Properties

Label 363.3.h.j.323.4
Level $363$
Weight $3$
Character 363.323
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 323.4
Root \(2.10855 - 2.90217i\) of defining polynomial
Character \(\chi\) \(=\) 363.323
Dual form 363.3.h.j.245.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.10855 - 2.90217i) q^{2} +(0.307087 + 2.98424i) q^{3} +(-2.74053 - 8.43448i) q^{4} +(-1.22635 - 1.68793i) q^{5} +(9.30827 + 5.40120i) q^{6} +(-2.73883 - 8.42924i) q^{7} +(-16.6100 - 5.39692i) q^{8} +(-8.81140 + 1.83284i) q^{9} -7.48447 q^{10} +(24.3290 - 10.7685i) q^{12} +(-1.33068 - 0.966792i) q^{13} +(-30.2380 - 9.82492i) q^{14} +(4.66059 - 4.17807i) q^{15} +(-21.9865 + 15.9742i) q^{16} +(-7.30235 - 10.0508i) q^{17} +(-13.2600 + 29.4368i) q^{18} +(-3.26497 + 10.0485i) q^{19} +(-10.8759 + 14.9695i) q^{20} +(24.3138 - 10.7618i) q^{21} -20.3378i q^{23} +(11.0050 - 51.2256i) q^{24} +(6.38026 - 19.6364i) q^{25} +(-5.61158 + 1.82331i) q^{26} +(-8.17551 - 25.7325i) q^{27} +(-63.5904 + 46.2012i) q^{28} +(-11.0405 + 3.58727i) q^{29} +(-2.29838 - 22.3355i) q^{30} +(18.9215 + 13.7473i) q^{31} +27.6317i q^{32} -44.5665 q^{34} +(-10.8692 + 14.9601i) q^{35} +(39.6070 + 69.2966i) q^{36} +(2.23911 + 6.89128i) q^{37} +(22.2782 + 30.6633i) q^{38} +(2.47651 - 4.26795i) q^{39} +(11.2601 + 34.6550i) q^{40} +(36.9741 + 12.0136i) q^{41} +(20.0342 - 93.2546i) q^{42} +15.8444 q^{43} +(13.8996 + 12.6253i) q^{45} +(-59.0236 - 42.8832i) q^{46} +(-43.0910 - 14.0011i) q^{47} +(-54.4225 - 60.7077i) q^{48} +(-23.9091 + 17.3709i) q^{49} +(-43.5351 - 59.9209i) q^{50} +(27.7516 - 24.8784i) q^{51} +(-4.50764 + 13.8731i) q^{52} +(-23.6972 + 32.6164i) q^{53} +(-91.9184 - 30.5315i) q^{54} +154.791i q^{56} +(-30.9899 - 6.65768i) q^{57} +(-12.8685 + 39.6053i) q^{58} +(107.642 - 34.9750i) q^{59} +(-48.0123 - 27.8595i) q^{60} +(62.7118 - 45.5628i) q^{61} +(79.7937 - 25.9266i) q^{62} +(39.5823 + 69.2535i) q^{63} +(-7.75446 - 5.63395i) q^{64} +3.43171i q^{65} +62.9082 q^{67} +(-64.7612 + 89.1361i) q^{68} +(60.6928 - 6.24546i) q^{69} +(20.4987 + 63.0884i) q^{70} +(-6.00278 - 8.26212i) q^{71} +(156.249 + 17.1109i) q^{72} +(23.0595 + 70.9699i) q^{73} +(24.7209 + 8.03232i) q^{74} +(60.5591 + 13.0102i) q^{75} +93.7020 q^{76} +(-7.16445 - 16.1864i) q^{78} +(69.8281 + 50.7331i) q^{79} +(53.9264 + 17.5218i) q^{80} +(74.2814 - 32.2998i) q^{81} +(112.827 - 81.9736i) q^{82} +(-6.94074 - 9.55311i) q^{83} +(-157.403 - 175.581i) q^{84} +(-8.00981 + 24.6517i) q^{85} +(33.4086 - 45.9830i) q^{86} +(-14.0957 - 31.8459i) q^{87} -74.5782i q^{89} +(65.9486 - 13.7178i) q^{90} +(-4.50483 + 13.8645i) q^{91} +(-171.539 + 55.7363i) q^{92} +(-35.2146 + 60.6879i) q^{93} +(-131.493 + 95.5353i) q^{94} +(20.9652 - 6.81201i) q^{95} +(-82.4596 + 8.48532i) q^{96} +(62.4301 + 45.3581i) q^{97} +106.016i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.10855 2.90217i 1.05427 1.45108i 0.169229 0.985577i \(-0.445872\pi\)
0.885045 0.465506i \(-0.154128\pi\)
\(3\) 0.307087 + 2.98424i 0.102362 + 0.994747i
\(4\) −2.74053 8.43448i −0.685132 2.10862i
\(5\) −1.22635 1.68793i −0.245270 0.337586i 0.668578 0.743642i \(-0.266903\pi\)
−0.913848 + 0.406057i \(0.866903\pi\)
\(6\) 9.30827 + 5.40120i 1.55138 + 0.900200i
\(7\) −2.73883 8.42924i −0.391261 1.20418i −0.931836 0.362881i \(-0.881793\pi\)
0.540575 0.841296i \(-0.318207\pi\)
\(8\) −16.6100 5.39692i −2.07625 0.674615i
\(9\) −8.81140 + 1.83284i −0.979044 + 0.203649i
\(10\) −7.48447 −0.748447
\(11\) 0 0
\(12\) 24.3290 10.7685i 2.02741 0.897377i
\(13\) −1.33068 0.966792i −0.102360 0.0743686i 0.535428 0.844581i \(-0.320150\pi\)
−0.637788 + 0.770212i \(0.720150\pi\)
\(14\) −30.2380 9.82492i −2.15986 0.701780i
\(15\) 4.66059 4.17807i 0.310706 0.278538i
\(16\) −21.9865 + 15.9742i −1.37416 + 0.998385i
\(17\) −7.30235 10.0508i −0.429550 0.591225i 0.538300 0.842753i \(-0.319067\pi\)
−0.967850 + 0.251529i \(0.919067\pi\)
\(18\) −13.2600 + 29.4368i −0.736668 + 1.63538i
\(19\) −3.26497 + 10.0485i −0.171841 + 0.528871i −0.999475 0.0323966i \(-0.989686\pi\)
0.827635 + 0.561267i \(0.189686\pi\)
\(20\) −10.8759 + 14.9695i −0.543797 + 0.748473i
\(21\) 24.3138 10.7618i 1.15780 0.512468i
\(22\) 0 0
\(23\) 20.3378i 0.884251i −0.896953 0.442126i \(-0.854225\pi\)
0.896953 0.442126i \(-0.145775\pi\)
\(24\) 11.0050 51.2256i 0.458541 2.13440i
\(25\) 6.38026 19.6364i 0.255210 0.785457i
\(26\) −5.61158 + 1.82331i −0.215830 + 0.0701275i
\(27\) −8.17551 25.7325i −0.302797 0.953055i
\(28\) −63.5904 + 46.2012i −2.27109 + 1.65004i
\(29\) −11.0405 + 3.58727i −0.380707 + 0.123699i −0.493118 0.869963i \(-0.664143\pi\)
0.112411 + 0.993662i \(0.464143\pi\)
\(30\) −2.29838 22.3355i −0.0766127 0.744515i
\(31\) 18.9215 + 13.7473i 0.610371 + 0.443460i 0.849545 0.527516i \(-0.176877\pi\)
−0.239174 + 0.970977i \(0.576877\pi\)
\(32\) 27.6317i 0.863489i
\(33\) 0 0
\(34\) −44.5665 −1.31078
\(35\) −10.8692 + 14.9601i −0.310548 + 0.427433i
\(36\) 39.6070 + 69.2966i 1.10019 + 1.92491i
\(37\) 2.23911 + 6.89128i 0.0605166 + 0.186251i 0.976745 0.214407i \(-0.0687817\pi\)
−0.916228 + 0.400657i \(0.868782\pi\)
\(38\) 22.2782 + 30.6633i 0.586269 + 0.806929i
\(39\) 2.47651 4.26795i 0.0635002 0.109434i
\(40\) 11.2601 + 34.6550i 0.281502 + 0.866375i
\(41\) 36.9741 + 12.0136i 0.901806 + 0.293015i 0.722982 0.690866i \(-0.242771\pi\)
0.178824 + 0.983881i \(0.442771\pi\)
\(42\) 20.0342 93.2546i 0.477006 2.22035i
\(43\) 15.8444 0.368474 0.184237 0.982882i \(-0.441019\pi\)
0.184237 + 0.982882i \(0.441019\pi\)
\(44\) 0 0
\(45\) 13.8996 + 12.6253i 0.308879 + 0.280562i
\(46\) −59.0236 42.8832i −1.28312 0.932243i
\(47\) −43.0910 14.0011i −0.916831 0.297896i −0.187665 0.982233i \(-0.560092\pi\)
−0.729166 + 0.684337i \(0.760092\pi\)
\(48\) −54.4225 60.7077i −1.13380 1.26474i
\(49\) −23.9091 + 17.3709i −0.487940 + 0.354509i
\(50\) −43.5351 59.9209i −0.870702 1.19842i
\(51\) 27.7516 24.8784i 0.544149 0.487813i
\(52\) −4.50764 + 13.8731i −0.0866853 + 0.266790i
\(53\) −23.6972 + 32.6164i −0.447116 + 0.615403i −0.971775 0.235910i \(-0.924193\pi\)
0.524658 + 0.851313i \(0.324193\pi\)
\(54\) −91.9184 30.5315i −1.70219 0.565398i
\(55\) 0 0
\(56\) 154.791i 2.76412i
\(57\) −30.9899 6.65768i −0.543683 0.116801i
\(58\) −12.8685 + 39.6053i −0.221871 + 0.682850i
\(59\) 107.642 34.9750i 1.82444 0.592797i 0.824816 0.565402i \(-0.191279\pi\)
0.999625 0.0273946i \(-0.00872108\pi\)
\(60\) −48.0123 27.8595i −0.800206 0.464326i
\(61\) 62.7118 45.5628i 1.02806 0.746931i 0.0601426 0.998190i \(-0.480844\pi\)
0.967920 + 0.251259i \(0.0808445\pi\)
\(62\) 79.7937 25.9266i 1.28700 0.418170i
\(63\) 39.5823 + 69.2535i 0.628291 + 1.09926i
\(64\) −7.75446 5.63395i −0.121163 0.0880304i
\(65\) 3.43171i 0.0527956i
\(66\) 0 0
\(67\) 62.9082 0.938929 0.469464 0.882951i \(-0.344447\pi\)
0.469464 + 0.882951i \(0.344447\pi\)
\(68\) −64.7612 + 89.1361i −0.952370 + 1.31082i
\(69\) 60.6928 6.24546i 0.879606 0.0905139i
\(70\) 20.4987 + 63.0884i 0.292838 + 0.901262i
\(71\) −6.00278 8.26212i −0.0845462 0.116368i 0.764649 0.644447i \(-0.222912\pi\)
−0.849195 + 0.528079i \(0.822912\pi\)
\(72\) 156.249 + 17.1109i 2.17013 + 0.237651i
\(73\) 23.0595 + 70.9699i 0.315884 + 0.972191i 0.975389 + 0.220491i \(0.0707659\pi\)
−0.659505 + 0.751700i \(0.729234\pi\)
\(74\) 24.7209 + 8.03232i 0.334067 + 0.108545i
