Properties

Label 363.3.h.k.245.1
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.23612624896000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.1
Root \(2.01333 - 1.92046i\) of defining polynomial
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.k.323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55513 - 2.14046i) q^{2} +(-2.99901 - 0.0770245i) q^{3} +(-0.927051 + 2.85317i) q^{4} +(1.66251 - 2.28825i) q^{5} +(4.49900 + 6.53904i) q^{6} +(2.31247 - 7.11706i) q^{7} +(-2.51626 + 0.817582i) q^{8} +(8.98813 + 0.461994i) q^{9} -7.48331 q^{10} +(3.00000 - 8.48528i) q^{12} +(18.1624 - 13.1957i) q^{13} +(-18.8300 + 6.11822i) q^{14} +(-5.16213 + 6.73442i) q^{15} +(15.3713 + 11.1679i) q^{16} +(12.4411 - 17.1237i) q^{17} +(-12.9889 - 19.9572i) q^{18} +(-4.62494 - 14.2341i) q^{19} +(4.98752 + 6.86474i) q^{20} +(-7.48331 + 21.1660i) q^{21} -31.1127i q^{23} +(7.60926 - 2.25812i) q^{24} +(5.25329 + 16.1680i) q^{25} +(-56.4899 - 18.3547i) q^{26} +(-26.9199 - 2.07783i) q^{27} +(18.1624 + 13.1957i) q^{28} +(20.1301 + 6.54066i) q^{29} +(22.4425 + 0.576398i) q^{30} +(-24.2705 + 17.6336i) q^{31} -39.6863i q^{32} -56.0000 q^{34} +(-12.4411 - 17.1237i) q^{35} +(-9.65061 + 25.2164i) q^{36} +(-3.09017 + 9.51057i) q^{37} +(-23.2751 + 32.0354i) q^{38} +(-55.4856 + 38.1752i) q^{39} +(-2.31247 + 7.11706i) q^{40} +(-40.2601 + 13.0813i) q^{41} +(56.9425 - 16.8983i) q^{42} +14.9666 q^{43} +(16.0000 - 19.7990i) q^{45} +(-66.5954 + 48.3844i) q^{46} +(-34.9699 + 11.3624i) q^{47} +(-45.2386 - 34.6767i) q^{48} +(-5.66312 - 4.11450i) q^{49} +(26.4373 - 36.3878i) q^{50} +(-38.6298 + 50.3958i) q^{51} +(20.8122 + 64.0535i) q^{52} +(24.9376 + 34.3237i) q^{53} +(37.4166 + 60.8523i) q^{54} +19.7990i q^{56} +(12.7739 + 43.0445i) q^{57} +(-17.3050 - 53.2592i) q^{58} +(32.2799 + 10.4884i) q^{59} +(-14.4289 - 20.9716i) q^{60} +(-78.7037 - 57.1816i) q^{61} +(75.4878 + 24.5275i) q^{62} +(24.0728 - 62.9007i) q^{63} +(-23.4615 + 17.0458i) q^{64} -63.4980i q^{65} -42.0000 q^{67} +(37.3232 + 51.3710i) q^{68} +(-2.39644 + 93.3073i) q^{69} +(-17.3050 + 53.2592i) q^{70} +(38.2377 - 52.6296i) q^{71} +(-22.9942 + 6.18604i) q^{72} +(-23.1247 + 71.1706i) q^{73} +(25.1626 - 8.17582i) q^{74} +(-14.5093 - 48.8925i) q^{75} +44.8999 q^{76} +(168.000 + 59.3970i) q^{78} +(18.1624 - 13.1957i) q^{79} +(51.1099 - 16.6066i) q^{80} +(80.5731 + 8.30494i) q^{81} +(90.6099 + 65.8319i) q^{82} +(12.4411 - 17.1237i) q^{83} +(-53.4528 - 40.9731i) q^{84} +(-18.4998 - 56.9364i) q^{85} +(-23.2751 - 32.0354i) q^{86} +(-59.8665 - 21.1660i) q^{87} -62.2254i q^{89} +(-67.2610 - 3.45725i) q^{90} +(-51.9149 - 159.777i) q^{91} +(88.7698 + 28.8431i) q^{92} +(74.1457 - 51.0138i) q^{93} +(78.7037 + 57.1816i) q^{94} +(-40.2601 - 13.0813i) q^{95} +(-3.05681 + 119.020i) q^{96} +(-59.8673 + 43.4961i) q^{97} +18.5203i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 12 q^{4} + 28 q^{9} + 48 q^{12} + 32 q^{15} + 76 q^{16} - 68 q^{25} - 92 q^{27} - 120 q^{31} - 896 q^{34} - 84 q^{36} + 40 q^{37} + 224 q^{42} + 256 q^{45} - 76 q^{48} - 28 q^{49} + 224 q^{58}+ \cdots - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55513 2.14046i −0.777567 1.07023i −0.995546 0.0942755i \(-0.969947\pi\)
0.217979 0.975953i \(-0.430053\pi\)
\(3\) −2.99901 0.0770245i −0.999670 0.0256748i
\(4\) −0.927051 + 2.85317i −0.231763 + 0.713292i
\(5\) 1.66251 2.28825i 0.332502 0.457649i −0.609731 0.792608i \(-0.708723\pi\)
0.942233 + 0.334959i \(0.108723\pi\)
\(6\) 4.49900 + 6.53904i 0.749833 + 1.08984i
\(7\) 2.31247 7.11706i 0.330353 1.01672i −0.638613 0.769528i \(-0.720491\pi\)
0.968966 0.247194i \(-0.0795085\pi\)
\(8\) −2.51626 + 0.817582i −0.314532 + 0.102198i
\(9\) 8.98813 + 0.461994i 0.998682 + 0.0513327i
\(10\) −7.48331 −0.748331
\(11\) 0 0
\(12\) 3.00000 8.48528i 0.250000 0.707107i
\(13\) 18.1624 13.1957i 1.39711 1.01506i 0.402064 0.915612i \(-0.368293\pi\)
0.995043 0.0994457i \(-0.0317070\pi\)
\(14\) −18.8300 + 6.11822i −1.34500 + 0.437016i
\(15\) −5.16213 + 6.73442i −0.344142 + 0.448961i
\(16\) 15.3713 + 11.1679i 0.960708 + 0.697995i
\(17\) 12.4411 17.1237i 0.731828 1.00727i −0.267220 0.963636i \(-0.586105\pi\)
0.999047 0.0436386i \(-0.0138950\pi\)
\(18\) −12.9889 19.9572i −0.721604 1.10873i
\(19\) −4.62494 14.2341i −0.243418 0.749164i −0.995893 0.0905424i \(-0.971140\pi\)
0.752475 0.658621i \(-0.228860\pi\)
\(20\) 4.98752 + 6.86474i 0.249376 + 0.343237i
\(21\) −7.48331 + 21.1660i −0.356348 + 1.00791i
\(22\) 0 0
\(23\) 31.1127i 1.35273i −0.736568 0.676363i \(-0.763555\pi\)
0.736568 0.676363i \(-0.236445\pi\)
\(24\) 7.60926 2.25812i 0.317053 0.0940885i
\(25\) 5.25329 + 16.1680i 0.210132 + 0.646718i
\(26\) −56.4899 18.3547i −2.17269 0.705949i
\(27\) −26.9199 2.07783i −0.997034 0.0769568i
\(28\) 18.1624 + 13.1957i 0.648657 + 0.471277i
\(29\) 20.1301 + 6.54066i 0.694140 + 0.225540i 0.634776 0.772696i \(-0.281093\pi\)
0.0593647 + 0.998236i \(0.481093\pi\)
\(30\) 22.4425 + 0.576398i 0.748085 + 0.0192133i
\(31\) −24.2705 + 17.6336i −0.782920 + 0.568824i −0.905854 0.423590i \(-0.860770\pi\)
0.122934 + 0.992415i \(0.460770\pi\)
\(32\) 39.6863i 1.24020i
\(33\) 0 0
\(34\) −56.0000 −1.64706
\(35\) −12.4411 17.1237i −0.355459 0.489247i
\(36\) −9.65061 + 25.2164i −0.268072 + 0.700455i
\(37\) −3.09017 + 9.51057i −0.0835181 + 0.257042i −0.984092 0.177661i \(-0.943147\pi\)
0.900574 + 0.434704i \(0.143147\pi\)
\(38\) −23.2751 + 32.0354i −0.612503 + 0.843038i
\(39\) −55.4856 + 38.1752i −1.42271 + 0.978852i
\(40\) −2.31247 + 7.11706i −0.0578118 + 0.177926i
\(41\) −40.2601 + 13.0813i −0.981955 + 0.319056i −0.755632 0.654996i \(-0.772670\pi\)
−0.226322 + 0.974052i \(0.572670\pi\)
\(42\) 56.9425 16.8983i 1.35577 0.402339i
\(43\) 14.9666 0.348061 0.174031 0.984740i \(-0.444321\pi\)
0.174031 + 0.984740i \(0.444321\pi\)
\(44\) 0 0
\(45\) 16.0000 19.7990i 0.355556 0.439978i
\(46\) −66.5954 + 48.3844i −1.44773 + 1.05183i
\(47\) −34.9699 + 11.3624i −0.744041 + 0.241754i −0.656415 0.754400i \(-0.727928\pi\)
−0.0876258 + 0.996153i \(0.527928\pi\)
\(48\) −45.2386 34.6767i −0.942470 0.722431i
\(49\) −5.66312 4.11450i −0.115574 0.0839693i
\(50\) 26.4373 36.3878i 0.528745 0.727756i
\(51\) −38.6298 + 50.3958i −0.757448 + 0.988153i
\(52\) 20.8122 + 64.0535i 0.400235 + 1.23180i
\(53\) 24.9376 + 34.3237i 0.470521 + 0.647617i 0.976649 0.214842i \(-0.0689236\pi\)
−0.506128 + 0.862458i \(0.668924\pi\)
\(54\) 37.4166 + 60.8523i 0.692900 + 1.12689i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) 12.7739 + 43.0445i 0.224103 + 0.755166i
\(58\) −17.3050 53.2592i −0.298361 0.918261i
\(59\) 32.2799 + 10.4884i 0.547117 + 0.177769i 0.569517 0.821980i \(-0.307130\pi\)
−0.0223991 + 0.999749i \(0.507130\pi\)
\(60\) −14.4289 20.9716i −0.240481 0.349526i
\(61\) −78.7037 57.1816i −1.29022 0.937403i −0.290414 0.956901i \(-0.593793\pi\)
−0.999810 + 0.0194983i \(0.993793\pi\)
\(62\) 75.4878 + 24.5275i 1.21754 + 0.395604i
\(63\) 24.0728 62.9007i 0.382109 0.998424i
\(64\) −23.4615 + 17.0458i −0.366586 + 0.266340i
\(65\) 63.4980i 0.976893i
\(66\) 0 0
\(67\) −42.0000 −0.626866 −0.313433 0.949610i \(-0.601479\pi\)
−0.313433 + 0.949610i \(0.601479\pi\)
\(68\) 37.3232 + 51.3710i 0.548871 + 0.755456i
\(69\) −2.39644 + 93.3073i −0.0347310 + 1.35228i
\(70\) −17.3050 + 53.2592i −0.247214 + 0.760845i
\(71\) 38.2377 52.6296i 0.538559 0.741263i −0.449846 0.893106i \(-0.648521\pi\)
