Properties

Label 363.3.h.j.269.1
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.1
Root \(-2.91048 + 0.945671i\) of defining polynomial
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.j.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.91048 + 0.945671i) q^{2} +(-1.86408 + 2.35058i) q^{3} +(4.34051 - 3.15356i) q^{4} +(-6.31437 - 2.05166i) q^{5} +(3.20248 - 8.60410i) q^{6} +(-2.47800 + 1.80037i) q^{7} +(-2.45561 + 3.37986i) q^{8} +(-2.05042 - 8.76332i) q^{9} +20.3180 q^{10} +(-0.678356 + 16.0812i) q^{12} +(-5.01988 - 15.4496i) q^{13} +(5.50960 - 7.58331i) q^{14} +(16.5931 - 11.0180i) q^{15} +(-2.68094 + 8.25108i) q^{16} +(-0.766216 - 0.248959i) q^{17} +(14.2549 + 23.5664i) q^{18} +(16.7481 + 12.1682i) q^{19} +(-33.8776 + 11.0075i) q^{20} +(0.387274 - 9.18076i) q^{21} -27.3224i q^{23} +(-3.36716 - 12.0724i) q^{24} +(15.4365 + 11.2153i) q^{25} +(29.2204 + 40.2185i) q^{26} +(24.4210 + 11.5159i) q^{27} +(-5.07819 + 15.6291i) q^{28} +(2.22341 + 3.06025i) q^{29} +(-37.8744 + 47.7591i) q^{30} +(-6.42137 - 19.7630i) q^{31} -43.2608i q^{32} +2.46549 q^{34} +(19.3408 - 6.28420i) q^{35} +(-36.5355 - 31.5711i) q^{36} +(-31.1905 + 22.6613i) q^{37} +(-60.2520 - 19.5771i) q^{38} +(45.6729 + 16.9996i) q^{39} +(22.4400 - 16.3036i) q^{40} +(-7.86024 + 10.8187i) q^{41} +(7.55483 + 27.0866i) q^{42} -43.4125 q^{43} +(-5.03227 + 59.5416i) q^{45} +(25.8380 + 79.5212i) q^{46} +(-11.6912 + 16.0916i) q^{47} +(-14.3973 - 21.6824i) q^{48} +(-12.2427 + 37.6791i) q^{49} +(-55.5336 - 18.0440i) q^{50} +(2.01348 - 1.33697i) q^{51} +(-70.5100 - 51.2285i) q^{52} +(-16.8103 + 5.46201i) q^{53} +(-81.9669 - 10.4224i) q^{54} -12.7963i q^{56} +(-59.8221 + 16.6852i) q^{57} +(-9.36516 - 6.80419i) q^{58} +(25.5837 + 35.2129i) q^{59} +(37.2766 - 100.151i) q^{60} +(-3.29249 + 10.1333i) q^{61} +(37.3785 + 51.4471i) q^{62} +(20.8582 + 18.0240i) q^{63} +(30.1867 + 92.9052i) q^{64} +107.854i q^{65} +72.2963 q^{67} +(-4.11087 + 1.33570i) q^{68} +(64.2234 + 50.9311i) q^{69} +(-50.3481 + 36.5800i) q^{70} +(-2.44412 - 0.794142i) q^{71} +(34.6538 + 14.5892i) q^{72} +(-36.7931 + 26.7318i) q^{73} +(69.3492 - 95.4510i) q^{74} +(-55.1374 + 15.3786i) q^{75} +111.068 q^{76} +(-149.006 - 6.28555i) q^{78} +(30.3585 + 93.4339i) q^{79} +(33.8569 - 46.6000i) q^{80} +(-72.5916 + 35.9370i) q^{81} +(12.6461 - 38.9207i) q^{82} +(-30.3393 - 9.85783i) q^{83} +(-27.2711 - 41.0704i) q^{84} +(4.32739 + 3.14404i) q^{85} +(126.351 - 41.0540i) q^{86} +(-11.3380 - 0.478272i) q^{87} -18.5409i q^{89} +(-41.6605 - 178.053i) q^{90} +(40.2543 + 29.2464i) q^{91} +(-86.1629 - 118.593i) q^{92} +(58.4243 + 21.7458i) q^{93} +(18.8097 - 57.8902i) q^{94} +(-80.7886 - 111.196i) q^{95} +(101.688 + 80.6415i) q^{96} +(-19.5614 - 60.2037i) q^{97} -121.242i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.91048 + 0.945671i −1.45524 + 0.472835i −0.926612 0.376020i \(-0.877293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(3\) −1.86408 + 2.35058i −0.621360 + 0.783526i
\(4\) 4.34051 3.15356i 1.08513 0.788390i
\(5\) −6.31437 2.05166i −1.26287 0.410333i −0.400357 0.916359i \(-0.631114\pi\)
−0.862518 + 0.506027i \(0.831114\pi\)
\(6\) 3.20248 8.60410i 0.533747 1.43402i
\(7\) −2.47800 + 1.80037i −0.354000 + 0.257196i −0.750545 0.660819i \(-0.770209\pi\)
0.396545 + 0.918015i \(0.370209\pi\)
\(8\) −2.45561 + 3.37986i −0.306951 + 0.422482i
\(9\) −2.05042 8.76332i −0.227824 0.973702i
\(10\) 20.3180 2.03180
\(11\) 0 0
\(12\) −0.678356 + 16.0812i −0.0565297 + 1.34010i
\(13\) −5.01988 15.4496i −0.386144 1.18843i −0.935647 0.352938i \(-0.885183\pi\)
0.549503 0.835492i \(-0.314817\pi\)
\(14\) 5.50960 7.58331i 0.393543 0.541665i
\(15\) 16.5931 11.0180i 1.10621 0.734530i
\(16\) −2.68094 + 8.25108i −0.167559 + 0.515693i
\(17\) −0.766216 0.248959i −0.0450715 0.0146446i 0.286394 0.958112i \(-0.407543\pi\)
−0.331466 + 0.943467i \(0.607543\pi\)
\(18\) 14.2549 + 23.5664i 0.791940 + 1.30924i
\(19\) 16.7481 + 12.1682i 0.881479 + 0.640432i 0.933642 0.358207i \(-0.116612\pi\)
−0.0521636 + 0.998639i \(0.516612\pi\)
\(20\) −33.8776 + 11.0075i −1.69388 + 0.550375i
\(21\) 0.387274 9.18076i 0.0184416 0.437179i
\(22\) 0 0
\(23\) 27.3224i 1.18793i −0.804491 0.593965i \(-0.797562\pi\)
0.804491 0.593965i \(-0.202438\pi\)