\(75\) 60.5591 + 13.0102i 0.807455 + 0.173469i
\(76\) 93.7020 1.23292
\(77\) 0 0
\(78\) −7.16445 16.1864i −0.0918519 0.207518i
\(79\) 69.8281 + 50.7331i 0.883900 + 0.642191i 0.934280 0.356539i \(-0.116043\pi\)
−0.0503802 + 0.998730i \(0.516043\pi\)
\(80\) 53.9264 + 17.5218i 0.674081 + 0.219022i
\(81\) 74.2814 32.2998i 0.917054 0.398763i
\(82\) 112.827 81.9736i 1.37594 0.999678i
\(83\) −6.94074 9.55311i −0.0836234 0.115098i 0.765156 0.643845i \(-0.222662\pi\)
−0.848779 + 0.528747i \(0.822662\pi\)
\(84\) −157.403 175.581i −1.87385 2.09026i
\(85\) −8.00981 + 24.6517i −0.0942331 + 0.290020i
\(86\) 33.4086 45.9830i 0.388472 0.534686i
\(87\) −14.0957 31.8459i −0.162019 0.366045i
\(88\) 0 0
\(89\) 74.5782i 0.837957i −0.907996 0.418979i \(-0.862388\pi\)
0.907996 0.418979i \(-0.137612\pi\)
\(90\) 65.9486 13.7178i 0.732762 0.152421i
\(91\) −4.50483 + 13.8645i −0.0495037 + 0.152357i
\(92\) −171.539 + 55.7363i −1.86455 + 0.605829i
\(93\) −35.2146 + 60.6879i −0.378652 + 0.652558i
\(94\) −131.493 + 95.5353i −1.39886 + 1.01633i
\(95\) 20.9652 6.81201i 0.220687 0.0717054i
\(96\) −82.4596 + 8.48532i −0.858954 + 0.0883887i
\(97\) 62.4301 + 45.3581i 0.643609 + 0.467609i 0.861088 0.508456i \(-0.169783\pi\)
−0.217479 + 0.976065i \(0.569783\pi\)
\(98\) 106.016i 1.08179i
\(99\) 0 0
\(100\) −183.108 −1.83108
\(101\) 7.52095 10.3517i 0.0744649 0.102492i −0.770160 0.637851i \(-0.779824\pi\)
0.844625 + 0.535359i \(0.179824\pi\)
\(102\) −13.6858 132.997i −0.134174 1.30389i
\(103\) 21.8055 + 67.1104i 0.211704 + 0.651558i 0.999371 + 0.0354567i \(0.0112886\pi\)
−0.787667 + 0.616101i \(0.788711\pi\)
\(104\) 16.8848 + 23.2400i 0.162354 + 0.223461i
\(105\) −47.9825 27.8422i −0.456976 0.265164i
\(106\) 44.6915 + 137.546i 0.421618 + 1.29761i
\(107\) −175.204 56.9272i −1.63742 0.532029i −0.661459 0.749981i \(-0.730062\pi\)
−0.975959 + 0.217952i \(0.930062\pi\)
\(108\) −194.635 + 139.477i −1.80218 + 1.29145i
\(109\) 58.5394 0.537058 0.268529 0.963272i \(-0.413462\pi\)
0.268529 + 0.963272i \(0.413462\pi\)
\(110\) 0 0
\(111\) −19.8777 + 8.79828i −0.179078 + 0.0792638i
\(112\) 194.867 + 141.579i 1.73989 + 1.26410i
\(113\) −144.558 46.9698i −1.27927 0.415662i −0.410950 0.911658i \(-0.634803\pi\)
−0.868325 + 0.495996i \(0.834803\pi\)
\(114\) −84.6654 + 75.8998i −0.742679 + 0.665788i
\(115\) −34.3287 + 24.9413i −0.298510 + 0.216881i
\(116\) 60.5136 + 83.2899i 0.521669 + 0.718016i
\(117\) 13.4971 + 6.07987i 0.115360 + 0.0519647i
\(118\) 125.465 386.141i 1.06326 3.27238i
\(119\) −64.7209 + 89.0807i −0.543873 + 0.748577i
\(120\) −99.9611 + 44.2449i −0.833009 + 0.368708i
\(121\) 0 0
\(122\) 278.071i 2.27927i
\(123\) −24.4972 + 114.029i −0.199165 + 0.927063i
\(124\) 64.0962 197.268i 0.516905 1.59087i
\(125\) −90.5763 + 29.4300i −0.724610 + 0.235440i
\(126\) 284.446 + 31.1498i 2.25751 + 0.247221i
\(127\) −11.5481 + 8.39020i −0.0909301 + 0.0660646i −0.632321 0.774706i \(-0.717898\pi\)
0.541391 + 0.840771i \(0.317898\pi\)
\(128\) −137.818 + 44.7799i −1.07671 + 0.349843i
\(129\) 4.86560 + 47.2834i 0.0377178 + 0.366538i
\(130\) 9.95940 + 7.23592i 0.0766107 + 0.0556610i
\(131\) 153.686i 1.17318i −0.809885 0.586589i \(-0.800471\pi\)
0.809885 0.586589i \(-0.199529\pi\)
\(132\) 0 0
\(133\) 93.6438 0.704088
\(134\) 132.645 182.570i 0.989888 1.36246i
\(135\) −33.4085 + 45.3567i −0.247471 + 0.335976i
\(136\) 67.0486 + 206.354i 0.493004 + 1.51731i
\(137\) −47.3996 65.2400i −0.345983 0.476205i 0.600194 0.799854i \(-0.295090\pi\)
−0.946177 + 0.323650i \(0.895090\pi\)
\(138\) 109.848 189.310i 0.796003 1.37181i
\(139\) −65.4935 201.568i −0.471176 1.45013i −0.851046 0.525091i \(-0.824031\pi\)
0.379870 0.925040i \(-0.375969\pi\)
\(140\) 155.968 + 50.6772i 1.11406 + 0.361980i
\(141\) 28.5501 132.894i 0.202483 0.942508i
\(142\) −36.6352 −0.257994
\(143\) 0 0
\(144\) 164.454 181.052i 1.14204 1.25731i
\(145\) 19.5946 + 14.2363i 0.135135 + 0.0981814i
\(146\) 254.589 + 82.7209i 1.74376 + 0.566581i
\(147\) −59.1813 66.0160i −0.402594 0.449089i
\(148\) 51.9881 37.7715i 0.351271 0.255213i
\(149\) 133.033 + 183.104i 0.892840 + 1.22889i 0.972696 + 0.232083i \(0.0745540\pi\)
−0.0798559 + 0.996806i \(0.525446\pi\)
\(150\) 165.449 148.320i 1.10300 0.988801i
\(151\) −84.2779 + 259.381i −0.558132 + 1.71775i 0.129395 + 0.991593i \(0.458696\pi\)
−0.687527 + 0.726159i \(0.741304\pi\)
\(152\) 108.462 149.286i 0.713568 0.982142i
\(153\) 82.7654 + 75.1777i 0.540951 + 0.491357i
\(154\) 0 0
\(155\) 48.7971i 0.314820i
\(156\) −42.7849 9.19164i −0.274262 0.0589208i
\(157\) 1.87243 5.76274i 0.0119263 0.0367054i −0.944916 0.327312i \(-0.893857\pi\)
0.956843 + 0.290607i \(0.0938571\pi\)
\(158\) 294.472 95.6797i 1.86375 0.605568i
\(159\) −104.612 60.7020i −0.657938 0.381774i
\(160\) 46.6403 33.8861i 0.291502 0.211788i
\(161\) −171.432 + 55.7016i −1.06479 + 0.345973i
\(162\) 62.8864 283.683i 0.388188 1.75113i
\(163\) −131.002 95.1782i −0.803691 0.583915i 0.108304 0.994118i \(-0.465458\pi\)
−0.911994 + 0.410202i \(0.865458\pi\)
\(164\) 344.781i 2.10232i
\(165\) 0 0
\(166\) −42.3596 −0.255178
\(167\) 93.5806 128.803i 0.560363 0.771274i −0.431010 0.902347i \(-0.641842\pi\)
0.991373 + 0.131074i \(0.0418425\pi\)
\(168\) −461.933 + 47.5342i −2.74960 + 0.282942i
\(169\) −51.3879 158.156i −0.304070 0.935832i
\(170\) 54.6542 + 75.2250i 0.321495 + 0.442500i
\(171\) 10.3515 94.5259i 0.0605354 0.552783i
\(172\) −43.4220 133.639i −0.252453 0.776972i
\(173\) −36.5394 11.8724i −0.211210 0.0686264i 0.201501 0.979488i \(-0.435418\pi\)
−0.412711 + 0.910862i \(0.635418\pi\)
\(174\) −122.144 26.2406i −0.701974 0.150808i
\(175\) −182.995 −1.04568
\(176\) 0 0
\(177\) 137.429 + 310.489i 0.776437 + 1.75418i
\(178\) −216.438 157.252i −1.21595 0.883436i
\(179\) 129.490 + 42.0738i 0.723407 + 0.235049i 0.647500 0.762066i \(-0.275815\pi\)
0.0759072 + 0.997115i \(0.475815\pi\)
\(180\) 68.3956 151.836i 0.379976 0.843532i
\(181\) 105.447 76.6119i 0.582581 0.423270i −0.257072 0.966392i \(-0.582758\pi\)
0.839654 + 0.543122i \(0.182758\pi\)
\(182\) 30.7383 + 42.3076i 0.168892 + 0.232460i
\(183\) 155.228 + 173.155i 0.848242 + 0.946205i
\(184\) −109.761 + 337.811i −0.596529 + 1.83593i
\(185\) 8.88605 12.2306i 0.0480327 0.0661114i
\(186\) 101.875 + 230.162i 0.547713 + 1.23743i
\(187\) 0 0
\(188\) 401.821i 2.13735i
\(189\) −194.514 + 139.390i −1.02917 + 0.737514i
\(190\) 24.4366 75.2080i 0.128613 0.395832i
\(191\) −300.134 + 97.5195i −1.57138 + 0.510574i −0.959819 0.280621i \(-0.909460\pi\)
−0.611565 + 0.791194i \(0.709460\pi\)
\(192\) 14.4318 24.8713i 0.0751654 0.129538i
\(193\) 118.448 86.0576i 0.613721 0.445894i −0.237002 0.971509i \(-0.576165\pi\)
0.850723 + 0.525615i \(0.176165\pi\)
\(194\) 263.273 85.5427i 1.35708 0.440942i
\(195\) −10.2411 + 1.05383i −0.0525182 + 0.00540427i
\(196\) 212.038 + 154.055i 1.08183 + 0.785995i
\(197\) 229.459i 1.16476i 0.812915 + 0.582382i \(0.197879\pi\)
−0.812915 + 0.582382i \(0.802121\pi\)
\(198\) 0 0
\(199\) −389.358 −1.95657 −0.978287 0.207253i \(-0.933548\pi\)
−0.978287 + 0.207253i \(0.933548\pi\)
\(200\) −211.952 + 291.727i −1.05976 + 1.45864i
\(201\) 19.3183 + 187.733i 0.0961109 + 0.933997i
\(202\) −14.1841 43.6541i −0.0702182 0.216109i
\(203\) 60.4760 + 83.2381i 0.297911 + 0.410040i
\(204\) −285.891 165.890i −1.40143 0.813188i
\(205\) −25.0651 77.1425i −0.122269 0.376305i