0.988405 + 0.151844i \(0.0485210\pi\)
\(72\) −22.9942 + 6.18604i −0.319364 + 0.0859172i
\(73\) −23.1247 + 71.1706i −0.316777 + 0.974939i 0.658240 + 0.752808i \(0.271301\pi\)
−0.975017 + 0.222131i \(0.928699\pi\)
\(74\) 25.1626 8.17582i 0.340035 0.110484i
\(75\) −14.5093 48.8925i −0.193458 0.651900i
\(76\) 44.8999 0.590788
\(77\) 0 0
\(78\) 168.000 + 59.3970i 2.15385 + 0.761500i
\(79\) 18.1624 13.1957i 0.229904 0.167035i −0.466870 0.884326i \(-0.654618\pi\)
0.696773 + 0.717291i \(0.254618\pi\)
\(80\) 51.1099 16.6066i 0.638874 0.207583i
\(81\) 80.5731 + 8.30494i 0.994730 + 0.102530i
\(82\) 90.6099 + 65.8319i 1.10500 + 0.802829i
\(83\) 12.4411 17.1237i 0.149892 0.206309i −0.727467 0.686142i \(-0.759303\pi\)
0.877360 + 0.479833i \(0.159303\pi\)
\(84\) −53.4528 40.9731i −0.636343 0.487775i
\(85\) −18.4998 56.9364i −0.217644 0.669840i
\(86\) −23.2751 32.0354i −0.270641 0.372505i
\(87\) −59.8665 21.1660i −0.688121 0.243287i
\(88\) 0 0
\(89\) 62.2254i 0.699162i −0.936906 0.349581i \(-0.886324\pi\)
0.936906 0.349581i \(-0.113676\pi\)
\(90\) −67.2610 3.45725i −0.747345 0.0384139i
\(91\) −51.9149 159.777i −0.570493 1.75580i
\(92\) 88.7698 + 28.8431i 0.964889 + 0.313511i
\(93\) 74.1457 51.0138i 0.797266 0.548536i
\(94\) 78.7037 + 57.1816i 0.837273 + 0.608315i
\(95\) −40.2601 13.0813i −0.423791 0.137698i
\(96\) −3.05681 + 119.020i −0.0318418 + 1.23979i
\(97\) −59.8673 + 43.4961i −0.617188 + 0.448413i −0.851938 0.523642i \(-0.824573\pi\)
0.234750 + 0.972056i \(0.424573\pi\)
\(98\) 18.5203i 0.188982i
\(99\) 0 0
\(100\) −51.0000 −0.510000
\(101\) −87.0875 119.866i −0.862252 1.18679i −0.981028 0.193867i \(-0.937897\pi\)
0.118775 0.992921i \(-0.462103\pi\)
\(102\) 167.945 + 4.31337i 1.64652 + 0.0422879i
\(103\) 10.5066 32.3359i 0.102006 0.313941i −0.887010 0.461749i \(-0.847222\pi\)
0.989016 + 0.147808i \(0.0472219\pi\)
\(104\) −34.9127 + 48.0532i −0.335699 + 0.462050i
\(105\) 35.9920 + 52.3123i 0.342781 + 0.498213i
\(106\) 34.6871 106.756i 0.327237 1.00713i
\(107\) −40.2601 + 13.0813i −0.376263 + 0.122255i −0.491042 0.871136i \(-0.663384\pi\)
0.114779 + 0.993391i \(0.463384\pi\)
\(108\) 30.8846 74.8809i 0.285968 0.693341i
\(109\) −67.3498 −0.617888 −0.308944 0.951080i \(-0.599976\pi\)
−0.308944 + 0.951080i \(0.599976\pi\)
\(110\) 0 0
\(111\) 10.0000 28.2843i 0.0900901 0.254813i
\(112\) 115.028 83.5731i 1.02704 0.746188i
\(113\) 112.980 36.7093i 0.999821 0.324861i 0.237027 0.971503i \(-0.423827\pi\)
0.762794 + 0.646642i \(0.223827\pi\)
\(114\) 72.2698 94.2819i 0.633946 0.827034i
\(115\) −71.1935 51.7251i −0.619074 0.449783i
\(116\) −37.3232 + 51.3710i −0.321752 + 0.442853i
\(117\) 169.342 110.214i 1.44737 0.942002i
\(118\) −27.7497 85.4047i −0.235167 0.723768i
\(119\) −93.1004 128.142i −0.782357 1.07682i
\(120\) 7.48331 21.1660i 0.0623610 0.176383i
\(121\) 0 0
\(122\) 257.387i 2.10973i
\(123\) 121.748 36.1300i 0.989823 0.293740i
\(124\) −27.8115 85.5951i −0.224287 0.690283i
\(125\) 112.980 + 36.7093i 0.903838 + 0.293675i
\(126\) −172.073 + 46.2921i −1.36566 + 0.367398i
\(127\) 54.4872 + 39.5872i 0.429033 + 0.311711i 0.781262 0.624203i \(-0.214576\pi\)
−0.352229 + 0.935914i \(0.614576\pi\)
\(128\) −78.0040 25.3450i −0.609406 0.198008i
\(129\) −44.8851 1.15280i −0.347946 0.00893641i
\(130\) −135.915 + 98.7479i −1.04550 + 0.759599i
\(131\) 232.826i 1.77730i 0.458587 + 0.888649i \(0.348356\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(132\) 0 0
\(133\) −112.000 −0.842105
\(134\) 65.3156 + 89.8992i 0.487430 + 0.670890i
\(135\) −49.5092 + 58.1450i −0.366735 + 0.430704i
\(136\) −17.3050 + 53.2592i −0.127242 + 0.391612i
\(137\) 93.1004 128.142i 0.679565 0.935341i −0.320363 0.947295i \(-0.603805\pi\)
0.999929 + 0.0119535i \(0.00380500\pi\)
\(138\) 203.447 139.976i 1.47425 1.01432i
\(139\) 27.7497 85.4047i 0.199638 0.614422i −0.800253 0.599662i \(-0.795302\pi\)
0.999891 0.0147598i \(-0.00469838\pi\)
\(140\) 60.3902 19.6220i 0.431359 0.140157i
\(141\) 105.750 31.3825i 0.750003 0.222571i
\(142\) −172.116 −1.21209
\(143\) 0 0
\(144\) 133.000 + 107.480i 0.923611 + 0.746390i
\(145\) 48.4330 35.1887i 0.334021 0.242680i
\(146\) 188.300 61.1822i 1.28972 0.419056i
\(147\) 16.6668 + 12.7756i 0.113380 + 0.0869090i
\(148\) −24.2705 17.6336i −0.163990 0.119146i
\(149\) 12.4411 17.1237i 0.0834971 0.114924i −0.765225 0.643763i \(-0.777372\pi\)
0.848722 + 0.528839i \(0.177372\pi\)
\(150\) −82.0884 + 107.091i −0.547256 + 0.713940i
\(151\) 20.8122 + 64.0535i 0.137829 + 0.424195i 0.996019 0.0891369i \(-0.0284109\pi\)
−0.858190 + 0.513332i \(0.828411\pi\)
\(152\) 23.2751 + 32.0354i 0.153126 + 0.210759i
\(153\) 119.733 148.162i 0.782569 0.968380i
\(154\) 0 0
\(155\) 84.8528i 0.547438i
\(156\) −57.4825 193.700i −0.368477 1.24167i
\(157\) 26.5755 + 81.7909i 0.169270 + 0.520961i 0.999326 0.0367205i \(-0.0116911\pi\)
−0.830055 + 0.557681i \(0.811691\pi\)
\(158\) −56.4899 18.3547i −0.357531 0.116169i
\(159\) −72.1444 104.858i −0.453739 0.659484i
\(160\) −90.8119 65.9787i −0.567575 0.412367i
\(161\) −221.431 71.9472i −1.37535 0.446877i
\(162\) −107.526 185.379i −0.663738 1.14431i
\(163\) 11.3262 8.22899i 0.0694861 0.0504846i −0.552500 0.833513i \(-0.686326\pi\)
0.621986 + 0.783028i \(0.286326\pi\)
\(164\) 126.996i 0.774366i
\(165\) 0 0
\(166\) −56.0000 −0.337349
\(167\) 49.7643 + 68.4946i 0.297990 + 0.410148i 0.931589 0.363514i \(-0.118423\pi\)
−0.633599 + 0.773662i \(0.718423\pi\)
\(168\) 1.52501 59.3774i 0.00907742 0.353437i
\(169\) 103.521 318.604i 0.612548 1.88523i
\(170\) −93.1004 + 128.142i −0.547650 + 0.753775i
\(171\) −34.9935 130.075i −0.204641 0.760671i
\(172\) −13.8748 + 42.7023i −0.0806676 + 0.248269i
\(173\) 181.171 58.8659i 1.04723 0.340265i 0.265649 0.964070i \(-0.414414\pi\)
0.781580 + 0.623804i \(0.214414\pi\)
\(174\) 47.7955 + 161.058i 0.274687 + 0.925619i
\(175\) 127.216 0.726951
\(176\) 0 0
\(177\) −96.0000 33.9411i −0.542373 0.191758i
\(178\) −133.191 + 96.7688i −0.748263 + 0.543645i
\(179\) −301.279 + 97.8916i −1.68312 + 0.546880i −0.985514 0.169596i \(-0.945754\pi\)
−0.697611 + 0.716477i \(0.745754\pi\)
\(180\) 41.6571 + 64.0054i 0.231428 + 0.355585i
\(181\) 211.962 + 154.000i 1.17106 + 0.850827i 0.991136 0.132853i \(-0.0424137\pi\)
0.179927 + 0.983680i \(0.442414\pi\)
\(182\) −261.262 + 359.597i −1.43551 + 1.97581i
\(183\) 231.629 + 177.550i 1.26573 + 0.970220i
\(184\) 25.4372 + 78.2876i 0.138246 + 0.425476i
\(185\) 16.6251 + 22.8825i 0.0898653 + 0.123689i
\(186\) −224.499 79.3725i −1.20699 0.426734i
\(187\) 0 0
\(188\) 110.309i 0.586748i
\(189\) −77.0396 + 186.786i −0.407617 + 0.988284i
\(190\) 34.6099 + 106.518i 0.182157 + 0.560623i
\(191\) −56.4899 18.3547i −0.295759 0.0960978i 0.157379 0.987538i \(-0.449695\pi\)
−0.453138 + 0.891440i \(0.649695\pi\)
\(192\) 71.6742 49.3134i 0.373303 0.256840i
\(193\) 121.083 + 87.9716i 0.627371 + 0.455812i 0.855488 0.517822i \(-0.173257\pi\)
−0.228118 + 0.973634i \(0.573257\pi\)
\(194\) 186.203 + 60.5011i 0.959810 + 0.311861i
\(195\) −4.89090 + 190.431i −0.0250815 + 0.976571i
\(196\) 16.9894 12.3435i 0.0866804 0.0629770i
\(197\) 232.826i 1.18186i 0.806723 + 0.590929i \(0.201239\pi\)
−0.806723 + 0.590929i \(0.798761\pi\)
\(198\) 0 0
\(199\) 222.000 1.11558 0.557789 0.829983i \(-0.311650\pi\)
0.557789 + 0.829983i \(0.311650\pi\)
\(200\) −26.4373 36.3878i −0.132186 0.181939i