\(24\) −3.36716 12.0724i −0.140299 0.503018i
\(25\) 15.4365 + 11.2153i 0.617462 + 0.448612i
\(26\) 29.2204 + 40.2185i 1.12386 + 1.54687i
\(27\) 24.4210 + 11.5159i 0.904481 + 0.426513i
\(28\) −5.07819 + 15.6291i −0.181364 + 0.558180i
\(29\) 2.22341 + 3.06025i 0.0766691 + 0.105526i 0.845629 0.533771i \(-0.179226\pi\)
−0.768960 + 0.639297i \(0.779226\pi\)
\(30\) −37.8744 + 47.7591i −1.26248 + 1.59197i
\(31\) −6.42137 19.7630i −0.207141 0.637515i −0.999619 0.0276136i \(-0.991209\pi\)
0.792478 0.609901i \(-0.208791\pi\)
\(32\) 43.2608i 1.35190i
\(33\) 0 0
\(34\) 2.46549 0.0725143
\(35\) 19.3408 6.28420i 0.552593 0.179548i
\(36\) −36.5355 31.5711i −1.01488 0.876975i
\(37\) −31.1905 + 22.6613i −0.842988 + 0.612466i −0.923204 0.384311i \(-0.874439\pi\)
0.0802160 + 0.996778i \(0.474439\pi\)
\(38\) −60.2520 19.5771i −1.58558 0.515186i
\(39\) 45.6729 + 16.9996i 1.17110 + 0.435888i
\(40\) 22.4400 16.3036i 0.560999 0.407590i
\(41\) −7.86024 + 10.8187i −0.191713 + 0.263871i −0.894043 0.447981i \(-0.852143\pi\)
0.702330 + 0.711852i \(0.252143\pi\)
\(42\) 7.55483 + 27.0866i 0.179877 + 0.644920i
\(43\) −43.4125 −1.00959 −0.504797 0.863238i \(-0.668433\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(44\) 0 0
\(45\) −5.03227 + 59.5416i −0.111828 + 1.32315i
\(46\) 25.8380 + 79.5212i 0.561695 + 1.72872i
\(47\) −11.6912 + 16.0916i −0.248749 + 0.342374i −0.915073 0.403289i \(-0.867867\pi\)
0.666323 + 0.745663i \(0.267867\pi\)
\(48\) −14.3973 21.6824i −0.299944 0.451717i
\(49\) −12.2427 + 37.6791i −0.249851 + 0.768962i
\(50\) −55.5336 18.0440i −1.11067 0.360880i
\(51\) 2.01348 1.33697i 0.0394801 0.0262151i
\(52\) −70.5100 51.2285i −1.35596 0.985164i
\(53\) −16.8103 + 5.46201i −0.317176 + 0.103057i −0.463279 0.886213i \(-0.653327\pi\)
0.146102 + 0.989269i \(0.453327\pi\)
\(54\) −81.9669 10.4224i −1.51791 0.193007i
\(55\) 0 0
\(56\) 12.7963i 0.228505i
\(57\) −59.8221 + 16.6852i −1.04951 + 0.292723i
\(58\) −9.36516 6.80419i −0.161468 0.117314i
\(59\) 25.5837 + 35.2129i 0.433621 + 0.596828i 0.968780 0.247923i \(-0.0797481\pi\)
−0.535158 + 0.844752i \(0.679748\pi\)
\(60\) 37.2766 100.151i 0.621276 1.66918i
\(61\) −3.29249 + 10.1333i −0.0539753 + 0.166119i −0.974410 0.224777i \(-0.927835\pi\)
0.920435 + 0.390896i \(0.127835\pi\)
\(62\) 37.3785 + 51.4471i 0.602879 + 0.829792i
\(63\) 20.8582 + 18.0240i 0.331082 + 0.286095i
\(64\) 30.1867 + 92.9052i 0.471667 + 1.45164i
\(65\) 107.854i 1.65929i
\(66\) 0 0
\(67\) 72.2963 1.07905 0.539525 0.841970i \(-0.318604\pi\)
0.539525 + 0.841970i \(0.318604\pi\)
\(68\) −4.11087 + 1.33570i −0.0604540 + 0.0196427i
\(69\) 64.2234 + 50.9311i 0.930774 + 0.738132i
\(70\) −50.3481 + 36.5800i −0.719258 + 0.522571i
\(71\) −2.44412 0.794142i −0.0344242 0.0111851i 0.291754 0.956493i \(-0.405761\pi\)
−0.326178 + 0.945308i \(0.605761\pi\)
\(72\) 34.6538 + 14.5892i 0.481303 + 0.202627i
\(73\) −36.7931 + 26.7318i −0.504015 + 0.366188i −0.810549 0.585671i \(-0.800831\pi\)
0.306533 + 0.951860i \(0.400831\pi\)
\(74\) 69.3492 95.4510i 0.937152 1.28988i
\(75\) −55.1374 + 15.3786i −0.735165 + 0.205047i
\(76\) 111.068 1.46143
\(77\) 0 0
\(78\) −149.006 6.28555i −1.91033 0.0805840i
\(79\) 30.3585 + 93.4339i 0.384285 + 1.18271i 0.936998 + 0.349336i \(0.113593\pi\)
−0.552712 + 0.833372i \(0.686407\pi\)
\(80\) 33.8569 46.6000i 0.423211 0.582500i
\(81\) −72.5916 + 35.9370i −0.896192 + 0.443666i
\(82\) 12.6461 38.9207i 0.154221 0.474643i
\(83\) −30.3393 9.85783i −0.365534 0.118769i 0.120491 0.992714i \(-0.461553\pi\)
−0.486024 + 0.873945i \(0.661553\pi\)
\(84\) −27.2711 41.0704i −0.324656 0.488934i
\(85\) 4.32739 + 3.14404i 0.0509105 + 0.0369887i
\(86\) 126.351 41.0540i 1.46920 0.477372i
\(87\) −11.3380 0.478272i −0.130321 0.00549738i
\(88\) 0 0
\(89\) 18.5409i 0.208325i −0.994560 0.104162i \(-0.966784\pi\)
0.994560 0.104162i \(-0.0332161\pi\)
\(90\) −41.6605 178.053i −0.462894 1.97837i
\(91\) 40.2543 + 29.2464i 0.442354 + 0.321389i
\(92\) −86.1629 118.593i −0.936553 1.28905i
\(93\) 58.4243 + 21.7458i 0.628218 + 0.233826i
\(94\) 18.8097 57.8902i 0.200103 0.615853i
\(95\) −80.7886 111.196i −0.850407 1.17048i
\(96\) 101.688 + 80.6415i 1.05925 + 0.840016i
\(97\) −19.5614 60.2037i −0.201664 0.620657i −0.999834 0.0182248i \(-0.994199\pi\)
