\) −4.98752 6.86474i −0.249376 0.343237i
\(21\) 7.48331 + 21.1660i 0.356348 + 1.00791i
\(22\) 0 0
\(23\) 31.1127i 1.35273i 0.736568 + 0.676363i \(0.236445\pi\)
−0.736568 + 0.676363i \(0.763555\pi\)
\(24\) −4.49900 + 6.53904i −0.187458 + 0.272460i
\(25\) 5.25329 + 16.1680i 0.210132 + 0.646718i
\(26\) 56.4899 + 18.3547i 2.17269 + 0.705949i
\(27\) −10.2949 24.9603i −0.381291 0.924455i
\(28\) −18.1624 13.1957i −0.648657 0.471277i
\(29\) 20.1301 + 6.54066i 0.694140 + 0.225540i 0.634776 0.772696i \(-0.281093\pi\)
0.0593647 + 0.998236i \(0.481093\pi\)
\(30\) 17.8176 13.6577i 0.593920 0.455257i
\(31\) −24.2705 + 17.6336i −0.782920 + 0.568824i −0.905854 0.423590i \(-0.860770\pi\)
0.122934 + 0.992415i \(0.460770\pi\)
\(32\) 39.6863i 1.24020i
\(33\) 0 0
\(34\) −56.0000 −1.64706
\(35\) −12.4411 17.1237i −0.355459 0.489247i
\(36\) 22.6293 + 14.7280i 0.628592 + 0.409111i
\(37\) −3.09017 + 9.51057i −0.0835181 + 0.257042i −0.984092 0.177661i \(-0.943147\pi\)
0.900574 + 0.434704i \(0.143147\pi\)
\(38\) 23.2751 32.0354i 0.612503 0.843038i
\(39\) −19.1608 + 64.5667i −0.491303 + 1.65556i
\(40\) 2.31247 7.11706i 0.0578118 0.177926i
\(41\) −40.2601 + 13.0813i −0.981955 + 0.319056i −0.755632 0.654996i \(-0.772670\pi\)
−0.226322 + 0.974052i \(0.572670\pi\)
\(42\) 33.6674 48.9337i 0.801605 1.16509i
\(43\) −14.9666 −0.348061 −0.174031 0.984740i \(-0.555679\pi\)
−0.174031 + 0.984740i \(0.555679\pi\)
\(44\) 0 0
\(45\) 16.0000 + 19.7990i 0.355556 + 0.439978i
\(46\) 66.5954 48.3844i 1.44773 1.05183i
\(47\) 34.9699 11.3624i 0.744041 0.241754i 0.0876258 0.996153i \(-0.472072\pi\)
0.656415 + 0.754400i \(0.272072\pi\)
\(48\) 56.9812 1.46346i 1.18711 0.0304889i
\(49\) −5.66312 4.11450i −0.115574 0.0839693i
\(50\) 26.4373 36.3878i 0.528745 0.727756i
\(51\) −1.63030 63.4771i −0.0319667 1.24465i
\(52\) −20.8122 64.0535i −0.400235 1.23180i
\(53\) −24.9376 34.3237i −0.470521 0.647617i 0.506128 0.862458i \(-0.331076\pi\)
−0.976649 + 0.214842i \(0.931076\pi\)
\(54\) −37.4166 + 60.8523i −0.692900 + 1.12689i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) 36.9904 + 25.4502i 0.648954 + 0.446494i
\(58\) −17.3050 53.2592i −0.298361 0.918261i
\(59\) −32.2799 10.4884i −0.547117 0.177769i 0.0223991 0.999749i \(-0.492870\pi\)
−0.569517 + 0.821980i \(0.692870\pi\)
\(60\) −24.4039 7.24211i −0.406732 0.120702i
\(61\) 78.7037 + 57.1816i 1.29022 + 0.937403i 0.999810 0.0194983i \(-0.00620689\pi\)
0.290414 + 0.956901i \(0.406207\pi\)
\(62\) 75.4878 + 24.5275i 1.21754 + 0.395604i
\(63\) 56.4474 + 36.7381i 0.895991 + 0.583144i
\(64\) −23.4615 + 17.0458i −0.366586 + 0.266340i
\(65\) 63.4980i 0.976893i
\(66\) 0 0
\(67\) −42.0000 −0.626866 −0.313433 0.949610i \(-0.601479\pi\)
−0.313433 + 0.949610i \(0.601479\pi\)
\(68\) 37.3232 + 51.3710i 0.548871 + 0.755456i
\(69\) 56.7834 + 74.0786i 0.822948 + 1.07360i
\(70\) −17.3050 + 53.2592i −0.247214 + 0.760845i
\(71\) −38.2377 + 52.6296i −0.538559 + 0.741263i −0.988405 0.151844i \(-0.951479\pi\)
0.449846 + 0.893106i \(0.351479\pi\)
\(72\) 1.22232 + 23.7804i 0.0169767 + 0.330283i
\(73\) 23.1247 71.1706i 0.316777 0.974939i −0.658240 0.752808i \(-0.728699\pi\)
0.975017 0.222131i \(-0.0713012\pi\)
\(74\) 25.1626 8.17582i 0.340035 0.110484i
\(75\) 42.0159 + 28.9078i 0.560212 + 0.385438i
\(76\) −44.8999 −0.590788
\(77\) 0 0
\(78\) 168.000 59.3970i 2.15385 0.761500i
\(79\) −18.1624 + 13.1957i −0.229904 + 0.167035i −0.696773 0.717291i \(-0.745382\pi\)
0.466870 + 0.884326i \(0.345382\pi\)
\(80\) −51.1099 + 16.6066i −0.638874 + 0.207583i
\(81\) −70.0665 40.6409i −0.865019 0.501739i
\(82\) 90.6099 + 65.8319i 1.10500 + 0.802829i
\(83\) 12.4411 17.1237i 0.149892 0.206309i −0.727467 0.686142i \(-0.759303\pi\)
0.877360 + 0.479833i \(0.159303\pi\)
\(84\) −67.3276 + 1.72920i −0.801519 + 0.0205857i
\(85\) 18.4998 + 56.9364i 0.217644 + 0.669840i
\(86\) 23.2751 + 32.0354i 0.270641 + 0.372505i
\(87\) 59.8665 21.1660i 0.688121 0.243287i
\(88\) 0 0
\(89\) 62.2254i 0.699162i 0.936906 + 0.349581i \(0.113676\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(90\) 17.4968 65.0374i 0.194408 0.722638i
\(91\) −51.9149 159.777i −0.570493 1.75580i
\(92\) −88.7698 28.8431i −0.964889 0.313511i
\(93\) −25.6047 + 86.2809i −0.275320 + 0.927752i
\(94\) −78.7037 57.1816i −0.837273 0.608315i
\(95\) −40.2601 13.0813i −0.423791 0.137698i
\(96\) −72.4310 94.4921i −0.754489 0.984293i
\(97\) −59.8673 + 43.4961i −0.617188 + 0.448413i −0.851938 0.523642i \(-0.824573\pi\)
0.234750 + 0.972056i \(0.424573\pi\)
\(98\) 18.5203i 0.188982i
\(99\) 0 0
\(100\) −51.0000 −0.510000
\(101\) −87.0875 119.866i −0.862252 1.18679i −0.981028 0.193867i \(-0.937897\pi\)
0.118775 0.992921i \(-0.462103\pi\)
\(102\) −133.335 + 102.205i −1.30720 + 1.00201i
\(103\) 10.5066 32.3359i 0.102006 0.313941i −0.887010 0.461749i \(-0.847222\pi\)
0.989016 + 0.147808i \(0.0472219\pi\)
\(104\) 34.9127 48.0532i 0.335699 0.462050i
\(105\) −60.8741 18.0650i −0.579753 0.172048i
\(106\) −34.6871 + 106.756i −0.327237 + 1.00713i
\(107\) −40.2601 + 13.0813i −0.376263 + 0.122255i −0.491042 0.871136i \(-0.663384\pi\)
0.114779 + 0.993391i \(0.463384\pi\)
\(108\) 80.7598 6.23350i 0.747776 0.0577176i
\(109\) 67.3498 0.617888 0.308944 0.951080i \(-0.400024\pi\)
0.308944 + 0.951080i \(0.400024\pi\)
\(110\) 0 0
\(111\) 10.0000 + 28.2843i 0.0900901 + 0.254813i
\(112\) −115.028 + 83.5731i −1.02704 + 0.746188i
\(113\) −112.980 + 36.7093i −0.999821 + 0.324861i −0.762794 0.646642i \(-0.776173\pi\)
−0.237027 + 0.971503i \(0.576173\pi\)
\(114\) −3.05001 118.755i −0.0267545 1.04171i
\(115\) −71.1935 51.7251i −0.619074 0.449783i
\(116\) −37.3232 + 51.3710i −0.321752 + 0.442853i
\(117\) 72.2185 + 188.702i 0.617252 + 1.61284i
\(118\) 27.7497 + 85.4047i 0.235167 + 0.723768i
\(119\) 93.1004 + 128.142i 0.782357 + 1.07682i
\(120\) −7.48331 21.1660i −0.0623610 0.176383i
\(121\) 0 0
\(122\) 257.387i 2.10973i
\(123\) −71.9839 + 104.625i −0.585235 + 0.850607i
\(124\) −27.8115 85.5951i −0.224287 0.690283i
\(125\) −112.980 36.7093i −0.903838 0.293675i
\(126\) −9.14702 177.956i −0.0725954 1.41235i
\(127\) −54.4872 39.5872i −0.429033 0.311711i 0.352229 0.935914i \(-0.385424\pi\)
−0.781262 + 0.624203i \(0.785424\pi\)
\(128\) −78.0040 25.3450i −0.609406 0.198008i
\(129\) −35.6352 + 27.3154i −0.276242 + 0.211747i
\(130\) −135.915 + 98.7479i −1.04550 + 0.759599i
\(131\) 232.826i 1.77730i 0.458587 + 0.888649i \(0.348356\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(132\) 0 0
\(133\) −112.000 −0.842105
\(134\) 65.3156 + 89.8992i 0.487430 + 0.670890i
\(135\) 74.2305 + 17.9395i 0.549856 + 0.132885i
\(136\) −17.3050 + 53.2592i −0.127242 + 0.391612i
\(137\) −93.1004 + 128.142i −0.679565 + 0.935341i −0.999929 0.0119535i \(-0.996195\pi\)
0.320363 + 0.947295i \(0.396195\pi\)
\(138\) 70.2563 236.745i 0.509104 1.71554i
