Properties

Label 363.3.h.j.269.4
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.4
Root \(2.91048 - 0.945671i\) of defining polynomial
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.j.251.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.91048 - 0.945671i) q^{2} +(1.65950 - 2.49921i) q^{3} +(4.34051 - 3.15356i) q^{4} +(6.31437 + 2.05166i) q^{5} +(2.46650 - 8.84324i) q^{6} +(-2.47800 + 1.80037i) q^{7} +(2.45561 - 3.37986i) q^{8} +(-3.49213 - 8.29488i) q^{9} +20.3180 q^{10} +(-0.678356 - 16.0812i) q^{12} +(-5.01988 - 15.4496i) q^{13} +(-5.50960 + 7.58331i) q^{14} +(15.6062 - 12.3762i) q^{15} +(-2.68094 + 8.25108i) q^{16} +(0.766216 + 0.248959i) q^{17} +(-18.0080 - 20.8396i) q^{18} +(16.7481 + 12.1682i) q^{19} +(33.8776 - 11.0075i) q^{20} +(0.387274 + 9.18076i) q^{21} +27.3224i q^{23} +(-4.37190 - 11.7460i) q^{24} +(15.4365 + 11.2153i) q^{25} +(-29.2204 - 40.2185i) q^{26} +(-26.5259 - 5.03778i) q^{27} +(-5.07819 + 15.6291i) q^{28} +(-2.22341 - 3.06025i) q^{29} +(33.7177 - 50.7790i) q^{30} +(-6.42137 - 19.7630i) q^{31} +43.2608i q^{32} +2.46549 q^{34} +(-19.3408 + 6.28420i) q^{35} +(-41.3160 - 24.9913i) q^{36} +(-31.1905 + 22.6613i) q^{37} +(60.2520 + 19.5771i) q^{38} +(-46.9423 - 13.0928i) q^{39} +(22.4400 - 16.3036i) q^{40} +(7.86024 - 10.8187i) q^{41} +(9.80913 + 26.3542i) q^{42} -43.4125 q^{43} +(-5.03227 - 59.5416i) q^{45} +(25.8380 + 79.5212i) q^{46} +(11.6912 - 16.0916i) q^{47} +(16.1722 + 20.3929i) q^{48} +(-12.2427 + 37.6791i) q^{49} +(55.5336 + 18.0440i) q^{50} +(1.89374 - 1.50179i) q^{51} +(-70.5100 - 51.2285i) q^{52} +(16.8103 - 5.46201i) q^{53} +(-81.9669 + 10.4224i) q^{54} +12.7963i q^{56} +(58.2044 - 21.6639i) q^{57} +(-9.36516 - 6.80419i) q^{58} +(-25.5837 - 35.2129i) q^{59} +(28.7098 - 102.934i) q^{60} +(-3.29249 + 10.1333i) q^{61} +(-37.3785 - 51.4471i) q^{62} +(23.5874 + 14.2676i) q^{63} +(30.1867 + 92.9052i) q^{64} -107.854i q^{65} +72.2963 q^{67} +(4.11087 - 1.33570i) q^{68} +(68.2845 + 45.3415i) q^{69} +(-50.3481 + 36.5800i) q^{70} +(2.44412 + 0.794142i) q^{71} +(-36.6108 - 8.56611i) q^{72} +(-36.7931 + 26.7318i) q^{73} +(-69.3492 + 95.4510i) q^{74} +(53.6463 - 19.9674i) q^{75} +111.068 q^{76} +(-149.006 + 6.28555i) q^{78} +(30.3585 + 93.4339i) q^{79} +(-33.8569 + 46.6000i) q^{80} +(-56.6101 + 57.9335i) q^{81} +(12.6461 - 38.9207i) q^{82} +(30.3393 + 9.85783i) q^{83} +(30.6331 + 38.6279i) q^{84} +(4.32739 + 3.14404i) q^{85} +(-126.351 + 41.0540i) q^{86} +(-11.3380 + 0.478272i) q^{87} +18.5409i q^{89} +(-70.9531 - 168.536i) q^{90} +(40.2543 + 29.2464i) q^{91} +(86.1629 + 118.593i) q^{92} +(-60.0481 - 16.7482i) q^{93} +(18.8097 - 57.8902i) q^{94} +(80.7886 + 111.196i) q^{95} +(108.118 + 71.7913i) q^{96} +(-19.5614 - 60.2037i) q^{97} +121.242i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.91048 0.945671i 1.45524 0.472835i 0.528626 0.848855i \(-0.322707\pi\)
0.926612 + 0.376020i \(0.122707\pi\)
\(3\) 1.65950 2.49921i 0.553166 0.833071i
\(4\) 4.34051 3.15356i 1.08513 0.788390i
\(5\) 6.31437 + 2.05166i 1.26287 + 0.410333i 0.862518 0.506027i \(-0.168886\pi\)
0.400357 + 0.916359i \(0.368886\pi\)
\(6\) 2.46650 8.84324i 0.411083 1.47387i
\(7\) −2.47800 + 1.80037i −0.354000 + 0.257196i −0.750545 0.660819i \(-0.770209\pi\)
0.396545 + 0.918015i \(0.370209\pi\)
\(8\) 2.45561 3.37986i 0.306951 0.422482i
\(9\) −3.49213 8.29488i −0.388014 0.921653i
\(10\) 20.3180 2.03180
\(11\) 0 0
\(12\) −0.678356 16.0812i −0.0565297 1.34010i
\(13\) −5.01988 15.4496i −0.386144 1.18843i −0.935647 0.352938i \(-0.885183\pi\)
0.549503 0.835492i \(-0.314817\pi\)
\(14\) −5.50960 + 7.58331i −0.393543 + 0.541665i
\(15\) 15.6062 12.3762i 1.04042 0.825081i
\(16\) −2.68094 + 8.25108i −0.167559 + 0.515693i
\(17\) 0.766216 + 0.248959i 0.0450715 + 0.0146446i 0.331466 0.943467i \(-0.392457\pi\)
−0.286394 + 0.958112i \(0.592457\pi\)
\(18\) −18.0080 20.8396i −1.00044 1.15776i
\(19\) 16.7481 + 12.1682i 0.881479 + 0.640432i 0.933642 0.358207i \(-0.116612\pi\)
−0.0521636 + 0.998639i \(0.516612\pi\)
\(20\) 33.8776 11.0075i 1.69388 0.550375i
\(21\) 0.387274 + 9.18076i 0.0184416 + 0.437179i
\(22\) 0 0
\(23\) 27.3224i 1.18793i 0.804491 + 0.593965i \(0.202438\pi\)
−0.804491 + 0.593965i \(0.797562\pi\)
\(24\) −4.37190 11.7460i −0.182163 0.489415i
\(25\) 15.4365 + 11.2153i 0.617462 + 0.448612i
\(26\) −29.2204 40.2185i −1.12386 1.54687i
\(27\) −26.5259 5.03778i −0.982439 0.186585i
\(28\) −5.07819 + 15.6291i −0.181364 + 0.558180i
\(29\) −2.22341 3.06025i −0.0766691 0.105526i 0.768960 0.639297i \(-0.220774\pi\)
−0.845629 + 0.533771i \(0.820774\pi\)
\(30\) 33.7177 50.7790i 1.12392 1.69263i
\(31\) −6.42137 19.7630i −0.207141 0.637515i −0.999619 0.0276136i \(-0.991209\pi\)
0.792478 0.609901i \(-0.208791\pi\)
\(32\) 43.2608i 1.35190i
\(33\) 0 0
\(34\) 2.46549 0.0725143
\(35\) −19.3408 + 6.28420i −0.552593 + 0.179548i
\(36\) −41.3160 24.9913i −1.14767 0.694204i
\(37\) −31.1905 + 22.6613i −0.842988 + 0.612466i −0.923204 0.384311i \(-0.874439\pi\)
0.0802160 + 0.996778i \(0.474439\pi\)
\(38\) 60.2520 + 19.5771i 1.58558 + 0.515186i
\(39\) −46.9423 13.0928i −1.20365 0.335714i
\(40\) 22.4400 16.3036i 0.560999 0.407590i
\(41\) 7.86024 10.8187i 0.191713 0.263871i −0.702330 0.711852i \(-0.747857\pi\)
0.894043 + 0.447981i \(0.147857\pi\)
\(42\) 9.80913 + 26.3542i 0.233551 + 0.627480i
\(43\) −43.4125 −1.00959 −0.504797 0.863238i \(-0.668433\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(44\) 0 0
\(45\) −5.03227 59.5416i −0.111828 1.32315i
\(46\) 25.8380 + 79.5212i 0.561695 + 1.72872i
\(47\) 11.6912 16.0916i 0.248749 0.342374i −0.666323 0.745663i \(-0.732133\pi\)
0.915073 + 0.403289i \(0.132133\pi\)
\(48\) 16.1722 + 20.3929i 0.336921 + 0.424852i
\(49\) −12.2427 + 37.6791i −0.249851 + 0.768962i
\(50\) 55.5336 + 18.0440i 1.11067 + 0.360880i
\(51\) 1.89374 1.50179i 0.0371321 0.0294469i
\(52\) −70.5100 51.2285i −1.35596 0.985164i
\(53\) 16.8103 5.46201i 0.317176 0.103057i −0.146102 0.989269i \(-0.546673\pi\)
0.463279 + 0.886213i \(0.346673\pi\)
\(54\) −81.9669 + 10.4224i −1.51791 + 0.193007i
\(55\) 0 0
\(56\) 12.7963i 0.228505i
\(57\) 58.2044 21.6639i 1.02113 0.380069i
\(58\) −9.36516 6.80419i −0.161468 0.117314i
\(59\) −25.5837 35.2129i −0.433621 0.596828i 0.535158 0.844752i \(-0.320252\pi\)
−0.968780 + 0.247923i \(0.920252\pi\)
\(60\) 28.7098 102.934i 0.478496 1.71557i
\(61\) −3.29249 + 10.1333i −0.0539753 + 0.166119i −0.974410 0.224777i \(-0.927835\pi\)
0.920435 + 0.390896i \(0.127835\pi\)
\(62\) −37.3785 51.4471i −0.602879 0.829792i
\(63\) 23.5874 + 14.2676i 0.374403 + 0.226470i
\(64\) 30.1867 + 92.9052i 0.471667 + 1.45164i
\(65\) 107.854i 1.65929i
\(66\) 0 0
\(67\) 72.2963 1.07905 0.539525 0.841970i \(-0.318604\pi\)
0.539525 + 0.841970i \(0.318604\pi\)
\(68\) 4.11087 1.33570i 0.0604540 0.0196427i
\(69\) 68.2845 + 45.3415i 0.989630 + 0.657123i
\(70\) −50.3481 + 36.5800i −0.719258 + 0.522571i
\(71\) 2.44412 + 0.794142i 0.0344242 + 0.0111851i 0.326178 0.945308i \(-0.394239\pi\)
−0.291754 + 0.956493i \(0.594239\pi\)
\(72\) −36.6108 8.56611i −0.508484 0.118974i
\(73\) −36.7931 + 26.7318i −0.504015 + 0.366188i −0.810549 0.585671i \(-0.800831\pi\)
0.306533 + 0.951860i \(0.400831\pi\)
\(74\) −69.3492 + 95.4510i −0.937152 + 1.28988i
\(75\) 53.6463 19.9674i 0.715285 0.266232i
\(76\) 111.068 1.46143