\(201\) 125.958 + 3.23503i 0.626659 + 0.0160947i
\(202\) −121.135 + 372.814i −0.599677 + 1.84561i
\(203\) 93.1004 128.142i 0.458623 0.631240i
\(204\) −107.976 156.937i −0.529294 0.769299i
\(205\) −36.9995 + 113.873i −0.180486 + 0.555477i
\(206\) −85.5528 + 27.7978i −0.415305 + 0.134941i
\(207\) 14.3739 279.645i 0.0694391 1.35094i
\(208\) 426.549 2.05072
\(209\) 0 0
\(210\) 56.0000 158.392i 0.266667 0.754247i
\(211\) −314.815 + 228.726i −1.49201 + 1.08401i −0.518582 + 0.855028i \(0.673540\pi\)
−0.973430 + 0.228983i \(0.926460\pi\)
\(212\) −121.050 + 39.3314i −0.570989 + 0.185526i
\(213\) −118.729 + 154.892i −0.557413 + 0.727191i
\(214\) 90.6099 + 65.8319i 0.423411 + 0.307626i
\(215\) 24.8821 34.2473i 0.115731 0.159290i
\(216\) 69.4363 16.7809i 0.321464 0.0776893i
\(217\) 69.3741 + 213.512i 0.319697 + 0.983925i
\(218\) 104.738 + 144.159i 0.480449 + 0.661282i
\(219\) 74.8331 211.660i 0.341704 0.966484i
\(220\) 0 0
\(221\) 475.176i 2.15012i
\(222\) −76.0926 + 22.5812i −0.342760 + 0.101717i
\(223\) −14.2148 43.7486i −0.0637434 0.196182i 0.914113 0.405460i \(-0.132889\pi\)
−0.977856 + 0.209278i \(0.932889\pi\)
\(224\) −282.449 91.7734i −1.26093 0.409703i
\(225\) 39.7478 + 147.747i 0.176657 + 0.656652i
\(226\) −254.273 184.740i −1.12510 0.817436i
\(227\) −201.301 65.4066i −0.886787 0.288135i −0.170015 0.985442i \(-0.554381\pi\)
−0.716773 + 0.697307i \(0.754381\pi\)
\(228\) −134.655 3.45839i −0.590593 0.0151684i
\(229\) −95.4640 + 69.3587i −0.416873 + 0.302876i −0.776379 0.630267i \(-0.782945\pi\)
0.359505 + 0.933143i \(0.382945\pi\)
\(230\) 232.826i 1.01229i
\(231\) 0 0
\(232\) −56.0000 −0.241379
\(233\) 49.7643 + 68.4946i 0.213581 + 0.293968i 0.902343 0.431019i \(-0.141846\pi\)
−0.688762 + 0.724987i \(0.741846\pi\)
\(234\) −499.259 191.072i −2.13358 0.816548i
\(235\) −32.1378 + 98.9099i −0.136756 + 0.420893i
\(236\) −59.8503 + 82.3768i −0.253603 + 0.349054i
\(237\) −55.4856 + 38.1752i −0.234116 + 0.161077i
\(238\) −129.498 + 398.555i −0.544111 + 1.67460i
\(239\) −40.2601 + 13.0813i −0.168452 + 0.0547335i −0.392029 0.919953i \(-0.628227\pi\)
0.223577 + 0.974686i \(0.428227\pi\)
\(240\) −154.558 + 45.8667i −0.643993 + 0.191111i
\(241\) −149.666 −0.621022 −0.310511 0.950570i \(-0.600500\pi\)
−0.310511 + 0.950570i \(0.600500\pi\)
\(242\) 0 0
\(243\) −241.000 31.1127i −0.991770 0.128036i
\(244\) 236.111 171.545i 0.967668 0.703052i
\(245\) −18.8300 + 6.11822i −0.0768570 + 0.0249723i
\(246\) −266.669 204.410i −1.08402 0.830935i
\(247\) −271.830 197.496i −1.10053 0.799578i
\(248\) 46.6540 64.2137i 0.188121 0.258926i
\(249\) −38.6298 + 50.3958i −0.155140 + 0.202393i
\(250\) −97.1238 298.916i −0.388495 1.19567i
\(251\) −29.9251 41.1884i −0.119224 0.164097i 0.745234 0.666803i \(-0.232338\pi\)
−0.864457 + 0.502706i \(0.832338\pi\)
\(252\) 157.150 + 126.996i 0.623610 + 0.503953i
\(253\) 0 0
\(254\) 178.191i 0.701539i
\(255\) 51.0955 + 172.178i 0.200375 + 0.675208i
\(256\) 102.903 + 316.702i 0.401964 + 1.23712i
\(257\) 91.4598 + 29.7171i 0.355875 + 0.115631i 0.481498 0.876447i \(-0.340093\pi\)
−0.125623 + 0.992078i \(0.540093\pi\)
\(258\) 67.3348 + 97.8674i 0.260988 + 0.379331i
\(259\) 60.5413 + 43.9858i 0.233750 + 0.169829i
\(260\) 181.171 + 58.8659i 0.696810 + 0.226407i
\(261\) 177.910 + 68.0883i 0.681648 + 0.260875i
\(262\) 498.354 362.076i 1.90212 1.38197i
\(263\) 465.652i 1.77054i −0.465077 0.885270i \(-0.653973\pi\)
0.465077 0.885270i \(-0.346027\pi\)
\(264\) 0 0
\(265\) 120.000 0.452830
\(266\) 174.175 + 239.731i 0.654793 + 0.901245i
\(267\) −4.79288 + 186.615i −0.0179509 + 0.698931i
\(268\) 38.9361 119.833i 0.145284 0.447139i
\(269\) −217.789 + 299.760i −0.809623 + 1.11435i 0.181759 + 0.983343i \(0.441821\pi\)
−0.991381 + 0.131007i \(0.958179\pi\)
\(270\) 201.450 + 15.5491i 0.746112 + 0.0575892i
\(271\) 104.061 320.267i 0.383990 1.18180i −0.553221 0.833035i \(-0.686601\pi\)
0.937211 0.348764i \(-0.113399\pi\)
\(272\) 382.471 124.272i 1.40614 0.456884i
\(273\) 143.386 + 483.173i 0.525225 + 1.76987i
\(274\) −419.066 −1.52944
\(275\) 0 0
\(276\) −264.000 93.3381i −0.956522 0.338182i
\(277\) 18.1624 13.1957i 0.0655682 0.0476381i −0.554518 0.832171i \(-0.687097\pi\)
0.620087 + 0.784533i \(0.287097\pi\)
\(278\) −225.960 + 73.4187i −0.812804 + 0.264096i
\(279\) −226.293 + 147.280i −0.811087 + 0.527885i
\(280\) 45.3050 + 32.9160i 0.161803 + 0.117557i
\(281\) 12.4411 17.1237i 0.0442743 0.0609383i −0.786306 0.617837i \(-0.788009\pi\)
0.830580 + 0.556899i \(0.188009\pi\)
\(282\) −231.629 177.550i −0.821379 0.629611i
\(283\) −55.4993 170.809i −0.196111 0.603567i −0.999962 0.00873607i \(-0.997219\pi\)
0.803851 0.594830i \(-0.202781\pi\)
\(284\) 114.713 + 157.889i 0.403919 + 0.555947i
\(285\) 119.733 + 42.3320i 0.420116 + 0.148533i
\(286\) 0 0
\(287\) 316.784i 1.10378i
\(288\) 18.3348 356.706i 0.0636626 1.23856i
\(289\) −49.1337 151.218i −0.170013 0.523246i
\(290\) −150.640 48.9458i −0.519447 0.168779i
\(291\) 182.893 125.834i 0.628498 0.432419i
\(292\) −181.624 131.957i −0.622000 0.451909i
\(293\) 20.1301 + 6.54066i 0.0687033 + 0.0223231i 0.343167 0.939274i \(-0.388500\pi\)
−0.274464 + 0.961597i \(0.588500\pi\)
\(294\) 1.42651 55.5425i 0.00485209 0.188920i
\(295\) 77.6656 56.4274i 0.263273 0.191279i
\(296\) 26.4575i 0.0893835i
\(297\) 0 0
\(298\) −56.0000 −0.187919
\(299\) −410.555 565.081i −1.37309 1.88990i
\(300\) 152.950 + 3.92825i 0.509832 + 0.0130942i
\(301\) 34.6099 106.518i 0.114983 0.353881i
\(302\) 104.738 144.159i 0.346815 0.477349i
\(303\) 251.944 + 366.186i 0.831497 + 1.20854i
\(304\) 87.8739 270.448i 0.289059 0.889632i
\(305\) −261.691 + 85.0285i −0.858003 + 0.278782i
\(306\) −503.336 25.8717i −1.64489 0.0845480i
\(307\) −149.666 −0.487512 −0.243756 0.969837i \(-0.578380\pi\)
−0.243756 + 0.969837i \(0.578380\pi\)
\(308\) 0 0
\(309\) −34.0000 + 96.1665i −0.110032 + 0.311219i
\(310\) 181.624 131.957i 0.585883 0.425669i
\(311\) 24.2099 7.86629i 0.0778455 0.0252935i −0.269835 0.962906i \(-0.586969\pi\)
0.347681 + 0.937613i \(0.386969\pi\)
\(312\) 108.405 141.423i 0.347451 0.453278i
\(313\) −321.989 233.939i −1.02872 0.747407i −0.0606664 0.998158i \(-0.519323\pi\)
−0.968052 + 0.250751i \(0.919323\pi\)
\(314\) 133.741 184.079i 0.425928 0.586240i
\(315\) −103.911 159.657i −0.329876 0.506849i
\(316\) 20.8122 + 64.0535i 0.0658615 + 0.202701i
\(317\) 244.389 + 336.372i 0.770942 + 1.06111i 0.996224 + 0.0868172i \(0.0276696\pi\)
−0.225282 + 0.974294i \(0.572330\pi\)
\(318\) −112.250 + 317.490i −0.352987 + 0.998397i
\(319\) 0 0
\(320\) 82.0244i 0.256326i
\(321\) 121.748 36.1300i 0.379278 0.112554i
\(322\) 190.354 + 585.851i 0.591163 + 1.81941i
\(323\) −301.279 97.8916i −0.932753 0.303070i
\(324\) −98.3908 + 222.190i −0.303675 + 0.685771i
\(325\) 308.761 + 224.328i 0.950033 + 0.690239i
\(326\) −35.2276 11.4461i −0.108060 0.0351109i
\(327\) 201.983 + 5.18759i 0.617685 + 0.0158642i
\(328\) 90.6099 65.8319i 0.276250 0.200707i
\(329\) 275.158i 0.836347i
\(330\) 0 0
\(331\) 178.000 0.537764 0.268882 0.963173i \(-0.413346\pi\)
0.268882 + 0.963173i \(0.413346\pi\)
\(332\) 37.3232 + 51.3710i 0.112419 + 0.154732i
\(333\) −32.1687 + 84.0546i −0.0966027 + 0.252416i
\(334\) 69.2198 213.037i 0.207245 0.637834i
\(335\) −69.8253 + 96.1063i −0.208434 + 0.286885i
\(336\) −351.409 + 241.777i −1.04586 + 0.719573i
\(337\) 78.6240 241.980i 0.233306 0.718041i −0.764036 0.645174i \(-0.776785\pi\)