0.798170 0.602432i \(-0.205801\pi\)
\(98\) 121.242i 1.23716i
\(99\) 0 0
\(100\) 102.371 1.02371
\(101\) 143.000 46.4634i 1.41584 0.460034i 0.501561 0.865122i \(-0.332759\pi\)
0.914277 + 0.405089i \(0.132759\pi\)
\(102\) −4.59586 + 5.79532i −0.0450575 + 0.0568168i
\(103\) 121.164 88.0311i 1.17635 0.854671i 0.184597 0.982814i \(-0.440902\pi\)
0.991756 + 0.128144i \(0.0409019\pi\)
\(104\) 64.5443 + 20.9717i 0.620618 + 0.201651i
\(105\) −21.2812 + 57.1762i −0.202678 + 0.544535i
\(106\) 43.7608 31.7941i 0.412838 0.299944i
\(107\) −12.1974 + 16.7883i −0.113995 + 0.156900i −0.862202 0.506565i \(-0.830915\pi\)
0.748207 + 0.663465i \(0.230915\pi\)
\(108\) 142.315 27.0285i 1.31774 0.250264i
\(109\) 105.794 0.970583 0.485291 0.874352i \(-0.338714\pi\)
0.485291 + 0.874352i \(0.338714\pi\)
\(110\) 0 0
\(111\) 4.87462 115.558i 0.0439155 1.04106i
\(112\) −8.21165 25.2729i −0.0733183 0.225651i
\(113\) −78.0396 + 107.412i −0.690616 + 0.950552i −1.00000 0.000385488i \(-0.999877\pi\)
0.309384 + 0.950937i \(0.399877\pi\)
\(114\) 158.332 105.134i 1.38888 0.922226i
\(115\) −56.0564 + 172.524i −0.487447 + 1.50021i
\(116\) 19.3014 + 6.27141i 0.166391 + 0.0540638i
\(117\) −125.097 + 75.6689i −1.06920 + 0.646743i
\(118\) −107.760 78.2925i −0.913224 0.663496i
\(119\) 2.34690 0.762555i 0.0197219 0.00640802i
\(120\) −3.50703 + 83.1381i −0.0292253 + 0.692817i
\(121\) 0 0
\(122\) 32.6062i 0.267264i
\(123\) −10.7781 38.6430i −0.0876265 0.314171i
\(124\) −90.1957 65.5310i −0.727385 0.528476i
\(125\) 23.1004 + 31.7950i 0.184803 + 0.254360i
\(126\) −77.7520 32.7334i −0.617079 0.259789i
\(127\) 45.3190 139.478i 0.356843 1.09825i −0.598091 0.801428i \(-0.704074\pi\)
0.954933 0.296820i \(-0.0959263\pi\)
\(128\) −74.0031 101.857i −0.578150 0.795755i
\(129\) 80.9244 102.044i 0.627321 0.791042i
\(130\) −101.994 313.905i −0.784569 2.41465i
\(131\) 149.467i 1.14097i 0.821309 + 0.570484i \(0.193244\pi\)
−0.821309 + 0.570484i \(0.806756\pi\)
\(132\) 0 0
\(133\) −63.4091 −0.476760
\(134\) −210.417 + 68.3685i −1.57027 + 0.510213i
\(135\) −130.577 122.819i −0.967234 0.909771i
\(136\) 2.72298 1.97836i 0.0200219 0.0145467i
\(137\) 144.757 + 47.0345i 1.05662 + 0.343318i 0.785264 0.619161i \(-0.212527\pi\)
0.271359 + 0.962478i \(0.412527\pi\)
\(138\) −235.085 87.4995i −1.70351 0.634055i
\(139\) 90.4769 65.7353i 0.650913 0.472916i −0.212669 0.977124i \(-0.568216\pi\)
0.863582 + 0.504208i \(0.168216\pi\)
\(140\) 64.1311 88.2689i 0.458079 0.630492i
\(141\) −16.0311 57.4771i −0.113696 0.407639i
\(142\) 7.86454 0.0553841
\(143\) 0 0
\(144\) 77.8039 + 6.57574i 0.540305 + 0.0456649i
\(145\) −7.76079 23.8853i −0.0535227 0.164726i
\(146\) 81.8060 112.596i 0.560315 0.771207i
\(147\) −65.7463 99.0142i −0.447254 0.673566i
\(148\) −63.9190 + 196.723i −0.431885 + 1.32921i
\(149\) 246.985 + 80.2503i 1.65762 + 0.538592i 0.980371 0.197164i \(-0.0631730\pi\)
0.677247 + 0.735756i \(0.263173\pi\)
\(150\) 145.933 96.9007i 0.972886 0.646005i
\(151\) 71.2078 + 51.7355i 0.471575 + 0.342619i 0.798055 0.602585i \(-0.205863\pi\)
−0.326480 + 0.945204i \(0.605863\pi\)
\(152\) −82.2536 + 26.7258i −0.541142 + 0.175828i
\(153\) −0.610640 + 7.22507i −0.00399111 + 0.0472227i
\(154\) 0 0
\(155\) 137.965i 0.890098i
\(156\) 251.853 70.2452i 1.61444 0.450290i
\(157\) 6.19326 + 4.49967i 0.0394475 + 0.0286603i 0.607334 0.794446i \(-0.292239\pi\)
−0.567887 + 0.823107i \(0.692239\pi\)
\(158\) −176.715 243.228i −1.11845 1.53942i
\(159\) 18.4969 49.6956i 0.116333 0.312551i
\(160\) −88.7566 + 273.165i −0.554729 + 1.70728i
\(161\) 49.1905 + 67.7049i 0.305531 + 0.420527i
\(162\) 177.291 173.241i 1.09439 1.06939i
\(163\) 81.1315 + 249.697i 0.497739 + 1.53188i 0.812644 + 0.582760i \(0.198027\pi\)
−0.314905 + 0.949123i \(0.601973\pi\)
\(164\) 71.7464i 0.437478i
\(165\) 0 0
\(166\) 97.6240 0.588096
\(167\) −152.175 + 49.4447i −0.911228 + 0.296076i −0.726863 0.686782i \(-0.759023\pi\)
−0.184364 + 0.982858i \(0.559023\pi\)
\(168\) 30.0787 + 23.8533i 0.179040 + 0.141984i
\(169\) −76.7667 + 55.7743i −0.454241 + 0.330025i
\(170\) −15.5680 5.05835i −0.0915765 0.0297550i
\(171\) 72.2932 171.719i 0.422767 1.00420i
\(172\) −188.432 + 136.904i −1.09554 + 0.795954i
\(173\) −97.2924 + 133.912i −0.562384 + 0.774055i −0.991627 0.129134i \(-0.958780\pi\)