\(206\) 240.744 + 78.2223i 1.16866 + 0.379720i
\(207\) 37.2759 + 179.204i 0.180077 + 0.865721i
\(208\) 44.7006 0.214907
\(209\) 0 0
\(210\) −181.976 + 80.5465i −0.866553 + 0.383555i
\(211\) 165.031 + 119.902i 0.782137 + 0.568256i 0.905620 0.424091i \(-0.139406\pi\)
−0.123483 + 0.992347i \(0.539406\pi\)
\(212\) 340.045 + 110.487i 1.60399 + 0.521167i
\(213\) 22.8128 20.4509i 0.107102 0.0960138i
\(214\) −534.637 + 388.437i −2.49831 + 1.81513i
\(215\) −19.4308 26.7442i −0.0903757 0.124391i
\(216\) −3.08093 + 471.539i −0.0142636 + 2.18305i
\(217\) 64.0564 197.145i 0.295191 0.908503i
\(218\) 123.433 169.891i 0.566207 0.779316i
\(219\) −204.710 + 90.6091i −0.934750 + 0.413740i
\(220\) 0 0
\(221\) 20.4342i 0.0924626i
\(222\) −16.3789 + 76.2398i −0.0737788 + 0.343423i
\(223\) −5.10490 + 15.7113i −0.0228919 + 0.0704542i −0.961850 0.273578i \(-0.911793\pi\)
0.938958 + 0.344032i \(0.111793\pi\)
\(224\) 232.914 75.6783i 1.03979 0.337850i
\(225\) −20.2285 + 184.718i −0.0899046 + 0.820970i
\(226\) −441.122 + 320.494i −1.95187 + 1.41811i
\(227\) −107.335 + 34.8751i −0.472840 + 0.153635i −0.535737 0.844385i \(-0.679966\pi\)
0.0628969 + 0.998020i \(0.479966\pi\)
\(228\) 28.7747 + 279.629i 0.126205 + 1.22645i
\(229\) 298.218 + 216.668i 1.30226 + 0.946150i 0.999975 0.00706607i \(-0.00224922\pi\)
0.302289 + 0.953216i \(0.402249\pi\)
\(230\) 152.217i 0.661815i
\(231\) 0 0
\(232\) 202.743 0.873892
\(233\) 102.592 141.206i 0.440310 0.606034i −0.529971 0.848016i \(-0.677797\pi\)
0.970281 + 0.241981i \(0.0777972\pi\)
\(234\) 46.1040 26.3511i 0.197026 0.112611i
\(235\) 29.2119 + 89.9049i 0.124306 + 0.382574i
\(236\) −589.992 812.054i −2.49997 3.44091i
\(237\) −129.957 + 223.963i −0.548340 + 0.944993i
\(238\) 122.060 + 375.662i 0.512856 + 1.57841i
\(239\) −328.450 106.720i −1.37427 0.446527i −0.473488 0.880800i \(-0.657005\pi\)
−0.900781 + 0.434273i \(0.857005\pi\)
\(240\) −35.7291 + 166.310i −0.148871 + 0.692959i
\(241\) 261.447 1.08484 0.542421 0.840107i \(-0.317508\pi\)
0.542421 + 0.840107i \(0.317508\pi\)
\(242\) 0 0
\(243\) 119.201 + 211.755i 0.490540 + 0.871419i
\(244\) −556.162 404.076i −2.27935 1.65605i
\(245\) 58.6418 + 19.0539i 0.239354 + 0.0777710i
\(246\) 279.277 + 311.530i 1.13527 + 1.26638i
\(247\) 14.0595 10.2148i 0.0569209 0.0413555i
\(248\) −240.093 330.460i −0.968118 1.33250i
\(249\) 26.3774 23.6465i 0.105933 0.0949658i
\(250\) −105.574 + 324.922i −0.422294 + 1.29969i
\(251\) 116.584 160.465i 0.464480 0.639302i −0.510950 0.859610i \(-0.670706\pi\)
0.975430 + 0.220309i \(0.0707064\pi\)
\(252\) 475.641 523.648i 1.88746 2.07797i
\(253\) 0 0
\(254\) 51.2057i 0.201597i
\(255\) −76.0263 16.3330i −0.298142 0.0640510i
\(256\) −148.790 + 457.929i −0.581211 + 1.78878i
\(257\) −1.77390 + 0.576376i −0.00690234 + 0.00224271i −0.312466 0.949929i \(-0.601155\pi\)
0.305564 + 0.952172i \(0.401155\pi\)
\(258\) 147.484 + 85.5786i 0.571642 + 0.331700i
\(259\) 51.9557 37.7481i 0.200601 0.145745i
\(260\) 28.9447 9.40471i 0.111326 0.0361719i
\(261\) 90.7073 51.8444i 0.347537 0.198637i
\(262\) −446.023 324.055i −1.70238 1.23685i
\(263\) 27.0901i 0.103004i −0.998673 0.0515020i \(-0.983599\pi\)
0.998673 0.0515020i \(-0.0164009\pi\)
\(264\) 0 0
\(265\) 84.1151 0.317416
\(266\) 197.452 271.770i 0.742302 1.02169i
\(267\) 222.559 22.9020i 0.833556 0.0857752i
\(268\) −172.402 530.599i −0.643291 1.97985i
\(269\) 83.9639 + 115.566i 0.312133 + 0.429615i 0.936045 0.351880i \(-0.114458\pi\)
−0.623912 + 0.781495i \(0.714458\pi\)
\(270\) 61.1893 + 192.594i 0.226627 + 0.713311i
\(271\) 32.5479 + 100.172i 0.120103 + 0.369639i 0.992977 0.118306i \(-0.0377465\pi\)
−0.872874 + 0.487945i \(0.837746\pi\)
\(272\) 321.107 + 104.334i 1.18054 + 0.383580i
\(273\) −42.7583 9.18592i −0.156624 0.0336481i
\(274\) −289.282 −1.05577
\(275\) 0 0
\(276\) −219.008 494.797i −0.793507 1.79274i
\(277\) 198.144 + 143.960i 0.715322 + 0.519712i 0.884886 0.465807i \(-0.154236\pi\)
−0.169564 + 0.985519i \(0.554236\pi\)
\(278\) −723.081 234.943i −2.60101 0.845119i
\(279\) −191.921 86.4525i −0.687890 0.309866i
\(280\) 261.276 189.828i 0.933128 0.677957i
\(281\) 38.2716 + 52.6763i 0.136198 + 0.187460i 0.871668 0.490097i \(-0.163039\pi\)
−0.735470 + 0.677557i \(0.763039\pi\)
\(282\) −325.480 363.070i −1.15419 1.28748i
\(283\) 48.6936 149.864i 0.172062 0.529553i −0.827425 0.561576i \(-0.810195\pi\)
0.999487 + 0.0320232i \(0.0101950\pi\)
\(284\) −53.2359 + 73.2729i −0.187450 + 0.258003i
\(285\) 26.7668 + 60.4734i 0.0939187 + 0.212187i
\(286\) 0 0
\(287\) 344.566i 1.20058i
\(288\) −50.6445 243.473i −0.175849 0.845394i
\(289\) 41.6112 128.066i 0.143984 0.443136i
\(290\) 82.6322 26.8488i 0.284939 0.0925822i
\(291\) −116.188 + 200.235i −0.399272 + 0.688094i
\(292\) 535.399 388.991i 1.83356 1.33216i
\(293\) 175.003 56.8620i 0.597280 0.194068i 0.00525314 0.999986i \(-0.498328\pi\)
0.592027 + 0.805918i \(0.298328\pi\)
\(294\) −316.376 + 32.5560i −1.07611 + 0.110735i
\(295\) −191.042 138.800i −0.647601 0.470509i
\(296\) 126.549i 0.427529i
\(297\) 0 0
\(298\) 811.906 2.72452
\(299\) −19.6624 + 27.0630i −0.0657605 + 0.0905116i
\(300\) −56.2302 546.440i −0.187434 1.82147i
\(301\) −43.3950 133.556i −0.144169 0.443708i
\(302\) 575.062 + 791.505i 1.90418 + 2.62088i
\(303\) 33.2016 + 19.2655i 0.109576 + 0.0635824i
\(304\) −88.7316 273.088i −0.291880 0.898315i
\(305\) −153.813 49.9770i −0.504306 0.163859i
\(306\) 392.693 81.6833i 1.28331 0.266939i
\(307\) −386.672 −1.25952 −0.629759 0.776790i \(-0.716846\pi\)
−0.629759 + 0.776790i \(0.716846\pi\)
\(308\) 0 0
\(309\) −193.578 + 85.6816i −0.626465 + 0.277287i
\(310\) −141.617 102.891i −0.456830 0.331907i
\(311\) −87.7273 28.5043i −0.282081 0.0916538i 0.164559 0.986367i \(-0.447380\pi\)
−0.446641 + 0.894713i \(0.647380\pi\)
\(312\) −64.1686 + 57.5251i −0.205668 + 0.184375i
\(313\) 60.1890 43.7299i 0.192297 0.139712i −0.487471 0.873139i \(-0.662080\pi\)
0.679768 + 0.733427i \(0.262080\pi\)
\(314\) −12.7763 17.5851i −0.0406889 0.0560035i
\(315\) 68.3531 151.741i 0.216994 0.481718i
\(316\) 236.541 728.000i 0.748549 2.30380i
\(317\) −307.870 + 423.746i −0.971198 + 1.33674i −0.0297582 + 0.999557i \(0.509474\pi\)
−0.941440 + 0.337182i \(0.890526\pi\)
\(318\) −396.747 + 175.609i −1.24763 + 0.552229i
\(319\) 0 0
\(320\) 19.9982i 0.0624943i
\(321\) 116.082 540.332i 0.361625 1.68328i
\(322\) −199.817 + 614.974i −0.620550 + 1.90986i
\(323\) 124.838 40.5623i 0.386495 0.125580i
\(324\) −476.002 538.007i −1.46914 1.66051i
\(325\) −27.4744 + 19.9613i −0.0845366 + 0.0614194i
\(326\) −552.446 + 179.501i −1.69462 + 0.550615i
\(327\) 17.9767 + 174.696i 0.0549745 + 0.534237i
\(328\) −549.303 399.092i −1.67470 1.21674i
\(329\) 401.571i 1.22058i
\(330\) 0 0
\(331\) 251.706 0.760441 0.380221 0.924896i \(-0.375848\pi\)
0.380221 + 0.924896i \(0.375848\pi\)
\(332\) −61.5542 + 84.7221i −0.185404 + 0.255187i
\(333\) −32.3604 56.6179i −0.0971782 0.170024i
\(334\) −176.488 543.173i −0.528406 1.62627i
\(335\) −77.1476 106.185i −0.230291 0.316969i
\(336\) −362.666 + 625.008i −1.07936 + 1.86014i
\(337\) 15.3428 + 47.2202i 0.0455275 + 0.140119i 0.971236 0.238118i \(-0.0765304\pi\)
−0.925709 + 0.378237i \(0.876530\pi\)
\(338\) −567.348 184.342i −1.67854 0.545392i
\(339\) 95.7772 445.820i 0.282529 1.31510i
\(340\) 229.875 0.676104