\(139\) −27.7497 + 85.4047i −0.199638 + 0.614422i 0.800253 + 0.599662i \(0.204698\pi\)
−0.999891 + 0.0147598i \(0.995302\pi\)
\(140\) 60.3902 19.6220i 0.431359 0.140157i
\(141\) 62.5252 90.8769i 0.443441 0.644517i
\(142\) 172.116 1.21209
\(143\) 0 0
\(144\) 133.000 107.480i 0.923611 0.746390i
\(145\) −48.4330 + 35.1887i −0.334021 + 0.242680i
\(146\) −188.300 + 61.1822i −1.28972 + 0.419056i
\(147\) −20.9931 + 0.539171i −0.142810 + 0.00366783i
\(148\) −24.2705 17.6336i −0.163990 0.119146i
\(149\) 12.4411 17.1237i 0.0834971 0.114924i −0.765225 0.643763i \(-0.777372\pi\)
0.848722 + 0.528839i \(0.177372\pi\)
\(150\) −3.46439 134.889i −0.0230959 0.899259i
\(151\) −20.8122 64.0535i −0.137829 0.424195i 0.858190 0.513332i \(-0.171589\pi\)
−0.996019 + 0.0891369i \(0.971589\pi\)
\(152\) −23.2751 32.0354i −0.153126 0.210759i
\(153\) −119.733 148.162i −0.782569 0.968380i
\(154\) 0 0
\(155\) 84.8528i 0.547438i
\(156\) −166.457 114.526i −1.06703 0.734139i
\(157\) 26.5755 + 81.7909i 0.169270 + 0.520961i 0.999326 0.0367205i \(-0.0116911\pi\)
−0.830055 + 0.557681i \(0.811691\pi\)
\(158\) 56.4899 + 18.3547i 0.357531 + 0.116169i
\(159\) −122.020 36.2105i −0.767419 0.227739i
\(160\) 90.8119 + 65.9787i 0.567575 + 0.412367i
\(161\) −221.431 71.9472i −1.37535 0.446877i
\(162\) 21.9728 + 213.176i 0.135635 + 1.31590i
\(163\) 11.3262 8.22899i 0.0694861 0.0504846i −0.552500 0.833513i \(-0.686326\pi\)
0.621986 + 0.783028i \(0.286326\pi\)
\(164\) 126.996i 0.774366i
\(165\) 0 0
\(166\) −56.0000 −0.337349
\(167\) 49.7643 + 68.4946i 0.297990 + 0.410148i 0.931589 0.363514i \(-0.118423\pi\)
−0.633599 + 0.773662i \(0.718423\pi\)
\(168\) −36.1349 47.1409i −0.215089 0.280601i
\(169\) 103.521 318.604i 0.612548 1.88523i
\(170\) 93.1004 128.142i 0.547650 0.753775i
\(171\) 134.522 6.91450i 0.786679 0.0404357i
\(172\) 13.8748 42.7023i 0.0806676 0.248269i
\(173\) 181.171 58.8659i 1.04723 0.340265i 0.265649 0.964070i \(-0.414414\pi\)
0.781580 + 0.623804i \(0.214414\pi\)
\(174\) −138.405 95.2258i −0.795433 0.547275i
\(175\) −127.216 −0.726951
\(176\) 0 0
\(177\) −96.0000 + 33.9411i −0.542373 + 0.191758i
\(178\) 133.191 96.7688i 0.748263 0.543645i
\(179\) 301.279 97.8916i 1.68312 0.546880i 0.697611 0.716477i \(-0.254246\pi\)
0.985514 + 0.169596i \(0.0542463\pi\)
\(180\) −71.3227 + 27.2960i −0.396237 + 0.151645i
\(181\) 211.962 + 154.000i 1.17106 + 0.850827i 0.991136 0.132853i \(-0.0424137\pi\)
0.179927 + 0.983680i \(0.442414\pi\)
\(182\) −261.262 + 359.597i −1.43551 + 1.97581i
\(183\) 291.753 7.49318i 1.59428 0.0409463i
\(184\) −25.4372 78.2876i −0.138246 0.425476i
\(185\) −16.6251 22.8825i −0.0898653 0.123689i
\(186\) 224.499 79.3725i 1.20699 0.426734i
\(187\) 0 0
\(188\) 110.309i 0.586748i
\(189\) 201.450 15.5491i 1.06587 0.0822702i
\(190\) 34.6099 + 106.518i 0.182157 + 0.560623i
\(191\) 56.4899 + 18.3547i 0.295759 + 0.0960978i 0.453138 0.891440i \(-0.350305\pi\)
−0.157379 + 0.987538i \(0.550305\pi\)
\(192\) −24.7512 + 83.4049i −0.128913 + 0.434400i
\(193\) −121.083 87.9716i −0.627371 0.455812i 0.228118 0.973634i \(-0.426743\pi\)
−0.855488 + 0.517822i \(0.826743\pi\)
\(194\) 186.203 + 60.5011i 0.959810 + 0.311861i
\(195\) −115.890 151.187i −0.594305 0.775320i
\(196\) 16.9894 12.3435i 0.0866804 0.0629770i
\(197\) 232.826i 1.18186i 0.806723 + 0.590929i \(0.201239\pi\)
−0.806723 + 0.590929i \(0.798761\pi\)
\(198\) 0 0
\(199\) 222.000 1.11558 0.557789 0.829983i \(-0.311650\pi\)
0.557789 + 0.829983i \(0.311650\pi\)
\(200\) −26.4373 36.3878i −0.132186 0.181939i
\(201\) −100.001 + 76.6537i −0.497518 + 0.381362i
\(202\) −121.135 + 372.814i −0.599677 + 1.84561i
\(203\) −93.1004 + 128.142i −0.458623 + 0.631240i
\(204\) 182.622 + 54.1950i 0.895207 + 0.265662i
\(205\) 36.9995 113.873i 0.180486 0.555477i
\(206\) −85.5528 + 27.7978i −0.415305 + 0.134941i
\(207\) 270.400 + 72.7447i 1.30628 + 0.351424i
\(208\) −426.549 −2.05072
\(209\) 0 0
\(210\) 56.0000 + 158.392i 0.266667 + 0.754247i
\(211\) 314.815 228.726i 1.49201 1.08401i 0.518582 0.855028i \(-0.326460\pi\)
0.973430 0.228983i \(-0.0735400\pi\)
\(212\) 121.050 39.3314i 0.570989 0.185526i
\(213\) 5.01074 + 195.097i 0.0235246 + 0.915949i
\(214\) 90.6099 + 65.8319i 0.423411 + 0.307626i
\(215\) 24.8821 34.2473i 0.115731 0.159290i
\(216\) 46.3116 + 54.3897i 0.214406 + 0.251804i
\(217\) −69.3741 213.512i −0.319697 0.983925i
\(218\) −104.738 144.159i −0.480449 0.661282i
\(219\) −74.8331 211.660i −0.341704 0.966484i
\(220\) 0 0
\(221\) 475.176i 2.15012i
\(222\) 44.9900 65.3904i 0.202657 0.294551i
\(223\) −14.2148 43.7486i −0.0637434 0.196182i 0.914113 0.405460i \(-0.132889\pi\)
−0.977856 + 0.209278i \(0.932889\pi\)
\(224\) 282.449 + 91.7734i 1.26093 + 0.409703i
\(225\) 152.798 7.85391i 0.679103 0.0349062i
\(226\) 254.273 + 184.740i 1.12510 + 0.817436i
\(227\) −201.301 65.4066i −0.886787 0.288135i −0.170015 0.985442i \(-0.554381\pi\)
−0.716773 + 0.697307i \(0.754381\pi\)
\(228\) −106.906 + 81.9463i −0.468884 + 0.359413i
\(229\) −95.4640 + 69.3587i −0.416873 + 0.302876i −0.776379 0.630267i \(-0.782945\pi\)
0.359505 + 0.933143i \(0.382945\pi\)
\(230\) 232.826i 1.01229i
\(231\) 0 0
\(232\) −56.0000 −0.241379
\(233\) 49.7643 + 68.4946i 0.213581 + 0.293968i 0.902343 0.431019i \(-0.141846\pi\)
−0.688762 + 0.724987i \(0.741846\pi\)
\(234\) 291.599 448.038i 1.24615 1.91469i
\(235\) −32.1378 + 98.9099i −0.136756 + 0.420893i
\(236\) 59.8503 82.3768i 0.253603 0.349054i
\(237\) −19.1608 + 64.5667i −0.0808473 + 0.272433i
\(238\) 129.498 398.555i 0.544111 1.67460i
\(239\) −40.2601 + 13.0813i −0.168452 + 0.0547335i −0.392029 0.919953i \(-0.628227\pi\)
0.223577 + 0.974686i \(0.428227\pi\)
\(240\) −91.3829 + 132.820i −0.380762 + 0.553417i
\(241\) 149.666 0.621022 0.310511 0.950570i \(-0.399500\pi\)
0.310511 + 0.950570i \(0.399500\pi\)
\(242\) 0 0
\(243\) −241.000 + 31.1127i −0.991770 + 0.128036i
\(244\) −236.111 + 171.545i −0.967668 + 0.703052i
\(245\) 18.8300 6.11822i 0.0768570 0.0249723i
\(246\) 335.889 8.62674i 1.36540 0.0350681i
\(247\) −271.830 197.496i −1.10053 0.799578i
\(248\) 46.6540 64.2137i 0.188121 0.258926i
\(249\) −1.63030 63.4771i −0.00654739 0.254928i
\(250\) 97.1238 + 298.916i 0.388495 + 1.19567i
\(251\) 29.9251 + 41.1884i 0.119224 + 0.164097i 0.864457 0.502706i \(-0.167662\pi\)
−0.745234 + 0.666803i \(0.767662\pi\)
\(252\) −157.150 + 126.996i −0.623610 + 0.503953i
\(253\) 0 0
\(254\) 178.191i 0.701539i
\(255\) 147.962 + 101.801i 0.580241 + 0.399218i
\(256\) 102.903 + 316.702i 0.401964 + 1.23712i
\(257\) −91.4598 29.7171i −0.355875 0.115631i 0.125623 0.992078i \(-0.459907\pi\)
−0.481498 + 0.876447i \(0.659907\pi\)
\(258\) 113.885 + 33.7965i 0.441415 + 0.130994i
\(259\) −60.5413 43.9858i −0.233750 0.169829i
\(260\) 181.171 + 58.8659i 0.696810 + 0.226407i
\(261\) 103.911 159.657i 0.398126 0.611714i