0.429243 + 0.903189i \(0.358780\pi\)
\(174\) 33.4512 9.32998i 0.192248 0.0536206i
\(175\) −58.4435 −0.333963
\(176\) 0 0
\(177\) −130.461 5.50325i −0.737065 0.0310918i
\(178\) 17.5336 + 53.9628i 0.0985032 + 0.303162i
\(179\) −34.4072 + 47.3575i −0.192219 + 0.264567i −0.894238 0.447591i \(-0.852282\pi\)
0.702019 + 0.712158i \(0.252282\pi\)
\(180\) 165.926 + 274.310i 0.921809 + 1.52395i
\(181\) 87.9703 270.745i 0.486024 1.49583i −0.344468 0.938798i \(-0.611941\pi\)
0.830492 0.557030i \(-0.188059\pi\)
\(182\) −144.817 47.0537i −0.795695 0.258537i
\(183\) −17.6815 26.6284i −0.0966203 0.145511i
\(184\) 92.3459 + 67.0932i 0.501880 + 0.364637i
\(185\) 243.442 79.0991i 1.31590 0.427563i
\(186\) −190.607 8.04041i −1.02477 0.0432280i
\(187\) 0 0
\(188\) 106.715i 0.567631i
\(189\) −81.2481 + 15.4306i −0.429884 + 0.0816435i
\(190\) 340.288 + 247.234i 1.79099 + 1.30123i
\(191\) 80.7867 + 111.193i 0.422967 + 0.582164i 0.966321 0.257339i \(-0.0828459\pi\)
−0.543354 + 0.839504i \(0.682846\pi\)
\(192\) −274.651 102.226i −1.43047 0.532429i
\(193\) −92.1162 + 283.505i −0.477286 + 1.46894i 0.365563 + 0.930786i \(0.380876\pi\)
−0.842850 + 0.538149i \(0.819124\pi\)
\(194\) 113.866 + 156.723i 0.586937 + 0.807849i
\(195\) −253.518 201.047i −1.30009 1.03101i
\(196\) 65.6840 + 202.155i 0.335122 + 1.03140i
\(197\) 58.1375i 0.295114i −0.989054 0.147557i \(-0.952859\pi\)
0.989054 0.147557i \(-0.0471410\pi\)
\(198\) 0 0
\(199\) −125.049 −0.628385 −0.314193 0.949359i \(-0.601734\pi\)
−0.314193 + 0.949359i \(0.601734\pi\)
\(200\) −75.8123 + 24.6329i −0.379061 + 0.123165i
\(201\) −134.766 + 169.938i −0.670478 + 0.845463i
\(202\) −372.258 + 270.461i −1.84286 + 1.33892i
\(203\) −11.0192 3.58035i −0.0542818 0.0176372i
\(204\) 4.52332 12.1528i 0.0221731 0.0595724i
\(205\) 71.8288 52.1867i 0.350384 0.254569i
\(206\) −269.397 + 370.794i −1.30775 + 1.79997i
\(207\) −239.435 + 56.0224i −1.15669 + 0.270640i
\(208\) 140.934 0.677566
\(209\) 0 0
\(210\) 7.86865 186.535i 0.0374698 0.888262i
\(211\) 14.9542 + 46.0242i 0.0708728 + 0.218124i 0.980219 0.197916i \(-0.0634175\pi\)
−0.909346 + 0.416040i \(0.863417\pi\)
\(212\) −55.7406 + 76.7204i −0.262927 + 0.361889i
\(213\) 6.42272 4.26474i 0.0301536 0.0200223i
\(214\) 19.6241 60.3967i 0.0917013 0.282228i
\(215\) 274.123 + 89.0679i 1.27499 + 0.414269i
\(216\) −98.8904 + 54.2611i −0.457826 + 0.251209i
\(217\) 51.4928 + 37.4117i 0.237294 + 0.172404i
\(218\) −307.909 + 100.046i −1.41243 + 0.458926i
\(219\) 5.75021 136.315i 0.0262567 0.622444i
\(220\) 0 0
\(221\) 13.0875i 0.0592193i
\(222\) 95.0925 + 340.939i 0.428345 + 1.53576i
\(223\) −171.282 124.444i −0.768082 0.558044i 0.133297 0.991076i \(-0.457444\pi\)
−0.901378 + 0.433032i \(0.857444\pi\)
\(224\) 77.8855 + 107.200i 0.347703 + 0.478573i
\(225\) 66.6319 158.271i 0.296142 0.703428i
\(226\) 125.556 386.421i 0.555556 1.70983i
\(227\) −71.3484 98.2027i −0.314310 0.432611i 0.622409 0.782692i \(-0.286154\pi\)
−0.936719 + 0.350081i \(0.886154\pi\)
\(228\) −207.040 + 261.075i −0.908071 + 1.14506i
\(229\) 99.7951 + 307.138i 0.435786 + 1.34121i 0.892279 + 0.451485i \(0.149106\pi\)
−0.456492 + 0.889727i \(0.650894\pi\)
\(230\) 555.137i 2.41364i
\(231\) 0 0
\(232\) −15.8030 −0.0681166
\(233\) 382.714 124.351i 1.64255 0.533697i 0.665443 0.746449i \(-0.268243\pi\)
0.977106 + 0.212752i \(0.0682427\pi\)
\(234\) 292.533 338.533i 1.25014 1.44672i
\(235\) 106.837 77.6218i 0.454626 0.330305i
\(236\) 222.092 + 72.1621i 0.941068 + 0.305771i
\(237\) −276.214 102.808i −1.16546 0.433790i
\(238\) −6.10948 + 4.43879i −0.0256701 + 0.0186504i
\(239\) 0.188940 0.260053i 0.000790543 0.00108809i −0.808622 0.588329i \(-0.799786\pi\)
0.809412 + 0.587241i \(0.199786\pi\)
\(240\) 46.4250 + 166.449i 0.193437 + 0.693539i
\(241\) −290.799 −1.20664 −0.603318 0.797500i \(-0.706155\pi\)
−0.603318 + 0.797500i \(0.706155\pi\)
\(242\) 0 0
\(243\) 50.8438 237.621i 0.209234 0.977866i
\(244\) 17.6648 + 54.3665i 0.0723965 + 0.222814i
\(245\) 154.610 212.802i 0.631060 0.868580i
\(246\) 67.9128 + 102.277i 0.276068 + 0.415760i
\(247\) 103.920 319.834i 0.420730 1.29487i
\(248\) 82.5644 + 26.8268i 0.332921 + 0.108173i
\(249\) 79.7264 52.9390i 0.320186 0.212607i
\(250\) −97.3007 70.6931i −0.389203 0.282772i