\(77\) 0 0
\(78\) −149.006 + 6.28555i −1.91033 + 0.0805840i
\(79\) 30.3585 + 93.4339i 0.384285 + 1.18271i 0.936998 + 0.349336i \(0.113593\pi\)
−0.552712 + 0.833372i \(0.686407\pi\)
\(80\) −33.8569 + 46.6000i −0.423211 + 0.582500i
\(81\) −56.6101 + 57.9335i −0.698890 + 0.715229i
\(82\) 12.6461 38.9207i 0.154221 0.474643i
\(83\) 30.3393 + 9.85783i 0.365534 + 0.118769i 0.486024 0.873945i \(-0.338447\pi\)
−0.120491 + 0.992714i \(0.538447\pi\)
\(84\) 30.6331 + 38.6279i 0.364679 + 0.459855i
\(85\) 4.32739 + 3.14404i 0.0509105 + 0.0369887i
\(86\) −126.351 + 41.0540i −1.46920 + 0.477372i
\(87\) −11.3380 + 0.478272i −0.130321 + 0.00549738i
\(88\) 0 0
\(89\) 18.5409i 0.208325i 0.994560 + 0.104162i \(0.0332161\pi\)
−0.994560 + 0.104162i \(0.966784\pi\)
\(90\) −70.9531 168.536i −0.788368 1.87262i
\(91\) 40.2543 + 29.2464i 0.442354 + 0.321389i
\(92\) 86.1629 + 118.593i 0.936553 + 1.28905i
\(93\) −60.0481 16.7482i −0.645678 0.180088i
\(94\) 18.8097 57.8902i 0.200103 0.615853i
\(95\) 80.7886 + 111.196i 0.850407 + 1.17048i
\(96\) 108.118 + 71.7913i 1.12623 + 0.747826i
\(97\) −19.5614 60.2037i −0.201664 0.620657i −0.999834 0.0182248i \(-0.994199\pi\)
0.798170 0.602432i \(-0.205801\pi\)
\(98\) 121.242i 1.23716i
\(99\) 0 0
\(100\) 102.371 1.02371
\(101\) −143.000 + 46.4634i −1.41584 + 0.460034i −0.914277 0.405089i \(-0.867241\pi\)
−0.501561 + 0.865122i \(0.667241\pi\)
\(102\) 4.09147 6.16178i 0.0401125 0.0604096i
\(103\) 121.164 88.0311i 1.17635 0.854671i 0.184597 0.982814i \(-0.440902\pi\)
0.991756 + 0.128144i \(0.0409019\pi\)
\(104\) −64.5443 20.9717i −0.620618 0.201651i
\(105\) −16.3904 + 58.7653i −0.156099 + 0.559670i
\(106\) 43.7608 31.7941i 0.412838 0.299944i
\(107\) 12.1974 16.7883i 0.113995 0.156900i −0.748207 0.663465i \(-0.769085\pi\)
0.862202 + 0.506565i \(0.169085\pi\)
\(108\) −131.023 + 61.7844i −1.21317 + 0.572078i
\(109\) 105.794 0.970583 0.485291 0.874352i \(-0.338714\pi\)
0.485291 + 0.874352i \(0.338714\pi\)
\(110\) 0 0
\(111\) 4.87462 + 115.558i 0.0439155 + 1.04106i
\(112\) −8.21165 25.2729i −0.0733183 0.225651i
\(113\) 78.0396 107.412i 0.690616 0.950552i −0.309384 0.950937i \(-0.600123\pi\)
1.00000 0.000385488i \(0.000122705\pi\)
\(114\) 148.915 118.094i 1.30628 1.03592i
\(115\) −56.0564 + 172.524i −0.487447 + 1.50021i
\(116\) −19.3014 6.27141i −0.166391 0.0540638i
\(117\) −110.622 + 95.5912i −0.945491 + 0.817019i
\(118\) −107.760 78.2925i −0.913224 0.663496i
\(119\) −2.34690 + 0.762555i −0.0197219 + 0.00640802i
\(120\) −3.50703 83.1381i −0.0292253 0.692817i
\(121\) 0 0
\(122\) 32.6062i 0.267264i
\(123\) −13.9942 37.5980i −0.113774 0.305675i
\(124\) −90.1957 65.5310i −0.727385 0.528476i
\(125\) −23.1004 31.7950i −0.184803 0.254360i
\(126\) 82.1429 + 19.2196i 0.651928 + 0.152536i
\(127\) 45.3190 139.478i 0.356843 1.09825i −0.598091 0.801428i \(-0.704074\pi\)
0.954933 0.296820i \(-0.0959263\pi\)
\(128\) 74.0031 + 101.857i 0.578150 + 0.795755i
\(129\) −72.0431 + 108.497i −0.558473 + 0.841063i
\(130\) −101.994 313.905i −0.784569 2.41465i
\(131\) 149.467i 1.14097i −0.821309 0.570484i \(-0.806756\pi\)
0.821309 0.570484i \(-0.193244\pi\)
\(132\) 0 0
\(133\) −63.4091 −0.476760
\(134\) 210.417 68.3685i 1.57027 0.510213i
\(135\) −157.158 86.2326i −1.16414 0.638760i
\(136\) 2.72298 1.97836i 0.0200219 0.0145467i
\(137\) −144.757 47.0345i −1.05662 0.343318i −0.271359 0.962478i \(-0.587473\pi\)
−0.785264 + 0.619161i \(0.787473\pi\)
\(138\) 241.618 + 67.3907i 1.75086 + 0.488338i
\(139\) 90.4769 65.7353i 0.650913 0.472916i −0.212669 0.977124i \(-0.568216\pi\)
0.863582 + 0.504208i \(0.168216\pi\)
\(140\) −64.1311 + 88.2689i −0.458079 + 0.630492i
\(141\) −20.8147 55.9228i −0.147622 0.396616i
\(142\) 7.86454 0.0553841
\(143\) 0 0
\(144\) 77.8039 6.57574i 0.540305 0.0456649i
\(145\) −7.76079 23.8853i −0.0535227 0.164726i
\(146\) −81.8060 + 112.596i −0.560315 + 0.771207i
\(147\) 73.8514 + 93.1256i 0.502391 + 0.633507i
\(148\) −63.9190 + 196.723i −0.431885 + 1.32921i
\(149\) −246.985 80.2503i −1.65762 0.538592i −0.677247 0.735756i \(-0.736827\pi\)
−0.980371 + 0.197164i \(0.936827\pi\)
\(150\) 137.254 108.846i 0.915025 0.725643i
\(151\) 71.2078 + 51.7355i 0.471575 + 0.342619i 0.798055 0.602585i \(-0.205863\pi\)
−0.326480 + 0.945204i \(0.605863\pi\)
\(152\) 82.2536 26.7258i 0.541142 0.175828i
\(153\) −0.610640 7.22507i −0.00399111 0.0472227i
\(154\) 0 0
\(155\) 137.965i 0.890098i
\(156\) −245.042 + 91.2058i −1.57078 + 0.584653i
\(157\) 6.19326 + 4.49967i 0.0394475 + 0.0286603i 0.607334 0.794446i \(-0.292239\pi\)
−0.567887 + 0.823107i \(0.692239\pi\)
\(158\) 176.715 + 243.228i 1.11845 + 1.53942i
\(159\) 14.2460 51.0768i 0.0895977 0.321238i
\(160\) −88.7566 + 273.165i −0.554729 + 1.70728i
\(161\) −49.1905 67.7049i −0.305531 0.420527i
\(162\) −109.976 + 222.149i −0.678866 + 1.37129i
\(163\) 81.1315 + 249.697i 0.497739 + 1.53188i 0.812644 + 0.582760i \(0.198027\pi\)
−0.314905 + 0.949123i \(0.601973\pi\)
\(164\) 71.7464i 0.437478i
\(165\) 0 0
\(166\) 97.6240 0.588096
\(167\) 152.175 49.4447i 0.911228 0.296076i 0.184364 0.982858i \(-0.440977\pi\)
0.726863 + 0.686782i \(0.240977\pi\)
\(168\) 31.9807 + 21.2355i 0.190361 + 0.126402i
\(169\) −76.7667 + 55.7743i −0.454241 + 0.330025i
\(170\) 15.5680 + 5.05835i 0.0915765 + 0.0297550i
\(171\) 42.4474 181.416i 0.248230 1.06091i
\(172\) −188.432 + 136.904i −1.09554 + 0.795954i
\(173\) 97.2924 133.912i 0.562384 0.774055i −0.429243 0.903189i \(-0.641220\pi\)
0.991627 + 0.129134i \(0.0412197\pi\)
\(174\) −32.5466 + 12.1140i −0.187049 + 0.0696206i
\(175\) −58.4435 −0.333963
\(176\) 0 0
\(177\) −130.461 + 5.50325i −0.737065 + 0.0310918i
\(178\) 17.5336 + 53.9628i 0.0985032 + 0.303162i
\(179\) 34.4072 47.3575i 0.192219 0.264567i −0.702019 0.712158i \(-0.747718\pi\)
0.894238 + 0.447591i \(0.147718\pi\)
\(180\) −209.611 242.571i −1.16450 1.34762i
\(181\) 87.9703 270.745i 0.486024 1.49583i −0.344468 0.938798i \(-0.611941\pi\)
0.830492 0.557030i \(-0.188059\pi\)
\(182\) 144.817 + 47.0537i 0.795695 + 0.258537i
\(183\) 19.8613 + 25.0448i 0.108531 + 0.136857i
\(184\) 92.3459 + 67.0932i 0.501880 + 0.364637i
\(185\) −243.442 + 79.0991i −1.31590 + 0.427563i
\(186\) −190.607 + 8.04041i −1.02477 + 0.0432280i
\(187\) 0 0
\(188\) 106.715i 0.567631i
\(189\) 74.8009 35.2728i 0.395772 0.186628i
\(190\) 340.288 + 247.234i 1.79099 + 1.30123i
\(191\) −80.7867 111.193i −0.422967 0.582164i 0.543354 0.839504i \(-0.317154\pi\)
−0.966321 + 0.257339i \(0.917154\pi\)
\(192\) 282.285 + 78.7330i 1.47023 + 0.410068i
\(193\) −92.1162 + 283.505i −0.477286 + 1.46894i 0.365563 + 0.930786i \(0.380876\pi\)
−0.842850 + 0.538149i \(0.819124\pi\)
\(194\) −113.866 156.723i −0.586937 0.807849i
\(195\) −269.549 178.983i −1.38230 0.917861i
\(196\) 65.6840 + 202.155i 0.335122 + 1.03140i
\(197\) 58.1375i 0.295114i 0.989054 + 0.147557i \(0.0471410\pi\)
−0.989054 + 0.147557i \(0.952859\pi\)
\(198\) 0 0
\(199\) −125.049 −0.628385 −0.314193 0.949359i \(-0.601734\pi\)
−0.314193 + 0.949359i \(0.601734\pi\)
\(200\) 75.8123 24.6329i 0.379061 0.123165i
\(201\) 119.976 180.684i 0.596894 0.898925i
\(202\) −372.258 + 270.461i −1.84286 + 1.33892i
\(203\) 11.0192 + 3.58035i 0.0542818 + 0.0176372i
\(204\) 3.48378 12.4905i 0.0170774 0.0612282i
\(205\) 71.8288 52.1867i 0.350384 0.254569i
\(206\) 269.397 370.794i 1.30775 1.79997i