\(341\) 0 0
\(342\) −252.503 229.354i −0.738313 0.670626i
\(343\) −139.440 101.309i −0.406531 0.295362i
\(344\) −263.175 85.5108i −0.765044 0.248578i
\(345\) −84.9727 94.7860i −0.246298 0.274742i
\(346\) −111.501 + 81.0099i −0.322256 + 0.234133i
\(347\) 270.251 + 371.969i 0.778822 + 1.07196i 0.995411 + 0.0956933i \(0.0305068\pi\)
−0.216589 + 0.976263i \(0.569493\pi\)
\(348\) −229.974 + 206.164i −0.660845 + 0.592427i
\(349\) 121.675 374.478i 0.348640 1.07300i −0.610967 0.791656i \(-0.709219\pi\)
0.959606 0.281346i \(-0.0907808\pi\)
\(350\) −385.853 + 531.081i −1.10244 + 1.51737i
\(351\) −13.9990 + 42.1456i −0.0398833 + 0.120073i
\(352\) 0 0
\(353\) 16.9433i 0.0479980i 0.999712 + 0.0239990i \(0.00763985\pi\)
−0.999712 + 0.0239990i \(0.992360\pi\)
\(354\) 1190.87 + 255.839i 3.36403 + 0.722708i
\(355\) −6.58434 + 20.2645i −0.0185474 + 0.0570832i
\(356\) −629.029 + 204.384i −1.76693 + 0.574112i
\(357\) −285.713 165.787i −0.800317 0.464390i
\(358\) 395.141 287.086i 1.10374 0.801917i
\(359\) 72.1739 23.4507i 0.201041 0.0653223i −0.206765 0.978391i \(-0.566294\pi\)
0.407807 + 0.913068i \(0.366294\pi\)
\(360\) −162.734 284.721i −0.452040 0.790892i
\(361\) 201.742 + 146.574i 0.558842 + 0.406022i
\(362\) 467.565i 1.29162i
\(363\) 0 0
\(364\) 129.285 0.355179
\(365\) 91.5131 125.957i 0.250721 0.345087i
\(366\) 829.832 85.3921i 2.26730 0.233312i
\(367\) 191.376 + 588.996i 0.521462 + 1.60489i 0.771209 + 0.636583i \(0.219653\pi\)
−0.249747 + 0.968311i \(0.580347\pi\)
\(368\) 324.879 + 447.157i 0.882823 + 1.21510i
\(369\) −347.812 38.0890i −0.942580 0.103222i
\(370\) −16.7586 51.5776i −0.0452935 0.139399i
\(371\) 339.833 + 110.419i 0.915993 + 0.297624i
\(372\) 608.378 + 130.700i 1.63542 + 0.351345i
\(373\) 365.674 0.980359 0.490179 0.871622i \(-0.336931\pi\)
0.490179 + 0.871622i \(0.336931\pi\)
\(374\) 0 0
\(375\) −115.641 261.264i −0.308376 0.696704i
\(376\) 640.180 + 465.118i 1.70261 + 1.23702i
\(377\) 18.1595 + 5.90037i 0.0481683 + 0.0156508i
\(378\) −5.60874 + 858.423i −0.0148379 + 2.27096i
\(379\) 331.603 240.924i 0.874943 0.635683i −0.0569658 0.998376i \(-0.518143\pi\)
0.931909 + 0.362693i \(0.118143\pi\)
\(380\) −114.912 158.162i −0.302399 0.416217i
\(381\) −28.5847 31.8859i −0.0750254 0.0836900i
\(382\) −349.829 + 1076.66i −0.915784 + 2.81849i
\(383\) −31.1300 + 42.8468i −0.0812795 + 0.111872i −0.847721 0.530443i \(-0.822026\pi\)
0.766441 + 0.642314i \(0.222026\pi\)
\(384\) −175.956 397.532i −0.458219 1.03524i
\(385\) 0 0
\(386\) 525.213i 1.36065i
\(387\) −139.611 + 29.0402i −0.360752 + 0.0750394i
\(388\) 211.481 650.871i 0.545053 1.67750i
\(389\) 86.2286 28.0174i 0.221667 0.0720241i −0.196078 0.980588i \(-0.562821\pi\)
0.417745 + 0.908564i \(0.362821\pi\)
\(390\) −18.5353 + 31.9433i −0.0475265 + 0.0819059i
\(391\) −204.411 + 148.514i −0.522791 + 0.379830i
\(392\) 490.879 159.496i 1.25224 0.406878i
\(393\) 458.637 47.1950i 1.16701 0.120089i
\(394\) 665.927 + 483.824i 1.69017 + 1.22798i
\(395\) 180.081i 0.455902i
\(396\) 0 0
\(397\) −335.768 −0.845763 −0.422882 0.906185i \(-0.638981\pi\)
−0.422882 + 0.906185i \(0.638981\pi\)
\(398\) −820.981 + 1129.98i −2.06277 + 2.83915i
\(399\) 28.7568 + 279.456i 0.0720721 + 0.700390i
\(400\) 173.395 + 533.656i 0.433489 + 1.33414i
\(401\) −11.1216 15.3075i −0.0277346 0.0381734i 0.794925 0.606708i \(-0.207510\pi\)
−0.822659 + 0.568535i \(0.807510\pi\)
\(402\) 585.567 + 339.780i 1.45663 + 0.845223i
\(403\) −11.8876 36.5863i −0.0294978 0.0907849i
\(404\) −107.923 35.0662i −0.267135 0.0867975i
\(405\) −145.615 85.7707i −0.359543 0.211780i
\(406\) 369.087 0.909082
\(407\) 0 0
\(408\) −595.221 + 263.458i −1.45888 + 0.645730i
\(409\) −96.4856 70.1009i −0.235906 0.171396i 0.463551 0.886070i \(-0.346575\pi\)
−0.699457 + 0.714674i \(0.746575\pi\)
\(410\) −276.731 89.9154i −0.674954 0.219306i
\(411\) 180.136 161.486i 0.438288 0.392911i
\(412\) 506.283 367.836i 1.22884 0.892806i
\(413\) −589.625 811.549i −1.42766 1.96501i
\(414\) 598.678 + 269.680i 1.44608 + 0.651400i
\(415\) −7.61317 + 23.4309i −0.0183450 + 0.0564601i
\(416\) 26.7141 36.7688i 0.0642165 0.0883865i
\(417\) 581.416 257.347i 1.39428 0.617140i
\(418\) 0 0
\(419\) 412.874i 0.985381i 0.870205 + 0.492690i \(0.163986\pi\)
−0.870205 + 0.492690i \(0.836014\pi\)
\(420\) −103.337 + 481.010i −0.246041 + 1.14526i
\(421\) 186.937 575.334i 0.444032 1.36659i −0.439511 0.898237i \(-0.644848\pi\)
0.883542 0.468351i \(-0.155152\pi\)
\(422\) 695.951 226.128i 1.64917 0.535849i
\(423\) 405.354 + 44.3904i 0.958284 + 0.104942i
\(424\) 569.638 413.866i 1.34349 0.976100i
\(425\) −243.953 + 79.2651i −0.574007 + 0.186506i
\(426\) −11.2502 109.328i −0.0264089 0.256639i
\(427\) −555.816 403.824i −1.30168 0.945724i
\(428\) 1633.76i 3.81721i
\(429\) 0 0
\(430\) −118.587 −0.275783
\(431\) −260.636 + 358.735i −0.604724 + 0.832331i −0.996130 0.0878868i \(-0.971989\pi\)
0.391407 + 0.920218i \(0.371989\pi\)
\(432\) 590.806 + 435.172i 1.36761 + 1.00734i
\(433\) 67.6685 + 208.262i 0.156278 + 0.480975i 0.998288 0.0584870i \(-0.0186276\pi\)
−0.842010 + 0.539462i \(0.818628\pi\)
\(434\) −437.082 601.592i −1.00710 1.38616i
\(435\) −36.4673 + 62.8468i −0.0838329 + 0.144475i
\(436\) −160.429 493.749i −0.367956 1.13245i
\(437\) 204.365 + 66.4022i 0.467655 + 0.151950i
\(438\) −168.678 + 785.157i −0.385110 + 1.79260i
\(439\) −171.641 −0.390982 −0.195491 0.980705i \(-0.562630\pi\)
−0.195491 + 0.980705i \(0.562630\pi\)
\(440\) 0 0
\(441\) 178.834 196.884i 0.405519 0.446449i
\(442\) 59.3035 + 43.0865i 0.134171 + 0.0974808i
\(443\) −563.538 183.105i −1.27209 0.413328i −0.406305 0.913737i \(-0.633183\pi\)
−0.865789 + 0.500409i \(0.833183\pi\)
\(444\) 128.684 + 143.546i 0.289829 + 0.323301i
\(445\) −125.883 + 91.4591i −0.282882 + 0.205526i
\(446\) 34.8328 + 47.9432i 0.0781005 + 0.107496i
\(447\) −505.575 + 453.232i −1.13104 + 1.01394i
\(448\) −26.2518 + 80.7946i −0.0585977 + 0.180345i
\(449\) 256.349 352.835i 0.570934 0.785823i −0.421731 0.906721i \(-0.638577\pi\)
0.992665 + 0.120898i \(0.0385773\pi\)
\(450\) 493.430 + 448.194i 1.09651 + 0.995986i
\(451\) 0 0
\(452\) 1347.99i 2.98229i
\(453\) −799.935 171.853i −1.76586 0.379367i
\(454\) −125.107 + 385.039i −0.275566 + 0.848103i
\(455\) 28.9267 9.39886i 0.0635752 0.0206568i
\(456\) 478.812 + 277.834i 1.05003 + 0.609286i
\(457\) 192.984 140.211i 0.422285 0.306808i −0.356272 0.934382i \(-0.615952\pi\)
0.778556 + 0.627575i \(0.215952\pi\)
\(458\) 1257.62 408.624i 2.74589 0.892192i
\(459\) −198.932 + 270.078i −0.433403 + 0.588405i
\(460\) 304.446 + 221.193i 0.661838 + 0.480854i
\(461\) 711.175i 1.54268i −0.636424 0.771339i \(-0.719587\pi\)
0.636424 0.771339i \(-0.280413\pi\)
\(462\) 0 0
\(463\) −461.487 −0.996732 −0.498366 0.866967i \(-0.666066\pi\)
−0.498366 + 0.866967i \(0.666066\pi\)
\(464\) 185.439 255.234i 0.399652 0.550074i
\(465\) 145.622 14.9849i 0.313166 0.0322257i
\(466\) −193.483 595.479i −0.415199 1.27785i
\(467\) −28.4397 39.1438i −0.0608986 0.0838198i 0.777481 0.628906i \(-0.216497\pi\)
−0.838380 + 0.545086i \(0.816497\pi\)
\(468\) 14.2914 130.503i 0.0305372 0.278853i
\(469\) −172.295 530.269i −0.367366 1.13064i
\(470\) 322.514 + 104.791i 0.686199 + 0.222960i
\(471\) 17.7724 + 3.81812i 0.0377333 + 0.00810640i
\(472\) −1976.69 −4.18790
\(473\) 0 0