0.997342 0.0728675i \(-0.0232150\pi\)
\(338\) −842.947 + 273.890i −2.49393 + 0.810325i
\(339\) −341.655 + 101.390i −1.00783 + 0.299084i
\(340\) 179.600 0.528234
\(341\) 0 0
\(342\) −224.000 + 277.186i −0.654971 + 0.810485i
\(343\) 254.273 184.740i 0.741322 0.538602i
\(344\) −37.6599 + 12.2364i −0.109477 + 0.0355711i
\(345\) 209.526 + 160.608i 0.607322 + 0.465530i
\(346\) −407.745 296.244i −1.17845 0.856196i
\(347\) 286.145 393.844i 0.824624 1.13500i −0.164276 0.986414i \(-0.552529\pi\)
0.988900 0.148583i \(-0.0474713\pi\)
\(348\) 115.890 151.187i 0.333016 0.434446i
\(349\) 20.8122 + 64.0535i 0.0596339 + 0.183534i 0.976436 0.215808i \(-0.0692385\pi\)
−0.916802 + 0.399342i \(0.869239\pi\)
\(350\) −197.838 272.301i −0.565253 0.778004i
\(351\) −516.349 + 317.490i −1.47108 + 0.904530i
\(352\) 0 0
\(353\) 124.451i 0.352552i 0.984341 + 0.176276i \(0.0564051\pi\)
−0.984341 + 0.176276i \(0.943595\pi\)
\(354\) 76.6433 + 258.267i 0.216506 + 0.729568i
\(355\) −56.8591 174.994i −0.160167 0.492942i
\(356\) 177.540 + 57.6861i 0.498707 + 0.162040i
\(357\) 269.339 + 391.470i 0.754451 + 1.09655i
\(358\) 678.062 + 492.641i 1.89403 + 1.37609i
\(359\) 241.561 + 78.4879i 0.672871 + 0.218629i 0.625472 0.780247i \(-0.284907\pi\)
0.0473997 + 0.998876i \(0.484907\pi\)
\(360\) −24.0728 + 62.9007i −0.0668690 + 0.174724i
\(361\) 110.835 80.5266i 0.307023 0.223065i
\(362\) 693.187i 1.91488i
\(363\) 0 0
\(364\) 504.000 1.38462
\(365\) 124.411 + 171.237i 0.340851 + 0.469141i
\(366\) 19.8251 771.906i 0.0541669 2.10903i
\(367\) −43.8804 + 135.050i −0.119565 + 0.367984i −0.992872 0.119187i \(-0.961971\pi\)
0.873307 + 0.487171i \(0.161971\pi\)
\(368\) 347.464 478.243i 0.944196 1.29957i
\(369\) −367.907 + 98.9766i −0.997038 + 0.268229i
\(370\) 23.1247 71.1706i 0.0624992 0.192353i
\(371\) 301.951 98.1099i 0.813884 0.264447i
\(372\) 76.8142 + 258.843i 0.206490 + 0.695814i
\(373\) 426.549 1.14356 0.571781 0.820406i \(-0.306253\pi\)
0.571781 + 0.820406i \(0.306253\pi\)
\(374\) 0 0
\(375\) −336.000 118.794i −0.896000 0.316784i
\(376\) 78.7037 57.1816i 0.209318 0.152079i
\(377\) 451.919 146.837i 1.19872 0.389489i
\(378\) 519.614 125.577i 1.37464 0.332213i
\(379\) 283.156 + 205.725i 0.747113 + 0.542810i 0.894931 0.446205i \(-0.147225\pi\)
−0.147817 + 0.989015i \(0.547225\pi\)
\(380\) 74.6464 102.742i 0.196438 0.270374i
\(381\) −160.358 122.919i −0.420888 0.322623i
\(382\) 48.5619 + 149.458i 0.127125 + 0.391252i
\(383\) −304.239 418.749i −0.794357 1.09334i −0.993552 0.113379i \(-0.963832\pi\)
0.199194 0.979960i \(-0.436168\pi\)
\(384\) 231.983 + 82.0183i 0.604122 + 0.213589i
\(385\) 0 0
\(386\) 395.980i 1.02585i
\(387\) 134.522 + 6.91450i 0.347602 + 0.0178669i
\(388\) −68.6018 211.135i −0.176809 0.544161i
\(389\) 416.949 + 135.475i 1.07185 + 0.348265i 0.791207 0.611548i \(-0.209453\pi\)
0.280641 + 0.959813i \(0.409453\pi\)
\(390\) 415.216 285.677i 1.06466 0.732506i
\(391\) −532.763 387.075i −1.36257 0.989962i
\(392\) 17.6138 + 5.72307i 0.0449332 + 0.0145997i
\(393\) 17.9333 698.248i 0.0456318 1.77671i
\(394\) 498.354 362.076i 1.26486 0.918974i
\(395\) 63.4980i 0.160755i
\(396\) 0 0
\(397\) 442.000 1.11335 0.556675 0.830730i \(-0.312077\pi\)
0.556675 + 0.830730i \(0.312077\pi\)
\(398\) −345.240 475.182i −0.867436 1.19392i
\(399\) 335.889 + 8.62674i 0.841828 + 0.0216209i
\(400\) −99.8125 + 307.191i −0.249531 + 0.767978i
\(401\) −309.226 + 425.614i −0.771138 + 1.06138i 0.225067 + 0.974343i \(0.427740\pi\)
−0.996205 + 0.0870374i \(0.972260\pi\)
\(402\) −188.958 274.640i −0.470044 0.683183i
\(403\) −208.122 + 640.535i −0.516433 + 1.58942i
\(404\) 422.732 137.354i 1.04637 0.339985i
\(405\) 152.957 170.564i 0.377672 0.421146i
\(406\) −419.066 −1.03218
\(407\) 0 0
\(408\) 56.0000 158.392i 0.137255 0.388215i
\(409\) −181.624 + 131.957i −0.444068 + 0.322634i −0.787249 0.616635i \(-0.788496\pi\)
0.343181 + 0.939269i \(0.388496\pi\)
\(410\) 301.279 97.8916i 0.734828 0.238760i
\(411\) −289.079 + 377.128i −0.703356 + 0.917585i
\(412\) 82.5197 + 59.9541i 0.200291 + 0.145520i
\(413\) 149.293 205.484i 0.361484 0.497540i
\(414\) −620.922 + 404.119i −1.49981 + 0.976132i
\(415\) −18.4998 56.9364i −0.0445778 0.137196i
\(416\) −523.690 720.797i −1.25887 1.73269i
\(417\) −89.7998 + 253.992i −0.215347 + 0.609094i
\(418\) 0 0
\(419\) 684.479i 1.63360i 0.576919 + 0.816801i \(0.304255\pi\)
−0.576919 + 0.816801i \(0.695745\pi\)
\(420\) −182.622 + 54.1950i −0.434815 + 0.129036i
\(421\) −82.1985 252.981i −0.195246 0.600905i −0.999974 0.00726102i \(-0.997689\pi\)
0.804728 0.593644i \(-0.202311\pi\)
\(422\) 979.158 + 318.148i 2.32028 + 0.753904i
\(423\) −319.564 + 85.9710i −0.755470 + 0.203241i
\(424\) −90.8119 65.9787i −0.214179 0.155610i
\(425\) 342.211 + 111.191i 0.805203 + 0.261626i
\(426\) 516.179 + 13.2572i 1.21169 + 0.0311201i
\(427\) −588.964 + 427.908i −1.37931 + 1.00213i
\(428\) 126.996i 0.296720i
\(429\) 0 0
\(430\) −112.000 −0.260465
\(431\) 323.468 + 445.215i 0.750505 + 1.03298i 0.997945 + 0.0640786i \(0.0204108\pi\)
−0.247440 + 0.968903i \(0.579589\pi\)
\(432\) −390.590 332.579i −0.904143 0.769858i
\(433\) 228.055 701.880i 0.526685 1.62097i −0.234275 0.972170i \(-0.575272\pi\)
0.760960 0.648799i \(-0.224728\pi\)
\(434\) 349.127 480.532i 0.804439 1.10722i
\(435\) −147.962 + 101.801i −0.340142 + 0.234024i
\(436\) 62.4367 192.160i 0.143204 0.440735i
\(437\) −442.862 + 143.894i −1.01341 + 0.329278i
\(438\) −569.425 + 168.983i −1.30006 + 0.385805i
\(439\) 426.549 0.971638 0.485819 0.874060i \(-0.338521\pi\)
0.485819 + 0.874060i \(0.338521\pi\)
\(440\) 0 0
\(441\) −49.0000 39.5980i −0.111111 0.0897913i
\(442\) −1017.09 + 738.962i −2.30112 + 1.67186i
\(443\) 112.980 36.7093i 0.255033 0.0828653i −0.178710 0.983902i \(-0.557192\pi\)
0.433743 + 0.901036i \(0.357192\pi\)
\(444\) 71.4293 + 54.7527i 0.160877 + 0.123317i
\(445\) −142.387 103.450i −0.319971 0.232472i
\(446\) −71.5361 + 98.4611i −0.160395 + 0.220765i
\(447\) −38.6298 + 50.3958i −0.0864202 + 0.112742i
\(448\) 67.0617 + 206.395i 0.149691 + 0.460702i
\(449\) 299.251 + 411.884i 0.666484 + 0.917337i 0.999674 0.0255229i \(-0.00812508\pi\)
−0.333190 + 0.942860i \(0.608125\pi\)
\(450\) 254.433 314.844i 0.565406 0.699654i
\(451\) 0 0
\(452\) 356.382i 0.788455i
\(453\) −57.4825 193.700i −0.126893 0.427594i
\(454\) 173.050 + 532.592i 0.381166 + 1.17311i
\(455\) −451.919 146.837i −0.993229 0.322720i
\(456\) −67.3348 97.8674i −0.147664 0.214621i
\(457\) −544.872 395.872i −1.19228 0.866242i −0.198776 0.980045i \(-0.563697\pi\)
−0.993503 + 0.113803i \(0.963697\pi\)
\(458\) 296.919 + 96.4747i 0.648294 + 0.210643i
\(459\) −370.493 + 435.117i −0.807174 + 0.947968i
\(460\) 213.580 155.175i 0.464305 0.337338i
\(461\) 698.478i 1.51514i −0.652755 0.757569i \(-0.726387\pi\)
0.652755 0.757569i \(-0.273613\pi\)
\(462\) 0 0
\(463\) 882.000 1.90497 0.952484 0.304589i \(-0.0985192\pi\)
0.952484 + 0.304589i \(0.0985192\pi\)
\(464\) 236.380 + 325.350i 0.509440 + 0.701184i
\(465\) 6.53574 254.475i 0.0140554 0.547257i
\(466\) 69.2198 213.037i 0.148540 0.457160i
\(467\) 312.551 430.190i 0.669275 0.921178i −0.330469 0.943817i \(-0.607207\pi\)
0.999744 + 0.0226389i \(0.00720679\pi\)
\(468\) 157.471 + 585.337i 0.336476 + 1.25072i
\(469\) −97.1238 + 298.916i −0.207087 + 0.637348i
\(470\) 261.691 85.0285i 0.556789 0.180912i
\(471\) −73.4002 247.339i −0.155839 0.525135i