\(207\) 226.636 95.4133i 1.09486 0.460934i
\(208\) 140.934 0.677566
\(209\) 0 0
\(210\) 7.86865 + 186.535i 0.0374698 + 0.888262i
\(211\) 14.9542 + 46.0242i 0.0708728 + 0.218124i 0.980219 0.197916i \(-0.0634175\pi\)
−0.909346 + 0.416040i \(0.863417\pi\)
\(212\) 55.7406 76.7204i 0.262927 0.361889i
\(213\) 6.04074 4.79049i 0.0283603 0.0224906i
\(214\) 19.6241 60.3967i 0.0917013 0.282228i
\(215\) −274.123 89.0679i −1.27499 0.414269i
\(216\) −82.1642 + 77.2828i −0.380390 + 0.357791i
\(217\) 51.4928 + 37.4117i 0.237294 + 0.172404i
\(218\) 307.909 100.046i 1.41243 0.458926i
\(219\) 5.75021 + 136.315i 0.0262567 + 0.622444i
\(220\) 0 0
\(221\) 13.0875i 0.0592193i
\(222\) 123.467 + 331.719i 0.556159 + 1.49423i
\(223\) −171.282 124.444i −0.768082 0.558044i 0.133297 0.991076i \(-0.457444\pi\)
−0.901378 + 0.433032i \(0.857444\pi\)
\(224\) −77.8855 107.200i −0.347703 0.478573i
\(225\) 39.1233 167.210i 0.173881 0.743153i
\(226\) 125.556 386.421i 0.555556 1.70983i
\(227\) 71.3484 + 98.2027i 0.314310 + 0.432611i 0.936719 0.350081i \(-0.113846\pi\)
−0.622409 + 0.782692i \(0.713846\pi\)
\(228\) 184.318 277.583i 0.808412 1.21747i
\(229\) 99.7951 + 307.138i 0.435786 + 1.34121i 0.892279 + 0.451485i \(0.149106\pi\)
−0.456492 + 0.889727i \(0.650894\pi\)
\(230\) 555.137i 2.41364i
\(231\) 0 0
\(232\) −15.8030 −0.0681166
\(233\) −382.714 + 124.351i −1.64255 + 0.533697i −0.977106 0.212752i \(-0.931757\pi\)
−0.665443 + 0.746449i \(0.731757\pi\)
\(234\) −231.566 + 382.828i −0.989599 + 1.63602i
\(235\) 106.837 77.6218i 0.454626 0.330305i
\(236\) −222.092 72.1621i −0.941068 0.305771i
\(237\) 283.891 + 79.1811i 1.19785 + 0.334098i
\(238\) −6.10948 + 4.43879i −0.0256701 + 0.0186504i
\(239\) −0.188940 + 0.260053i −0.000790543 + 0.00108809i −0.809412 0.587241i \(-0.800214\pi\)
0.808622 + 0.588329i \(0.200214\pi\)
\(240\) 60.2779 + 161.948i 0.251158 + 0.674784i
\(241\) −290.799 −1.20664 −0.603318 0.797500i \(-0.706155\pi\)
−0.603318 + 0.797500i \(0.706155\pi\)
\(242\) 0 0
\(243\) 50.8438 + 237.621i 0.209234 + 0.977866i
\(244\) 17.6648 + 54.3665i 0.0723965 + 0.222814i
\(245\) −154.610 + 212.802i −0.631060 + 0.868580i
\(246\) −76.2850 96.1943i −0.310102 0.391034i
\(247\) 103.920 319.834i 0.420730 1.29487i
\(248\) −82.5644 26.8268i −0.332921 0.108173i
\(249\) 74.9848 59.4653i 0.301144 0.238816i
\(250\) −97.3007 70.6931i −0.389203 0.282772i
\(251\) 107.109 34.8019i 0.426730 0.138653i −0.0877748 0.996140i \(-0.527976\pi\)
0.514505 + 0.857487i \(0.327976\pi\)
\(252\) 147.375 12.4557i 0.584821 0.0494272i
\(253\) 0 0
\(254\) 448.803i 1.76694i
\(255\) 15.0389 5.59755i 0.0589762 0.0219512i
\(256\) −4.41230 3.20572i −0.0172355 0.0125224i
\(257\) −115.540 159.027i −0.449572 0.618783i 0.522733 0.852496i \(-0.324912\pi\)
−0.972306 + 0.233713i \(0.924912\pi\)
\(258\) −107.077 + 383.907i −0.415027 + 1.48801i
\(259\) 36.4915 112.309i 0.140894 0.433626i
\(260\) −340.123 468.139i −1.30816 1.80053i
\(261\) −17.6200 + 29.1297i −0.0675097 + 0.111608i
\(262\) −141.346 435.020i −0.539490 1.66038i
\(263\) 378.327i 1.43850i −0.694749 0.719252i \(-0.744485\pi\)
0.694749 0.719252i \(-0.255515\pi\)
\(264\) 0 0
\(265\) 117.353 0.442842
\(266\) −184.551 + 59.9641i −0.693799 + 0.225429i
\(267\) 46.3376 + 30.7686i 0.173549 + 0.115238i
\(268\) 313.803 227.991i 1.17090 0.850712i
\(269\) 191.309 + 62.1601i 0.711186 + 0.231078i 0.642198 0.766539i \(-0.278023\pi\)
0.0689882 + 0.997617i \(0.478023\pi\)
\(270\) −538.953 102.358i −1.99612 0.379103i
\(271\) 64.8950 47.1490i 0.239465 0.173981i −0.461580 0.887099i \(-0.652717\pi\)
0.701045 + 0.713117i \(0.252717\pi\)
\(272\) −4.10836 + 5.65467i −0.0151043 + 0.0207892i
\(273\) 139.895 52.0695i 0.512436 0.190731i
\(274\) −465.792 −1.69997
\(275\) 0 0
\(276\) 439.376 18.5343i 1.59194 0.0671533i
\(277\) −67.6484 208.200i −0.244218 0.751626i −0.995764 0.0919450i \(-0.970692\pi\)
0.751546 0.659681i \(-0.229308\pi\)
\(278\) 201.167 276.882i 0.723622 0.995980i
\(279\) −141.507 + 122.279i −0.507194 + 0.438277i
\(280\) −26.2537 + 80.8006i −0.0937633 + 0.288574i
\(281\) 472.140 + 153.407i 1.68021 + 0.545934i 0.984953 0.172825i \(-0.0552894\pi\)
0.695260 + 0.718759i \(0.255289\pi\)
\(282\) −113.465 143.078i −0.402359 0.507369i
\(283\) −248.936 180.862i −0.879632 0.639090i 0.0535221 0.998567i \(-0.482955\pi\)
−0.933154 + 0.359477i \(0.882955\pi\)
\(284\) 13.1131 4.26070i 0.0461728 0.0150025i
\(285\) 411.971 17.3783i 1.44551 0.0609764i
\(286\) 0 0
\(287\) 40.9601i 0.142718i
\(288\) 358.843 151.072i 1.24598 0.524556i
\(289\) −233.281 169.488i −0.807200 0.586465i
\(290\) −45.1752 62.1783i −0.155777 0.214408i
\(291\) −182.924 51.0200i −0.628604 0.175326i
\(292\) −75.4004 + 232.059i −0.258221 + 0.794721i
\(293\) −199.670 274.822i −0.681466 0.937957i 0.318484 0.947928i \(-0.396826\pi\)
−0.999950 + 0.00997075i \(0.996826\pi\)
\(294\) 303.009 + 201.201i 1.03064 + 0.684355i
\(295\) −89.2997 274.836i −0.302711 0.931648i
\(296\) 161.067i 0.544145i
\(297\) 0 0
\(298\) −794.734 −2.66689
\(299\) 422.120 137.155i 1.41177 0.458712i
\(300\) 169.884 255.846i 0.566279 0.852819i
\(301\) 107.576 78.1587i 0.357396 0.259664i
\(302\) 256.173 + 83.2358i 0.848256 + 0.275615i
\(303\) −121.186 + 434.492i −0.399953 + 1.43397i
\(304\) −145.301 + 105.568i −0.477965 + 0.347262i
\(305\) −41.5801 + 57.2300i −0.136328 + 0.187639i
\(306\) −8.60979 20.4509i −0.0281366 0.0668331i
\(307\) 396.129 1.29032 0.645161 0.764047i \(-0.276790\pi\)
0.645161 + 0.764047i \(0.276790\pi\)
\(308\) 0 0
\(309\) −18.9362 448.903i −0.0612821 1.45276i
\(310\) −130.470 401.544i −0.420870 1.29530i
\(311\) −51.1584 + 70.4134i −0.164496 + 0.226410i −0.883306 0.468797i \(-0.844687\pi\)
0.718809 + 0.695207i \(0.244687\pi\)
\(312\) −159.524 + 126.507i −0.511295 + 0.405472i
\(313\) −185.075 + 569.601i −0.591292 + 1.81981i −0.0189146 + 0.999821i \(0.506021\pi\)
−0.572378 + 0.819990i \(0.693979\pi\)
\(314\) 22.2805 + 7.23939i 0.0709572 + 0.0230554i
\(315\) 119.667 + 138.484i 0.379895 + 0.439632i
\(316\) 426.421 + 309.813i 1.34943 + 0.980421i
\(317\) 2.33475 0.758605i 0.00736513 0.00239308i −0.305332 0.952246i \(-0.598767\pi\)
0.312697 + 0.949853i \(0.398767\pi\)
\(318\) −6.83917 162.130i −0.0215068 0.509843i
\(319\) 0 0
\(320\) 648.571i 2.02678i
\(321\) −21.7159 58.3441i −0.0676509 0.181757i
\(322\) −207.194 150.535i −0.643460 0.467501i
\(323\) 9.80328 + 13.4931i 0.0303507 + 0.0417742i
\(324\) −63.0195 + 429.984i −0.194505 + 1.32711i
\(325\) 95.7823 294.788i 0.294715 0.907039i
\(326\) 472.262 + 650.013i 1.44866 + 1.99391i
\(327\) 175.564 264.400i 0.536894 0.808564i
\(328\) −17.2640 53.1330i −0.0526340 0.161991i
\(329\) 60.9235i 0.185178i
\(330\) 0 0
\(331\) 368.074 1.11200 0.556002 0.831181i \(-0.312335\pi\)
0.556002 + 0.831181i \(0.312335\pi\)
\(332\) 162.775 52.8888i 0.490286 0.159304i
\(333\) 296.894 + 179.586i 0.891573 + 0.539297i
\(334\) 396.143 287.815i 1.18606 0.861721i
\(335\) 456.506 + 148.328i 1.36270 + 0.442769i
\(336\) −76.7895 21.4176i −0.228540 0.0637430i
\(337\) 478.841 347.898i 1.42089 1.03234i 0.429269 0.903177i \(-0.358771\pi\)
0.991624 0.129162i \(-0.0412286\pi\)
\(338\) −170.684 + 234.926i −0.504981 + 0.695047i
\(339\) −138.940 373.288i −0.409851 1.10115i
\(340\) 28.6980 0.0844059
\(341\) 0 0
\(342\) −48.0182 568.149i −0.140404 1.66125i