\(262\) 498.354 362.076i 1.90212 1.38197i
\(263\) 465.652i 1.77054i −0.465077 0.885270i \(-0.653973\pi\)
0.465077 0.885270i \(-0.346027\pi\)
\(264\) 0 0
\(265\) 120.000 0.452830
\(266\) 174.175 + 239.731i 0.654793 + 0.901245i
\(267\) 113.567 + 148.157i 0.425344 + 0.554896i
\(268\) 38.9361 119.833i 0.145284 0.447139i
\(269\) 217.789 299.760i 0.809623 1.11435i −0.181759 0.983343i \(-0.558179\pi\)
0.991381 0.131007i \(-0.0418210\pi\)
\(270\) −77.0396 186.786i −0.285332 0.691799i
\(271\) −104.061 + 320.267i −0.383990 + 1.18180i 0.553221 + 0.833035i \(0.313399\pi\)
−0.937211 + 0.348764i \(0.886601\pi\)
\(272\) 382.471 124.272i 1.40614 0.456884i
\(273\) −415.216 285.677i −1.52094 1.04644i
\(274\) 419.066 1.52944
\(275\) 0 0
\(276\) −264.000 + 93.3381i −0.956522 + 0.338182i
\(277\) −18.1624 + 13.1957i −0.0655682 + 0.0476381i −0.620087 0.784533i \(-0.712903\pi\)
0.554518 + 0.832171i \(0.312903\pi\)
\(278\) 225.960 73.4187i 0.812804 0.264096i
\(279\) 96.5061 + 252.164i 0.345900 + 0.903813i
\(280\) 45.3050 + 32.9160i 0.161803 + 0.117557i
\(281\) 12.4411 17.1237i 0.0442743 0.0609383i −0.786306 0.617837i \(-0.788009\pi\)
0.830580 + 0.556899i \(0.188009\pi\)
\(282\) −291.753 + 7.49318i −1.03459 + 0.0265716i
\(283\) 55.4993 + 170.809i 0.196111 + 0.603567i 0.999962 + 0.00873607i \(0.00278081\pi\)
−0.803851 + 0.594830i \(0.797219\pi\)
\(284\) −114.713 157.889i −0.403919 0.555947i
\(285\) −119.733 + 42.3320i −0.420116 + 0.148533i
\(286\) 0 0
\(287\) 316.784i 1.10378i
\(288\) −344.913 92.7906i −1.19761 0.322190i
\(289\) −49.1337 151.218i −0.170013 0.523246i
\(290\) 150.640 + 48.9458i 0.519447 + 0.168779i
\(291\) −63.1583 + 212.826i −0.217039 + 0.731362i
\(292\) 181.624 + 131.957i 0.622000 + 0.451909i
\(293\) 20.1301 + 6.54066i 0.0687033 + 0.0223231i 0.343167 0.939274i \(-0.388500\pi\)
−0.274464 + 0.961597i \(0.588500\pi\)
\(294\) 33.8011 + 44.0963i 0.114970 + 0.149987i
\(295\) 77.6656 56.4274i 0.263273 0.191279i
\(296\) 26.4575i 0.0893835i
\(297\) 0 0
\(298\) −56.0000 −0.187919
\(299\) −410.555 565.081i −1.37309 1.88990i
\(300\) −121.430 + 93.0795i −0.404766 + 0.310265i
\(301\) 34.6099 106.518i 0.114983 0.353881i
\(302\) −104.738 + 144.159i −0.346815 + 0.477349i
\(303\) −426.119 126.455i −1.40633 0.417343i
\(304\) −87.8739 + 270.448i −0.289059 + 0.889632i
\(305\) −261.691 + 85.0285i −0.858003 + 0.278782i
\(306\) −130.934 + 486.695i −0.427888 + 1.59051i
\(307\) 149.666 0.487512 0.243756 0.969837i \(-0.421620\pi\)
0.243756 + 0.969837i \(0.421620\pi\)
\(308\) 0 0
\(309\) −34.0000 96.1665i −0.110032 0.311219i
\(310\) −181.624 + 131.957i −0.585883 + 0.425669i
\(311\) −24.2099 + 7.86629i −0.0778455 + 0.0252935i −0.347681 0.937613i \(-0.613031\pi\)
0.269835 + 0.962906i \(0.413031\pi\)
\(312\) −4.57502 178.132i −0.0146635 0.570936i
\(313\) −321.989 233.939i −1.02872 0.747407i −0.0606664 0.998158i \(-0.519323\pi\)
−0.968052 + 0.250751i \(0.919323\pi\)
\(314\) 133.741 184.079i 0.425928 0.586240i
\(315\) −177.910 + 68.0883i −0.564794 + 0.216153i
\(316\) −20.8122 64.0535i −0.0658615 0.202701i
\(317\) −244.389 336.372i −0.770942 1.06111i −0.996224 0.0868172i \(-0.972330\pi\)
0.225282 0.974294i \(-0.427670\pi\)
\(318\) 112.250 + 317.490i 0.352987 + 0.998397i
\(319\) 0 0
\(320\) 82.0244i 0.256326i
\(321\) −71.9839 + 104.625i −0.224249 + 0.325933i
\(322\) 190.354 + 585.851i 0.591163 + 1.81941i
\(323\) 301.279 + 97.8916i 0.932753 + 0.303070i
\(324\) 180.911 162.236i 0.558366 0.500727i
\(325\) −308.761 224.328i −0.950033 0.690239i
\(326\) −35.2276 11.4461i −0.108060 0.0351109i
\(327\) 160.358 122.919i 0.490393 0.375900i
\(328\) 90.6099 65.8319i 0.276250 0.200707i
\(329\) 275.158i 0.836347i
\(330\) 0 0
\(331\) 178.000 0.537764 0.268882 0.963173i \(-0.413346\pi\)
0.268882 + 0.963173i \(0.413346\pi\)
\(332\) 37.3232 + 51.3710i 0.112419 + 0.154732i
\(333\) 75.4311 + 49.0933i 0.226520 + 0.147427i
\(334\) 69.2198 213.037i 0.207245 0.637834i
\(335\) 69.8253 96.1063i 0.208434 0.286885i
\(336\) −121.352 + 408.923i −0.361166 + 1.21703i
\(337\) −78.6240 + 241.980i −0.233306 + 0.718041i 0.764036 + 0.645174i \(0.223215\pi\)
−0.997342 + 0.0728675i \(0.976785\pi\)
\(338\) −842.947 + 273.890i −2.49393 + 0.810325i
\(339\) −202.004 + 293.602i −0.595883 + 0.866083i
\(340\) −179.600 −0.528234
\(341\) 0 0
\(342\) −224.000 277.186i −0.654971 0.810485i
\(343\) −254.273 + 184.740i −0.741322 + 0.538602i
\(344\) 37.6599 12.2364i 0.109477 0.0355711i
\(345\) −263.913 + 6.77815i −0.764965 + 0.0196468i
\(346\) −407.745 296.244i −1.17845 0.856196i
\(347\) 286.145 393.844i 0.824624 1.13500i −0.164276 0.986414i \(-0.552529\pi\)
0.988900 0.148583i \(-0.0474713\pi\)
\(348\) 4.89090 + 190.431i 0.0140543 + 0.547216i
\(349\) −20.8122 64.0535i −0.0596339 0.183534i 0.916802 0.399342i \(-0.130761\pi\)
−0.976436 + 0.215808i \(0.930761\pi\)
\(350\) 197.838 + 272.301i 0.565253 + 0.778004i
\(351\) 516.349 + 317.490i 1.47108 + 0.904530i
\(352\) 0 0
\(353\) 124.451i 0.352552i −0.984341 0.176276i \(-0.943595\pi\)
0.984341 0.176276i \(-0.0564051\pi\)
\(354\) 221.942 + 152.701i 0.626956 + 0.431359i
\(355\) −56.8591 174.994i −0.160167 0.492942i
\(356\) −177.540 57.6861i −0.498707 0.162040i
\(357\) 455.540 + 135.186i 1.27602 + 0.378672i
\(358\) −678.062 492.641i −1.89403 1.37609i
\(359\) 241.561 + 78.4879i 0.672871 + 0.218629i 0.625472 0.780247i \(-0.284907\pi\)
0.0473997 + 0.998876i \(0.484907\pi\)
\(360\) −56.4474 36.7381i −0.156798 0.102050i
\(361\) 110.835 80.5266i 0.307023 0.223065i
\(362\) 693.187i 1.91488i
\(363\) 0 0
\(364\) 504.000 1.38462
\(365\) 124.411 + 171.237i 0.340851 + 0.469141i
\(366\) −469.754 612.832i −1.28348 1.67440i
\(367\) −43.8804 + 135.050i −0.119565 + 0.367984i −0.992872 0.119187i \(-0.961971\pi\)
0.873307 + 0.487171i \(0.161971\pi\)
\(368\) −347.464 + 478.243i −0.944196 + 1.29957i
\(369\) 19.5572 + 380.486i 0.0530004 + 1.03113i
\(370\) −23.1247 + 71.1706i −0.0624992 + 0.192353i
\(371\) 301.951 98.1099i 0.813884 0.264447i
\(372\) −222.437 153.041i −0.597950 0.411402i
\(373\) −426.549 −1.14356 −0.571781 0.820406i \(-0.693747\pi\)
−0.571781 + 0.820406i \(0.693747\pi\)
\(374\) 0 0
\(375\) −336.000 + 118.794i −0.896000 + 0.316784i
\(376\) −78.7037 + 57.1816i −0.209318 + 0.152079i
\(377\) −451.919 + 146.837i −1.19872 + 0.389489i
\(378\) −346.564 407.015i −0.916837 1.07676i
\(379\) 283.156 + 205.725i 0.747113 + 0.542810i 0.894931 0.446205i \(-0.147225\pi\)
−0.147817 + 0.989015i \(0.547225\pi\)
\(380\) 74.6464 102.742i 0.196438 0.270374i
\(381\) −201.983 + 5.18759i −0.530139 + 0.0136157i
\(382\) −48.5619 149.458i −0.127125 0.391252i
\(383\) 304.239 + 418.749i 0.794357 + 1.09334i 0.993552 + 0.113379i \(0.0361675\pi\)
−0.199194 + 0.979960i \(0.563832\pi\)
\(384\) −231.983 + 82.0183i −0.604122 + 0.213589i
\(385\) 0 0
\(386\) 395.980i 1.02585i