\(251\) −107.109 + 34.8019i −0.426730 + 0.138653i −0.514505 0.857487i \(-0.672024\pi\)
0.0877748 + 0.996140i \(0.472024\pi\)
\(252\) 147.375 + 12.4557i 0.584821 + 0.0494272i
\(253\) 0 0
\(254\) 448.803i 1.76694i
\(255\) −15.4569 + 4.31114i −0.0606153 + 0.0169064i
\(256\) −4.41230 3.20572i −0.0172355 0.0125224i
\(257\) 115.540 + 159.027i 0.449572 + 0.618783i 0.972306 0.233713i \(-0.0750877\pi\)
−0.522733 + 0.852496i \(0.675088\pi\)
\(258\) −139.028 + 373.526i −0.538868 + 1.44777i
\(259\) 36.4915 112.309i 0.140894 0.433626i
\(260\) 340.123 + 468.139i 1.30816 + 1.80053i
\(261\) 22.2591 25.7592i 0.0852838 0.0986943i
\(262\) −141.346 435.020i −0.539490 1.66038i
\(263\) 378.327i 1.43850i 0.694749 + 0.719252i \(0.255515\pi\)
−0.694749 + 0.719252i \(0.744485\pi\)
\(264\) 0 0
\(265\) 117.353 0.442842
\(266\) 184.551 59.9641i 0.693799 0.225429i
\(267\) 43.5818 + 34.5617i 0.163228 + 0.129444i
\(268\) 313.803 227.991i 1.17090 0.850712i
\(269\) −191.309 62.1601i −0.711186 0.231078i −0.0689882 0.997617i \(-0.521977\pi\)
−0.642198 + 0.766539i \(0.721977\pi\)
\(270\) 496.186 + 233.979i 1.83773 + 0.866590i
\(271\) 64.8950 47.1490i 0.239465 0.173981i −0.461580 0.887099i \(-0.652717\pi\)
0.701045 + 0.713117i \(0.252717\pi\)
\(272\) 4.10836 5.65467i 0.0151043 0.0207892i
\(273\) −143.783 + 40.1031i −0.526678 + 0.146898i
\(274\) −465.792 −1.69997
\(275\) 0 0
\(276\) 439.376 + 18.5343i 1.59194 + 0.0671533i
\(277\) −67.6484 208.200i −0.244218 0.751626i −0.995764 0.0919450i \(-0.970692\pi\)
0.751546 0.659681i \(-0.229308\pi\)
\(278\) −201.167 + 276.882i −0.723622 + 0.995980i
\(279\) −160.023 + 96.7949i −0.573558 + 0.346935i
\(280\) −26.2537 + 80.8006i −0.0937633 + 0.288574i
\(281\) −472.140 153.407i −1.68021 0.545934i −0.695260 0.718759i \(-0.744711\pi\)
−0.984953 + 0.172825i \(0.944711\pi\)
\(282\) 101.013 + 152.125i 0.358201 + 0.539452i
\(283\) −248.936 180.862i −0.879632 0.639090i 0.0535221 0.998567i \(-0.482955\pi\)
−0.933154 + 0.359477i \(0.882955\pi\)
\(284\) −13.1131 + 4.26070i −0.0461728 + 0.0150025i
\(285\) 411.971 + 17.3783i 1.44551 + 0.0609764i
\(286\) 0 0
\(287\) 40.9601i 0.142718i
\(288\) −379.108 + 88.7028i −1.31635 + 0.307996i
\(289\) −233.281 169.488i −0.807200 0.586465i
\(290\) 45.1752 + 62.1783i 0.155777 + 0.214408i
\(291\) 177.977 + 66.2439i 0.611606 + 0.227642i
\(292\) −75.4004 + 232.059i −0.258221 + 0.794721i
\(293\) 199.670 + 274.822i 0.681466 + 0.937957i 0.999950 0.00997075i \(-0.00317384\pi\)
−0.318484 + 0.947928i \(0.603174\pi\)
\(294\) 284.988 + 226.004i 0.969347 + 0.768721i
\(295\) −89.2997 274.836i −0.302711 0.931648i
\(296\) 161.067i 0.544145i
\(297\) 0 0
\(298\) −794.734 −2.66689
\(299\) −422.120 + 137.155i −1.41177 + 0.458712i
\(300\) −190.827 + 240.630i −0.636089 + 0.802099i
\(301\) 107.576 78.1587i 0.357396 0.259664i
\(302\) −256.173 83.2358i −0.848256 0.275615i
\(303\) −157.347 + 422.743i −0.519296 + 1.39519i
\(304\) −145.301 + 105.568i −0.477965 + 0.347262i
\(305\) 41.5801 57.2300i 0.136328 0.187639i
\(306\) −5.05528 21.6058i −0.0165205 0.0706073i
\(307\) 396.129 1.29032 0.645161 0.764047i \(-0.276790\pi\)
0.645161 + 0.764047i \(0.276790\pi\)
\(308\) 0 0
\(309\) −18.9362 + 448.903i −0.0612821 + 1.45276i
\(310\) −130.470 401.544i −0.420870 1.29530i
\(311\) 51.1584 70.4134i 0.164496 0.226410i −0.718809 0.695207i \(-0.755313\pi\)
0.883306 + 0.468797i \(0.155313\pi\)
\(312\) −169.611 + 112.623i −0.543626 + 0.360972i
\(313\) −185.075 + 569.601i −0.591292 + 1.81981i −0.0189146 + 0.999821i \(0.506021\pi\)
−0.572378 + 0.819990i \(0.693979\pi\)
\(314\) −22.2805 7.23939i −0.0709572 0.0230554i
\(315\) −94.7271 156.604i −0.300721 0.497156i
\(316\) 426.421 + 309.813i 1.34943 + 0.980421i
\(317\) −2.33475 + 0.758605i −0.00736513 + 0.00239308i −0.312697 0.949853i \(-0.601233\pi\)
0.305332 + 0.952246i \(0.401233\pi\)
\(318\) −6.83917 + 162.130i −0.0215068 + 0.509843i
\(319\) 0 0
\(320\) 648.571i 2.02678i
\(321\) −16.7253 59.9657i −0.0521036 0.186809i
\(322\) −207.194 150.535i −0.643460 0.467501i
\(323\) −9.80328 13.4931i −0.0303507 0.0417742i
\(324\) −201.755 + 384.907i −0.622699 + 1.18798i
\(325\) 95.7823 294.788i 0.294715 0.907039i
\(326\) −472.262 650.013i −1.44866 1.99391i
\(327\) −197.207 + 248.676i −0.603081 + 0.760476i