\(343\) −83.8781 258.150i −0.244543 0.752625i
\(344\) −106.604 + 146.728i −0.309896 + 0.426536i
\(345\) 338.148 + 426.400i 0.980139 + 1.23594i
\(346\) 156.531 481.753i 0.452402 1.39235i
\(347\) −280.182 91.0367i −0.807442 0.262354i −0.123928 0.992291i \(-0.539549\pi\)
−0.683514 + 0.729938i \(0.739549\pi\)
\(348\) −47.7042 + 37.8309i −0.137081 + 0.108710i
\(349\) 333.322 + 242.172i 0.955076 + 0.693903i 0.952002 0.306092i \(-0.0990215\pi\)
0.00307413 + 0.999995i \(0.499021\pi\)
\(350\) −170.098 + 55.2683i −0.485995 + 0.157909i
\(351\) 55.3248 + 435.102i 0.157620 + 1.23961i
\(352\) 0 0
\(353\) 135.577i 0.384070i −0.981388 0.192035i \(-0.938491\pi\)
0.981388 0.192035i \(-0.0615086\pi\)
\(354\) −374.498 + 139.390i −1.05790 + 0.393756i
\(355\) 13.8038 + 10.0290i 0.0388838 + 0.0282507i
\(356\) 58.4698 + 80.4768i 0.164241 + 0.226058i
\(357\) −1.98890 + 7.13087i −0.00557114 + 0.0199744i
\(358\) 55.3568 170.371i 0.154628 0.475896i
\(359\) 163.860 + 225.534i 0.456435 + 0.628229i 0.973765 0.227557i \(-0.0730739\pi\)
−0.517330 + 0.855786i \(0.673074\pi\)
\(360\) −213.600 129.203i −0.593332 0.358896i
\(361\) 20.8784 + 64.2571i 0.0578349 + 0.177997i
\(362\) 871.187i 2.40659i
\(363\) 0 0
\(364\) 266.954 0.733391
\(365\) −287.170 + 93.3072i −0.786767 + 0.255636i
\(366\) 81.4898 + 54.1100i 0.222650 + 0.147841i
\(367\) 142.701 103.678i 0.388830 0.282502i −0.376146 0.926560i \(-0.622751\pi\)
0.764976 + 0.644059i \(0.222751\pi\)
\(368\) −225.439 73.2497i −0.612607 0.199048i
\(369\) −117.189 27.4195i −0.317585 0.0743077i
\(370\) −633.730 + 460.432i −1.71278 + 1.24441i
\(371\) −31.8224 + 43.7998i −0.0857746 + 0.118059i
\(372\) −313.456 + 116.670i −0.842623 + 0.313628i
\(373\) −163.109 −0.437289 −0.218645 0.975805i \(-0.570164\pi\)
−0.218645 + 0.975805i \(0.570164\pi\)
\(374\) 0 0
\(375\) −117.797 + 4.96908i −0.314126 + 0.0132509i
\(376\) −25.6782 79.0293i −0.0682930 0.210184i
\(377\) −36.1185 + 49.7128i −0.0958049 + 0.131864i
\(378\) 184.350 173.398i 0.487698 0.458724i
\(379\) 16.4492 50.6253i 0.0434015 0.133576i −0.927008 0.375042i \(-0.877628\pi\)
0.970409 + 0.241466i \(0.0776283\pi\)
\(380\) 701.327 + 227.875i 1.84560 + 0.599671i
\(381\) −273.377 344.725i −0.717526 0.904790i
\(382\) −340.280 247.228i −0.890785 0.647193i
\(383\) −85.2768 + 27.7081i −0.222655 + 0.0723449i −0.418220 0.908346i \(-0.637346\pi\)
0.195565 + 0.980691i \(0.437346\pi\)
\(384\) 377.369 15.9187i 0.982733 0.0414549i
\(385\) 0 0
\(386\) 912.245i 2.36333i
\(387\) 151.602 + 360.102i 0.391736 + 0.930496i
\(388\) −274.762 199.626i −0.708150 0.514501i
\(389\) −158.468 218.112i −0.407372 0.560699i 0.555203 0.831715i \(-0.312640\pi\)
−0.962575 + 0.271016i \(0.912640\pi\)
\(390\) −953.774 266.021i −2.44557 0.682104i
\(391\) −6.80215 + 20.9349i −0.0173968 + 0.0535419i
\(392\) 97.2868 + 133.904i 0.248181 + 0.341591i
\(393\) −373.549 248.040i −0.950508 0.631145i
\(394\) 54.9789 + 169.208i 0.139540 + 0.429461i
\(395\) 652.262i 1.65130i
\(396\) 0 0
\(397\) 211.490 0.532720 0.266360 0.963874i \(-0.414179\pi\)
0.266360 + 0.963874i \(0.414179\pi\)
\(398\) −363.951 + 118.255i −0.914450 + 0.297123i
\(399\) −105.227 + 158.473i −0.263728 + 0.397175i
\(400\) −133.923 + 97.3006i −0.334807 + 0.243252i
\(401\) −427.784 138.995i −1.06679 0.346622i −0.277555 0.960710i \(-0.589524\pi\)
−0.789237 + 0.614088i \(0.789524\pi\)
\(402\) 178.319 639.333i 0.443579 1.59038i
\(403\) −273.095 + 198.415i −0.677655 + 0.492345i
\(404\) −474.165 + 652.633i −1.17368 + 1.61543i
\(405\) −476.317 + 249.669i −1.17609 + 0.616467i
\(406\) 35.4569 0.0873323
\(407\) 0 0
\(408\) −0.425560 10.0884i −0.00104304 0.0247264i
\(409\) 47.6795 + 146.742i 0.116576 + 0.358783i 0.992272 0.124078i \(-0.0395974\pi\)
−0.875697 + 0.482862i \(0.839597\pi\)
\(410\) 159.705 219.814i 0.389523 0.536133i
\(411\) −357.774 + 283.726i −0.870496 + 0.690330i
\(412\) 248.303 764.199i 0.602678 1.85485i
\(413\) 126.793 + 41.1974i 0.307004 + 0.0997516i
\(414\) 569.389 492.021i 1.37534 1.18846i
\(415\) 171.349 + 124.492i 0.412888 + 0.299981i
\(416\) 668.362 217.164i 1.60664 0.522028i
\(417\) −14.1402 335.209i −0.0339093 0.803858i
\(418\) 0 0
\(419\) 755.530i 1.80317i 0.432599 + 0.901587i \(0.357597\pi\)
−0.432599 + 0.901587i \(0.642403\pi\)
\(420\) 114.177 + 306.759i 0.271851 + 0.730380i
\(421\) 353.452 + 256.798i 0.839553 + 0.609971i 0.922246 0.386604i \(-0.126352\pi\)
−0.0826929 + 0.996575i \(0.526352\pi\)
\(422\) 87.0474 + 119.810i 0.206274 + 0.283911i
\(423\) −174.305 40.7834i −0.412068 0.0964147i
\(424\) 22.8188 70.2292i 0.0538180 0.165635i
\(425\) 9.03558 + 12.4364i 0.0212602 + 0.0292621i
\(426\) 13.0512 19.6552i 0.0306366 0.0461389i
\(427\) −10.0848 31.0379i −0.0236179 0.0726883i
\(428\) 111.335i 0.260129i
\(429\) 0 0
\(430\) −882.057 −2.05129
\(431\) 9.25765 3.00799i 0.0214795 0.00697910i −0.298258 0.954485i \(-0.596405\pi\)
0.319737 + 0.947506i \(0.396405\pi\)
\(432\) 112.681 205.361i 0.260837 0.475373i
\(433\) 47.9543 34.8408i 0.110749 0.0804638i −0.531032 0.847352i \(-0.678196\pi\)
0.641781 + 0.766888i \(0.278196\pi\)
\(434\) 185.248 + 60.1907i 0.426838 + 0.138688i
\(435\) −72.5734 20.2417i −0.166835 0.0465327i
\(436\) 459.197 333.626i 1.05320 0.765198i
\(437\) −332.465 + 457.598i −0.760788 + 1.04714i
\(438\) 145.645 + 391.304i 0.332523 + 0.893388i
\(439\) −444.724 −1.01304 −0.506519 0.862229i \(-0.669068\pi\)
−0.506519 + 0.862229i \(0.669068\pi\)
\(440\) 0 0
\(441\) 355.297 30.0286i 0.805662 0.0680920i
\(442\) −12.3764 38.0908i −0.0280010 0.0861782i
\(443\) −314.672 + 433.108i −0.710320 + 0.977671i 0.289470 + 0.957187i \(0.406521\pi\)
−0.999790 + 0.0204842i \(0.993479\pi\)
\(444\) 385.578 + 486.208i 0.868419 + 1.09506i
\(445\) −38.0397 + 117.074i −0.0854824 + 0.263088i
\(446\) −616.196 200.214i −1.38160 0.448910i
\(447\) −610.434 + 484.093i −1.36562 + 1.08298i
\(448\) −242.067 175.872i −0.540327 0.392571i
\(449\) −731.756 + 237.762i −1.62975 + 0.529537i −0.974213 0.225629i \(-0.927556\pi\)
−0.655534 + 0.755166i \(0.727556\pi\)
\(450\) −44.2578 523.657i −0.0983508 1.16368i
\(451\) 0 0
\(452\) 712.327i 1.57594i
\(453\) 247.467 92.1084i 0.546285 0.203330i
\(454\) 300.525 + 218.344i 0.661950 + 0.480935i
\(455\) 194.177 + 267.261i 0.426762 + 0.587387i
\(456\) 69.7063 249.921i 0.152865 0.548072i
\(457\) −52.4263 + 161.352i −0.114718 + 0.353067i −0.991888 0.127113i \(-0.959429\pi\)
0.877170 + 0.480180i \(0.159429\pi\)
\(458\) 580.902 + 799.543i 1.26835 + 1.74573i
\(459\) −19.0703 10.4639i −0.0415476 0.0227971i
\(460\) 300.751 + 925.618i 0.653807 + 2.01221i
\(461\) 266.355i 0.577777i 0.957363 + 0.288888i \(0.0932857\pi\)
−0.957363 + 0.288888i \(0.906714\pi\)
\(462\) 0 0
\(463\) −704.848 −1.52235 −0.761175 0.648547i \(-0.775377\pi\)
−0.761175 + 0.648547i \(0.775377\pi\)
\(464\) 31.2112 10.1411i 0.0672656 0.0218559i
\(465\) −344.804 228.953i −0.741514 0.492372i
\(466\) −996.284 + 723.843i −2.13795 + 1.55331i
\(467\) 642.132 + 208.641i 1.37502 + 0.446770i 0.901028 0.433762i \(-0.142814\pi\)
0.473988 + 0.880531i \(0.342814\pi\)
\(468\) −178.705 + 763.769i −0.381848 + 1.63198i
\(469\) −179.150 + 130.160i −0.381983 + 0.277527i
\(470\) 237.542 326.949i 0.505409 0.695636i
\(471\) 21.5233 8.01109i 0.0456971 0.0170087i
\(472\) −181.838 −0.385250
\(473\) 0 0
\(474\) 901.138 38.0129i 1.90113 0.0801960i