\(474\) 375.960 + 849.393i 0.793164 + 1.79197i
\(475\) 176.486 + 128.225i 0.371550 + 0.269947i
\(476\) 928.719 + 301.759i 1.95109 + 0.633948i
\(477\) 149.025 330.829i 0.312420 0.693561i
\(478\) −1002.27 + 728.193i −2.09680 + 1.52342i
\(479\) −100.761 138.685i −0.210357 0.289531i 0.690781 0.723064i \(-0.257267\pi\)
−0.901138 + 0.433533i \(0.857267\pi\)
\(480\) 115.447 + 128.780i 0.240515 + 0.268291i
\(481\) 3.68291 11.3348i 0.00765677 0.0235651i
\(482\) 551.274 758.763i 1.14372 1.57420i
\(483\) −218.872 494.489i −0.453150 1.02379i
\(484\) 0 0
\(485\) 161.002i 0.331964i
\(486\) 865.889 + 100.553i 1.78166 + 0.206899i
\(487\) −153.117 + 471.247i −0.314409 + 0.967653i 0.661587 + 0.749868i \(0.269883\pi\)
−0.975997 + 0.217785i \(0.930117\pi\)
\(488\) −1287.54 + 418.348i −2.63841 + 0.857270i
\(489\) 243.806 420.168i 0.498581 0.859240i
\(490\) 178.947 130.012i 0.365197 0.265331i
\(491\) 314.085 102.052i 0.639684 0.207846i 0.0288242 0.999584i \(-0.490824\pi\)
0.610860 + 0.791738i \(0.290824\pi\)
\(492\) 1028.91 105.878i 2.09128 0.215198i
\(493\) 116.677 + 84.7705i 0.236666 + 0.171948i
\(494\) 62.3413i 0.126197i
\(495\) 0 0
\(496\) −635.619 −1.28149
\(497\) −53.2028 + 73.2274i −0.107048 + 0.147339i
\(498\) −13.0081 126.411i −0.0261206 0.253838i
\(499\) 33.9303 + 104.427i 0.0679966 + 0.209272i 0.979281 0.202505i \(-0.0649083\pi\)
−0.911285 + 0.411777i \(0.864908\pi\)
\(500\) 496.454 + 683.310i 0.992908 + 1.36662i
\(501\) 413.116 + 239.714i 0.824582 + 0.478470i
\(502\) −219.872 676.695i −0.437991 1.34800i
\(503\) 543.721 + 176.666i 1.08096 + 0.351224i 0.794745 0.606943i \(-0.207604\pi\)
0.286210 + 0.958167i \(0.407604\pi\)
\(504\) −283.707 1363.92i −0.562911 2.70620i
\(505\) −26.6963 −0.0528639
\(506\) 0 0
\(507\) 456.194 201.921i 0.899791 0.398267i
\(508\) 102.415 + 74.4089i 0.201604 + 0.146474i
\(509\) 514.449 + 167.155i 1.01071 + 0.328398i 0.767136 0.641485i \(-0.221681\pi\)
0.243570 + 0.969883i \(0.421681\pi\)
\(510\) −207.706 + 186.202i −0.407267 + 0.365102i
\(511\) 535.067 388.749i 1.04710 0.760760i
\(512\) 674.549 + 928.437i 1.31748 + 1.81335i
\(513\) 285.267 + 1.86387i 0.556076 + 0.00363327i
\(514\) −2.06762 + 6.36348i −0.00402260 + 0.0123803i
\(515\) 86.5364 119.107i 0.168032 0.231276i
\(516\) 385.477 170.620i 0.747049 0.330660i
\(517\) 0 0
\(518\) 230.378i 0.444745i
\(519\) 24.2092 112.688i 0.0466459 0.217126i
\(520\) 18.5207 57.0007i 0.0356167 0.109617i
\(521\) 321.351 104.413i 0.616796 0.200409i 0.0160786 0.999871i \(-0.494882\pi\)
0.600717 + 0.799462i \(0.294882\pi\)
\(522\) 40.7995 372.564i 0.0781600 0.713724i
\(523\) 248.719 180.705i 0.475562 0.345516i −0.324043 0.946042i \(-0.605042\pi\)
0.799605 + 0.600526i \(0.205042\pi\)
\(524\) −1296.26 + 421.182i −2.47379 + 0.803782i
\(525\) −56.1952 546.100i −0.107038 1.04019i
\(526\) −78.6199 57.1207i −0.149467 0.108594i
\(527\) 290.564i 0.551355i
\(528\) 0 0
\(529\) 115.375 0.218100
\(530\) 177.361 244.116i 0.334643 0.460596i
\(531\) −884.372 + 505.469i −1.66548 + 0.951920i
\(532\) −256.634 789.837i −0.482394 1.48466i
\(533\) −37.5858 51.7324i −0.0705175 0.0970590i
\(534\) 402.812 694.194i 0.754329 1.29999i
\(535\) 118.772 + 365.544i 0.222005 + 0.683260i
\(536\) −1044.91 339.511i −1.94945 0.633415i
\(537\) −85.7937 + 399.349i −0.159765 + 0.743667i
\(538\) 512.434 0.952480
\(539\) 0 0
\(540\) 474.118 + 157.482i 0.877996 + 0.291634i
\(541\) −66.9072 48.6109i −0.123673 0.0898538i 0.524229 0.851577i \(-0.324354\pi\)
−0.647902 + 0.761723i \(0.724354\pi\)
\(542\) 359.345 + 116.758i 0.662998 + 0.215421i
\(543\) 261.010 + 291.153i 0.480681 + 0.536194i
\(544\) 277.721 201.776i 0.510516 0.370912i
\(545\) −71.7898 98.8103i −0.131724 0.181303i
\(546\) −116.817 + 104.723i −0.213950 + 0.191800i
\(547\) 122.586 377.280i 0.224105 0.689725i −0.774276 0.632848i \(-0.781886\pi\)
0.998381 0.0568769i \(-0.0181142\pi\)
\(548\) −420.366 + 578.584i −0.767091 + 1.05581i
\(549\) −469.069 + 516.413i −0.854407 + 0.940642i
\(550\) 0 0
\(551\) 122.653i 0.222601i
\(552\) −1041.81 223.817i −1.88735 0.405466i
\(553\) 236.394 727.547i 0.427476 1.31564i
\(554\) 835.593 271.500i 1.50829 0.490073i
\(555\) 39.2279 + 22.7623i 0.0706808 + 0.0410131i
\(556\) −1520.64 + 1104.81i −2.73496 + 1.98706i
\(557\) 364.339 118.381i 0.654109 0.212533i 0.0368842 0.999320i \(-0.488257\pi\)
0.617225 + 0.786787i \(0.288257\pi\)
\(558\) −655.575 + 374.698i −1.17487 + 0.671503i
\(559\) −21.0837 15.3182i −0.0377168 0.0274029i
\(560\) 502.548i 0.897407i
\(561\) 0 0
\(562\) 233.573 0.415610
\(563\) 85.1328 117.175i 0.151213 0.208127i −0.726690 0.686966i \(-0.758942\pi\)
0.877903 + 0.478839i \(0.158942\pi\)
\(564\) −1199.13 + 123.394i −2.12612 + 0.218784i
\(565\) 97.9974 + 301.605i 0.173447 + 0.533814i
\(566\) −332.256 457.311i −0.587025 0.807971i
\(567\) −475.706 537.672i −0.838988 0.948275i
\(568\) 55.1163 + 169.630i 0.0970357 + 0.298645i
\(569\) 877.968 + 285.269i 1.54300 + 0.501352i 0.952203 0.305466i \(-0.0988124\pi\)
0.590800 + 0.806818i \(0.298812\pi\)
\(570\) 231.943 + 49.8292i 0.406918 + 0.0874197i
\(571\) −421.725 −0.738573 −0.369287 0.929316i \(-0.620398\pi\)
−0.369287 + 0.929316i \(0.620398\pi\)
\(572\) 0 0
\(573\) −383.189 865.726i −0.668742 1.51087i
\(574\) −999.989 726.534i −1.74214 1.26574i
\(575\) −399.361 129.760i −0.694541 0.225670i
\(576\) 78.6538 + 35.4302i 0.136552 + 0.0615108i
\(577\) −372.478 + 270.621i −0.645542 + 0.469014i −0.861750 0.507334i \(-0.830631\pi\)
0.216208 + 0.976347i \(0.430631\pi\)
\(578\) −283.930 390.796i −0.491229 0.676118i
\(579\) 293.190 + 327.051i 0.506374 + 0.564854i
\(580\) 66.3763 204.285i 0.114442 0.352216i
\(581\) −61.5160 + 84.6694i −0.105879 + 0.145731i
\(582\) 336.128 + 759.403i 0.577539 + 1.30482i
\(583\) 0 0
\(584\) 1303.26i 2.23161i
\(585\) −6.28978 30.2382i −0.0107518 0.0516892i
\(586\) 203.979 627.784i 0.348088 1.07130i
\(587\) 40.3860 13.1222i 0.0688007 0.0223547i −0.274414 0.961612i \(-0.588484\pi\)
0.343215 + 0.939257i \(0.388484\pi\)
\(588\) −394.623 + 680.082i −0.671128 + 1.15660i
\(589\) −199.918 + 145.249i −0.339420 + 0.246603i
\(590\) −805.643 + 261.769i −1.36550 + 0.443677i
\(591\) −684.760 + 70.4637i −1.15865 + 0.119228i
\(592\) −159.313 115.748i −0.269109 0.195519i
\(593\) 106.267i 0.179203i 0.995978 + 0.0896015i \(0.0285593\pi\)
−0.995978 + 0.0896015i \(0.971441\pi\)
\(594\) 0 0
\(595\) 229.732 0.386105
\(596\) 1179.81 1623.87i 1.97955 2.72461i
\(597\) −119.567 1161.94i −0.200279 1.94630i
\(598\) 37.0822 + 114.127i 0.0620103 + 0.190848i
\(599\) 427.915 + 588.974i 0.714382 + 0.983263i 0.999692 + 0.0248274i \(0.00790362\pi\)
−0.285309 + 0.958435i \(0.592096\pi\)
\(600\) −935.673 542.931i −1.55945 0.904886i
\(601\) 36.6474 + 112.789i 0.0609774 + 0.187669i 0.976905 0.213675i \(-0.0685432\pi\)
−0.915927 + 0.401344i \(0.868543\pi\)
\(602\) −479.102 155.670i −0.795851 0.258588i
\(603\) −554.309 + 115.301i −0.919253 + 0.191212i
\(604\) 2418.71 4.00448
\(605\) 0 0
\(606\) 125.919 55.7343i 0.207787 0.0919708i
\(607\) 576.993 + 419.210i 0.950565 + 0.690626i 0.950941 0.309374i \(-0.100119\pi\)
−0.000375194 1.00000i \(0.500119\pi\)
\(608\) −277.658 90.2165i −0.456674 0.148382i
\(609\) −229.831 + 206.036i −0.377391 + 0.338319i
\(610\) −469.365 + 341.013i −0.769450 + 0.559038i
\(611\) 43.8040 + 60.2910i 0.0716923 + 0.0986760i