\(387\) −34.9935 + 130.075i −0.0904226 + 0.336111i
\(388\) −68.6018 211.135i −0.176809 0.544161i
\(389\) −416.949 135.475i −1.07185 0.348265i −0.280641 0.959813i \(-0.590547\pi\)
−0.791207 + 0.611548i \(0.790547\pi\)
\(390\) −143.386 + 483.173i −0.367658 + 1.23891i
\(391\) 532.763 + 387.075i 1.36257 + 0.989962i
\(392\) 17.6138 + 5.72307i 0.0449332 + 0.0145997i
\(393\) 424.928 + 554.354i 1.08124 + 1.41057i
\(394\) 498.354 362.076i 1.26486 0.918974i
\(395\) 63.4980i 0.160755i
\(396\) 0 0
\(397\) 442.000 1.11335 0.556675 0.830730i \(-0.312077\pi\)
0.556675 + 0.830730i \(0.312077\pi\)
\(398\) −345.240 475.182i −0.867436 1.19392i
\(399\) −266.669 + 204.410i −0.668344 + 0.512306i
\(400\) −99.8125 + 307.191i −0.249531 + 0.767978i
\(401\) 309.226 425.614i 0.771138 1.06138i −0.225067 0.974343i \(-0.572260\pi\)
0.996205 0.0870374i \(-0.0277400\pi\)
\(402\) 319.589 + 94.8412i 0.794998 + 0.235923i
\(403\) 208.122 640.535i 0.516433 1.58942i
\(404\) 422.732 137.354i 1.04637 0.339985i
\(405\) 209.482 92.7637i 0.517241 0.229046i
\(406\) 419.066 1.03218
\(407\) 0 0
\(408\) 56.0000 + 158.392i 0.137255 + 0.388215i
\(409\) 181.624 131.957i 0.444068 0.322634i −0.343181 0.939269i \(-0.611504\pi\)
0.787249 + 0.616635i \(0.211504\pi\)
\(410\) −301.279 + 97.8916i −0.734828 + 0.238760i
\(411\) 12.2001 + 475.019i 0.0296838 + 1.15576i
\(412\) 82.5197 + 59.9541i 0.200291 + 0.145520i
\(413\) 149.293 205.484i 0.361484 0.497540i
\(414\) −264.801 691.908i −0.639617 1.67127i
\(415\) 18.4998 + 56.9364i 0.0445778 + 0.137196i
\(416\) 523.690 + 720.797i 1.25887 + 1.73269i
\(417\) 89.7998 + 253.992i 0.215347 + 0.609094i
\(418\) 0 0
\(419\) 684.479i 1.63360i −0.576919 0.816801i \(-0.695745\pi\)
0.576919 0.816801i \(-0.304255\pi\)
\(420\) 107.976 156.937i 0.257085 0.373659i
\(421\) −82.1985 252.981i −0.195246 0.600905i −0.999974 0.00726102i \(-0.997689\pi\)
0.804728 0.593644i \(-0.202311\pi\)
\(422\) −979.158 318.148i −2.32028 0.753904i
\(423\) −16.9873 330.490i −0.0401592 0.781299i
\(424\) 90.8119 + 65.9787i 0.214179 + 0.155610i
\(425\) 342.211 + 111.191i 0.805203 + 0.261626i
\(426\) 409.805 314.127i 0.961983 0.737388i
\(427\) −588.964 + 427.908i −1.37931 + 1.00213i
\(428\) 126.996i 0.296720i
\(429\) 0 0
\(430\) −112.000 −0.260465
\(431\) 323.468 + 445.215i 0.750505 + 1.03298i 0.997945 + 0.0640786i \(0.0204108\pi\)
−0.247440 + 0.968903i \(0.579589\pi\)
\(432\) 120.509 498.645i 0.278956 1.15427i
\(433\) 228.055 701.880i 0.526685 1.62097i −0.234275 0.972170i \(-0.575272\pi\)
0.760960 0.648799i \(-0.224728\pi\)
\(434\) −349.127 + 480.532i −0.804439 + 1.10722i
\(435\) −51.0955 + 172.178i −0.117461 + 0.395811i
\(436\) −62.4367 + 192.160i −0.143204 + 0.440735i
\(437\) −442.862 + 143.894i −1.01341 + 0.329278i
\(438\) −336.674 + 489.337i −0.768662 + 1.11721i
\(439\) −426.549 −0.971638 −0.485819 0.874060i \(-0.661479\pi\)
−0.485819 + 0.874060i \(0.661479\pi\)
\(440\) 0 0
\(441\) −49.0000 + 39.5980i −0.111111 + 0.0897913i
\(442\) 1017.09 738.962i 2.30112 1.67186i
\(443\) −112.980 + 36.7093i −0.255033 + 0.0828653i −0.433743 0.901036i \(-0.642808\pi\)
0.178710 + 0.983902i \(0.442808\pi\)
\(444\) −89.9703 + 2.31073i −0.202636 + 0.00520436i
\(445\) −142.387 103.450i −0.319971 0.232472i
\(446\) −71.5361 + 98.4611i −0.160395 + 0.220765i
\(447\) −1.63030 63.4771i −0.00364721 0.142007i
\(448\) −67.0617 206.395i −0.149691 0.460702i
\(449\) −299.251 411.884i −0.666484 0.917337i 0.333190 0.942860i \(-0.391875\pi\)
−0.999674 + 0.0255229i \(0.991875\pi\)
\(450\) −254.433 314.844i −0.565406 0.699654i
\(451\) 0 0
\(452\) 356.382i 0.788455i
\(453\) −166.457 114.526i −0.367454 0.252816i
\(454\) 173.050 + 532.592i 0.381166 + 1.17311i
\(455\) 451.919 + 146.837i 0.993229 + 0.322720i
\(456\) −113.885 33.7965i −0.249748 0.0741152i
\(457\) 544.872 + 395.872i 1.19228 + 0.866242i 0.993503 0.113803i \(-0.0363034\pi\)
0.198776 + 0.980045i \(0.436303\pi\)
\(458\) 296.919 + 96.4747i 0.648294 + 0.210643i
\(459\) −555.491 134.247i −1.21022 0.292477i
\(460\) 213.580 155.175i 0.464305 0.337338i
\(461\) 698.478i 1.51514i −0.652755 0.757569i \(-0.726387\pi\)
0.652755 0.757569i \(-0.273613\pi\)
\(462\) 0 0
\(463\) 882.000 1.90497 0.952484 0.304589i \(-0.0985192\pi\)
0.952484 + 0.304589i \(0.0985192\pi\)
\(464\) 236.380 + 325.350i 0.509440 + 0.701184i
\(465\) −154.864 202.033i −0.333041 0.434479i
\(466\) 69.2198 213.037i 0.148540 0.457160i
\(467\) −312.551 + 430.190i −0.669275 + 0.921178i −0.999744 0.0226389i \(-0.992793\pi\)
0.330469 + 0.943817i \(0.392793\pi\)
\(468\) −605.349 + 31.1152i −1.29348 + 0.0664856i
\(469\) 97.1238 298.916i 0.207087 0.637348i
\(470\) 261.691 85.0285i 0.556789 0.180912i
\(471\) 212.551 + 146.240i 0.451276 + 0.310487i
\(472\) 89.7998 0.190254
\(473\) 0 0
\(474\) 168.000 59.3970i 0.354430 0.125310i
\(475\) −205.840 + 149.552i −0.433348 + 0.314846i
\(476\) −451.919 + 146.837i −0.949410 + 0.308482i
\(477\) −356.613 + 136.480i −0.747617 + 0.286122i
\(478\) 90.6099 + 65.8319i 0.189560 + 0.137724i
\(479\) −398.114 + 547.957i −0.831136 + 1.14396i 0.156574 + 0.987666i \(0.449955\pi\)
−0.987710 + 0.156295i \(0.950045\pi\)
\(480\) 336.638 8.64598i 0.701329 0.0180124i
\(481\) −69.3741 213.512i −0.144229 0.443891i
\(482\) −232.751 320.354i −0.482886 0.664636i
\(483\) −658.532 + 232.826i −1.36342 + 0.482042i
\(484\) 0 0
\(485\) 209.304i 0.431554i
\(486\) 441.383 + 467.466i 0.908195 + 0.961864i
\(487\) 108.156 + 332.870i 0.222086 + 0.683511i 0.998574 + 0.0533790i \(0.0169992\pi\)
−0.776488 + 0.630132i \(0.783001\pi\)
\(488\) −244.789 79.5369i −0.501618 0.162985i
\(489\) 11.9489 40.2644i 0.0244353 0.0823404i
\(490\) −42.3789 30.7901i −0.0864876 0.0628369i
\(491\) 241.561 + 78.4879i 0.491977 + 0.159853i 0.544490 0.838767i \(-0.316723\pi\)
−0.0525130 + 0.998620i \(0.516723\pi\)
\(492\) −231.779 302.375i −0.471096 0.614583i
\(493\) 362.440 263.328i 0.735172 0.534133i
\(494\) 888.972i 1.79954i
\(495\) 0 0
\(496\) −570.000 −1.14919
\(497\) −286.145 393.844i −0.575744 0.792443i
\(498\) −133.335 + 102.205i −0.267740 + 0.205231i
\(499\) −30.2837 + 93.2035i −0.0606887 + 0.186781i −0.976804 0.214133i \(-0.931307\pi\)
0.916116 + 0.400914i \(0.131307\pi\)
\(500\) 209.476 288.319i 0.418952 0.576638i
\(501\) 243.496 + 72.2600i 0.486021 + 0.144231i
\(502\) 41.6245 128.107i 0.0829173 0.255193i
\(503\) −483.122 + 156.976i −0.960481 + 0.312079i −0.746967 0.664861i \(-0.768491\pi\)
−0.213514 + 0.976940i \(0.568491\pi\)
\(504\) −172.073 46.2921i −0.341414 0.0918494i
\(505\) 419.066 0.829833
\(506\) 0 0
\(507\) −335.000 947.523i −0.660750 1.86888i
\(508\) 163.461 118.762i 0.321775 0.233783i
\(509\) 153.330 49.8198i 0.301237 0.0978779i −0.154499 0.987993i \(-0.549376\pi\)
0.455736 + 0.890115i \(0.349376\pi\)
\(510\) −12.2001 475.019i −0.0239217 0.931410i
\(511\) 453.050 + 329.160i 0.886594 + 0.644148i