\(472\) −89.7998 −0.190254
\(473\) 0 0
\(474\) 168.000 + 59.3970i 0.354430 + 0.125310i
\(475\) 205.840 149.552i 0.433348 0.314846i
\(476\) 451.919 146.837i 0.949410 0.308482i
\(477\) 208.285 + 320.027i 0.436657 + 0.670916i
\(478\) 90.6099 + 65.8319i 0.189560 + 0.137724i
\(479\) −398.114 + 547.957i −0.831136 + 1.14396i 0.156574 + 0.987666i \(0.449955\pi\)
−0.987710 + 0.156295i \(0.950045\pi\)
\(480\) 267.264 + 204.866i 0.556800 + 0.426804i
\(481\) 69.3741 + 213.512i 0.144229 + 0.443891i
\(482\) 232.751 + 320.354i 0.482886 + 0.664636i
\(483\) 658.532 + 232.826i 1.36342 + 0.482042i
\(484\) 0 0
\(485\) 209.304i 0.431554i
\(486\) 308.192 + 564.235i 0.634139 + 1.16098i
\(487\) 108.156 + 332.870i 0.222086 + 0.683511i 0.998574 + 0.0533790i \(0.0169992\pi\)
−0.776488 + 0.630132i \(0.783001\pi\)
\(488\) 244.789 + 79.5369i 0.501618 + 0.162985i
\(489\) −34.6013 + 23.8064i −0.0707594 + 0.0486839i
\(490\) 42.3789 + 30.7901i 0.0864876 + 0.0628369i
\(491\) 241.561 + 78.4879i 0.491977 + 0.159853i 0.544490 0.838767i \(-0.316723\pi\)
−0.0525130 + 0.998620i \(0.516723\pi\)
\(492\) −9.78180 + 380.863i −0.0198817 + 0.774111i
\(493\) 362.440 263.328i 0.735172 0.534133i
\(494\) 888.972i 1.79954i
\(495\) 0 0
\(496\) −570.000 −1.14919
\(497\) −286.145 393.844i −0.575744 0.792443i
\(498\) 167.945 + 4.31337i 0.337238 + 0.00866139i
\(499\) −30.2837 + 93.2035i −0.0606887 + 0.186781i −0.976804 0.214133i \(-0.931307\pi\)
0.916116 + 0.400914i \(0.131307\pi\)
\(500\) −209.476 + 288.319i −0.418952 + 0.576638i
\(501\) −143.968 209.249i −0.287361 0.417663i
\(502\) −41.6245 + 128.107i −0.0829173 + 0.255193i
\(503\) −483.122 + 156.976i −0.960481 + 0.312079i −0.746967 0.664861i \(-0.768491\pi\)
−0.213514 + 0.976940i \(0.568491\pi\)
\(504\) −9.14702 + 177.956i −0.0181489 + 0.353087i
\(505\) −419.066 −0.829833
\(506\) 0 0
\(507\) −335.000 + 947.523i −0.660750 + 1.86888i
\(508\) −163.461 + 118.762i −0.321775 + 0.233783i
\(509\) −153.330 + 49.8198i −0.301237 + 0.0978779i −0.455736 0.890115i \(-0.650624\pi\)
0.154499 + 0.987993i \(0.450624\pi\)
\(510\) 289.079 377.128i 0.566822 0.739466i
\(511\) 453.050 + 329.160i 0.886594 + 0.644148i
\(512\) 325.023 447.356i 0.634810 0.873742i
\(513\) 94.9270 + 392.791i 0.185043 + 0.765675i
\(514\) −78.6240 241.980i −0.152965 0.470778i
\(515\) −56.5253 77.8004i −0.109758 0.151069i
\(516\) 44.8999 126.996i 0.0870153 0.246116i
\(517\) 0 0
\(518\) 197.990i 0.382220i
\(519\) −547.867 + 162.585i −1.05562 + 0.313266i
\(520\) 51.9149 + 159.777i 0.0998363 + 0.307264i
\(521\) −145.260 47.1977i −0.278809 0.0905907i 0.166275 0.986079i \(-0.446826\pi\)
−0.445084 + 0.895489i \(0.646826\pi\)
\(522\) −130.934 486.695i −0.250831 0.932367i
\(523\) −12.1083 8.79716i −0.0231515 0.0168206i 0.576149 0.817344i \(-0.304555\pi\)
−0.599301 + 0.800524i \(0.704555\pi\)
\(524\) −664.292 215.842i −1.26773 0.411912i
\(525\) −381.523 9.79877i −0.726711 0.0186643i
\(526\) −996.709 + 724.151i −1.89488 + 1.37671i
\(527\) 634.980i 1.20490i
\(528\) 0 0
\(529\) −439.000 −0.829868
\(530\) −186.616 256.855i −0.352106 0.484632i
\(531\) 285.291 + 109.184i 0.537271 + 0.205620i
\(532\) 103.830 319.555i 0.195169 0.600667i
\(533\) −558.603 + 768.851i −1.04803 + 1.44250i
\(534\) 406.894 279.952i 0.761974 0.524254i
\(535\) −36.9995 + 113.873i −0.0691580 + 0.212847i
\(536\) 105.683 34.3384i 0.197170 0.0640643i
\(537\) 911.080 270.372i 1.69661 0.503486i
\(538\) 980.314 1.82215
\(539\) 0 0
\(540\) −120.000 195.161i −0.222222 0.361410i
\(541\) 417.735 303.502i 0.772153 0.561002i −0.130461 0.991453i \(-0.541646\pi\)
0.902614 + 0.430451i \(0.141646\pi\)
\(542\) −847.348 + 275.320i −1.56337 + 0.507971i
\(543\) −623.816 478.173i −1.14883 0.880614i
\(544\) −679.574 493.740i −1.24922 0.907610i
\(545\) −111.970 + 154.113i −0.205449 + 0.282776i
\(546\) 811.227 1058.31i 1.48576 1.93830i
\(547\) −208.122 640.535i −0.380480 1.17100i −0.939707 0.341982i \(-0.888902\pi\)
0.559227 0.829015i \(-0.311098\pi\)
\(548\) 279.301 + 384.425i 0.509674 + 0.701506i
\(549\) −680.982 550.316i −1.24040 1.00240i
\(550\) 0 0
\(551\) 316.784i 0.574925i
\(552\) −70.2563 236.745i −0.127276 0.428885i
\(553\) −51.9149 159.777i −0.0938786 0.288929i
\(554\) −56.4899 18.3547i −0.101967 0.0331312i
\(555\) −48.0963 69.9053i −0.0866600 0.125955i
\(556\) 217.949 + 158.349i 0.391994 + 0.284800i
\(557\) −422.732 137.354i −0.758943 0.246596i −0.0961183 0.995370i \(-0.530643\pi\)
−0.662825 + 0.748774i \(0.730643\pi\)
\(558\) 667.163 + 255.331i 1.19563 + 0.457583i
\(559\) 271.830 197.496i 0.486279 0.353302i
\(560\) 402.154i 0.718132i
\(561\) 0 0
\(562\) −56.0000 −0.0996441
\(563\) 323.468 + 445.215i 0.574543 + 0.790791i 0.993084 0.117407i \(-0.0374583\pi\)
−0.418541 + 0.908198i \(0.637458\pi\)
\(564\) −8.49647 + 330.817i −0.0150647 + 0.586555i
\(565\) 103.830 319.555i 0.183769 0.565584i
\(566\) −279.301 + 384.425i −0.493465 + 0.679197i
\(567\) 245.430 554.238i 0.432857 0.977493i
\(568\) −53.1868 + 163.692i −0.0936388 + 0.288191i
\(569\) 1066.89 346.655i 1.87503 0.609235i 0.885559 0.464528i \(-0.153776\pi\)
0.989474 0.144708i \(-0.0462241\pi\)
\(570\) −95.5910 322.115i −0.167703 0.565115i
\(571\) −808.198 −1.41541 −0.707704 0.706509i \(-0.750269\pi\)
−0.707704 + 0.706509i \(0.750269\pi\)
\(572\) 0 0
\(573\) 168.000 + 59.3970i 0.293194 + 0.103660i
\(574\) 678.062 492.641i 1.18129 0.858260i
\(575\) 503.029 163.444i 0.874833 0.284250i
\(576\) −218.750 + 142.371i −0.379774 + 0.247171i
\(577\) −250.795 182.213i −0.434654 0.315795i 0.348853 0.937177i \(-0.386571\pi\)
−0.783507 + 0.621383i \(0.786571\pi\)
\(578\) −247.266 + 340.333i −0.427796 + 0.588811i
\(579\) −356.352 273.154i −0.615461 0.471769i
\(580\) 55.4993 + 170.809i 0.0956885 + 0.294499i
\(581\) −93.1004 128.142i −0.160242 0.220554i
\(582\) −553.765 195.786i −0.951487 0.336401i
\(583\) 0 0
\(584\) 197.990i 0.339024i
\(585\) 29.3357 570.729i 0.0501466 0.975605i
\(586\) −17.3050 53.2592i −0.0295306 0.0908859i
\(587\) −914.598 297.171i −1.55809 0.506254i −0.601792 0.798653i \(-0.705546\pi\)
−0.956296 + 0.292399i \(0.905546\pi\)
\(588\) −51.9020 + 35.7097i −0.0882687 + 0.0607307i
\(589\) 363.248 + 263.915i 0.616719 + 0.448073i
\(590\) −241.561 78.4879i −0.409425 0.133030i
\(591\) 17.9333 698.248i 0.0303440 1.18147i
\(592\) −153.713 + 111.679i −0.259651 + 0.188647i
\(593\) 232.826i 0.392624i −0.980541 0.196312i \(-0.937103\pi\)
0.980541 0.196312i \(-0.0628966\pi\)
\(594\) 0 0
\(595\) −448.000 −0.752941
\(596\) 37.3232 + 51.3710i 0.0626228 + 0.0861929i
\(597\) −665.780 17.0994i −1.11521 0.0286423i
\(598\) −571.063 + 1757.55i −0.954956 + 2.93905i
\(599\) 513.715 707.068i 0.857621 1.18041i −0.124511 0.992218i \(-0.539736\pi\)
0.982132 0.188196i \(-0.0602639\pi\)
\(600\) 76.4829 + 111.164i 0.127472 + 0.185273i
\(601\) 180.373 555.130i 0.300121 0.923678i −0.681332 0.731975i \(-0.738599\pi\)
0.981453 0.191703i \(-0.0614011\pi\)
\(602\) −281.821 + 91.5692i −0.468141 + 0.152108i
\(603\) −377.502 19.4038i −0.626039 0.0321787i
\(604\) −202.049 −0.334519
\(605\) 0 0
\(606\) 392.000 1108.74i 0.646865 1.82961i
\(607\) 684.117 497.040i 1.12705 0.818846i 0.141783 0.989898i \(-0.454716\pi\)
0.985262 + 0.171051i \(0.0547164\pi\)
\(608\) −564.899 + 183.547i −0.929110 + 0.301886i
\(609\) −289.079 + 377.128i −0.474679 + 0.619257i
\(610\) 588.964 + 427.908i 0.965515 + 0.701488i