\(612\) 407.264 904.110i 0.665464 1.47730i
\(613\) −212.439 + 653.818i −0.346555 + 1.06659i 0.614190 + 0.789158i \(0.289483\pi\)
−0.960746 + 0.277430i \(0.910517\pi\)
\(614\) −815.316 + 1122.19i −1.32788 + 1.82767i
\(615\) 222.515 98.4898i 0.361812 0.160146i
\(616\) 0 0
\(617\) 762.156i 1.23526i −0.786468 0.617631i \(-0.788093\pi\)
0.786468 0.617631i \(-0.211907\pi\)
\(618\) −159.505 + 742.458i −0.258099 + 1.20139i
\(619\) −163.995 + 504.724i −0.264935 + 0.815386i 0.726773 + 0.686877i \(0.241019\pi\)
−0.991708 + 0.128509i \(0.958981\pi\)
\(620\) −411.578 + 133.730i −0.663836 + 0.215693i
\(621\) −523.342 + 166.272i −0.842740 + 0.267748i
\(622\) −267.702 + 194.497i −0.430388 + 0.312695i
\(623\) −628.637 + 204.257i −1.00905 + 0.327860i
\(624\) 13.7270 + 133.397i 0.0219983 + 0.213778i
\(625\) −256.839 186.605i −0.410943 0.298568i
\(626\) 266.885i 0.426334i
\(627\) 0 0
\(628\) −53.7372 −0.0855688
\(629\) 52.9123 72.8275i 0.0841212 0.115783i
\(630\) −296.253 518.326i −0.470242 0.822739i
\(631\) 209.034 + 643.341i 0.331274 + 1.01956i 0.968528 + 0.248904i \(0.0800703\pi\)
−0.637254 + 0.770654i \(0.719930\pi\)
\(632\) −886.043 1219.53i −1.40197 1.92964i
\(633\) −307.138 + 529.312i −0.485210 + 0.836196i
\(634\) 580.624 + 1786.98i 0.915811 + 2.81858i
\(635\) 28.3241 + 9.20306i 0.0446049 + 0.0144930i
\(636\) −225.298 + 1048.71i −0.354241 + 1.64891i
\(637\) 48.6093 0.0763097
\(638\) 0 0
\(639\) 68.0360 + 61.7987i 0.106473 + 0.0967115i
\(640\) 244.599 + 177.712i 0.382186 + 0.277674i
\(641\) 747.420 + 242.852i 1.16602 + 0.378864i 0.827157 0.561971i \(-0.189957\pi\)
0.338865 + 0.940835i \(0.389957\pi\)
\(642\) −1323.37 1476.20i −2.06132 2.29938i
\(643\) 687.427 499.445i 1.06909 0.776741i 0.0933438 0.995634i \(-0.470244\pi\)
0.975749 + 0.218893i \(0.0702444\pi\)
\(644\) 939.629 + 1293.29i 1.45905 + 2.00821i
\(645\) 73.8441 66.1989i 0.114487 0.102634i
\(646\) 145.508 447.828i 0.225245 0.693233i
\(647\) 687.343 946.046i 1.06235 1.46220i 0.184769 0.982782i \(-0.440846\pi\)
0.877584 0.479422i \(-0.159154\pi\)
\(648\) −1408.13 + 135.609i −2.17305 + 0.209274i
\(649\) 0 0
\(650\) 121.825i 0.187423i
\(651\) 608.000 + 130.619i 0.933947 + 0.200644i
\(652\) −443.765 + 1365.77i −0.680622 + 2.09474i
\(653\) 509.322 165.489i 0.779972 0.253428i 0.108144 0.994135i \(-0.465509\pi\)
0.671828 + 0.740707i \(0.265509\pi\)
\(654\) 544.900 + 316.183i 0.833181 + 0.483460i
\(655\) −259.411 + 188.473i −0.396048 + 0.287746i
\(656\) −1004.84 + 326.492i −1.53177 + 0.497701i
\(657\) −333.263 583.080i −0.507250 0.887488i
\(658\) 1165.43 + 846.732i 1.77117 + 1.28683i
\(659\) 138.756i 0.210555i −0.994443 0.105278i \(-0.966427\pi\)
0.994443 0.105278i \(-0.0335731\pi\)
\(660\) 0 0
\(661\) 27.1690 0.0411029 0.0205515 0.999789i \(-0.493458\pi\)
0.0205515 + 0.999789i \(0.493458\pi\)
\(662\) 530.734 730.493i 0.801713 1.10346i
\(663\) −60.9807 + 6.27508i −0.0919769 + 0.00946468i
\(664\) 63.7284 + 196.136i 0.0959765 + 0.295385i
\(665\) −114.840 158.064i −0.172692 0.237690i
\(666\) −232.548 25.4664i −0.349171 0.0382378i
\(667\) 72.9572 + 224.539i 0.109381 + 0.336640i
\(668\) −1342.84 436.317i −2.01025 0.653169i
\(669\) −48.4539 10.4095i −0.0724273 0.0155598i
\(670\) −470.835 −0.702738
\(671\) 0 0
\(672\) 297.367 + 671.831i 0.442511 + 0.999749i
\(673\) −531.916 386.460i −0.790366 0.574234i 0.117706 0.993048i \(-0.462446\pi\)
−0.908072 + 0.418814i \(0.862446\pi\)
\(674\) 169.392 + 55.0388i 0.251323 + 0.0816599i
\(675\) −557.456 3.64229i −0.825861 0.00539599i
\(676\) −1193.13 + 866.860i −1.76499 + 1.28234i
\(677\) 359.292 + 494.523i 0.530712 + 0.730463i 0.987239 0.159247i \(-0.0509066\pi\)
−0.456526 + 0.889710i \(0.650907\pi\)
\(678\) −1091.89 1217.99i −1.61046 1.79645i
\(679\) 211.349 650.466i 0.311265 0.957976i
\(680\) 266.086 366.236i 0.391303 0.538583i
\(681\) −137.037 309.603i −0.201229 0.454630i
\(682\) 0 0
\(683\) 990.520i 1.45025i 0.688618 + 0.725124i \(0.258218\pi\)
−0.688618 + 0.725124i \(0.741782\pi\)
\(684\) −825.646 + 171.741i −1.20708 + 0.251083i
\(685\) −51.9918 + 160.014i −0.0759005 + 0.233598i
\(686\) −588.032 + 191.063i −0.857189 + 0.278518i
\(687\) −555.012 + 956.492i −0.807878 + 1.39227i
\(688\) −348.363 + 253.100i −0.506341 + 0.367879i
\(689\) 63.0665 20.4915i 0.0915333 0.0297410i
\(690\) −454.254 + 46.7440i −0.658339 + 0.0677449i
\(691\) −463.629 336.846i −0.670954 0.487477i 0.199390 0.979920i \(-0.436104\pi\)
−0.870344 + 0.492443i \(0.836104\pi\)
\(692\) 340.727i 0.492380i
\(693\) 0 0
\(694\) 1649.35 2.37659
\(695\) −259.915 + 357.742i −0.373978 + 0.514737i
\(696\) 62.2597 + 605.034i 0.0894536 + 0.869302i
\(697\) −149.251 459.347i −0.214133 0.659035i
\(698\) −830.239 1142.73i −1.18945 1.63714i
\(699\) 452.898 + 262.797i 0.647922 + 0.375962i
\(700\) 501.502 + 1543.46i 0.716431 + 2.20495i
\(701\) −778.940 253.093i −1.11118 0.361046i −0.304787 0.952420i \(-0.598585\pi\)
−0.806397 + 0.591375i \(0.798585\pi\)
\(702\) 92.7959 + 129.493i 0.132188 + 0.184464i
\(703\) −76.5580 −0.108902
\(704\) 0 0
\(705\) −259.327 + 114.784i −0.367840 + 0.162814i
\(706\) 49.1722 + 35.7257i 0.0696490 + 0.0506030i
\(707\) −107.856 35.0444i −0.152554 0.0495677i
\(708\) 2242.19 2010.05i 3.16693 2.83905i
\(709\) −145.495 + 105.708i −0.205212 + 0.149095i −0.685645 0.727936i \(-0.740480\pi\)
0.480433 + 0.877032i \(0.340480\pi\)
\(710\) 44.9276 + 61.8376i 0.0632783 + 0.0870952i
\(711\) −708.269 319.045i −0.996159 0.448728i
\(712\) −402.492 + 1238.74i −0.565298 + 1.73981i
\(713\) 279.589 384.821i 0.392130 0.539721i
\(714\) −1083.58 + 479.617i −1.51762 + 0.671732i
\(715\) 0 0
\(716\) 1207.48i 1.68643i
\(717\) 217.615 1012.95i 0.303508 1.41276i
\(718\) 84.1241 258.907i 0.117165 0.360595i
\(719\) −633.724 + 205.910i −0.881397 + 0.286383i −0.714537 0.699597i \(-0.753363\pi\)
−0.166860 + 0.985981i \(0.553363\pi\)
\(720\) −507.282 55.5525i −0.704558 0.0771563i
\(721\) 505.968 367.607i 0.701759 0.509858i
\(722\) 850.765 276.430i 1.17834 0.382867i
\(723\) 80.2869 + 780.221i 0.111047 + 1.07914i
\(724\) −935.163 679.436i −1.29166 0.938447i
\(725\) 239.684i 0.330598i
\(726\) 0 0
\(727\) 162.429 0.223424 0.111712 0.993741i \(-0.464367\pi\)
0.111712 + 0.993741i \(0.464367\pi\)
\(728\) 149.651 205.976i 0.205564 0.282935i
\(729\) −595.322 + 420.752i −0.816629 + 0.577164i
\(730\) −172.588 531.172i −0.236422 0.727633i
\(731\) −115.701 159.249i −0.158278 0.217851i
\(732\) 1035.07 1783.81i 1.41403 2.43690i
\(733\) −361.513 1112.62i −0.493196 1.51790i −0.819749 0.572723i \(-0.805887\pi\)
0.326552 0.945179i \(-0.394113\pi\)
\(734\) 2112.89 + 686.520i 2.87860 + 0.935313i
\(735\) −38.8533 + 180.853i −0.0528616 + 0.246058i
\(736\) 561.967 0.763542
\(737\) 0 0
\(738\) −843.919 + 929.096i −1.14352 + 1.25894i
\(739\) −196.087 142.465i −0.265341 0.192781i 0.447157 0.894455i \(-0.352436\pi\)
−0.712498 + 0.701674i \(0.752436\pi\)
\(740\) −127.511 41.4309i −0.172313 0.0559877i
\(741\) 34.8009 + 38.8200i 0.0469648 + 0.0523887i
\(742\) 1037.01 753.430i 1.39759 1.01540i
\(743\) −484.132 666.351i −0.651591 0.896838i 0.347576 0.937652i \(-0.387005\pi\)
−0.999167 + 0.0408136i \(0.987005\pi\)
\(744\) 912.443 817.976i 1.22640 1.09943i
\(745\) 145.922 449.101i 0.195868 0.602820i
\(746\) 771.041 1061.25i 1.03357 1.42258i
\(747\) 78.6669 + 71.4549i 0.105310 + 0.0956559i
\(748\) 0 0