\(512\) 325.023 447.356i 0.634810 0.873742i
\(513\) 307.674 261.978i 0.599755 0.510678i
\(514\) 78.6240 + 241.980i 0.152965 + 0.470778i
\(515\) 56.5253 + 77.8004i 0.109758 + 0.151069i
\(516\) −44.8999 126.996i −0.0870153 0.246116i
\(517\) 0 0
\(518\) 197.990i 0.382220i
\(519\) 323.928 470.811i 0.624138 0.907150i
\(520\) 51.9149 + 159.777i 0.0998363 + 0.307264i
\(521\) 145.260 + 47.1977i 0.278809 + 0.0905907i 0.445084 0.895489i \(-0.353174\pi\)
−0.166275 + 0.986079i \(0.553174\pi\)
\(522\) −503.336 + 25.8717i −0.964244 + 0.0495626i
\(523\) 12.1083 + 8.79716i 0.0231515 + 0.0168206i 0.599301 0.800524i \(-0.295445\pi\)
−0.576149 + 0.817344i \(0.695445\pi\)
\(524\) −664.292 215.842i −1.26773 0.411912i
\(525\) −302.899 + 232.181i −0.576951 + 0.442250i
\(526\) −996.709 + 724.151i −1.89488 + 1.37671i
\(527\) 634.980i 1.20490i
\(528\) 0 0
\(529\) −439.000 −0.829868
\(530\) −186.616 256.855i −0.352106 0.484632i
\(531\) −166.628 + 256.022i −0.313801 + 0.482150i
\(532\) 103.830 319.555i 0.195169 0.600667i
\(533\) 558.603 768.851i 1.04803 1.44250i
\(534\) 140.513 473.489i 0.263132 0.886684i
\(535\) 36.9995 113.873i 0.0691580 0.212847i
\(536\) 105.683 34.3384i 0.197170 0.0640643i
\(537\) 538.678 782.939i 1.00313 1.45799i
\(538\) −980.314 −1.82215
\(539\) 0 0
\(540\) −120.000 + 195.161i −0.222222 + 0.361410i
\(541\) −417.735 + 303.502i −0.772153 + 0.561002i −0.902614 0.430451i \(-0.858354\pi\)
0.130461 + 0.991453i \(0.458354\pi\)
\(542\) 847.348 275.320i 1.56337 0.507971i
\(543\) 785.741 20.1804i 1.44704 0.0371647i
\(544\) −679.574 493.740i −1.24922 0.907610i
\(545\) −111.970 + 154.113i −0.205449 + 0.282776i
\(546\) 34.2363 + 1333.02i 0.0627039 + 2.44143i
\(547\) 208.122 + 640.535i 0.380480 + 1.17100i 0.939707 + 0.341982i \(0.111098\pi\)
−0.559227 + 0.829015i \(0.688902\pi\)
\(548\) −279.301 384.425i −0.509674 0.701506i
\(549\) 680.982 550.316i 1.24040 1.00240i
\(550\) 0 0
\(551\) 316.784i 0.574925i
\(552\) −203.447 139.976i −0.368564 0.253579i
\(553\) −51.9149 159.777i −0.0938786 0.288929i
\(554\) 56.4899 + 18.3547i 0.101967 + 0.0331312i
\(555\) −81.3464 24.1404i −0.146570 0.0434962i
\(556\) −217.949 158.349i −0.391994 0.284800i
\(557\) −422.732 137.354i −0.758943 0.246596i −0.0961183 0.995370i \(-0.530643\pi\)
−0.662825 + 0.748774i \(0.730643\pi\)
\(558\) 389.666 598.716i 0.698326 1.07297i
\(559\) 271.830 197.496i 0.486279 0.353302i
\(560\) 402.154i 0.718132i
\(561\) 0 0
\(562\) −56.0000 −0.0996441
\(563\) 323.468 + 445.215i 0.574543 + 0.790791i 0.993084 0.117407i \(-0.0374583\pi\)
−0.418541 + 0.908198i \(0.637458\pi\)
\(564\) 201.323 + 262.642i 0.356956 + 0.465678i
\(565\) 103.830 319.555i 0.183769 0.565584i
\(566\) 279.301 384.425i 0.493465 0.679197i
\(567\) 451.270 404.687i 0.795891 0.713733i
\(568\) 53.1868 163.692i 0.0936388 0.288191i
\(569\) 1066.89 346.655i 1.87503 0.609235i 0.885559 0.464528i \(-0.153776\pi\)
0.989474 0.144708i \(-0.0462241\pi\)
\(570\) 276.811 + 190.452i 0.485633 + 0.334126i
\(571\) 808.198 1.41541 0.707704 0.706509i \(-0.249731\pi\)
0.707704 + 0.706509i \(0.249731\pi\)
\(572\) 0 0
\(573\) 168.000 59.3970i 0.293194 0.103660i
\(574\) −678.062 + 492.641i −1.18129 + 0.858260i
\(575\) −503.029 + 163.444i −0.874833 + 0.284250i
\(576\) 93.2892 + 243.758i 0.161960 + 0.423192i
\(577\) −250.795 182.213i −0.434654 0.315795i 0.348853 0.937177i \(-0.386571\pi\)
−0.783507 + 0.621383i \(0.786571\pi\)
\(578\) −247.266 + 340.333i −0.427796 + 0.588811i
\(579\) −448.851 + 11.5280i −0.775217 + 0.0199101i
\(580\) −55.4993 170.809i −0.0956885 0.294499i
\(581\) 93.1004 + 128.142i 0.160242 + 0.220554i
\(582\) 553.765 195.786i 0.951487 0.336401i
\(583\) 0 0
\(584\) 197.990i 0.339024i
\(585\) −551.861 148.465i −0.943352 0.253786i
\(586\) −17.3050 53.2592i −0.0295306 0.0908859i
\(587\) 914.598 + 297.171i 1.55809 + 0.506254i 0.956296 0.292399i \(-0.0944536\pi\)
0.601792 + 0.798653i \(0.294454\pi\)
\(588\) 17.9233 60.3966i 0.0304818 0.102715i
\(589\) −363.248 263.915i −0.616719 0.448073i
\(590\) −241.561 78.4879i −0.409425 0.133030i
\(591\) 424.928 + 554.354i 0.718999 + 0.937993i
\(592\) −153.713 + 111.679i −0.259651 + 0.188647i
\(593\) 232.826i 0.392624i −0.980541 0.196312i \(-0.937103\pi\)
0.980541 0.196312i \(-0.0628966\pi\)
\(594\) 0 0
\(595\) −448.000 −0.752941
\(596\) 37.3232 + 51.3710i 0.0626228 + 0.0861929i
\(597\) 528.577 405.170i 0.885388 0.678676i
\(598\) −571.063 + 1757.55i −0.954956 + 2.93905i
\(599\) −513.715 + 707.068i −0.857621 + 1.18041i 0.124511 + 0.992218i \(0.460264\pi\)
−0.982132 + 0.188196i \(0.939736\pi\)
\(600\) −129.357 38.3881i −0.215596 0.0639802i
\(601\) −180.373 + 555.130i −0.300121 + 0.923678i 0.681332 + 0.731975i \(0.261401\pi\)
−0.981453 + 0.191703i \(0.938599\pi\)
\(602\) −281.821 + 91.5692i −0.468141 + 0.152108i
\(603\) −98.2003 + 365.021i −0.162853 + 0.605342i
\(604\) 202.049 0.334519
\(605\) 0 0
\(606\) 392.000 + 1108.74i 0.646865 + 1.82961i
\(607\) −684.117 + 497.040i −1.12705 + 0.818846i −0.985262 0.171051i \(-0.945284\pi\)
−0.141783 + 0.989898i \(0.545284\pi\)
\(608\) 564.899 183.547i 0.929110 0.301886i
\(609\) 12.2001 + 475.019i 0.0200329 + 0.779999i
\(610\) 588.964 + 427.908i 0.965515 + 0.701488i
\(611\) −485.202 + 667.823i −0.794111 + 1.09300i
\(612\) 533.730 204.265i 0.872108 0.333766i
\(613\) 182.685 + 562.247i 0.298018 + 0.917206i 0.982191 + 0.187886i \(0.0601635\pi\)
−0.684173 + 0.729320i \(0.739836\pi\)
\(614\) −232.751 320.354i −0.379073 0.521750i
\(615\) −119.733 338.656i −0.194688 0.550660i
\(616\) 0 0
\(617\) 435.578i 0.705961i 0.935631 + 0.352980i \(0.114832\pi\)
−0.935631 + 0.352980i \(0.885168\pi\)
\(618\) −152.966 + 222.327i −0.247518 + 0.359753i
\(619\) −258.956 796.985i −0.418346 1.28754i −0.909224 0.416308i \(-0.863324\pi\)
0.490877 0.871229i \(-0.336676\pi\)
\(620\) 242.099 + 78.6629i 0.390483 + 0.126876i
\(621\) 776.582 320.301i 1.25053 0.515782i
\(622\) 54.4872 + 39.5872i 0.0875999 + 0.0636451i
\(623\) −442.862 143.894i −0.710853 0.230970i
\(624\) −1015.60 + 778.490i −1.62757 + 1.24758i
\(625\) −72.0025 + 52.3129i −0.115204 + 0.0837006i
\(626\) 1053.01i 1.68212i
\(627\) 0 0
\(628\) −258.000 −0.410828
\(629\) 124.411 + 171.237i 0.197791 + 0.272236i
\(630\) 422.414 + 274.923i 0.670498 + 0.436385i
\(631\) 78.4903 241.568i 0.124390 0.382834i −0.869399 0.494110i \(-0.835494\pi\)
0.993790 + 0.111276i \(0.0354938\pi\)
\(632\) 34.9127 48.0532i 0.0552416 0.0760335i
\(633\) 332.121 1119.16i 0.524678 1.76802i
\(634\) −339.933 + 1046.21i −0.536172 + 1.65017i
\(635\) 181.171 58.8659i 0.285308 0.0927022i
\(636\) 216.433 314.574i 0.340304 0.494613i
\(637\) 157.150 0.246703
\(638\) 0 0
\(639\) 368.000 + 455.377i 0.575900 + 0.712640i
\(640\) 187.678 136.356i 0.293247 0.213056i
\(641\) −112.980 + 36.7093i −0.176255 + 0.0572689i −0.395815 0.918330i \(-0.629538\pi\)