\(475\) 122.063 + 375.670i 0.256974 + 0.790884i
\(476\) −7.78198 + 10.7110i −0.0163487 + 0.0225020i
\(477\) −104.011 120.366i −0.218052 0.252339i
\(478\) −0.303980 + 0.935553i −0.000635941 + 0.00195722i
\(479\) 665.556 + 216.252i 1.38947 + 0.451466i 0.905771 0.423768i \(-0.139293\pi\)
0.483700 + 0.875234i \(0.339293\pi\)
\(480\) 535.405 + 675.138i 1.11543 + 1.40654i
\(481\) 506.680 + 368.124i 1.05339 + 0.765331i
\(482\) −846.365 + 275.001i −1.75594 + 0.570541i
\(483\) −250.841 + 10.5813i −0.519339 + 0.0219074i
\(484\) 0 0
\(485\) 420.282i 0.866560i
\(486\) 372.691 + 643.510i 0.766854 + 1.32409i
\(487\) 528.569 + 384.028i 1.08536 + 0.788558i 0.978609 0.205729i \(-0.0659564\pi\)
0.106747 + 0.994286i \(0.465956\pi\)
\(488\) 26.1639 + 36.0115i 0.0536145 + 0.0737941i
\(489\) 758.683 + 211.607i 1.55150 + 0.432734i
\(490\) −248.747 + 765.565i −0.507647 + 1.56238i
\(491\) −36.3470 50.0274i −0.0740265 0.101889i 0.770398 0.637563i \(-0.220057\pi\)
−0.844425 + 0.535674i \(0.820057\pi\)
\(492\) −179.309 119.063i −0.364450 0.241998i
\(493\) −0.941732 2.89835i −0.00191021 0.00587901i
\(494\) 1029.14i 2.08329i
\(495\) 0 0
\(496\) 180.281 0.363470
\(497\) −7.48628 + 2.43244i −0.0150629 + 0.00489424i
\(498\) 162.007 243.983i 0.325315 0.489926i
\(499\) −266.970 + 193.965i −0.535010 + 0.388707i −0.822228 0.569158i \(-0.807269\pi\)
0.287219 + 0.957865i \(0.407269\pi\)
\(500\) −200.535 65.1577i −0.401069 0.130315i
\(501\) 128.962 462.371i 0.257408 0.922897i
\(502\) 278.828 202.580i 0.555434 0.403547i
\(503\) −204.067 + 280.874i −0.405700 + 0.558398i −0.962163 0.272474i \(-0.912158\pi\)
0.556463 + 0.830872i \(0.312158\pi\)
\(504\) 106.144 44.6863i 0.210603 0.0886633i
\(505\) −998.280 −1.97679
\(506\) 0 0
\(507\) 11.9975 + 284.414i 0.0236637 + 0.560974i
\(508\) −243.144 748.320i −0.478630 1.47307i
\(509\) 503.258 692.675i 0.988719 1.36086i 0.0567219 0.998390i \(-0.481935\pi\)
0.931997 0.362465i \(-0.118065\pi\)
\(510\) 38.4770 30.5134i 0.0754450 0.0598302i
\(511\) 43.0462 132.483i 0.0842391 0.259261i
\(512\) −494.832 160.781i −0.966468 0.314025i
\(513\) −382.957 407.145i −0.746504 0.793655i
\(514\) −486.664 353.582i −0.946817 0.687903i
\(515\) 945.687 307.272i 1.83629 0.596645i
\(516\) 29.4492 + 698.125i 0.0570720 + 1.35295i
\(517\) 0 0
\(518\) 361.382i 0.697649i
\(519\) −173.217 465.381i −0.333751 0.896687i
\(520\) −364.530 264.846i −0.701019 0.509320i
\(521\) 418.891 + 576.554i 0.804013 + 1.10663i 0.992220 + 0.124499i \(0.0397325\pi\)
−0.188207 + 0.982129i \(0.560268\pi\)
\(522\) −23.7356 + 101.444i −0.0454705 + 0.194337i
\(523\) −155.721 + 479.261i −0.297746 + 0.916369i 0.684539 + 0.728976i \(0.260004\pi\)
−0.982285 + 0.187392i \(0.939996\pi\)
\(524\) −471.353 648.762i −0.899529 1.23809i
\(525\) −96.9869 + 146.063i −0.184737 + 0.278215i
\(526\) −357.772 1101.11i −0.680176 2.09337i
\(527\) 16.7414i 0.0317673i
\(528\) 0 0
\(529\) −217.513 −0.411179
\(530\) 341.553 110.977i 0.644440 0.209391i
\(531\) −202.745 + 335.181i −0.381818 + 0.631226i
\(532\) −275.227 + 199.964i −0.517345 + 0.375873i
\(533\) −206.602 67.1290i −0.387621 0.125946i
\(534\) 163.961 + 45.7311i 0.307044 + 0.0856387i
\(535\) 111.463 80.9826i 0.208342 0.151369i
\(536\) 177.532 244.351i 0.331216 0.455879i
\(537\) −61.2576 164.581i −0.114074 0.306482i
\(538\) 615.583 1.14421
\(539\) 0 0
\(540\) −954.086 + 121.315i −1.76683 + 0.224658i
\(541\) 181.281 + 557.925i 0.335085 + 1.03128i 0.966680 + 0.255987i \(0.0824004\pi\)
−0.631596 + 0.775298i \(0.717600\pi\)
\(542\) 144.288 198.595i 0.266214 0.366412i
\(543\) −530.662 669.157i −0.977279 1.23233i
\(544\) −10.7702 + 33.1471i −0.0197981 + 0.0609322i
\(545\) 668.020 + 217.053i 1.22572 + 0.398262i
\(546\) 357.920 283.842i 0.655531 0.519856i
\(547\) 557.289 + 404.894i 1.01881 + 0.740209i 0.966039 0.258398i \(-0.0831946\pi\)
0.0527711 + 0.998607i \(0.483195\pi\)
\(548\) −776.646 + 252.348i −1.41724 + 0.460489i
\(549\) 95.5519 8.07575i 0.174047 0.0147099i
\(550\) 0 0
\(551\) 78.3083i 0.142120i
\(552\) 320.928 119.451i 0.581391 0.216396i
\(553\) −243.444 176.873i −0.440225 0.319842i
\(554\) −393.778 541.989i −0.710790 0.978319i
\(555\) −206.306 + 739.678i −0.371723 + 1.33275i
\(556\) 185.415 570.649i 0.333480 1.02635i
\(557\) −363.725 500.624i −0.653007 0.898787i 0.346218 0.938154i \(-0.387466\pi\)
−0.999225 + 0.0393671i \(0.987466\pi\)
\(558\) −296.217 + 489.710i −0.530855 + 0.877616i
\(559\) 217.925 + 670.706i 0.389849 + 1.19983i
\(560\) 176.430i 0.315053i
\(561\) 0 0
\(562\) 1519.22 2.70325
\(563\) 541.408 175.914i 0.961648 0.312458i 0.214208 0.976788i \(-0.431283\pi\)
0.747440 + 0.664330i \(0.231283\pi\)
\(564\) −266.702 177.093i −0.472876 0.313994i
\(565\) 713.145 518.130i 1.26220 0.917045i
\(566\) −895.558 290.984i −1.58226 0.514107i
\(567\) 35.9779 245.479i 0.0634531 0.432943i
\(568\) 8.68589 6.31067i 0.0152921 0.0111103i
\(569\) 529.905 729.352i 0.931292 1.28181i −0.0280618 0.999606i \(-0.508934\pi\)
0.959354 0.282207i \(-0.0910665\pi\)
\(570\) 1182.60 440.168i 2.07473 0.772225i
\(571\) 804.182 1.40837 0.704187 0.710014i \(-0.251312\pi\)
0.704187 + 0.710014i \(0.251312\pi\)
\(572\) 0 0
\(573\) −411.961 + 17.3779i −0.718955 + 0.0303279i
\(574\) 38.7348 + 119.213i 0.0674822 + 0.207689i
\(575\) −306.429 + 421.763i −0.532920 + 0.733501i
\(576\) 665.221 574.832i 1.15490 0.997972i
\(577\) −243.227 + 748.576i −0.421538 + 1.29736i 0.484733 + 0.874662i \(0.338917\pi\)
−0.906271 + 0.422697i \(0.861083\pi\)
\(578\) −839.238 272.685i −1.45197 0.471773i
\(579\) 555.671 + 700.694i 0.959709 + 1.21018i
\(580\) −109.009 79.2000i −0.187947 0.136552i
\(581\) −92.9285 + 30.1943i −0.159946 + 0.0519695i
\(582\) −580.643 + 24.4934i −0.997669 + 0.0420849i
\(583\) 0 0
\(584\) 189.998i 0.325340i
\(585\) −894.632 + 376.638i −1.52929 + 0.643826i
\(586\) −841.024 611.040i −1.43519 1.04273i
\(587\) 107.287 + 147.667i 0.182771 + 0.251563i 0.890565 0.454856i \(-0.150309\pi\)
−0.707794 + 0.706419i \(0.750309\pi\)
\(588\) 614.230 + 171.317i 1.04461 + 0.291355i
\(589\) 132.934 409.128i 0.225694 0.694615i
\(590\) −519.809 715.456i −0.881033 1.21264i
\(591\) 145.298 + 96.4791i 0.245851 + 0.163247i
\(592\) −103.360 318.109i −0.174595 0.537347i
\(593\) 685.071i 1.15526i 0.816297 + 0.577632i \(0.196023\pi\)
−0.816297 + 0.577632i \(0.803977\pi\)
\(594\) 0 0
\(595\) −16.3837 −0.0275357
\(596\) −1325.11 + 430.556i −2.22335 + 0.722409i
\(597\) −207.518 + 312.523i −0.347602 + 0.523489i
\(598\) 1098.87 798.373i 1.83757 1.33507i
\(599\) −343.213 111.517i −0.572977 0.186171i 0.00817505 0.999967i \(-0.497398\pi\)
−0.581152 + 0.813795i \(0.697398\pi\)
\(600\) 64.2476 230.349i 0.107079 0.383915i
\(601\) −339.372 + 246.568i −0.564679 + 0.410264i −0.833169 0.553019i \(-0.813476\pi\)
0.268489 + 0.963283i \(0.413476\pi\)
\(602\) 239.186 329.211i 0.397318 0.546862i
\(603\) −252.468 599.689i −0.418686 0.994510i
\(604\) 472.229 0.781836
\(605\) 0 0
\(606\) 58.1783 + 1379.18i 0.0960039 + 2.27588i
\(607\) −311.403 958.400i −0.513020 1.57891i −0.786856 0.617137i \(-0.788293\pi\)
0.273836 0.961776i \(-0.411707\pi\)
\(608\) −526.406 + 724.536i −0.865800 + 1.19167i
\(609\) 27.2344 21.5977i 0.0447199 0.0354642i
\(610\) −66.8970 + 205.888i −0.109667 + 0.337521i
\(611\) −307.297 99.8468i −0.502941 0.163415i
\(612\) −25.4352 29.4348i −0.0415608 0.0480960i