\(749\) 1632.75i 2.17990i
\(750\) −1002.07 215.278i −1.33609 0.287037i
\(751\) −1.89680 + 5.83775i −0.00252570 + 0.00777330i −0.952311 0.305128i \(-0.901301\pi\)
0.949786 + 0.312901i \(0.101301\pi\)
\(752\) 1171.08 380.507i 1.55729 0.505993i
\(753\) 514.667 + 298.640i 0.683489 + 0.396600i
\(754\) 55.4139 40.2606i 0.0734933 0.0533960i
\(755\) 541.170 175.837i 0.716782 0.232896i
\(756\) 1708.75 + 1258.62i 2.26026 + 1.66484i
\(757\) 891.755 + 647.898i 1.17801 + 0.855876i 0.991946 0.126661i \(-0.0404261\pi\)
0.186066 + 0.982537i \(0.440426\pi\)
\(758\) 1470.37i 1.93980i
\(759\) 0 0
\(760\) −384.996 −0.506574
\(761\) −705.506 + 971.046i −0.927078 + 1.27601i 0.0339108 + 0.999425i \(0.489204\pi\)
−0.960989 + 0.276588i \(0.910796\pi\)
\(762\) −152.810 + 15.7246i −0.200538 + 0.0206360i
\(763\) −160.329 493.442i −0.210130 0.646713i
\(764\) 1645.05 + 2264.22i 2.15321 + 2.96364i
\(765\) 25.3950 231.896i 0.0331961 0.303132i
\(766\) 58.7094 + 180.689i 0.0766442 + 0.235887i
\(767\) −177.050 57.5270i −0.230834 0.0750027i
\(768\) −1412.26 303.402i −1.83888 0.395054i
\(769\) 1038.16 1.35001 0.675007 0.737811i \(-0.264141\pi\)
0.675007 + 0.737811i \(0.264141\pi\)
\(770\) 0 0
\(771\) −2.26479 5.11676i −0.00293747 0.00663652i
\(772\) −1050.46 763.205i −1.36070 0.988608i
\(773\) 557.520 + 181.149i 0.721242 + 0.234346i 0.646562 0.762862i \(-0.276206\pi\)
0.0746805 + 0.997208i \(0.476206\pi\)
\(774\) −210.097 + 466.407i −0.271443 + 0.602593i
\(775\) 390.671 283.839i 0.504092 0.366244i
\(776\) −792.170 1090.33i −1.02084 1.40506i
\(777\) 128.604 + 143.457i 0.165514 + 0.184629i
\(778\) 100.506 309.326i 0.129185 0.397591i
\(779\) −241.438 + 332.311i −0.309934 + 0.426587i
\(780\) 36.9545 + 83.4899i 0.0473775 + 0.107038i
\(781\) 0 0
\(782\) 906.383i 1.15906i
\(783\) 182.571 + 254.772i 0.233169 + 0.325379i
\(784\) 248.191 763.854i 0.316570 0.974303i
\(785\) −12.0233 + 3.90662i −0.0153164 + 0.00497659i
\(786\) 830.090 1430.55i 1.05609 1.82004i
\(787\) 302.139 219.517i 0.383912 0.278928i −0.379044 0.925379i \(-0.623747\pi\)
0.762956 + 0.646450i \(0.223747\pi\)
\(788\) 1935.36 628.838i 2.45605 0.798018i
\(789\) 80.8433 8.31900i 0.102463 0.0105437i
\(790\) −522.626 379.710i −0.661552 0.480646i
\(791\) 1347.16i 1.70311i
\(792\) 0 0
\(793\) −127.499 −0.160780
\(794\) −707.983 + 974.454i −0.891666 + 1.22727i
\(795\) 25.8306 + 251.020i 0.0324914 + 0.315748i
\(796\) 1067.05 + 3284.04i 1.34051 + 4.12567i
\(797\) −491.864 676.992i −0.617144 0.849426i 0.379997 0.924988i \(-0.375925\pi\)
−0.997141 + 0.0755619i \(0.975925\pi\)
\(798\) 871.662 + 505.788i 1.09231 + 0.633820i
\(799\) 173.943 + 535.341i 0.217701 + 0.670014i
\(800\) 542.587 + 176.297i 0.678234 + 0.220372i
\(801\) 136.690 + 657.138i 0.170649 + 0.820397i
\(802\) −67.8754 −0.0846326
\(803\) 0 0
\(804\) 1530.49 677.429i 1.90360 0.842573i
\(805\) 304.256 + 221.055i 0.377958 + 0.274603i
\(806\) −131.245 42.6441i −0.162835 0.0529083i
\(807\) −319.094 + 286.057i −0.395407 + 0.354470i
\(808\) −180.790 + 131.352i −0.223750 + 0.162564i
\(809\) 304.962 + 419.745i 0.376962 + 0.518844i 0.954777 0.297324i \(-0.0960942\pi\)
−0.577814 + 0.816168i \(0.696094\pi\)
\(810\) −555.957 + 241.747i −0.686366 + 0.298453i
\(811\) −241.858 + 744.364i −0.298222 + 0.917834i 0.683897 + 0.729578i \(0.260284\pi\)
−0.982120 + 0.188256i \(0.939716\pi\)
\(812\) 536.334 738.200i 0.660510 0.909113i
\(813\) −288.943 + 127.892i −0.355403 + 0.157309i
\(814\) 0 0
\(815\) 337.843i 0.414531i
\(816\) −212.750 + 990.299i −0.260723 + 1.21360i
\(817\) −51.7314 + 159.213i −0.0633187 + 0.194875i
\(818\) −406.889 + 132.206i −0.497419 + 0.161621i
\(819\) 14.2825 130.422i 0.0174390 0.159245i
\(820\) −581.965 + 422.822i −0.709714 + 0.515637i
\(821\) 524.622 170.460i 0.639004 0.207625i 0.0284445 0.999595i \(-0.490945\pi\)
0.610560 + 0.791970i \(0.290945\pi\)
\(822\) −88.8346 863.287i −0.108071 1.05023i
\(823\) 37.3544 + 27.1396i 0.0453881 + 0.0329764i 0.610248 0.792210i \(-0.291070\pi\)
−0.564860 + 0.825187i \(0.691070\pi\)
\(824\) 1232.39i 1.49562i
\(825\) 0 0
\(826\) −3598.50 −4.35654
\(827\) 350.444 482.345i 0.423753 0.583247i −0.542752 0.839893i \(-0.682618\pi\)
0.966505 + 0.256646i \(0.0826176\pi\)
\(828\) 1409.34 805.518i 1.70210 0.972848i
\(829\) −428.629 1319.18i −0.517043 1.59129i −0.779534 0.626360i \(-0.784544\pi\)
0.262491 0.964935i \(-0.415456\pi\)
\(830\) 51.9477 + 71.4999i 0.0625876 + 0.0861445i
\(831\) −368.764 + 635.518i −0.443760 + 0.764763i
\(832\) 4.87182 + 14.9939i 0.00585555 + 0.0180215i
\(833\) 349.184 + 113.457i 0.419189 + 0.136203i
\(834\) 479.079 2230.00i 0.574435 2.67386i
\(835\) −332.172 −0.397811
\(836\) 0 0
\(837\) 199.059 599.288i 0.237824 0.715995i
\(838\) 1198.23 + 870.565i 1.42987 + 1.03886i
\(839\) 1583.51 + 514.515i 1.88738 + 0.613247i 0.982076 + 0.188486i \(0.0603581\pi\)
0.905305 + 0.424761i \(0.139642\pi\)
\(840\) 646.727 + 721.417i 0.769913 + 0.858830i
\(841\) −571.359 + 415.117i −0.679381 + 0.493599i
\(842\) −1275.55 1755.64i −1.51490 2.08509i
\(843\) −145.446 + 130.388i −0.172534 + 0.154671i
\(844\) 559.039 1720.55i 0.662369 2.03856i
\(845\) −203.936 + 280.693i −0.241344 + 0.332181i
\(846\) 983.537 1082.81i 1.16257 1.27991i
\(847\) 0 0
\(848\) 1095.66i 1.29206i
\(849\) 462.182 + 99.2924i 0.544384 + 0.116952i
\(850\) −284.346 + 875.127i −0.334525 + 1.02956i
\(851\) 140.153 45.5386i 0.164693 0.0535119i
\(852\) −235.012 136.368i −0.275836 0.160056i
\(853\) −657.366 + 477.604i −0.770652 + 0.559911i −0.902159 0.431404i \(-0.858018\pi\)
0.131507 + 0.991315i \(0.458018\pi\)
\(854\) −2343.93 + 761.589i −2.74465 + 0.891791i
\(855\) −172.248 + 98.4493i −0.201459 + 0.115145i
\(856\) 2602.90 + 1891.12i 3.04078 + 2.20925i
\(857\) 551.421i 0.643431i 0.946836 + 0.321716i \(0.104260\pi\)
−0.946836 + 0.321716i \(0.895740\pi\)
\(858\) 0 0
\(859\) −1196.04 −1.39236 −0.696180 0.717868i \(-0.745118\pi\)
−0.696180 + 0.717868i \(0.745118\pi\)
\(860\) −172.323 + 237.182i −0.200375 + 0.275793i
\(861\) 1028.27 105.812i 1.19427 0.122894i
\(862\) 491.544 + 1512.82i 0.570237 + 1.75501i
\(863\) −421.079 579.565i −0.487924 0.671570i 0.492079 0.870550i \(-0.336237\pi\)
−0.980003 + 0.198980i \(0.936237\pi\)
\(864\) 711.031 225.903i 0.822953 0.261462i
\(865\) 24.7704 + 76.2355i 0.0286363 + 0.0881335i
\(866\) 747.094 + 242.745i 0.862695 + 0.280307i
\(867\) 394.959 + 84.8505i 0.455546 + 0.0978668i
\(868\) −1838.37 −2.11793
\(869\) 0 0
\(870\) 105.499 + 238.350i 0.121263 + 0.273965i
\(871\) −83.7104 60.8192i −0.0961084 0.0698269i
\(872\) −972.339 315.932i −1.11507 0.362308i
\(873\) −633.230 285.244i −0.725350 0.326740i
\(874\) 623.624 453.089i 0.713528 0.518409i
\(875\) 496.145 + 682.885i 0.567023 + 0.780440i
\(876\) 1325.26 + 1478.31i 1.51285 + 1.68757i
\(877\) −306.432 + 943.101i −0.349410 + 1.07537i 0.609771 + 0.792578i \(0.291261\pi\)
−0.959181 + 0.282794i \(0.908739\pi\)
\(878\) −361.913 + 498.131i −0.412202 + 0.567348i
\(879\) 223.431 + 504.790i 0.254188 + 0.574278i
\(880\) 0 0
\(881\) 1256.55i 1.42628i 0.701021 + 0.713140i \(0.252728\pi\)
−0.701021 + 0.713140i \(0.747272\pi\)
\(882\) −194.310 934.145i −0.220306 1.05912i
\(883\) 86.0075 264.704i 0.0974037 0.299778i −0.890469 0.455044i \(-0.849624\pi\)
0.987873 + 0.155266i \(0.0496235\pi\)
\(884\) 172.352 56.0006i 0.194968 0.0633491i