0.219560 + 0.975599i \(0.429538\pi\)
\(642\) 335.889 8.62674i 0.523192 0.0134373i
\(643\) 354.349 + 257.450i 0.551088 + 0.400389i 0.828186 0.560453i \(-0.189373\pi\)
−0.277099 + 0.960841i \(0.589373\pi\)
\(644\) 410.555 565.081i 0.637508 0.877455i
\(645\) −3.26060 126.954i −0.00505520 0.196828i
\(646\) −258.997 797.110i −0.400924 1.23392i
\(647\) 194.513 + 267.725i 0.300639 + 0.413794i 0.932433 0.361342i \(-0.117681\pi\)
−0.631794 + 0.775136i \(0.717681\pi\)
\(648\) 209.533 + 44.9778i 0.323353 + 0.0694101i
\(649\) 0 0
\(650\) 1009.75i 1.55346i
\(651\) −554.856 381.752i −0.852313 0.586409i
\(652\) 12.9787 + 39.9444i 0.0199060 + 0.0612644i
\(653\) −594.489 193.161i −0.910396 0.295806i −0.183875 0.982950i \(-0.558864\pi\)
−0.726521 + 0.687144i \(0.758864\pi\)
\(654\) −512.483 152.084i −0.783612 0.232545i
\(655\) −532.763 387.075i −0.813379 0.590955i
\(656\) −764.943 248.545i −1.16607 0.378880i
\(657\) −564.474 367.381i −0.859170 0.559179i
\(658\) 588.964 427.908i 0.895083 0.650316i
\(659\) 465.652i 0.706604i 0.935509 + 0.353302i \(0.114941\pi\)
−0.935509 + 0.353302i \(0.885059\pi\)
\(660\) 0 0
\(661\) −394.000 −0.596067 −0.298033 0.954555i \(-0.596331\pi\)
−0.298033 + 0.954555i \(0.596331\pi\)
\(662\) −276.814 381.001i −0.418148 0.575531i
\(663\) 867.238 + 1131.38i 1.30805 + 1.70646i
\(664\) −17.3050 + 53.2592i −0.0260617 + 0.0802096i
\(665\) 186.201 256.284i 0.280001 0.385389i
\(666\) −12.2232 237.804i −0.0183532 0.357063i
\(667\) −203.497 + 626.301i −0.305094 + 0.938982i
\(668\) −241.561 + 78.4879i −0.361618 + 0.117497i
\(669\) −113.690 78.2212i −0.169940 0.116923i
\(670\) −314.299 −0.469103
\(671\) 0 0
\(672\) 840.000 296.985i 1.25000 0.441942i
\(673\) 714.387 519.033i 1.06150 0.771222i 0.0871319 0.996197i \(-0.472230\pi\)
0.974365 + 0.224974i \(0.0722298\pi\)
\(674\) 640.219 208.020i 0.949879 0.308634i
\(675\) 349.475 297.570i 0.517741 0.440845i
\(676\) 813.062 + 590.724i 1.20275 + 0.873852i
\(677\) −534.966 + 736.317i −0.790201 + 1.08762i 0.203882 + 0.978995i \(0.434644\pi\)
−0.994083 + 0.108623i \(0.965356\pi\)
\(678\) 942.587 24.2087i 1.39025 0.0357061i
\(679\) −171.123 526.662i −0.252022 0.775644i
\(680\) −93.1004 128.142i −0.136912 0.188444i
\(681\) −598.665 + 211.660i −0.879097 + 0.310808i
\(682\) 0 0
\(683\) 435.578i 0.637742i −0.947798 0.318871i \(-0.896696\pi\)
0.947798 0.318871i \(-0.103304\pi\)
\(684\) −104.981 + 390.224i −0.153480 + 0.570503i
\(685\) −138.440 426.073i −0.202102 0.622005i
\(686\) 790.858 + 256.965i 1.15285 + 0.374585i
\(687\) −100.712 + 339.372i −0.146597 + 0.493991i
\(688\) −230.057 167.146i −0.334385 0.242945i
\(689\) 905.853 + 294.330i 1.31474 + 0.427184i
\(690\) 424.928 + 554.354i 0.615838 + 0.803411i
\(691\) −344.641 + 250.397i −0.498757 + 0.362368i −0.808542 0.588438i \(-0.799743\pi\)
0.309785 + 0.950807i \(0.399743\pi\)
\(692\) 571.482i 0.825841i
\(693\) 0 0
\(694\) −1288.00 −1.85591
\(695\) −149.293 205.484i −0.214810 0.295660i
\(696\) −133.335 + 102.205i −0.191573 + 0.146846i
\(697\) −276.879 + 852.147i −0.397244 + 1.22259i
\(698\) −104.738 + 144.159i −0.150054 + 0.206532i
\(699\) 243.496 + 72.2600i 0.348350 + 0.103376i
\(700\) 117.936 362.970i 0.168480 0.518528i
\(701\) −261.691 + 85.0285i −0.373311 + 0.121296i −0.489663 0.871912i \(-0.662880\pi\)
0.116352 + 0.993208i \(0.462880\pi\)
\(702\) −123.417 1598.96i −0.175808 2.27772i
\(703\) −149.666 −0.212897
\(704\) 0 0
\(705\) 104.000 + 294.156i 0.147518 + 0.417243i
\(706\) −266.382 + 193.538i −0.377311 + 0.274133i
\(707\) 1054.48 342.621i 1.49148 0.484612i
\(708\) −7.84289 305.369i −0.0110775 0.431313i
\(709\) 33.9787 + 24.6870i 0.0479248 + 0.0348194i 0.611490 0.791252i \(-0.290571\pi\)
−0.563565 + 0.826072i \(0.690571\pi\)
\(710\) −286.145 + 393.844i −0.403021 + 0.554710i
\(711\) 72.2185 + 188.702i 0.101573 + 0.265404i
\(712\) −50.8744 156.575i −0.0714528 0.219909i
\(713\) −548.628 755.121i −0.769464 1.05908i
\(714\) −419.066 1185.30i −0.586927 1.66008i
\(715\) 0 0
\(716\) 950.352i 1.32731i
\(717\) −71.9839 + 104.625i −0.100396 + 0.145920i
\(718\) −207.659 639.110i −0.289219 0.890125i
\(719\) 411.569 + 133.727i 0.572419 + 0.185990i 0.580901 0.813974i \(-0.302700\pi\)
−0.00848270 + 0.999964i \(0.502700\pi\)
\(720\) 24.8276 + 483.023i 0.0344828 + 0.670866i
\(721\) 205.840 + 149.552i 0.285493 + 0.207423i
\(722\) −344.727 112.009i −0.477462 0.155137i
\(723\) 356.352 273.154i 0.492880 0.377807i
\(724\) −635.887 + 461.999i −0.878297 + 0.638120i
\(725\) 359.822i 0.496306i
\(726\) 0 0
\(727\) 1102.00 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(728\) 261.262 + 359.597i 0.358877 + 0.493952i
\(729\) −517.032 + 513.925i −0.709235 + 0.704973i
\(730\) 173.050 532.592i 0.237054 0.729578i
\(731\) −186.201 + 256.284i −0.254721 + 0.350593i
\(732\) −249.091 + 839.368i −0.340288 + 1.14668i
\(733\) 150.311 462.609i 0.205062 0.631117i −0.794649 0.607070i \(-0.792345\pi\)
0.999711 0.0240470i \(-0.00765515\pi\)
\(734\) 357.309 116.097i 0.486797 0.158170i
\(735\) 33.6674 48.9337i 0.0458060 0.0665765i
\(736\) 1234.75 1.67765
\(737\) 0 0
\(738\) 784.000 633.568i 1.06233 0.858493i
\(739\) 847.578 615.801i 1.14693 0.833290i 0.158857 0.987302i \(-0.449219\pi\)
0.988069 + 0.154011i \(0.0492193\pi\)
\(740\) 80.6998 26.2210i 0.109054 0.0354337i
\(741\) −1007.67 + 25.8802i −1.35988 + 0.0349261i
\(742\) −679.574 493.740i −0.915868 0.665417i
\(743\) 149.293 205.484i 0.200932 0.276560i −0.696646 0.717416i \(-0.745325\pi\)
0.897578 + 0.440856i \(0.145325\pi\)
\(744\) −6.11363 238.039i −0.00821724 0.319945i
\(745\) 18.4998 + 56.9364i 0.0248319 + 0.0764248i
\(746\) 663.341 + 913.010i 0.889197 + 1.22387i
\(747\) −119.733 148.162i −0.160285 0.198343i
\(748\) 0 0
\(749\) 316.784i 0.422942i
\(750\) 776.798 + 534.453i 1.03573 + 0.712604i
\(751\) 108.156 + 332.870i 0.144016 + 0.443235i 0.996883 0.0788925i \(-0.0251384\pi\)
−0.852867 + 0.522128i \(0.825138\pi\)
\(752\) 664.429 + 215.886i 0.883549 + 0.287082i
\(753\) 146.424 + 43.4527i 0.194454 + 0.0577060i
\(754\) 1017.09 + 738.962i 1.34893 + 0.980055i
\(755\) 181.171 + 58.8659i 0.239961 + 0.0779681i
\(756\) −142.391 + 589.187i −0.188347 + 0.779347i
\(757\) −237.851 + 172.809i −0.314202 + 0.228281i −0.733697 0.679476i \(-0.762207\pi\)
0.419495 + 0.907757i \(0.362207\pi\)
\(758\) 926.013i 1.22165i
\(759\) 0 0
\(760\) 112.000 0.147368
\(761\) 460.320 + 633.576i 0.604888 + 0.832557i 0.996145 0.0877249i \(-0.0279597\pi\)
−0.391257 + 0.920281i \(0.627960\pi\)
\(762\) 325.214 + 424.268i 0.426790 + 0.556783i
\(763\) −155.745 + 479.332i −0.204121 + 0.628221i
\(764\) −104.738 + 144.159i −0.137092 + 0.188690i
\(765\) 538.088 27.6580i 0.703383 0.0361542i
\(766\) 423.182 1302.42i 0.552457 1.70029i
\(767\) 724.683 235.464i 0.944827 0.306993i
\(768\) 823.018 + 566.253i 1.07164 + 0.737309i