\(611\) −485.202 + 667.823i −0.794111 + 1.09300i
\(612\) 311.733 + 478.972i 0.509367 + 0.782635i
\(613\) −182.685 562.247i −0.298018 0.917206i −0.982191 0.187886i \(-0.939836\pi\)
0.684173 0.729320i \(-0.260164\pi\)
\(614\) 232.751 + 320.354i 0.379073 + 0.521750i
\(615\) 119.733 338.656i 0.194688 0.550660i
\(616\) 0 0
\(617\) 435.578i 0.705961i −0.935631 0.352980i \(-0.885168\pi\)
0.935631 0.352980i \(-0.114832\pi\)
\(618\) 258.715 76.7762i 0.418633 0.124233i
\(619\) −258.956 796.985i −0.418346 1.28754i −0.909224 0.416308i \(-0.863324\pi\)
0.490877 0.871229i \(-0.336676\pi\)
\(620\) −242.099 78.6629i −0.390483 0.126876i
\(621\) −64.6470 + 837.552i −0.104101 + 1.34871i
\(622\) −54.4872 39.5872i −0.0875999 0.0636451i
\(623\) −442.862 143.894i −0.710853 0.230970i
\(624\) −1279.22 32.8547i −2.05004 0.0526518i
\(625\) −72.0025 + 52.3129i −0.115204 + 0.0837006i
\(626\) 1053.01i 1.68212i
\(627\) 0 0
\(628\) −258.000 −0.410828
\(629\) 124.411 + 171.237i 0.197791 + 0.272236i
\(630\) −180.145 + 470.706i −0.285944 + 0.747152i
\(631\) 78.4903 241.568i 0.124390 0.382834i −0.869399 0.494110i \(-0.835494\pi\)
0.993790 + 0.111276i \(0.0354938\pi\)
\(632\) −34.9127 + 48.0532i −0.0552416 + 0.0760335i
\(633\) 961.750 661.704i 1.51935 1.04535i
\(634\) 339.933 1046.21i 0.536172 1.65017i
\(635\) 181.171 58.8659i 0.285308 0.0927022i
\(636\) 366.059 108.632i 0.575564 0.170804i
\(637\) −157.150 −0.246703
\(638\) 0 0
\(639\) 368.000 455.377i 0.575900 0.712640i
\(640\) −187.678 + 136.356i −0.293247 + 0.213056i
\(641\) 112.980 36.7093i 0.176255 0.0572689i −0.219560 0.975599i \(-0.570462\pi\)
0.395815 + 0.918330i \(0.370462\pi\)
\(642\) −266.669 204.410i −0.415373 0.318396i
\(643\) 354.349 + 257.450i 0.551088 + 0.400389i 0.828186 0.560453i \(-0.189373\pi\)
−0.277099 + 0.960841i \(0.589373\pi\)
\(644\) 410.555 565.081i 0.637508 0.877455i
\(645\) −77.2597 + 100.792i −0.119782 + 0.156266i
\(646\) 258.997 + 797.110i 0.400924 + 1.23392i
\(647\) −194.513 267.725i −0.300639 0.413794i 0.631794 0.775136i \(-0.282319\pi\)
−0.932433 + 0.361342i \(0.882319\pi\)
\(648\) −209.533 + 44.9778i −0.323353 + 0.0694101i
\(649\) 0 0
\(650\) 1009.75i 1.55346i
\(651\) −191.608 645.667i −0.294329 0.991808i
\(652\) 12.9787 + 39.9444i 0.0199060 + 0.0612644i
\(653\) 594.489 + 193.161i 0.910396 + 0.295806i 0.726521 0.687144i \(-0.241136\pi\)
0.183875 + 0.982950i \(0.441136\pi\)
\(654\) −303.007 440.403i −0.463313 0.673399i
\(655\) 532.763 + 387.075i 0.813379 + 0.590955i
\(656\) −764.943 248.545i −1.16607 0.378880i
\(657\) −240.728 + 629.007i −0.366406 + 0.957393i
\(658\) 588.964 427.908i 0.895083 0.650316i
\(659\) 465.652i 0.706604i 0.935509 + 0.353302i \(0.114941\pi\)
−0.935509 + 0.353302i \(0.885059\pi\)
\(660\) 0 0
\(661\) −394.000 −0.596067 −0.298033 0.954555i \(-0.596331\pi\)
−0.298033 + 0.954555i \(0.596331\pi\)
\(662\) −276.814 381.001i −0.418148 0.575531i
\(663\) −36.6002 + 1425.06i −0.0552039 + 2.14941i
\(664\) −17.3050 + 53.2592i −0.0260617 + 0.0802096i
\(665\) −186.201 + 256.284i −0.280001 + 0.385389i
\(666\) 229.942 61.8604i 0.345258 0.0928835i
\(667\) 203.497 626.301i 0.305094 0.938982i
\(668\) −241.561 + 78.4879i −0.361618 + 0.117497i
\(669\) 39.2606 + 132.297i 0.0586855 + 0.197754i
\(670\) 314.299 0.469103
\(671\) 0 0
\(672\) 840.000 + 296.985i 1.25000 + 0.441942i
\(673\) −714.387 + 519.033i −1.06150 + 0.771222i −0.974365 0.224974i \(-0.927770\pi\)
−0.0871319 + 0.996197i \(0.527770\pi\)
\(674\) −640.219 + 208.020i −0.949879 + 0.308634i
\(675\) −107.824 446.156i −0.159739 0.660972i
\(676\) 813.062 + 590.724i 1.20275 + 0.873852i
\(677\) −534.966 + 736.317i −0.790201 + 1.08762i 0.203882 + 0.978995i \(0.434644\pi\)
−0.994083 + 0.108623i \(0.965356\pi\)
\(678\) 748.339 + 573.624i 1.10375 + 0.846053i
\(679\) 171.123 + 526.662i 0.252022 + 0.775644i
\(680\) 93.1004 + 128.142i 0.136912 + 0.188444i
\(681\) 598.665 + 211.660i 0.879097 + 0.310808i
\(682\) 0 0
\(683\) 435.578i 0.637742i 0.947798 + 0.318871i \(0.103304\pi\)
−0.947798 + 0.318871i \(0.896696\pi\)
\(684\) 403.566 + 20.7435i 0.590009 + 0.0303268i
\(685\) −138.440 426.073i −0.202102 0.622005i
\(686\) −790.858 256.965i −1.15285 0.374585i
\(687\) 291.640 200.654i 0.424512 0.292073i
\(688\) 230.057 + 167.146i 0.334385 + 0.242945i
\(689\) 905.853 + 294.330i 1.31474 + 0.427184i
\(690\) 17.9333 698.248i 0.0259903 1.01195i
\(691\) −344.641 + 250.397i −0.498757 + 0.362368i −0.808542 0.588438i \(-0.799743\pi\)
0.309785 + 0.950807i \(0.399743\pi\)
\(692\) 571.482i 0.825841i
\(693\) 0 0
\(694\) −1288.00 −1.85591
\(695\) −149.293 205.484i −0.214810 0.295660i
\(696\) 167.945 + 4.31337i 0.241300 + 0.00619737i
\(697\) −276.879 + 852.147i −0.397244 + 1.22259i
\(698\) 104.738 144.159i 0.150054 0.206532i
\(699\) −143.968 209.249i −0.205963 0.299355i
\(700\) −117.936 + 362.970i −0.168480 + 0.518528i
\(701\) −261.691 + 85.0285i −0.373311 + 0.121296i −0.489663 0.871912i \(-0.662880\pi\)
0.116352 + 0.993208i \(0.462880\pi\)
\(702\) 1482.57 + 611.483i 2.11192 + 0.871058i
\(703\) 149.666 0.212897
\(704\) 0 0
\(705\) 104.000 294.156i 0.147518 0.417243i
\(706\) 266.382 193.538i 0.377311 0.274133i
\(707\) −1054.48 + 342.621i −1.49148 + 0.484612i
\(708\) 185.837 242.439i 0.262481 0.342428i
\(709\) 33.9787 + 24.6870i 0.0479248 + 0.0348194i 0.611490 0.791252i \(-0.290571\pi\)
−0.563565 + 0.826072i \(0.690571\pi\)
\(710\) −286.145 + 393.844i −0.403021 + 0.554710i
\(711\) 169.342 110.214i 0.238175 0.155013i
\(712\) 50.8744 + 156.575i 0.0714528 + 0.219909i
\(713\) 548.628 + 755.121i 0.769464 + 1.05908i
\(714\) 419.066 1185.30i 0.586927 1.66008i
\(715\) 0 0
\(716\) 950.352i 1.32731i
\(717\) 121.748 36.1300i 0.169802 0.0503905i
\(718\) −207.659 639.110i −0.289219 0.890125i
\(719\) −411.569 133.727i −0.572419 0.185990i 0.00848270 0.999964i \(-0.497300\pi\)
−0.580901 + 0.813974i \(0.697300\pi\)
\(720\) 467.055 125.650i 0.648687 0.174514i
\(721\) −205.840 149.552i −0.285493 0.207423i
\(722\) −344.727 112.009i −0.477462 0.155137i
\(723\) 448.851 + 11.5280i 0.620817 + 0.0159446i
\(724\) −635.887 + 461.999i −0.878297 + 0.638120i
\(725\) 359.822i 0.496306i
\(726\) 0 0
\(727\) 1102.00 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(728\) 261.262 + 359.597i 0.358877 + 0.493952i
\(729\) 720.365 + 111.870i 0.988155 + 0.153457i
\(730\) 173.050 532.592i 0.237054 0.729578i
\(731\) 186.201 256.284i 0.254721 0.350593i
\(732\) −721.313 + 496.278i −0.985400 + 0.677976i
\(733\) −150.311 + 462.609i −0.205062 + 0.631117i 0.794649 + 0.607070i \(0.207655\pi\)
−0.999711 + 0.0240470i \(0.992345\pi\)
\(734\) 357.309 116.097i 0.486797 0.158170i
\(735\) 56.9425 16.8983i 0.0774728 0.0229908i
\(736\) −1234.75 −1.67765
\(737\) 0 0
\(738\) 784.000 + 633.568i 1.06233 + 0.858493i
\(739\) −847.578 + 615.801i −1.14693 + 0.833290i −0.988069 0.154011i \(-0.950781\pi\)
−0.158857 + 0.987302i \(0.550781\pi\)
\(740\) −80.6998 + 26.2210i −0.109054 + 0.0354337i
\(741\) 800.008 + 613.230i 1.07963 + 0.827571i
\(742\) −679.574 493.740i −0.915868 0.665417i
\(743\) 149.293 205.484i 0.200932 0.276560i −0.696646 0.717416i \(-0.745325\pi\)
0.897578 + 0.440856i \(0.145325\pi\)
\(744\) −144.862 + 188.984i −0.194707 + 0.254011i
\(745\) −18.4998 56.9364i −0.0248319 0.0764248i
\(746\) −663.341 913.010i −0.889197 1.22387i
\(747\) 119.733 148.162i 0.160285 0.198343i
\(748\) 0 0