\(885\) 355.547 612.740i 0.401748 0.692361i
\(886\) −1719.65 + 1249.40i −1.94091 + 1.41015i
\(887\) −1116.54 + 362.787i −1.25879 + 0.409005i −0.861062 0.508500i \(-0.830200\pi\)
−0.397725 + 0.917505i \(0.630200\pi\)
\(888\) 377.652 38.8614i 0.425283 0.0437628i
\(889\) 102.351 + 74.3626i 0.115131 + 0.0836475i
\(890\) 558.178i 0.627166i
\(891\) 0 0
\(892\) 146.507 0.164245
\(893\) 281.382 387.289i 0.315097 0.433694i
\(894\) 249.326 + 2422.92i 0.278888 + 2.71021i
\(895\) −87.7825 270.167i −0.0980810 0.301862i
\(896\) 754.921 + 1039.06i 0.842546 + 1.15966i
\(897\) −86.8005 50.3667i −0.0967676 0.0561501i
\(898\) −483.460 1487.94i −0.538374 1.65695i
\(899\) −258.218 83.9001i −0.287228 0.0933260i
\(900\) 1613.44 335.609i 1.79271 0.372899i
\(901\) 500.866 0.555900
\(902\) 0 0
\(903\) 385.237 170.514i 0.426619 0.188831i
\(904\) 2147.62 + 1560.34i 2.37568 + 1.72604i
\(905\) −258.631 84.0342i −0.285780 0.0928555i
\(906\) −2185.45 + 1959.18i −2.41219 + 2.16245i
\(907\) −117.806 + 85.5912i −0.129885 + 0.0943673i −0.650831 0.759223i \(-0.725579\pi\)
0.520946 + 0.853590i \(0.325579\pi\)
\(908\) 588.308 + 809.736i 0.647916 + 0.891780i
\(909\) −47.2970 + 104.998i −0.0520319 + 0.115509i
\(910\) 33.7163 103.768i 0.0370509 0.114031i
\(911\) −632.867 + 871.067i −0.694695 + 0.956166i 0.305297 + 0.952257i \(0.401244\pi\)
−0.999992 + 0.00390866i \(0.998756\pi\)
\(912\) 787.712 348.658i 0.863719 0.382301i
\(913\) 0 0
\(914\) 855.714i 0.936230i
\(915\) 101.909 474.364i 0.111376 0.518430i
\(916\) 1010.21 3109.11i 1.10285 3.39422i
\(917\) −1295.46 + 420.920i −1.41271 + 0.459018i
\(918\) 364.354 + 1146.81i 0.396899 + 1.24924i
\(919\) 255.740 185.806i 0.278280 0.202183i −0.439887 0.898053i \(-0.644981\pi\)
0.718167 + 0.695871i \(0.244981\pi\)
\(920\) 704.806 229.005i 0.766093 0.248919i
\(921\) −118.742 1153.92i −0.128927 1.25290i
\(922\) −2063.95 1499.55i −2.23855 1.62640i
\(923\) 16.7976i 0.0181990i
\(924\) 0 0
\(925\) 149.606 0.161737
\(926\) −973.067 + 1339.31i −1.05083 + 1.44634i
\(927\) −315.140 551.370i −0.339957 0.594790i
\(928\) −99.1224 305.067i −0.106813 0.328736i
\(929\) 657.526 + 905.007i 0.707778 + 0.974173i 0.999842 + 0.0177741i \(0.00565796\pi\)
−0.292064 + 0.956399i \(0.594342\pi\)
\(930\) 263.563 454.217i 0.283401 0.488405i
\(931\) −96.4904 296.967i −0.103642 0.318976i
\(932\) −1472.16 478.333i −1.57957 0.513233i
\(933\) 58.1239 270.553i 0.0622979 0.289982i
\(934\) −173.568 −0.185833
\(935\) 0 0
\(936\) −191.374 173.829i −0.204459 0.185715i
\(937\) 850.451 + 617.889i 0.907632 + 0.659433i 0.940415 0.340029i \(-0.110437\pi\)
−0.0327830 + 0.999462i \(0.510437\pi\)
\(938\) −1902.22 618.068i −2.02795 0.658922i
\(939\) 148.984 + 166.190i 0.158662 + 0.176986i
\(940\) 678.245 492.774i 0.721538 0.524228i
\(941\) −188.418 259.335i −0.200231 0.275595i 0.697080 0.716994i \(-0.254482\pi\)
−0.897311 + 0.441399i \(0.854482\pi\)
\(942\) 48.5548 43.5278i 0.0515443 0.0462079i
\(943\) 244.330 751.970i 0.259099 0.797423i
\(944\) −1807.98 + 2488.47i −1.91523 + 2.63609i
\(945\) 473.823 + 157.384i 0.501400 + 0.166544i
\(946\) 0 0
\(947\) 689.980i 0.728596i −0.931283 0.364298i \(-0.881309\pi\)
0.931283 0.364298i \(-0.118691\pi\)
\(948\) 2245.17 + 482.338i 2.36832 + 0.508795i
\(949\) 37.9284 116.732i 0.0399667 0.123005i
\(950\) 744.259 241.824i 0.783430 0.254552i
\(951\) −1359.10 788.631i −1.42913 0.829265i
\(952\) 1555.78 1130.34i 1.63422 1.18733i
\(953\) 1276.39 414.726i 1.33934 0.435179i 0.450249 0.892903i \(-0.351335\pi\)
0.889094 + 0.457724i \(0.151335\pi\)
\(954\) −645.895 1130.06i −0.677039 1.18455i
\(955\) 532.676 + 387.012i 0.557776 + 0.405248i
\(956\) 3062.78i 3.20374i
\(957\) 0 0
\(958\) −614.947 −0.641907
\(959\) −420.104 + 578.224i −0.438065 + 0.602945i
\(960\) −59.6794 + 6.14117i −0.0621660 + 0.00639706i
\(961\) −127.930 393.727i −0.133122 0.409706i
\(962\) −25.1299 34.5884i −0.0261226 0.0359547i
\(963\) 1648.13 + 180.487i 1.71145 + 0.187421i
\(964\) −716.504 2205.17i −0.743261 2.28752i
\(965\) −290.518 94.3950i −0.301055 0.0978187i
\(966\) −1896.59 407.452i −1.96334 0.421793i
\(967\) −1283.30 −1.32709 −0.663546 0.748135i \(-0.730949\pi\)
−0.663546 + 0.748135i \(0.730949\pi\)
\(968\) 0 0
\(969\) 159.384 + 360.091i 0.164483 + 0.371611i
\(970\) −467.256 339.481i −0.481707 0.349981i
\(971\) −809.179 262.918i −0.833346 0.270770i −0.138892 0.990308i \(-0.544354\pi\)
−0.694454 + 0.719537i \(0.744354\pi\)
\(972\) 1459.37 1585.72i 1.50141 1.63140i
\(973\) −1519.69 + 1104.12i −1.56186 + 1.13476i
\(974\) 1044.78 + 1438.02i 1.07267 + 1.47640i
\(975\) −68.0064 75.8604i −0.0697502 0.0778055i
\(976\) −650.988 + 2003.54i −0.666996 + 2.05280i
\(977\) −712.767 + 981.039i −0.729546 + 1.00413i 0.269606 + 0.962971i \(0.413107\pi\)
−0.999152 + 0.0411637i \(0.986893\pi\)
\(978\) −705.322 1593.51i −0.721188 1.62936i
\(979\) 0 0
\(980\) 546.831i 0.557991i
\(981\) −515.814 + 107.293i −0.525804 + 0.109371i
\(982\) 366.090 1126.71i 0.372801 1.14736i
\(983\) 432.404 140.496i 0.439882 0.142926i −0.0806993 0.996738i \(-0.525715\pi\)
0.520581 + 0.853812i \(0.325715\pi\)
\(984\) 1022.30 1761.81i 1.03893 1.79046i
\(985\) 387.310 281.397i 0.393208 0.285682i
\(986\) 492.036 159.872i 0.499022 0.162142i
\(987\) −1198.39 + 123.317i −1.21417 + 0.124941i
\(988\) −124.687 90.5904i −0.126201 0.0916907i
\(989\) 322.239i 0.325823i
\(990\) 0 0
\(991\) 697.554 0.703889 0.351945 0.936021i \(-0.385521\pi\)
0.351945 + 0.936021i \(0.385521\pi\)
\(992\) −379.860 + 522.832i −0.382923 + 0.527049i
\(993\) 77.2956 + 751.151i 0.0778405 + 0.756447i
\(994\) 100.337 + 308.807i 0.100943 + 0.310671i
\(995\) 477.490 + 657.209i 0.479890 + 0.660512i
\(996\) −271.734 157.676i −0.272825 0.158309i
\(997\) −202.089 621.967i −0.202697 0.623839i −0.999800 0.0199948i \(-0.993635\pi\)
0.797103 0.603844i \(-0.206365\pi\)
\(998\) 374.607 + 121.717i 0.375358 + 0.121961i
\(999\) 159.024 113.958i 0.159183 0.114072i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.323.4 16
3.2 odd 2 inner 363.3.h.j.323.1 16
11.2 odd 10 363.3.h.o.269.4 16
11.3 even 5 inner 363.3.h.j.245.1 16
11.4 even 5 363.3.h.n.251.4 16
11.5 even 5 363.3.b.l.122.8 8
11.6 odd 10 363.3.b.m.122.1 8
11.7 odd 10 363.3.h.o.251.1 16
11.8 odd 10 33.3.h.b.14.4 yes 16
11.9 even 5 363.3.h.n.269.1 16
11.10 odd 2 33.3.h.b.26.1 yes 16
33.2 even 10 363.3.h.o.269.1 16
33.5 odd 10 363.3.b.l.122.1 8
33.8 even 10 33.3.h.b.14.1 16
33.14 odd 10 inner 363.3.h.j.245.4 16
33.17 even 10 363.3.b.m.122.8 8
33.20 odd 10 363.3.h.n.269.4 16
33.26 odd 10 363.3.h.n.251.1 16
33.29 even 10 363.3.h.o.251.4 16
33.32 even 2 33.3.h.b.26.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.1 16 33.8 even 10
33.3.h.b.14.4 yes 16 11.8 odd 10
33.3.h.b.26.1 yes 16 11.10 odd 2
33.3.h.b.26.4 yes 16 33.32 even 2
363.3.b.l.122.1 8 33.5 odd 10
363.3.b.l.122.8 8 11.5 even 5
363.3.b.m.122.1 8 11.6 odd 10
363.3.b.m.122.8 8 33.17 even 10
363.3.h.j.245.1 16 11.3 even 5 inner
363.3.h.j.245.4 16 33.14 odd 10 inner
363.3.h.j.323.1 16 3.2 odd 2 inner
363.3.h.j.323.4 16 1.1 even 1 trivial
363.3.h.n.251.1 16 33.26 odd 10
363.3.h.n.251.4 16 11.4 even 5
363.3.h.n.269.1 16 11.9 even 5
363.3.h.n.269.4 16 33.20 odd 10
363.3.h.o.251.1 16 11.7 odd 10
363.3.h.o.251.4 16 33.29 even 10
363.3.h.o.269.1 16 33.2 even 10
363.3.h.o.269.4 16 11.2 odd 10