\(613\) −446.778 324.603i −0.728838 0.529532i 0.160358 0.987059i \(-0.448735\pi\)
−0.889196 + 0.457527i \(0.848735\pi\)
\(614\) 1152.92 374.608i 1.87773 0.610110i
\(615\) −11.2258 266.119i −0.0182533 0.432714i
\(616\) 0 0
\(617\) 675.556i 1.09490i −0.836837 0.547452i \(-0.815598\pi\)
0.836837 0.547452i \(-0.184402\pi\)
\(618\) −479.628 1288.61i −0.776097 2.08514i
\(619\) 217.722 + 158.184i 0.351732 + 0.255548i 0.749595 0.661896i \(-0.230248\pi\)
−0.397863 + 0.917445i \(0.630248\pi\)
\(620\) −435.082 598.838i −0.701744 0.965868i
\(621\) 137.644 724.750i 0.221650 1.16707i
\(622\) −82.3072 + 253.316i −0.132327 + 0.407260i
\(623\) −33.3805 45.9443i −0.0535802 0.0737469i
\(624\) 233.880 352.224i 0.374807 0.564461i
\(625\) −228.038 701.828i −0.364860 1.12292i
\(626\) 1832.83i 2.92784i
\(627\) 0 0
\(628\) 41.0719 0.0654011
\(629\) −29.5404 + 9.59826i −0.0469641 + 0.0152596i
\(630\) 479.249 + 289.889i 0.760712 + 0.460142i
\(631\) −75.5208 + 54.8691i −0.119684 + 0.0869558i −0.646017 0.763323i \(-0.723567\pi\)
0.526333 + 0.850279i \(0.323567\pi\)
\(632\) 390.342 + 126.830i 0.617630 + 0.200680i
\(633\) 139.841 + 39.0034i 0.220917 + 0.0616168i
\(634\) 6.07783 4.41580i 0.00958649 0.00696499i
\(635\) 572.322 787.734i 0.901295 1.24053i
\(636\) −99.2390 266.625i −0.156036 0.419222i
\(637\) 643.584 1.01034
\(638\) 0 0
\(639\) −1.94785 23.0469i −0.00304828 0.0360672i
\(640\) 258.308 + 794.990i 0.403606 + 1.24217i
\(641\) −8.68174 + 11.9494i −0.0135441 + 0.0186418i −0.815735 0.578425i \(-0.803667\pi\)
0.802191 + 0.597067i \(0.203667\pi\)
\(642\) −118.378 149.273i −0.184389 0.232512i
\(643\) −134.744 + 414.698i −0.209555 + 0.644943i 0.789941 + 0.613183i \(0.210111\pi\)
−0.999496 + 0.0317599i \(0.989889\pi\)
\(644\) −427.023 138.748i −0.663079 0.215448i
\(645\) −677.506 + 537.283i −1.05040 + 0.832997i
\(646\) 41.2922 + 30.0005i 0.0639198 + 0.0464405i
\(647\) 298.985 97.1462i 0.462110 0.150149i −0.0687036 0.997637i \(-0.521886\pi\)
0.530814 + 0.847488i \(0.321886\pi\)
\(648\) 56.7948 + 333.596i 0.0876462 + 0.514809i
\(649\) 0 0
\(650\) 948.550i 1.45931i
\(651\) 178.952 66.6068i 0.274888 0.102315i
\(652\) 1139.59 + 827.958i 1.74783 + 1.26987i
\(653\) 112.807 + 155.266i 0.172752 + 0.237773i 0.886610 0.462517i \(-0.153054\pi\)
−0.713858 + 0.700291i \(0.753054\pi\)
\(654\) 260.940 935.557i 0.398990 1.43052i
\(655\) 306.656 943.789i 0.468177 1.44090i
\(656\) 68.1931 + 93.8598i 0.103953 + 0.143079i
\(657\) 350.223 + 211.844i 0.533064 + 0.322441i
\(658\) 57.6135 + 177.316i 0.0875586 + 0.269478i
\(659\) 127.678i 0.193745i −0.995297 0.0968724i \(-0.969116\pi\)
0.995297 0.0968724i \(-0.0308839\pi\)
\(660\) 0 0
\(661\) 580.599 0.878364 0.439182 0.898398i \(-0.355268\pi\)
0.439182 + 0.898398i \(0.355268\pi\)
\(662\) 1071.27 348.076i 1.61823 0.525795i
\(663\) −32.7084 21.7186i −0.0493339 0.0327581i
\(664\) 107.820 78.3355i 0.162379 0.117975i
\(665\) −400.388 130.094i −0.602088 0.195630i
\(666\) 1033.93 + 241.917i 1.55245 + 0.363238i
\(667\) 83.6135 60.7488i 0.125358 0.0910776i
\(668\) 504.590 694.508i 0.755374 1.03968i
\(669\) −595.254 + 221.556i −0.889767 + 0.331175i
\(670\) 1468.92 2.19241
\(671\) 0 0
\(672\) −397.167 + 16.7538i −0.591023 + 0.0249313i
\(673\) 168.866 + 519.715i 0.250915 + 0.772236i 0.994607 + 0.103714i \(0.0330728\pi\)
−0.743692 + 0.668522i \(0.766927\pi\)
\(674\) 1064.66 1465.37i 1.57961 2.17415i
\(675\) −352.967 375.261i −0.522914 0.555943i
\(676\) −157.319 + 484.177i −0.232720 + 0.716238i
\(677\) −27.7389 9.01292i −0.0409733 0.0133130i 0.288459 0.957492i \(-0.406857\pi\)
−0.329432 + 0.944179i \(0.606857\pi\)
\(678\) −757.388 955.055i −1.11709 1.40864i
\(679\) 156.862 + 113.967i 0.231019 + 0.167845i
\(680\) 21.2528 6.90545i 0.0312541 0.0101551i
\(681\) 363.832 15.3476i 0.534261 0.0225369i
\(682\) 0 0
\(683\) 82.4506i 0.120718i −0.998177 0.0603592i \(-0.980775\pi\)
0.998177 0.0603592i \(-0.0192246\pi\)
\(684\) −387.865 921.299i −0.567054 1.34693i
\(685\) −817.553 593.987i −1.19351 0.867134i
\(686\) −488.251 672.019i −0.711735 0.979620i
\(687\) 933.212 + 260.286i 1.35839 + 0.378873i
\(688\) 116.386 358.200i 0.169166 0.520640i
\(689\) −168.772 232.294i −0.244952 0.337147i
\(690\) 1387.41 + 921.249i 2.01073 + 1.33514i
\(691\) 299.041 + 920.352i 0.432765 + 1.33191i 0.895360 + 0.445344i \(0.146918\pi\)
−0.462595 + 0.886570i \(0.653082\pi\)
\(692\) 888.061i 1.28333i
\(693\) 0 0
\(694\) −901.554 −1.29907
\(695\) 706.172 229.449i 1.01607 0.330143i
\(696\) −26.2251 + 39.4952i −0.0376798 + 0.0567459i
\(697\) 8.71606 6.33259i 0.0125051 0.00908549i
\(698\) 1199.14 + 389.624i 1.71796 + 0.558201i
\(699\) −324.333 + 1162.84i −0.463996 + 1.66358i
\(700\) −253.674 + 184.305i −0.362392 + 0.263293i
\(701\) −184.624 + 254.112i −0.263372 + 0.362500i −0.920138 0.391594i \(-0.871924\pi\)
0.656766 + 0.754094i \(0.271924\pi\)
\(702\) 572.485 + 1214.04i 0.815506 + 1.72940i
\(703\) −798.129 −1.13532
\(704\) 0 0
\(705\) −16.6971 395.822i −0.0236838 0.561450i
\(706\) −128.211 394.592i −0.181602 0.558912i
\(707\) 270.702 372.589i 0.382888 0.527000i
\(708\) −548.910 + 435.302i −0.775296 + 0.614834i
\(709\) 101.157 311.330i 0.142676 0.439111i −0.854029 0.520226i \(-0.825848\pi\)
0.996705 + 0.0811142i \(0.0258478\pi\)
\(710\) 49.6596 + 16.1354i 0.0699432 + 0.0227259i
\(711\) 669.008 578.103i 0.940939 0.813085i
\(712\) 62.6656 + 45.5292i 0.0880134 + 0.0639455i
\(713\) 539.971 175.447i 0.757323 0.246069i
\(714\) 0.954820 + 22.6351i 0.00133728 + 0.0317018i
\(715\) 0 0
\(716\) 314.061i 0.438632i
\(717\) 0.336383 + 0.903758i 0.000469153 + 0.00126047i
\(718\) 690.192 + 501.454i 0.961270 + 0.698404i
\(719\) 650.211 + 894.939i 0.904327 + 1.24470i 0.969067 + 0.246797i \(0.0793781\pi\)
−0.0647402 + 0.997902i \(0.520622\pi\)
\(720\) 504.774 + 118.106i 0.701075 + 0.164036i
\(721\) −141.757 + 436.282i −0.196611 + 0.605107i
\(722\) 121.532 + 167.275i 0.168327 + 0.231682i
\(723\) −482.581 + 726.770i −0.667471 + 1.00521i
\(724\) −471.975 1452.59i −0.651899 2.00634i
\(725\) 72.1759i 0.0995530i
\(726\) 0 0
\(727\) 577.040 0.793727 0.396864 0.917878i \(-0.370099\pi\)
0.396864 + 0.917878i \(0.370099\pi\)
\(728\) 197.698 64.2359i 0.271563 0.0882361i
\(729\) 678.241 + 267.263i 0.930372 + 0.366616i
\(730\) −747.563 + 543.136i −1.02406 + 0.744023i
\(731\) −33.2634 10.8079i −0.0455040 0.0147851i
\(732\) 165.188 + 46.0732i 0.225667 + 0.0629416i
\(733\) 501.026 364.016i 0.683527 0.496612i −0.190999 0.981590i \(-0.561173\pi\)
0.874526 + 0.484979i \(0.161173\pi\)
\(734\) 317.281 436.700i 0.432263 0.594959i
\(735\) 275.263 + 739.548i 0.374507 + 1.00619i
\(736\) −1181.99 −1.60596
\(737\) 0 0
\(738\) −367.005 + 31.0181i −0.497297 + 0.0420299i
\(739\) 345.884 + 1064.52i 0.468044 + 1.44049i 0.855114 + 0.518440i \(0.173487\pi\)
−0.387070 + 0.922050i \(0.626513\pi\)
\(740\) −807.217 + 1111.04i −1.09083 + 1.50140i
\(741\) −626.877 790.483i −0.845988 1.06678i
\(742\) −51.1981 + 157.572i −0.0690002 + 0.212361i
\(743\) −1092.36 354.930i −1.47020 0.477698i −0.539034 0.842284i \(-0.681210\pi\)
−0.931170 + 0.364586i \(0.881210\pi\)
\(744\) −204.061 + 161.827i −0.274276 + 0.217509i
\(745\) −1394.91 1013.46i −1.87236 1.36035i
\(746\) −474.724 + 154.247i −0.636360 + 0.206766i
\(747\) −24.1791 286.086i −0.0323682 0.382979i
\(748\) 0 0
\(749\) 63.5613i 0.0848616i