\(769\) −838.131 −1.08990 −0.544949 0.838469i \(-0.683451\pi\)
−0.544949 + 0.838469i \(0.683451\pi\)
\(770\) 0 0
\(771\) −272.000 + 96.1665i −0.352789 + 0.124730i
\(772\) 363.248 263.915i 0.470528 0.341859i
\(773\) 390.049 126.735i 0.504591 0.163952i −0.0456497 0.998958i \(-0.514536\pi\)
0.550241 + 0.835006i \(0.314536\pi\)
\(774\) 332.839 127.382i 0.430025 0.164576i
\(775\) −412.599 299.770i −0.532385 0.386801i
\(776\) 115.080 158.394i 0.148299 0.204116i
\(777\) −224.425 + 5.76398i −0.288836 + 0.00741825i
\(778\) 358.433 + 1103.14i 0.460711 + 1.41792i
\(779\) −372.402 512.567i −0.478051 0.657981i
\(780\) 538.799 190.494i 0.690768 0.244223i
\(781\) 0 0
\(782\) 1742.31i 2.22802i
\(783\) −43.9794 569.788i −0.0561679 0.727698i
\(784\) −41.0993 126.491i −0.0524225 0.161340i
\(785\) −231.339 75.1668i −0.294700 0.0957538i
\(786\) 525.750 1771.64i 0.668894 2.25399i
\(787\) −254.273 184.740i −0.323092 0.234740i 0.414402 0.910094i \(-0.363991\pi\)
−0.737494 + 0.675354i \(0.763991\pi\)
\(788\) −664.292 215.842i −0.843011 0.273911i
\(789\) −849.857 1108.71i −1.07713 1.40521i
\(790\) −135.915 + 98.7479i −0.172044 + 0.124997i
\(791\) 888.972i 1.12386i
\(792\) 0 0
\(793\) −2184.00 −2.75410
\(794\) −687.369 946.082i −0.865704 1.19154i
\(795\) 285.717 219.011i 0.359393 0.275485i
\(796\) −205.805 + 633.404i −0.258549 + 0.795733i
\(797\) 144.638 199.077i 0.181478 0.249783i −0.708580 0.705631i \(-0.750664\pi\)
0.890058 + 0.455847i \(0.150664\pi\)
\(798\) 852.237 + 252.910i 1.06797 + 0.316930i
\(799\) 240.497 740.174i 0.300998 0.926375i
\(800\) 641.646 208.483i 0.802058 0.260604i
\(801\) 540.800 + 145.489i 0.675156 + 0.181635i
\(802\) −1391.90 −1.73553
\(803\) 0 0
\(804\) −126.000 356.382i −0.156716 0.443261i
\(805\) 532.763 387.075i 0.661818 0.480839i
\(806\) −1694.70 + 550.640i −2.10260 + 0.683176i
\(807\) −28.5394 1111.21i −0.0353648 1.37696i
\(808\) 317.135 + 230.412i 0.392493 + 0.285163i
\(809\) 149.293 205.484i 0.184540 0.253997i −0.706717 0.707497i \(-0.749824\pi\)
0.891257 + 0.453499i \(0.149824\pi\)
\(810\) −524.330 304.128i −0.647321 0.375467i
\(811\) −300.621 925.217i −0.370680 1.14084i −0.946347 0.323151i \(-0.895258\pi\)
0.575668 0.817684i \(-0.304742\pi\)
\(812\) −279.301 384.425i −0.343967 0.473430i
\(813\) 336.749 + 952.470i 0.414206 + 1.17155i
\(814\) 0 0
\(815\) 39.5980i 0.0485865i
\(816\) 683.847 993.934i 0.838048 1.21806i
\(817\) −69.2198 213.037i −0.0847244 0.260755i
\(818\) −564.899 183.547i −0.690585 0.224385i
\(819\) −1510.01 + 77.6151i −1.84372 + 0.0947681i
\(820\) 290.598 + 211.132i 0.354388 + 0.257478i
\(821\) 462.992 + 150.435i 0.563936 + 0.183234i 0.577092 0.816679i \(-0.304188\pi\)
−0.0131553 + 0.999913i \(0.504188\pi\)
\(822\) 997.786 764.832i 1.21385 0.930452i
\(823\) −842.996 + 612.472i −1.02430 + 0.744195i −0.967159 0.254172i \(-0.918197\pi\)
−0.0571370 + 0.998366i \(0.518197\pi\)
\(824\) 89.9555i 0.109169i
\(825\) 0 0
\(826\) −672.000 −0.813559
\(827\) 734.023 + 1010.30i 0.887573 + 1.22164i 0.974265 + 0.225405i \(0.0723704\pi\)
−0.0866920 + 0.996235i \(0.527630\pi\)
\(828\) −458.228 + 704.059i −0.553415 + 0.850313i
\(829\) 364.022 1120.34i 0.439110 1.35144i −0.449706 0.893177i \(-0.648471\pi\)
0.888816 0.458264i \(-0.151529\pi\)
\(830\) 93.1004 128.142i 0.112169 0.154388i
\(831\) −19.1608 + 64.5667i −0.0230575 + 0.0776976i
\(832\) 201.185 619.184i 0.241809 0.744211i
\(833\) −140.911 + 45.7846i −0.169160 + 0.0549635i
\(834\) 404.009 587.204i 0.484423 0.704082i
\(835\) −239.466 −0.286786
\(836\) 0 0
\(837\) 690.000 + 424.264i 0.824373 + 0.506887i
\(838\) −1465.10 + 1064.46i −1.74833 + 1.27023i
\(839\) −971.088 + 315.526i −1.15743 + 0.376073i −0.823939 0.566678i \(-0.808228\pi\)
−0.333496 + 0.942752i \(0.608228\pi\)
\(840\) 167.945 4.31337i 0.199934 0.00513496i
\(841\) −317.944 231.000i −0.378054 0.274673i
\(842\) −413.666 + 569.362i −0.491289 + 0.676202i
\(843\) −1.63030 63.4771i −0.00193393 0.0752991i
\(844\) 360.746 + 1110.26i 0.427424 + 1.31547i
\(845\) 556.940 + 766.562i 0.659101 + 0.907174i
\(846\) −680.982 + 550.316i −0.804943 + 0.650492i
\(847\) 0 0
\(848\) 806.102i 0.950592i
\(849\) 443.885 + 305.402i 0.522832 + 0.359720i
\(850\) −294.184 905.406i −0.346099 1.06518i
\(851\) −295.899 96.1435i −0.347708 0.112977i
\(852\) −561.290 166.569i −0.658792 0.195503i
\(853\) 478.276 + 347.488i 0.560699 + 0.407372i 0.831715 0.555203i \(-0.187360\pi\)
−0.271016 + 0.962575i \(0.587360\pi\)
\(854\) 1831.84 + 595.200i 2.14501 + 0.696955i
\(855\) −207.822 + 319.315i −0.243067 + 0.373468i
\(856\) 90.6099 65.8319i 0.105853 0.0769065i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 706.000 0.821886 0.410943 0.911661i \(-0.365200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(860\) 74.6464 + 102.742i 0.0867982 + 0.119467i
\(861\) −578.159 754.255i −0.671497 0.876022i
\(862\) 449.929 1384.74i 0.521959 1.60642i
\(863\) 290.939 400.443i 0.337125 0.464013i −0.606474 0.795103i \(-0.707417\pi\)
0.943599 + 0.331091i \(0.107417\pi\)
\(864\) −990.581 + 408.564i −1.14651 + 0.472875i
\(865\) −166.498 + 512.428i −0.192483 + 0.592402i
\(866\) −1857.00 + 603.376i −2.14434 + 0.696739i
\(867\) −392.972 270.373i −0.453255 0.311849i
\(868\) 673.498 0.775920
\(869\) 0 0
\(870\) 448.000 158.392i 0.514943 0.182060i
\(871\) 762.820 554.221i 0.875798 0.636305i
\(872\) −169.470 + 55.0640i −0.194346 + 0.0631468i
\(873\) 238.048 + 622.004i 0.272678 + 0.712490i
\(874\) 996.709 + 724.151i 1.14040 + 0.828549i
\(875\) 522.525 719.194i 0.597171 0.821936i
\(876\) 673.276 17.2920i 0.768580 0.0197397i
\(877\) 30.0621 + 92.5217i 0.0342784 + 0.105498i 0.966732 0.255792i \(-0.0823363\pi\)
−0.932453 + 0.361290i \(0.882336\pi\)
\(878\) 663.341 + 913.010i 0.755513 + 1.03987i
\(879\) 59.8665 21.1660i 0.0681075 0.0240796i
\(880\) 0 0
\(881\) 1493.41i 1.69513i 0.530692 + 0.847565i \(0.321932\pi\)
−0.530692 + 0.847565i \(0.678068\pi\)
\(882\) 160.959 + 43.3023i 0.182494 + 0.0490956i
\(883\) 26.5755 + 81.7909i 0.0300968 + 0.0926284i 0.964977 0.262336i \(-0.0844929\pi\)
−0.934880 + 0.354965i \(0.884493\pi\)
\(884\) −1355.76 440.512i −1.53366 0.498317i
\(885\) 81.9351 276.099i 0.0925820 0.311976i
\(886\) 254.273 + 184.740i 0.286990 + 0.208511i
\(887\) 241.561 + 78.4879i 0.272335 + 0.0884869i 0.442001 0.897015i \(-0.354269\pi\)
−0.169666 + 0.985502i \(0.554269\pi\)
\(888\) −48.2873 62.9947i −0.0543776 0.0709400i
\(889\) 407.745 296.244i 0.458655 0.333233i
\(890\) 465.652i 0.523205i
\(891\) 0 0
\(892\) 138.000 0.154709
\(893\) 323.468 + 445.215i 0.362226 + 0.498561i
\(894\) −133.335 + 102.205i −0.149144 + 0.114323i
\(895\) −276.879 + 852.147i −0.309362 + 0.952119i
\(896\) 360.764 496.549i 0.402639 0.554184i
\(897\) −2008.85 596.145i −2.23952 0.664598i
\(898\) −416.245 + 1281.07i −0.463524 + 1.42658i
\(899\) −603.902 + 196.220i −0.671749 + 0.218264i