\(328\) −17.2640 53.1330i −0.0526340 0.161991i
\(329\) 60.9235i 0.185178i
\(330\) 0 0
\(331\) 368.074 1.11200 0.556002 0.831181i \(-0.312335\pi\)
0.556002 + 0.831181i \(0.312335\pi\)
\(332\) −162.775 + 52.8888i −0.490286 + 0.159304i
\(333\) 262.542 + 226.868i 0.788413 + 0.681284i
\(334\) 396.143 287.815i 1.18606 0.861721i
\(335\) −456.506 148.328i −1.36270 0.442769i
\(336\) 74.7130 + 27.8085i 0.222360 + 0.0827634i
\(337\) 478.841 347.898i 1.42089 1.03234i 0.429269 0.903177i \(-0.358771\pi\)
0.991624 0.129162i \(-0.0412286\pi\)
\(338\) 170.684 234.926i 0.504981 0.695047i
\(339\) −107.009 383.663i −0.315661 1.13175i
\(340\) 28.6980 0.0844059
\(341\) 0 0
\(342\) −48.0182 + 568.149i −0.140404 + 1.66125i
\(343\) −83.8781 258.150i −0.244543 0.752625i
\(344\) 106.604 146.728i 0.309896 0.426536i
\(345\) −301.037 453.363i −0.872571 1.31409i
\(346\) 156.531 481.753i 0.452402 1.39235i
\(347\) 280.182 + 91.0367i 0.807442 + 0.262354i 0.683514 0.729938i \(-0.260451\pi\)
0.123928 + 0.992291i \(0.460451\pi\)
\(348\) −50.7208 + 33.6790i −0.145749 + 0.0967788i
\(349\) 333.322 + 242.172i 0.955076 + 0.693903i 0.952002 0.306092i \(-0.0990215\pi\)
0.00307413 + 0.999995i \(0.499021\pi\)
\(350\) 170.098 55.2683i 0.485995 0.157909i
\(351\) 55.3248 435.102i 0.157620 1.23961i
\(352\) 0 0
\(353\) 135.577i 0.384070i 0.981388 + 0.192035i \(0.0615086\pi\)
−0.981388 + 0.192035i \(0.938491\pi\)
\(354\) 384.906 107.356i 1.08731 0.303264i
\(355\) 13.8038 + 10.0290i 0.0388838 + 0.0282507i
\(356\) −58.4698 80.4768i −0.164241 0.226058i
\(357\) −2.58237 + 6.93804i −0.00723352 + 0.0194343i
\(358\) 55.3568 170.371i 0.154628 0.475896i
\(359\) −163.860 225.534i −0.456435 0.628229i 0.517330 0.855786i \(-0.326926\pi\)
−0.973765 + 0.227557i \(0.926926\pi\)
\(360\) −188.885 163.219i −0.524681 0.453387i
\(361\) 20.8784 + 64.2571i 0.0578349 + 0.177997i
\(362\) 871.187i 2.40659i
\(363\) 0 0
\(364\) 266.954 0.733391
\(365\) 287.170 93.3072i 0.786767 0.255636i
\(366\) 76.6434 + 60.7805i 0.209408 + 0.166067i
\(367\) 142.701 103.678i 0.388830 0.282502i −0.376146 0.926560i \(-0.622751\pi\)
0.764976 + 0.644059i \(0.222751\pi\)
\(368\) 225.439 + 73.2497i 0.612607 + 0.199048i
\(369\) 110.924 + 46.6990i 0.300608 + 0.126555i
\(370\) −633.730 + 460.432i −1.71278 + 1.24441i
\(371\) 31.8224 43.7998i 0.0857746 0.118059i
\(372\) 322.168 89.8569i 0.866042 0.241551i
\(373\) −163.109 −0.437289 −0.218645 0.975805i \(-0.570164\pi\)
−0.218645 + 0.975805i \(0.570164\pi\)
\(374\) 0 0
\(375\) −117.797 4.96908i −0.314126 0.0132509i
\(376\) −25.6782 79.0293i −0.0682930 0.210184i
\(377\) 36.1185 49.7128i 0.0958049 0.131864i
\(378\) 221.878 121.744i 0.586979 0.322075i
\(379\) 16.4492 50.6253i 0.0434015 0.133576i −0.927008 0.375042i \(-0.877628\pi\)
0.970409 + 0.241466i \(0.0776283\pi\)
\(380\) −701.327 227.875i −1.84560 0.599671i
\(381\) 243.375 + 366.523i 0.638778 + 0.962003i
\(382\) −340.280 247.228i −0.890785 0.647193i
\(383\) 85.2768 27.7081i 0.222655 0.0723449i −0.195565 0.980691i \(-0.562654\pi\)
0.418220 + 0.908346i \(0.362654\pi\)
\(384\) 377.369 + 15.9187i 0.982733 + 0.0414549i
\(385\) 0 0
\(386\) 912.245i 2.36333i
\(387\) 89.0139 + 380.438i 0.230010 + 0.983044i
\(388\) −274.762 199.626i −0.708150 0.514501i
\(389\) 158.468 + 218.112i 0.407372 + 0.560699i 0.962575 0.271016i \(-0.0873595\pi\)
−0.555203 + 0.831715i \(0.687360\pi\)
\(390\) 927.983 + 345.399i 2.37944 + 0.885639i
\(391\) −6.80215 + 20.9349i −0.0173968 + 0.0535419i
\(392\) −97.2868 133.904i −0.248181 0.341591i
\(393\) −351.333 278.618i −0.893978 0.708952i
\(394\) 54.9789 + 169.208i 0.139540 + 0.429461i
\(395\) 652.262i 1.65130i
\(396\) 0 0
\(397\) 211.490 0.532720 0.266360 0.963874i \(-0.414179\pi\)
0.266360 + 0.963874i \(0.414179\pi\)
\(398\) 363.951 118.255i 0.914450 0.297123i
\(399\) 118.200 149.048i 0.296239 0.373554i
\(400\) −133.923 + 97.3006i −0.334807 + 0.243252i
\(401\) 427.784 + 138.995i 1.06679 + 0.346622i 0.789237 0.614088i \(-0.210476\pi\)
0.277555 + 0.960710i \(0.410476\pi\)
\(402\) 231.528 622.045i 0.575940 1.54737i
\(403\) −273.095 + 198.415i −0.677655 + 0.492345i
\(404\) 474.165 652.633i 1.17368 1.61543i
\(405\) 532.101 77.9859i 1.31383 0.192558i
\(406\) 35.4569 0.0873323
\(407\) 0 0