\(750\) −338.147 + 125.860i −0.450863 + 0.167813i
\(751\) 221.394 + 160.852i 0.294799 + 0.214184i 0.725346 0.688384i \(-0.241680\pi\)
−0.430548 + 0.902568i \(0.641680\pi\)
\(752\) 101.430 + 139.606i 0.134880 + 0.185646i
\(753\) 90.7704 325.443i 0.120545 0.432195i
\(754\) −58.1099 + 178.844i −0.0770689 + 0.237194i
\(755\) 343.489 + 472.772i 0.454952 + 0.626188i
\(756\) 213.439 388.991i 0.282327 0.514538i
\(757\) −172.433 530.695i −0.227785 0.701051i −0.997997 0.0632624i \(-0.979850\pi\)
0.770212 0.637788i \(-0.220150\pi\)
\(758\) 162.899i 0.214906i
\(759\) 0 0
\(760\) 574.212 0.755543
\(761\) −401.113 + 130.329i −0.527086 + 0.171261i −0.560459 0.828182i \(-0.689375\pi\)
0.0333725 + 0.999443i \(0.489375\pi\)
\(762\) −1121.65 744.788i −1.47199 0.977412i
\(763\) −262.156 + 190.468i −0.343586 + 0.249630i
\(764\) −701.310 227.870i −0.917945 0.298259i
\(765\) 10.9676 46.8746i 0.0143367 0.0612740i
\(766\) −221.993 + 161.287i −0.289808 + 0.210558i
\(767\) −415.598 + 572.021i −0.541848 + 0.745790i
\(768\) −15.3340 + 5.70738i −0.0199661 + 0.00743148i
\(769\) 108.997 0.141738 0.0708692 0.997486i \(-0.477423\pi\)
0.0708692 + 0.997486i \(0.477423\pi\)
\(770\) 0 0
\(771\) −589.181 + 24.8536i −0.764178 + 0.0322355i
\(772\) 494.218 + 1521.05i 0.640179 + 1.97027i
\(773\) −606.367 + 834.592i −0.784433 + 1.07968i 0.210346 + 0.977627i \(0.432541\pi\)
−0.994779 + 0.102053i \(0.967459\pi\)
\(774\) 781.772 + 904.702i 1.01004 + 1.16887i
\(775\) 122.524 377.089i 0.158095 0.486567i
\(776\) −251.515 81.7222i −0.324117 0.105312i
\(777\) −220.127 277.577i −0.283304 0.357242i
\(778\) −667.478 484.951i −0.857941 0.623331i
\(779\) 263.288 85.5475i 0.337982 0.109817i
\(780\) −1734.41 + 73.1631i −2.22360 + 0.0937988i
\(781\) 0 0
\(782\) 67.3630i 0.0861420i
\(783\) 43.5608 + 92.3769i 0.0556332 + 0.117978i
\(784\) −278.072 202.031i −0.354683 0.257692i
\(785\) 29.8748 + 41.1191i 0.0380570 + 0.0523810i
\(786\) −1321.77 368.660i −1.68164 0.469033i
\(787\) −64.0985 + 197.275i −0.0814467 + 0.250667i −0.983485 0.180988i \(-0.942070\pi\)
0.902039 + 0.431655i \(0.142070\pi\)
\(788\) 183.340 + 252.346i 0.232665 + 0.320236i
\(789\) −945.519 627.833i −1.19838 0.795732i
\(790\) 616.825 + 1898.39i 0.780791 + 2.40303i
\(791\) 406.668i 0.514119i
\(792\) 0 0
\(793\) 173.082 0.218263
\(794\) 615.536 200.000i 0.775234 0.251889i
\(795\) 194.747 293.290i 0.244965 0.368918i
\(796\) −542.774 + 394.349i −0.681877 + 0.495413i
\(797\) −211.514 68.7252i −0.265388 0.0862298i 0.173300 0.984869i \(-0.444557\pi\)
−0.438689 + 0.898639i \(0.644557\pi\)
\(798\) −156.398 + 560.741i −0.195988 + 0.702683i
\(799\) 12.9641 9.41900i 0.0162255 0.0117885i
\(800\) −485.183 + 667.797i −0.606479 + 0.834746i
\(801\) 153.794 64.7471i 0.192003 0.0808328i
\(802\) −1376.50 −1.71633
\(803\) 0 0
\(804\) −49.0426 1162.61i −0.0609983 1.44603i
\(805\) −171.699 528.436i −0.213291 0.656443i
\(806\) −607.201 + 835.740i −0.753351 + 1.03690i
\(807\) 472.828 374.967i 0.585909 0.464643i
\(808\) −194.112 + 597.415i −0.240237 + 0.739375i
\(809\) 715.778 + 232.570i 0.884769 + 0.287479i 0.715936 0.698166i \(-0.246000\pi\)
0.168833 + 0.985645i \(0.446000\pi\)
\(810\) −1150.21 + 1177.09i −1.42001 + 1.45320i
\(811\) 187.891 + 136.511i 0.231678 + 0.168324i 0.697568 0.716519i \(-0.254266\pi\)
−0.465890 + 0.884843i \(0.654266\pi\)
\(812\) 59.1197 19.2092i 0.0728076 0.0236566i
\(813\) −10.1421 240.430i −0.0124749 0.295732i
\(814\) 0 0
\(815\) 1743.13i 2.13881i
\(816\) 7.31441 + 19.6516i 0.00896373 + 0.0240828i
\(817\) −727.077 528.252i −0.889935 0.646576i
\(818\) 277.540 + 382.001i 0.339291 + 0.466994i
\(819\) 102.023 436.037i 0.124570 0.532401i
\(820\) 147.199 453.033i 0.179511 0.552480i
\(821\) −285.054 392.343i −0.347204 0.477885i 0.599324 0.800506i \(-0.295436\pi\)
−0.946528 + 0.322621i \(0.895436\pi\)
\(822\) −772.981 + 1164.11i −0.940367 + 1.41620i
\(823\) 48.4819 + 149.212i 0.0589088 + 0.181302i 0.976181 0.216959i \(-0.0696137\pi\)
−0.917272 + 0.398261i \(0.869614\pi\)
\(824\) 625.689i 0.759331i
\(825\) 0 0
\(826\) 407.986 0.493930
\(827\) −150.007 + 48.7401i −0.181386 + 0.0589360i −0.398302 0.917254i \(-0.630400\pi\)
0.216916 + 0.976190i \(0.430400\pi\)
\(828\) 682.823 1128.85i 0.824666 1.36335i
\(829\) −1057.08 + 768.011i −1.27512 + 0.926431i −0.999394 0.0348051i \(-0.988919\pi\)
−0.275728 + 0.961236i \(0.588919\pi\)
\(830\) 616.434 + 200.292i 0.742692 + 0.241315i
\(831\) −632.599 176.441i −0.761251 0.212323i
\(832\) 1283.81 932.745i 1.54304 1.12109i
\(833\) −18.7611 + 25.8224i −0.0225223 + 0.0309993i
\(834\) −358.152 962.245i −0.429439 1.15377i
\(835\) 1062.33 1.27226
\(836\) 0 0
\(837\) 70.7709 + 556.579i 0.0845530 + 0.664969i
\(838\) 714.482 + 2198.95i 0.852604 + 2.62405i
\(839\) 754.318 1038.23i 0.899068 1.23746i −0.0716959 0.997427i \(-0.522841\pi\)
0.970764 0.240035i \(-0.0771589\pi\)
\(840\) 158.370 + 199.702i 0.188536 + 0.237741i
\(841\) 255.462 786.230i 0.303759 0.934875i
\(842\) 1271.56 + 413.154i 1.51016 + 0.490682i
\(843\) 1166.91 925.398i 1.38424 1.09774i
\(844\) 210.049 + 152.609i 0.248873 + 0.180817i
\(845\) −599.164 + 194.680i −0.709069 + 0.230391i
\(846\) −545.878 + 46.1359i −0.645246 + 0.0545342i
\(847\) 0 0
\(848\) 153.347i 0.180834i
\(849\) −865.123 + 322.002i −1.01899 + 0.379273i
\(850\) 38.0586 + 27.6512i 0.0447748 + 0.0325308i
\(851\) −619.160 852.200i −0.727567 1.00141i
\(852\) 11.1128 39.8430i 0.0130431 0.0467641i
\(853\) −153.468 + 472.325i −0.179915 + 0.553723i −0.999824 0.0187721i \(-0.994024\pi\)
0.819908 + 0.572495i \(0.194024\pi\)
\(854\) −58.7033 80.7982i −0.0687392 0.0946114i
\(855\) 640.234 1058.44i 0.748811 1.23794i
\(856\) −26.7900 82.4511i −0.0312967 0.0963214i
\(857\) 479.970i 0.560059i −0.959991 0.280029i \(-0.909656\pi\)
0.959991 0.280029i \(-0.0903442\pi\)
\(858\) 0 0
\(859\) 658.810 0.766950 0.383475 0.923551i \(-0.374727\pi\)
0.383475 + 0.923551i \(0.374727\pi\)
\(860\) −1470.71 + 477.864i −1.71013 + 0.555655i
\(861\) 102.368 + 67.9732i 0.118894 + 0.0789468i
\(862\) 24.0996 17.5094i 0.0279578 0.0203125i
\(863\) −512.443 166.503i −0.593793 0.192935i −0.00332255 0.999994i \(-0.501058\pi\)
−0.590470 + 0.807060i \(0.701058\pi\)
\(864\) 217.939 1147.53i 0.252244 1.32816i
\(865\) 889.082 645.956i 1.02784 0.746770i
\(866\) 106.622 146.752i 0.123120 0.169460i
\(867\) −810.717 + 301.752i −0.935083 + 0.348042i
\(868\) 341.485 0.393416
\(869\) 0 0
\(870\) −230.365 + 9.71754i −0.264787 + 0.0111696i
\(871\) −362.918 1116.95i −0.416669 1.28237i
\(872\) 259.788 357.567i 0.297922 0.410054i
\(873\) −431.072 + 372.498i −0.493782 + 0.426687i
\(874\) −534.893 + 1646.23i −0.612005 + 1.88356i
\(875\) 114.486 + 37.1986i 0.130841 + 0.0425127i
\(876\) 454.837 + 573.543i 0.519220 + 0.654729i
\(877\) 68.5357 + 49.7941i 0.0781479 + 0.0567777i 0.626173 0.779684i \(-0.284620\pi\)
−0.548025 + 0.836462i \(0.684620\pi\)
\(878\) −1294.36 + 420.562i −1.47421 + 0.479001i
\(879\) −1018.19 + 42.9505i −1.15835 + 0.0488629i
\(880\) 0 0
\(881\) 364.734i 0.414000i 0.978341 + 0.207000i \(0.0663701\pi\)
−0.978341 + 0.207000i \(0.933630\pi\)
\(882\) 1005.69 423.391i 1.14023 0.480035i
\(883\) −180.241 130.953i −0.204123 0.148304i 0.481027 0.876706i \(-0.340264\pi\)
−0.685151 + 0.728401i \(0.740264\pi\)
\(884\) −41.2721 56.8062i −0.0466879 0.0642604i