\(900\) −119.243 + 443.240i −0.132493 + 0.492489i
\(901\) −897.998 −0.996668
\(902\) 0 0
\(903\) −112.000 316.784i −0.124031 0.350813i
\(904\) 254.273 184.740i 0.281276 0.204359i
\(905\) −704.778 + 228.996i −0.778761 + 0.253035i
\(906\) 13.7251 + 534.397i 0.0151491 + 0.589842i
\(907\) 781.510 + 567.801i 0.861643 + 0.626020i 0.928332 0.371753i \(-0.121243\pi\)
−0.0666883 + 0.997774i \(0.521243\pi\)
\(908\) 373.232 513.710i 0.411049 0.565760i
\(909\) −1245.37 + 476.618i −1.37004 + 0.524332i
\(910\) −388.495 1195.67i −0.426918 1.31392i
\(911\) 852.866 + 1173.87i 0.936187 + 1.28855i 0.957397 + 0.288776i \(0.0932483\pi\)
−0.0212096 + 0.999775i \(0.506752\pi\)
\(912\) 284.366 + 804.308i 0.311805 + 0.881917i
\(913\) 0 0
\(914\) 1781.91i 1.94957i
\(915\) −467.896 + 680.060i −0.511361 + 0.743235i
\(916\) −109.392 336.674i −0.119424 0.367548i
\(917\) −1657.04 538.404i −1.80702 0.587136i
\(918\) 576.512 + 1397.78i 0.628008 + 1.52263i
\(919\) −320.869 233.125i −0.349150 0.253672i 0.399362 0.916793i \(-0.369232\pi\)
−0.748512 + 0.663121i \(0.769232\pi\)
\(920\) 221.431 + 71.9472i 0.240686 + 0.0782035i
\(921\) 356.352 273.154i 0.386919 0.296584i
\(922\) −1495.06 + 1086.23i −1.62154 + 1.17812i
\(923\) 1460.45i 1.58229i
\(924\) 0 0
\(925\) −170.000 −0.183784
\(926\) −1371.63 1887.88i −1.48124 2.03875i
\(927\) −256.466 166.917i −0.276662 0.180062i
\(928\) 259.574 798.887i 0.279714 0.860870i
\(929\) −897.754 + 1235.65i −0.966366 + 1.33009i −0.0225050 + 0.999747i \(0.507164\pi\)
−0.943861 + 0.330342i \(0.892836\pi\)
\(930\) −191.608 + 645.667i −0.206030 + 0.694266i
\(931\) 32.3746 99.6388i 0.0347740 0.107023i
\(932\) −241.561 + 78.4879i −0.259185 + 0.0842145i
\(933\) −43.2867 + 62.9147i −0.0463951 + 0.0674327i
\(934\) 1406.86 1.50628
\(935\) 0 0
\(936\) −336.000 415.779i −0.358974 0.444208i
\(937\) −1017.09 + 738.962i −1.08548 + 0.788647i −0.978630 0.205629i \(-0.934076\pi\)
−0.106849 + 0.994275i \(0.534076\pi\)
\(938\) −790.858 + 256.965i −0.843132 + 0.273950i
\(939\) −1193.61 + 30.6557i −1.27115 + 0.0326472i
\(940\) −252.413 183.389i −0.268525 0.195095i
\(941\) 286.145 393.844i 0.304086 0.418538i −0.629440 0.777049i \(-0.716716\pi\)
0.933525 + 0.358511i \(0.116716\pi\)
\(942\) −17.5257 682.379i −0.0186048 0.724394i
\(943\) −406.995 1252.60i −0.431596 1.32832i
\(944\) −379.052 521.720i −0.401538 0.552669i
\(945\) −299.333 + 486.818i −0.316754 + 0.515152i
\(946\) 0 0
\(947\) 435.578i 0.459955i 0.973196 + 0.229978i \(0.0738653\pi\)
−0.973196 + 0.229978i \(0.926135\pi\)
\(948\) −166.457 114.526i −0.175587 0.120808i
\(949\) 519.149 + 1597.77i 0.547048 + 1.68364i
\(950\) 640.219 + 208.020i 0.673914 + 0.218968i
\(951\) −1195.79 354.863i −1.25741 0.373148i
\(952\) −339.031 246.321i −0.356125 0.258740i
\(953\) −1529.89 497.090i −1.60534 0.521605i −0.636917 0.770932i \(-0.719791\pi\)
−0.968419 + 0.249327i \(0.919791\pi\)
\(954\) 846.712 + 551.071i 0.887538 + 0.577643i
\(955\) −135.915 + 98.7479i −0.142319 + 0.103401i
\(956\) 126.996i 0.132841i
\(957\) 0 0
\(958\) 1792.00 1.87056
\(959\) −696.700 958.925i −0.726486 0.999922i
\(960\) −149.702 195.298i −0.155939 0.203436i
\(961\) −18.8500 + 58.0144i −0.0196150 + 0.0603688i
\(962\) −349.127 + 480.532i −0.362917 + 0.499513i
\(963\) 19.5572 + 380.486i 0.0203086 + 0.395105i
\(964\) −138.748 + 427.023i −0.143930 + 0.442970i
\(965\) 402.601 130.813i 0.417204 0.135558i
\(966\) 1522.46 + 1047.48i 1.57604 + 1.08435i
\(967\) 1055.15 1.09116 0.545578 0.838060i \(-0.316310\pi\)
0.545578 + 0.838060i \(0.316310\pi\)
\(968\) 0 0
\(969\) 896.000 316.784i 0.924665 0.326918i
\(970\) −448.006 + 325.495i −0.461861 + 0.335562i
\(971\) 242.099 78.6629i 0.249330 0.0810122i −0.181686 0.983357i \(-0.558155\pi\)
0.431016 + 0.902344i \(0.358155\pi\)
\(972\) 134.649 716.457i 0.138528 0.737096i
\(973\) −543.659 394.992i −0.558746 0.405952i
\(974\) 544.297 749.160i 0.558826 0.769158i
\(975\) −1144.57 + 29.3963i −1.17392 + 0.0301501i
\(976\) 571.180 + 1757.91i 0.585226 + 1.80114i
\(977\) −847.879 1167.01i −0.867839 1.19448i −0.979643 0.200748i \(-0.935663\pi\)
0.111804 0.993730i \(-0.464337\pi\)
\(978\) −104.766 + 37.0405i −0.107123 + 0.0378737i
\(979\) 0 0
\(980\) 59.3970i 0.0606092i
\(981\) 157.471 585.337i 0.160521 0.596673i
\(982\) −207.659 639.110i −0.211466 0.650825i
\(983\) −653.669 212.390i −0.664973 0.216063i −0.0429685 0.999076i \(-0.513682\pi\)
−0.622005 + 0.783014i \(0.713682\pi\)
\(984\) 95.5910 322.115i 0.0971453 0.327353i
\(985\) −532.763 387.075i −0.540876 0.392970i
\(986\) −1127.28 366.277i −1.14329 0.371477i
\(987\) 502.188 + 655.145i 0.508802 + 0.663774i
\(988\) 815.489 592.488i 0.825394 0.599684i
\(989\) 465.652i 0.470831i
\(990\) 0 0
\(991\) 574.000 0.579213 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) 699.810 + 963.206i 0.705454 + 0.970974i
\(993\) 423.814 324.866i 0.426802 0.327156i
\(994\) −398.014 + 1224.96i −0.400416 + 1.23235i
\(995\) −369.077 + 507.991i −0.370931 + 0.510543i
\(996\) 182.622 + 54.1950i 0.183356 + 0.0544126i
\(997\) −409.307 + 1259.72i −0.410539 + 1.26351i 0.505642 + 0.862744i \(0.331256\pi\)
−0.916181 + 0.400766i \(0.868744\pi\)
\(998\) 246.593 80.1230i 0.247088 0.0802836i
\(999\) 269.199 20.7783i 0.269469 0.0207991i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.k.245.2 16
3.2 odd 2 inner 363.3.h.k.245.3 16
11.2 odd 10 363.3.b.i.122.1 4
11.3 even 5 inner 363.3.h.k.269.1 16
11.4 even 5 inner 363.3.h.k.323.3 16
11.5 even 5 inner 363.3.h.k.251.4 16
11.6 odd 10 inner 363.3.h.k.251.2 16
11.7 odd 10 inner 363.3.h.k.323.1 16
11.8 odd 10 inner 363.3.h.k.269.3 16
11.9 even 5 363.3.b.i.122.3 yes 4
11.10 odd 2 inner 363.3.h.k.245.4 16
33.2 even 10 363.3.b.i.122.4 yes 4
33.5 odd 10 inner 363.3.h.k.251.1 16
33.8 even 10 inner 363.3.h.k.269.2 16
33.14 odd 10 inner 363.3.h.k.269.4 16
33.17 even 10 inner 363.3.h.k.251.3 16
33.20 odd 10 363.3.b.i.122.2 yes 4
33.26 odd 10 inner 363.3.h.k.323.2 16
33.29 even 10 inner 363.3.h.k.323.4 16
33.32 even 2 inner 363.3.h.k.245.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.i.122.1 4 11.2 odd 10
363.3.b.i.122.2 yes 4 33.20 odd 10
363.3.b.i.122.3 yes 4 11.9 even 5
363.3.b.i.122.4 yes 4 33.2 even 10
363.3.h.k.245.1 16 33.32 even 2 inner
363.3.h.k.245.2 16 1.1 even 1 trivial
363.3.h.k.245.3 16 3.2 odd 2 inner
363.3.h.k.245.4 16 11.10 odd 2 inner
363.3.h.k.251.1 16 33.5 odd 10 inner
363.3.h.k.251.2 16 11.6 odd 10 inner
363.3.h.k.251.3 16 33.17 even 10 inner
363.3.h.k.251.4 16 11.5 even 5 inner
363.3.h.k.269.1 16 11.3 even 5 inner
363.3.h.k.269.2 16 33.8 even 10 inner
363.3.h.k.269.3 16 11.8 odd 10 inner
363.3.h.k.269.4 16 33.14 odd 10 inner
363.3.h.k.323.1 16 11.7 odd 10 inner
363.3.h.k.323.2 16 33.26 odd 10 inner
363.3.h.k.323.3 16 11.4 even 5 inner
363.3.h.k.323.4 16 33.29 even 10 inner