\(408\) −0.425560 + 10.0884i −0.00104304 + 0.0247264i
\(409\) 47.6795 + 146.742i 0.116576 + 0.358783i 0.992272 0.124078i \(-0.0395974\pi\)
−0.875697 + 0.482862i \(0.839597\pi\)
\(410\) −159.705 + 219.814i −0.389523 + 0.536133i
\(411\) −380.397 + 252.587i −0.925541 + 0.614568i
\(412\) 248.303 764.199i 0.602678 1.85485i
\(413\) −126.793 41.1974i −0.307004 0.0997516i
\(414\) 643.891 389.478i 1.55529 0.940769i
\(415\) 171.349 + 124.492i 0.412888 + 0.299981i
\(416\) −668.362 + 217.164i −1.60664 + 0.522028i
\(417\) −14.1402 + 335.209i −0.0339093 + 0.803858i
\(418\) 0 0
\(419\) 755.530i 1.80317i −0.432599 0.901587i \(-0.642403\pi\)
0.432599 0.901587i \(-0.357597\pi\)
\(420\) 87.9374 + 315.285i 0.209375 + 0.750679i
\(421\) 353.452 + 256.798i 0.839553 + 0.609971i 0.922246 0.386604i \(-0.126352\pi\)
−0.0826929 + 0.996575i \(0.526352\pi\)
\(422\) −87.0474 119.810i −0.206274 0.283911i
\(423\) 164.988 + 69.4594i 0.390042 + 0.164207i
\(424\) 22.8188 70.2292i 0.0538180 0.165635i
\(425\) −9.03558 12.4364i −0.0212602 0.0292621i
\(426\) −14.6601 + 18.4862i −0.0344134 + 0.0433949i
\(427\) −10.0848 31.0379i −0.0236179 0.0726883i
\(428\) 111.335i 0.260129i
\(429\) 0 0
\(430\) −882.057 −2.05129
\(431\) −9.25765 + 3.00799i −0.0214795 + 0.00697910i −0.319737 0.947506i \(-0.603595\pi\)
0.298258 + 0.954485i \(0.403595\pi\)
\(432\) −160.489 + 170.626i −0.371503 + 0.394968i
\(433\) 47.9543 34.8408i 0.110749 0.0804638i −0.531032 0.847352i \(-0.678196\pi\)
0.641781 + 0.766888i \(0.278196\pi\)
\(434\) −185.248 60.1907i −0.426838 0.138688i
\(435\) 70.6109 + 26.2817i 0.162324 + 0.0604177i
\(436\) 459.197 333.626i 1.05320 0.765198i
\(437\) 332.465 457.598i 0.760788 1.04714i
\(438\) 112.173 + 402.180i 0.256104 + 0.918218i
\(439\) −444.724 −1.01304 −0.506519 0.862229i \(-0.669068\pi\)
−0.506519 + 0.862229i \(0.669068\pi\)
\(440\) 0 0
\(441\) 355.297 + 30.0286i 0.805662 + 0.0680920i
\(442\) −12.3764 38.0908i −0.0280010 0.0861782i
\(443\) 314.672 433.108i 0.710320 0.977671i −0.289470 0.957187i \(-0.593479\pi\)
0.999790 0.0204842i \(-0.00652079\pi\)
\(444\) −343.261 516.953i −0.773111 1.16431i
\(445\) −38.0397 + 117.074i −0.0854824 + 0.263088i
\(446\) 616.196 + 200.214i 1.38160 + 0.448910i
\(447\) −649.034 + 430.964i −1.45198 + 0.964126i
\(448\) −242.067 175.872i −0.540327 0.392571i
\(449\) 731.756 237.762i 1.62975 0.529537i 0.655534 0.755166i \(-0.272444\pi\)
0.974213 + 0.225629i \(0.0724438\pi\)
\(450\) −44.2578 + 523.657i −0.0983508 + 1.16368i
\(451\) 0 0
\(452\) 712.327i 1.57594i
\(453\) −254.345 + 70.9404i −0.561469 + 0.156601i
\(454\) 300.525 + 218.344i 0.661950 + 0.480935i
\(455\) −194.177 267.261i −0.426762 0.587387i
\(456\) 90.5062 243.162i 0.198478 0.533251i
\(457\) −52.4263 + 161.352i −0.114718 + 0.353067i −0.991888 0.127113i \(-0.959429\pi\)
0.877170 + 0.480180i \(0.159429\pi\)
\(458\) −580.902 799.543i −1.26835 1.74573i
\(459\) −15.8448 14.9035i −0.0345203 0.0324694i
\(460\) 300.751 + 925.618i 0.653807 + 2.01221i
\(461\) 266.355i 0.577777i −0.957363 0.288888i \(-0.906714\pi\)
0.957363 0.288888i \(-0.0932857\pi\)
\(462\) 0 0
\(463\) −704.848 −1.52235 −0.761175 0.648547i \(-0.775377\pi\)
−0.761175 + 0.648547i \(0.775377\pi\)
\(464\) −31.2112 + 10.1411i −0.0672656 + 0.0218559i
\(465\) −324.298 257.178i −0.697414 0.553071i
\(466\) −996.284 + 723.843i −2.13795 + 1.55331i
\(467\) −642.132 208.641i −1.37502 0.446770i −0.473988 0.880531i \(-0.657186\pi\)
−0.901028 + 0.433762i \(0.857186\pi\)
\(468\) −304.357 + 722.942i −0.650335 + 1.54475i
\(469\) −179.150 + 130.160i −0.381983 + 0.277527i
\(470\) −237.542 + 326.949i −0.505409 + 0.695636i
\(471\) −22.1216 + 6.17000i −0.0469672 + 0.0130998i
\(472\) −181.838 −0.385250
\(473\) 0 0
\(474\) 901.138 + 38.0129i 1.90113 + 0.0801960i
\(475\) 122.063 + 375.670i 0.256974 + 0.790884i
\(476\) 7.78198 10.7110i 0.0163487 0.0225020i
\(477\) 82.3336 + 136.115i 0.172607 + 0.285356i
\(478\) −0.303980 + 0.935553i −0.000635941 + 0.00195722i
\(479\) −665.556 216.252i −1.38947 0.451466i −0.483700 0.875234i \(-0.660707\pi\)
−0.905771 + 0.423768i \(0.860707\pi\)
\(480\) −476.645 717.830i −0.993011 1.49548i
\(481\) 506.680 + 368.124i 1.05339 + 0.765331i
\(482\) 846.365 275.001i 1.75594 0.570541i
\(483\) −250.841 10.5813i −0.519339 0.0219074i
\(484\) 0 0