\(749\) 316.784i 0.422942i
\(750\) 268.251 + 903.934i 0.357669 + 1.20525i
\(751\) 108.156 + 332.870i 0.144016 + 0.443235i 0.996883 0.0788925i \(-0.0251384\pi\)
−0.852867 + 0.522128i \(0.825138\pi\)
\(752\) −664.429 215.886i −0.883549 0.287082i
\(753\) 86.5733 + 125.829i 0.114971 + 0.167104i
\(754\) −1017.09 738.962i −1.34893 0.980055i
\(755\) 181.171 + 58.8659i 0.239961 + 0.0779681i
\(756\) −461.512 392.967i −0.610465 0.519798i
\(757\) −237.851 + 172.809i −0.314202 + 0.228281i −0.733697 0.679476i \(-0.762207\pi\)
0.419495 + 0.907757i \(0.362207\pi\)
\(758\) 926.013i 1.22165i
\(759\) 0 0
\(760\) 112.000 0.147368
\(761\) 460.320 + 633.576i 0.604888 + 0.832557i 0.996145 0.0877249i \(-0.0279597\pi\)
−0.391257 + 0.920281i \(0.627960\pi\)
\(762\) −13.7251 + 534.397i −0.0180119 + 0.701308i
\(763\) −155.745 + 479.332i −0.204121 + 0.628221i
\(764\) 104.738 144.159i 0.137092 0.188690i
\(765\) −139.974 520.299i −0.182973 0.680130i
\(766\) −423.182 + 1302.42i −0.552457 + 1.70029i
\(767\) 724.683 235.464i 0.944827 0.306993i
\(768\) −284.212 957.718i −0.370068 1.24703i
\(769\) 838.131 1.08990 0.544949 0.838469i \(-0.316549\pi\)
0.544949 + 0.838469i \(0.316549\pi\)
\(770\) 0 0
\(771\) −272.000 96.1665i −0.352789 0.124730i
\(772\) −363.248 + 263.915i −0.470528 + 0.341859i
\(773\) −390.049 + 126.735i −0.504591 + 0.163952i −0.550241 0.835006i \(-0.685464\pi\)
0.0456497 + 0.998958i \(0.485464\pi\)
\(774\) −194.400 298.692i −0.251162 0.385907i
\(775\) −412.599 299.770i −0.532385 0.386801i
\(776\) 115.080 158.394i 0.148299 0.204116i
\(777\) −178.176 136.577i −0.229313 0.175775i
\(778\) −358.433 1103.14i −0.460711 1.41792i
\(779\) 372.402 + 512.567i 0.478051 + 0.657981i
\(780\) −538.799 190.494i −0.690768 0.244223i
\(781\) 0 0
\(782\) 1742.31i 2.22802i
\(783\) −528.310 217.901i −0.674725 0.278290i
\(784\) −41.0993 126.491i −0.0524225 0.161340i
\(785\) 231.339 + 75.1668i 0.294700 + 0.0957538i
\(786\) −1522.46 + 1047.48i −1.93697 + 1.33268i
\(787\) 254.273 + 184.740i 0.323092 + 0.234740i 0.737494 0.675354i \(-0.236009\pi\)
−0.414402 + 0.910094i \(0.636009\pi\)
\(788\) −664.292 215.842i −0.843011 0.273911i
\(789\) −35.8666 + 1396.50i −0.0454583 + 1.76996i
\(790\) −135.915 + 98.7479i −0.172044 + 0.124997i
\(791\) 888.972i 1.12386i
\(792\) 0 0
\(793\) −2184.00 −2.75410
\(794\) −687.369 946.082i −0.865704 1.19154i
\(795\) −359.881 9.24294i −0.452681 0.0116263i
\(796\) −205.805 + 633.404i −0.258549 + 0.795733i
\(797\) −144.638 + 199.077i −0.181478 + 0.249783i −0.890058 0.455847i \(-0.849336\pi\)
0.708580 + 0.705631i \(0.249336\pi\)
\(798\) −503.887 732.372i −0.631438 0.917760i
\(799\) −240.497 + 740.174i −0.300998 + 0.926375i
\(800\) 641.646 208.483i 0.802058 0.260604i
\(801\) 28.7478 559.290i 0.0358899 0.698240i
\(802\) 1391.90 1.73553
\(803\) 0 0
\(804\) −126.000 + 356.382i −0.156716 + 0.443261i
\(805\) −532.763 + 387.075i −0.661818 + 0.480839i
\(806\) 1694.70 550.640i 2.10260 0.683176i
\(807\) 676.239 882.209i 0.837967 1.09320i
\(808\) 317.135 + 230.412i 0.392493 + 0.285163i
\(809\) 149.293 205.484i 0.184540 0.253997i −0.706717 0.707497i \(-0.749824\pi\)
0.891257 + 0.453499i \(0.149824\pi\)
\(810\) −602.954 62.1485i −0.744388 0.0767265i
\(811\) 300.621 + 925.217i 0.370680 + 1.14084i 0.946347 + 0.323151i \(0.104742\pi\)
−0.575668 + 0.817684i \(0.695258\pi\)
\(812\) 279.301 + 384.425i 0.343967 + 0.473430i
\(813\) −336.749 + 952.470i −0.414206 + 1.17155i
\(814\) 0 0
\(815\) 39.5980i 0.0485865i
\(816\) −1156.61 + 343.235i −1.41741 + 0.420631i
\(817\) −69.2198 213.037i −0.0847244 0.260755i
\(818\) 564.899 + 183.547i 0.690585 + 0.224385i
\(819\) −392.801 1460.09i −0.479611 1.78277i
\(820\) −290.598 211.132i −0.354388 0.257478i
\(821\) 462.992 + 150.435i 0.563936 + 0.183234i 0.577092 0.816679i \(-0.304188\pi\)
−0.0131553 + 0.999913i \(0.504188\pi\)
\(822\) 1256.78 + 32.2783i 1.52893 + 0.0392680i
\(823\) −842.996 + 612.472i −1.02430 + 0.744195i −0.967159 0.254172i \(-0.918197\pi\)
−0.0571370 + 0.998366i \(0.518197\pi\)
\(824\) 89.9555i 0.109169i
\(825\) 0 0
\(826\) −672.000 −0.813559
\(827\) 734.023 + 1010.30i 0.887573 + 1.22164i 0.974265 + 0.225405i \(0.0723704\pi\)
−0.0866920 + 0.996235i \(0.527630\pi\)
\(828\) 784.550 + 300.256i 0.947524 + 0.362629i
\(829\) 364.022 1120.34i 0.439110 1.35144i −0.449706 0.893177i \(-0.648471\pi\)
0.888816 0.458264i \(-0.151529\pi\)
\(830\) −93.1004 + 128.142i −0.112169 + 0.154388i
\(831\) −55.4856 + 38.1752i −0.0667697 + 0.0459389i
\(832\) −201.185 + 619.184i −0.241809 + 0.744211i
\(833\) −140.911 + 45.7846i −0.169160 + 0.0549635i
\(834\) 683.310 202.779i 0.819317 0.243140i
\(835\) 239.466 0.286786
\(836\) 0 0
\(837\) 690.000 424.264i 0.824373 0.506887i
\(838\) 1465.10 1064.46i 1.74833 1.27023i
\(839\) 971.088 315.526i 1.15743 0.376073i 0.333496 0.942752i \(-0.391772\pi\)
0.823939 + 0.566678i \(0.191772\pi\)
\(840\) −133.335 102.205i −0.158732 0.121673i
\(841\) −317.944 231.000i −0.378054 0.274673i
\(842\) −413.666 + 569.362i −0.491289 + 0.676202i
\(843\) −38.6298 + 50.3958i −0.0458243 + 0.0597815i
\(844\) −360.746 1110.26i −0.427424 1.31547i
\(845\) −556.940 766.562i −0.659101 0.907174i
\(846\) 680.982 + 550.316i 0.804943 + 0.650492i
\(847\) 0 0
\(848\) 806.102i 0.950592i
\(849\) 153.287 + 516.534i 0.180550 + 0.608403i
\(850\) −294.184 905.406i −0.346099 1.06518i
\(851\) 295.899 + 96.1435i 0.347708 + 0.112977i
\(852\) −331.864 482.346i −0.389512 0.566134i
\(853\) −478.276 347.488i −0.560699 0.407372i 0.271016 0.962575i \(-0.412640\pi\)
−0.831715 + 0.555203i \(0.812640\pi\)
\(854\) 1831.84 + 595.200i 2.14501 + 0.696955i
\(855\) −355.820 136.177i −0.416164 0.159271i
\(856\) 90.6099 65.8319i 0.105853 0.0769065i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 706.000 0.821886 0.410943 0.911661i \(-0.365200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(860\) 74.6464 + 102.742i 0.0867982 + 0.119467i
\(861\) 24.4001 950.038i 0.0283393 1.10341i
\(862\) 449.929 1384.74i 0.521959 1.60642i
\(863\) −290.939 + 400.443i −0.337125 + 0.464013i −0.943599 0.331091i \(-0.892583\pi\)
0.606474 + 0.795103i \(0.292583\pi\)
\(864\) −82.4614 + 1068.35i −0.0954415 + 1.23652i
\(865\) 166.498 512.428i 0.192483 0.592402i
\(866\) −1857.00 + 603.376i −2.14434 + 0.696739i
\(867\) 135.705 + 457.289i 0.156523 + 0.527438i
\(868\) −673.498 −0.775920
\(869\) 0 0
\(870\) 448.000 + 158.392i 0.514943 + 0.182060i
\(871\) −762.820 + 554.221i −0.875798 + 0.636305i
\(872\) 169.470 55.0640i 0.194346 0.0631468i
\(873\) −558.190 + 363.291i −0.639393 + 0.416140i
\(874\) 996.709 + 724.151i 1.14040 + 0.828549i
\(875\) 522.525 719.194i 0.597171 0.821936i
\(876\) 534.528 + 409.731i 0.610192 + 0.467730i
\(877\) −30.0621 92.5217i −0.0342784 0.105498i 0.932453 0.361290i \(-0.117664\pi\)
−0.966732 + 0.255792i \(0.917664\pi\)
\(878\) −663.341 913.010i −0.755513 1.03987i
\(879\) −59.8665 21.1660i −0.0681075 0.0240796i
\(880\) 0 0
\(881\) 1493.41i 1.69513i −0.530692 0.847565i \(-0.678068\pi\)
0.530692 0.847565i \(-0.321932\pi\)
\(882\) −8.55626 + 166.463i −0.00970097 + 0.188733i
\(883\) 26.5755 + 81.7909i 0.0300968 + 0.0926284i 0.964977 0.262336i \(-0.0844929\pi\)
−0.934880 + 0.354965i \(0.884493\pi\)
\(884\) 1355.76 + 440.512i 1.53366 + 0.498317i
\(885\) −237.266 + 163.244i −0.268098 + 0.184457i
\(886\) −254.273 184.740i −0.286990 0.208511i