\(885\) −835.067 232.912i −0.943578 0.263177i
\(886\) −506.266 + 1558.13i −0.571406 + 1.75861i
\(887\) 801.425 + 1103.07i 0.903523 + 1.24359i 0.969331 + 0.245761i \(0.0790377\pi\)
−0.0658073 + 0.997832i \(0.520962\pi\)
\(888\) 402.540 + 267.290i 0.453311 + 0.301003i
\(889\) 138.811 + 427.217i 0.156143 + 0.480559i
\(890\) 376.714i 0.423274i
\(891\) 0 0
\(892\) −1135.89 −1.27342
\(893\) 391.611 127.242i 0.438534 0.142488i
\(894\) −1318.86 + 1986.21i −1.47524 + 2.22171i
\(895\) 314.422 228.441i 0.351309 0.255241i
\(896\) −366.760 119.167i −0.409330 0.132999i
\(897\) 357.728 1282.58i 0.398805 1.42985i
\(898\) −1904.91 + 1384.00i −2.12129 + 1.54120i
\(899\) −46.2024 + 63.5921i −0.0513931 + 0.0707365i
\(900\) −357.491 849.151i −0.397212 0.943502i
\(901\) 14.2402 0.0158049
\(902\) 0 0
\(903\) −16.8126 398.560i −0.0186186 0.441373i
\(904\) −171.404 527.526i −0.189606 0.583546i
\(905\) 1110.95 1529.10i 1.22757 1.68961i
\(906\) 633.143 502.102i 0.698834 0.554196i
\(907\) 203.099 625.073i 0.223924 0.689166i −0.774476 0.632604i \(-0.781986\pi\)
0.998399 0.0565619i \(-0.0180138\pi\)
\(908\) 619.376 + 201.248i 0.682132 + 0.221638i
\(909\) 884.781 + 1023.91i 0.973357 + 1.12641i
\(910\) 817.887 + 594.230i 0.898777 + 0.653000i
\(911\) −331.388 + 107.674i −0.363763 + 0.118194i −0.485195 0.874406i \(-0.661251\pi\)
0.121432 + 0.992600i \(0.461251\pi\)
\(912\) 22.7085 + 538.329i 0.0248996 + 0.590273i
\(913\) 0 0
\(914\) 519.188i 0.568039i
\(915\) 74.0280 + 198.891i 0.0809049 + 0.217367i
\(916\) 1401.74 + 1018.42i 1.53028 + 1.11182i
\(917\) 269.096 + 370.379i 0.293453 + 0.403903i
\(918\) −65.3991 12.4206i −0.0712409 0.0135301i
\(919\) −197.588 + 608.115i −0.215004 + 0.661714i 0.784150 + 0.620572i \(0.213099\pi\)
−0.999153 + 0.0411417i \(0.986901\pi\)
\(920\) 445.453 + 613.114i 0.484188 + 0.666428i
\(921\) 657.376 990.010i 0.713763 1.07493i
\(922\) 251.884 + 775.220i 0.273193 + 0.840803i
\(923\) 41.7471i 0.0452298i
\(924\) 0 0
\(925\) −735.627 −0.795272
\(926\) −2051.44 + 666.554i −2.21538 + 0.719821i
\(927\) −1153.33 697.629i −1.24415 0.752566i
\(928\) 132.389 96.1863i 0.142661 0.103649i
\(929\) 299.056 + 97.1692i 0.321912 + 0.104595i 0.465515 0.885040i \(-0.345869\pi\)
−0.143604 + 0.989635i \(0.545869\pi\)
\(930\) −1220.06 340.291i −1.31189 0.365904i
\(931\) −663.529 + 482.082i −0.712706 + 0.517811i
\(932\) −1269.02 + 1746.66i −1.36161 + 1.87410i
\(933\) 91.0809 + 244.707i 0.0976215 + 0.262279i
\(934\) 2066.22 2.21222
\(935\) 0 0
\(936\) 51.4389 + 608.623i 0.0549561 + 0.650238i
\(937\) −469.735 1445.70i −0.501318 1.54290i −0.806874 0.590724i \(-0.798842\pi\)
0.305556 0.952174i \(-0.401158\pi\)
\(938\) −398.324 + 548.245i −0.424652 + 0.584483i
\(939\) 1116.42 + 1407.79i 1.18895 + 1.49925i
\(940\) 218.942 673.835i 0.232917 0.716846i
\(941\) −1067.37 346.811i −1.13430 0.368556i −0.319090 0.947724i \(-0.603377\pi\)
−0.815208 + 0.579169i \(0.803377\pi\)
\(942\) 55.0673 43.6701i 0.0584579 0.0463589i
\(943\) 295.593 + 214.761i 0.313460 + 0.227742i
\(944\) 359.133 116.689i 0.380437 0.123611i
\(945\) 544.689 69.2591i 0.576390 0.0732900i
\(946\) 0 0
\(947\) 865.333i 0.913762i −0.889528 0.456881i \(-0.848967\pi\)
0.889528 0.456881i \(-0.151033\pi\)
\(948\) 1481.93 551.582i 1.56322 0.581838i
\(949\) 597.691 + 434.248i 0.629812 + 0.457585i
\(950\) 710.520 + 977.947i 0.747916 + 1.02942i
\(951\) 1.97859 7.09393i 0.00208054 0.00745945i
\(952\) −3.18575 + 9.80474i −0.00334638 + 0.0102991i
\(953\) 298.122 + 410.330i 0.312825 + 0.430567i 0.936260 0.351309i \(-0.114263\pi\)
−0.623435 + 0.781875i \(0.714263\pi\)
\(954\) −416.547 251.962i −0.436632 0.264111i
\(955\) −281.986 867.863i −0.295273 0.908757i
\(956\) 1.72460i 0.00180397i
\(957\) 0 0
\(958\) 2141.59 2.23548
\(959\) 443.388 144.066i 0.462345 0.150225i
\(960\) 1620.92 + 1076.30i 1.68845 + 1.12115i
\(961\) 428.125 311.051i 0.445500 0.323674i
\(962\) 1822.80 + 592.265i 1.89481 + 0.615660i
\(963\) −181.852 42.5493i −0.188839 0.0441841i
\(964\) −1262.22 + 917.054i −1.30935 + 0.951301i
\(965\) −1163.31 + 1601.16i −1.20550 + 1.65924i
\(966\) −720.059 + 268.009i −0.745402 + 0.277442i
\(967\) 569.116 0.588537 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(968\) 0 0
\(969\) 49.9906 2.10876i 0.0515899 0.00217623i
\(970\) −397.448 1223.22i −0.409740 1.26105i
\(971\) −736.695 + 1013.97i −0.758697 + 1.04426i 0.238624 + 0.971112i \(0.423304\pi\)
−0.997321 + 0.0731450i \(0.976696\pi\)
\(972\) 970.041 + 871.058i 0.997985 + 0.896150i
\(973\) −105.854 + 325.784i −0.108791 + 0.334825i
\(974\) 1901.55 + 617.851i 1.95231 + 0.634344i
\(975\) −577.786 728.580i −0.592601 0.747262i
\(976\) −74.7833 54.3333i −0.0766223 0.0556693i
\(977\) 1085.77 352.788i 1.11133 0.361093i 0.304878 0.952391i \(-0.401384\pi\)
0.806453 + 0.591298i \(0.201384\pi\)
\(978\) 2408.24 101.587i 2.46241 0.103873i
\(979\) 0 0
\(980\) 1411.24i 1.44004i
\(981\) −369.444 877.545i −0.376600 0.894541i
\(982\) −153.097 111.231i −0.155903 0.113270i
\(983\) −391.031 538.208i −0.397793 0.547515i 0.562395 0.826869i \(-0.309880\pi\)
−0.960188 + 0.279353i \(0.909880\pi\)
\(984\) −161.440 45.0279i −0.164065 0.0457600i
\(985\) −119.279 + 367.102i −0.121095 + 0.372692i
\(986\) −5.48178 7.54502i −0.00555961 0.00765215i
\(987\) 152.261 + 101.102i 0.154266 + 0.102434i
\(988\) −557.549 1715.96i −0.564321 1.73680i
\(989\) 1186.13i 1.19933i
\(990\) 0 0
\(991\) −1471.97 −1.48534 −0.742670 0.669658i \(-0.766441\pi\)
−0.742670 + 0.669658i \(0.766441\pi\)
\(992\) 854.961 277.794i 0.861856 0.280034i
\(993\) 610.818 919.894i 0.615124 0.926379i
\(994\) −19.4883 + 14.1591i −0.0196060 + 0.0142446i
\(995\) −789.604 256.558i −0.793572 0.257847i
\(996\) 137.945 494.579i 0.138499 0.496565i
\(997\) 502.232 364.893i 0.503743 0.365991i −0.306702 0.951806i \(-0.599225\pi\)
0.810445 + 0.585815i \(0.199225\pi\)
\(998\) −593.582 + 816.996i −0.594772 + 0.818633i
\(999\) 941.518 443.978i 0.942461 0.444422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.269.4 16
3.2 odd 2 inner 363.3.h.j.269.1 16
11.2 odd 10 33.3.h.b.20.4 yes 16
11.3 even 5 363.3.b.l.122.2 8
11.4 even 5 363.3.h.n.245.4 16
11.5 even 5 363.3.h.n.323.1 16
11.6 odd 10 363.3.h.o.323.4 16
11.7 odd 10 363.3.h.o.245.1 16
11.8 odd 10 363.3.b.m.122.7 8
11.9 even 5 inner 363.3.h.j.251.1 16
11.10 odd 2 33.3.h.b.5.1 16
33.2 even 10 33.3.h.b.20.1 yes 16
33.5 odd 10 363.3.h.n.323.4 16
33.8 even 10 363.3.b.m.122.2 8
33.14 odd 10 363.3.b.l.122.7 8
33.17 even 10 363.3.h.o.323.1 16
33.20 odd 10 inner 363.3.h.j.251.4 16
33.26 odd 10 363.3.h.n.245.1 16
33.29 even 10 363.3.h.o.245.4 16
33.32 even 2 33.3.h.b.5.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.1 16 11.10 odd 2
33.3.h.b.5.4 yes 16 33.32 even 2
33.3.h.b.20.1 yes 16 33.2 even 10
33.3.h.b.20.4 yes 16 11.2 odd 10
363.3.b.l.122.2 8 11.3 even 5
363.3.b.l.122.7 8 33.14 odd 10
363.3.b.m.122.2 8 33.8 even 10
363.3.b.m.122.7 8 11.8 odd 10
363.3.h.j.251.1 16 11.9 even 5 inner
363.3.h.j.251.4 16 33.20 odd 10 inner
363.3.h.j.269.1 16 3.2 odd 2 inner
363.3.h.j.269.4 16 1.1 even 1 trivial
363.3.h.n.245.1 16 33.26 odd 10
363.3.h.n.245.4 16 11.4 even 5
363.3.h.n.323.1 16 11.5 even 5
363.3.h.n.323.4 16 33.5 odd 10
363.3.h.o.245.1 16 11.7 odd 10
363.3.h.o.245.4 16 33.29 even 10
363.3.h.o.323.1 16 33.17 even 10
363.3.h.o.323.4 16 11.6 odd 10