\(887\) 241.561 + 78.4879i 0.272335 + 0.0884869i 0.442001 0.897015i \(-0.354269\pi\)
−0.169666 + 0.985502i \(0.554269\pi\)
\(888\) −2.03788 + 79.3464i −0.00229491 + 0.0893540i
\(889\) 407.745 296.244i 0.458655 0.333233i
\(890\) 465.652i 0.523205i
\(891\) 0 0
\(892\) 138.000 0.154709
\(893\) 323.468 + 445.215i 0.362226 + 0.498561i
\(894\) 167.945 + 4.31337i 0.187858 + 0.00482480i
\(895\) −276.879 + 852.147i −0.309362 + 0.952119i
\(896\) −360.764 + 496.549i −0.402639 + 0.554184i
\(897\) 1187.73 + 1726.31i 1.32412 + 1.92453i
\(898\) 416.245 1281.07i 0.463524 1.42658i
\(899\) −603.902 + 196.220i −0.671749 + 0.218264i
\(900\) −458.395 23.5617i −0.509328 0.0261797i
\(901\) 897.998 0.996668
\(902\) 0 0
\(903\) −112.000 + 316.784i −0.124031 + 0.350813i
\(904\) −254.273 + 184.740i −0.281276 + 0.204359i
\(905\) 704.778 228.996i 0.778761 0.253035i
\(906\) −325.214 + 424.268i −0.358956 + 0.468287i
\(907\) 781.510 + 567.801i 0.861643 + 0.626020i 0.928332 0.371753i \(-0.121243\pi\)
−0.0666883 + 0.997774i \(0.521243\pi\)
\(908\) 373.232 513.710i 0.411049 0.565760i
\(909\) −727.377 1117.60i −0.800194 1.22949i
\(910\) 388.495 + 1195.67i 0.426918 + 1.31392i
\(911\) −852.866 1173.87i −0.936187 1.28855i −0.957397 0.288776i \(-0.906752\pi\)
0.0212096 0.999775i \(-0.493248\pi\)
\(912\) −284.366 + 804.308i −0.311805 + 0.881917i
\(913\) 0 0
\(914\) 1781.91i 1.94957i
\(915\) 791.363 234.845i 0.864878 0.256661i
\(916\) −109.392 336.674i −0.119424 0.367548i
\(917\) 1657.04 + 538.404i 1.80702 + 0.587136i
\(918\) 1507.52 + 116.359i 1.64217 + 0.126752i
\(919\) 320.869 + 233.125i 0.349150 + 0.253672i 0.748512 0.663121i \(-0.230768\pi\)
−0.399362 + 0.916793i \(0.630768\pi\)
\(920\) 221.431 + 71.9472i 0.240686 + 0.0782035i
\(921\) 448.851 + 11.5280i 0.487352 + 0.0125168i
\(922\) −1495.06 + 1086.23i −1.62154 + 1.17812i
\(923\) 1460.45i 1.58229i
\(924\) 0 0
\(925\) −170.000 −0.183784
\(926\) −1371.63 1887.88i −1.48124 2.03875i
\(927\) 109.374 285.786i 0.117987 0.308291i
\(928\) 259.574 798.887i 0.279714 0.860870i
\(929\) 897.754 1235.65i 0.966366 1.33009i 0.0225050 0.999747i \(-0.492836\pi\)
0.943861 0.330342i \(-0.107164\pi\)
\(930\) −554.856 + 381.752i −0.596619 + 0.410486i
\(931\) −32.3746 + 99.6388i −0.0347740 + 0.107023i
\(932\) −241.561 + 78.4879i −0.259185 + 0.0842145i
\(933\) −73.2118 + 21.7263i −0.0784692 + 0.0232865i
\(934\) −1406.86 −1.50628
\(935\) 0 0
\(936\) −336.000 + 415.779i −0.358974 + 0.444208i
\(937\) 1017.09 738.962i 1.08548 0.788647i 0.106849 0.994275i \(-0.465924\pi\)
0.978630 + 0.205629i \(0.0659239\pi\)
\(938\) 790.858 256.965i 0.843132 0.273950i
\(939\) 947.629 + 726.385i 1.00919 + 0.773573i
\(940\) −252.413 183.389i −0.268525 0.195095i
\(941\) 286.145 393.844i 0.304086 0.418538i −0.629440 0.777049i \(-0.716716\pi\)
0.933525 + 0.358511i \(0.116716\pi\)
\(942\) −415.271 + 541.755i −0.440840 + 0.575111i
\(943\) 406.995 + 1252.60i 0.431596 + 1.32832i
\(944\) 379.052 + 521.720i 0.401538 + 0.552669i
\(945\) 299.333 + 486.818i 0.316754 + 0.515152i
\(946\) 0 0
\(947\) 435.578i 0.459955i −0.973196 0.229978i \(-0.926135\pi\)
0.973196 0.229978i \(-0.0738653\pi\)
\(948\) −57.4825 193.700i −0.0606355 0.204325i
\(949\) 519.149 + 1597.77i 0.547048 + 1.68364i
\(950\) −640.219 208.020i −0.673914 0.218968i
\(951\) −707.015 1027.61i −0.743444 1.08055i
\(952\) 339.031 + 246.321i 0.356125 + 0.258740i
\(953\) −1529.89 497.090i −1.60534 0.521605i −0.636917 0.770932i \(-0.719791\pi\)
−0.968419 + 0.249327i \(0.919791\pi\)
\(954\) 361.093 943.511i 0.378504 0.989005i
\(955\) −135.915 + 98.7479i −0.142319 + 0.103401i
\(956\) 126.996i 0.132841i
\(957\) 0 0
\(958\) 1792.00 1.87056
\(959\) −696.700 958.925i −0.726486 0.999922i
\(960\) 6.31788 245.992i 0.00658113 0.256242i
\(961\) −18.8500 + 58.0144i −0.0196150 + 0.0603688i
\(962\) 349.127 480.532i 0.362917 0.499513i
\(963\) −367.907 + 98.9766i −0.382043 + 0.102779i
\(964\) 138.748 427.023i 0.143930 0.442970i
\(965\) 402.601 130.813i 0.417204 0.135558i
\(966\) −525.750 1771.64i −0.544255 1.83399i
\(967\) −1055.15 −1.09116 −0.545578 0.838060i \(-0.683690\pi\)
−0.545578 + 0.838060i \(0.683690\pi\)
\(968\) 0 0
\(969\) 896.000 + 316.784i 0.924665 + 0.326918i
\(970\) 448.006 325.495i 0.461861 0.335562i
\(971\) −242.099 + 78.6629i −0.249330 + 0.0810122i −0.431016 0.902344i \(-0.641845\pi\)
0.181686 + 0.983357i \(0.441845\pi\)
\(972\) 312.189 658.771i 0.321182 0.677748i
\(973\) −543.659 394.992i −0.558746 0.405952i
\(974\) 544.297 749.160i 0.558826 0.769158i
\(975\) −908.698 696.543i −0.931998 0.714403i
\(976\) −571.180 1757.91i −0.585226 1.80114i
\(977\) 847.879 + 1167.01i 0.867839 + 1.19448i 0.979643 + 0.200748i \(0.0643372\pi\)
−0.111804 + 0.993730i \(0.535663\pi\)
\(978\) 104.766 + 37.0405i 0.107123 + 0.0378737i
\(979\) 0 0
\(980\) 59.3970i 0.0606092i
\(981\) −605.349 31.1152i −0.617074 0.0317179i
\(982\) −207.659 639.110i −0.211466 0.650825i
\(983\) 653.669 + 212.390i 0.664973 + 0.216063i 0.622005 0.783014i \(-0.286318\pi\)
0.0429685 + 0.999076i \(0.486318\pi\)
\(984\) −276.811 + 190.452i −0.281312 + 0.193548i
\(985\) 532.763 + 387.075i 0.540876 + 0.392970i
\(986\) −1127.28 366.277i −1.14329 0.371477i
\(987\) 21.1939 825.202i 0.0214731 0.836071i
\(988\) 815.489 592.488i 0.825394 0.599684i
\(989\) 465.652i 0.470831i
\(990\) 0 0
\(991\) 574.000 0.579213 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(992\) 699.810 + 963.206i 0.705454 + 0.970974i
\(993\) −533.824 13.7104i −0.537587 0.0138070i
\(994\) −398.014 + 1224.96i −0.400416 + 1.23235i
\(995\) 369.077 507.991i 0.370931 0.510543i
\(996\) −107.976 156.937i −0.108410 0.157567i
\(997\) 409.307 1259.72i 0.410539 1.26351i −0.505642 0.862744i \(-0.668744\pi\)
0.916181 0.400766i \(-0.131256\pi\)
\(998\) 246.593 80.1230i 0.247088 0.0802836i
\(999\) 102.949 249.603i 0.103052 0.249853i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.k.245.1 16
3.2 odd 2 inner 363.3.h.k.245.4 16
11.2 odd 10 363.3.b.i.122.2 yes 4
11.3 even 5 inner 363.3.h.k.269.2 16
11.4 even 5 inner 363.3.h.k.323.4 16
11.5 even 5 inner 363.3.h.k.251.3 16
11.6 odd 10 inner 363.3.h.k.251.1 16
11.7 odd 10 inner 363.3.h.k.323.2 16
11.8 odd 10 inner 363.3.h.k.269.4 16
11.9 even 5 363.3.b.i.122.4 yes 4
11.10 odd 2 inner 363.3.h.k.245.3 16
33.2 even 10 363.3.b.i.122.3 yes 4
33.5 odd 10 inner 363.3.h.k.251.2 16
33.8 even 10 inner 363.3.h.k.269.1 16
33.14 odd 10 inner 363.3.h.k.269.3 16
33.17 even 10 inner 363.3.h.k.251.4 16
33.20 odd 10 363.3.b.i.122.1 4
33.26 odd 10 inner 363.3.h.k.323.1 16
33.29 even 10 inner 363.3.h.k.323.3 16
33.32 even 2 inner 363.3.h.k.245.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.i.122.1 4 33.20 odd 10
363.3.b.i.122.2 yes 4 11.2 odd 10
363.3.b.i.122.3 yes 4 33.2 even 10
363.3.b.i.122.4 yes 4 11.9 even 5
363.3.h.k.245.1 16 1.1 even 1 trivial
363.3.h.k.245.2 16 33.32 even 2 inner
363.3.h.k.245.3 16 11.10 odd 2 inner
363.3.h.k.245.4 16 3.2 odd 2 inner
363.3.h.k.251.1 16 11.6 odd 10 inner
363.3.h.k.251.2 16 33.5 odd 10 inner
363.3.h.k.251.3 16 11.5 even 5 inner
363.3.h.k.251.4 16 33.17 even 10 inner
363.3.h.k.269.1 16 33.8 even 10 inner
363.3.h.k.269.2 16 11.3 even 5 inner
363.3.h.k.269.3 16 33.14 odd 10 inner
363.3.h.k.269.4 16 11.8 odd 10 inner
363.3.h.k.323.1 16 33.26 odd 10 inner
363.3.h.k.323.2 16 11.7 odd 10 inner
363.3.h.k.323.3 16 33.29 even 10 inner
363.3.h.k.323.4 16 11.4 even 5 inner