\(485\) 420.282i 0.866560i
\(486\) 76.7320 + 739.673i 0.157885 + 1.52196i
\(487\) 528.569 + 384.028i 1.08536 + 0.788558i 0.978609 0.205729i \(-0.0659564\pi\)
0.106747 + 0.994286i \(0.465956\pi\)
\(488\) −26.1639 36.0115i −0.0536145 0.0737941i
\(489\) −738.167 274.749i −1.50954 0.561859i
\(490\) −248.747 + 765.565i −0.507647 + 1.56238i
\(491\) 36.3470 + 50.0274i 0.0740265 + 0.101889i 0.844425 0.535674i \(-0.179943\pi\)
−0.770398 + 0.637563i \(0.779943\pi\)
\(492\) −168.645 133.741i −0.342775 0.271831i
\(493\) −0.941732 2.89835i −0.00191021 0.00587901i
\(494\) 1029.14i 2.08329i
\(495\) 0 0
\(496\) 180.281 0.363470
\(497\) 7.48628 2.43244i 0.0150629 0.00489424i
\(498\) −181.979 + 229.473i −0.365419 + 0.460789i
\(499\) −266.970 + 193.965i −0.535010 + 0.388707i −0.822228 0.569158i \(-0.807269\pi\)
0.287219 + 0.957865i \(0.407269\pi\)
\(500\) 200.535 + 65.1577i 0.401069 + 0.130315i
\(501\) 167.443 449.868i 0.334217 0.897940i
\(502\) 278.828 202.580i 0.555434 0.403547i
\(503\) 204.067 280.874i 0.405700 0.558398i −0.556463 0.830872i \(-0.687842\pi\)
0.962163 + 0.272474i \(0.0878420\pi\)
\(504\) −112.138 + 26.2378i −0.222496 + 0.0520591i
\(505\) −998.280 −1.97679
\(506\) 0 0
\(507\) 11.9975 284.414i 0.0236637 0.560974i
\(508\) −243.144 748.320i −0.478630 1.47307i
\(509\) −503.258 + 692.675i −0.988719 + 1.36086i −0.0567219 + 0.998390i \(0.518065\pi\)
−0.931997 + 0.362465i \(0.881935\pi\)
\(510\) 40.9100 27.1646i 0.0802157 0.0532639i
\(511\) 43.0462 132.483i 0.0842391 0.259261i
\(512\) 494.832 + 160.781i 0.966468 + 0.314025i
\(513\) 268.878 + 490.028i 0.524129 + 0.955221i
\(514\) −486.664 353.582i −0.946817 0.687903i
\(515\) −945.687 + 307.272i −1.83629 + 0.596645i
\(516\) 29.4492 698.125i 0.0570720 1.35295i
\(517\) 0 0
\(518\) 361.382i 0.697649i
\(519\) −133.409 478.315i −0.257049 0.921609i
\(520\) −364.530 264.846i −0.701019 0.509320i
\(521\) −418.891 576.554i −0.804013 1.10663i −0.992220 0.124499i \(-0.960268\pi\)
0.188207 0.982129i \(-0.439732\pi\)
\(522\) −40.4248 + 96.0213i −0.0774421 + 0.183949i
\(523\) −155.721 + 479.261i −0.297746 + 0.916369i 0.684539 + 0.728976i \(0.260004\pi\)
−0.982285 + 0.187392i \(0.939996\pi\)
\(524\) 471.353 + 648.762i 0.899529 + 1.23809i
\(525\) 108.943 137.376i 0.207511 0.261668i
\(526\) −357.772 1101.11i −0.680176 2.09337i
\(527\) 16.7414i 0.0317673i
\(528\) 0 0
\(529\) −217.513 −0.411179
\(530\) −341.553 + 110.977i −0.644440 + 0.209391i
\(531\) 256.124 296.399i 0.482344 0.558190i
\(532\) −275.227 + 199.964i −0.517345 + 0.375873i
\(533\) 206.602 + 67.1290i 0.387621 + 0.125946i
\(534\) −159.528 59.3769i −0.298741 0.111193i
\(535\) 111.463 80.9826i 0.208342 0.151369i
\(536\) −177.532 + 244.351i −0.331216 + 0.455879i
\(537\) −47.1796 169.155i −0.0878577 0.315000i
\(538\) 615.583 1.14421
\(539\) 0 0
\(540\) −954.086 121.315i −1.76683 0.224658i
\(541\) 181.281 + 557.925i 0.335085 + 1.03128i 0.966680 + 0.255987i \(0.0824004\pi\)
−0.631596 + 0.775298i \(0.717600\pi\)
\(542\) −144.288 + 198.595i −0.266214 + 0.366412i
\(543\) 472.423 + 711.471i 0.870024 + 1.31026i
\(544\) −10.7702 + 33.1471i −0.0197981 + 0.0609322i
\(545\) −668.020 217.053i −1.22572 0.398262i
\(546\) 380.553 252.690i 0.696983 0.462803i
\(547\) 557.289 + 404.894i 1.01881 + 0.740209i 0.966039 0.258398i \(-0.0831946\pi\)
0.0527711 + 0.998607i \(0.483195\pi\)
\(548\) 776.646 252.348i 1.41724 0.460489i
\(549\) 95.5519 + 8.07575i 0.174047 + 0.0147099i
\(550\) 0 0
\(551\) 78.3083i 0.142120i
\(552\) −329.848 + 91.9990i −0.597550 + 0.166665i
\(553\) −243.444 176.873i −0.440225 0.319842i
\(554\) 393.778 + 541.989i 0.710790 + 0.978319i
\(555\) −267.867 + 719.676i −0.482642 + 1.29671i
\(556\) 185.415 570.649i 0.333480 1.02635i
\(557\) 363.725 + 500.624i 0.653007 + 0.898787i 0.999225 0.0393671i \(-0.0125342\pi\)
−0.346218 + 0.938154i \(0.612534\pi\)
\(558\) 374.206 433.048i 0.670619 0.776071i
\(559\) 217.925 + 670.706i 0.389849 + 1.19983i
\(560\) 176.430i 0.315053i
\(561\) 0 0
\(562\) 1519.22 2.70325
\(563\) −541.408 + 175.914i −0.961648 + 0.312458i −0.747440 0.664330i \(-0.768717\pi\)
−0.214208 + 0.976788i \(0.568717\pi\)
\(564\) −250.841 198.924i −0.444753 0.352703i
\(565\) 713.145 518.130i 1.26220 0.917045i
\(566\) 895.558 + 290.984i 1.58226 + 0.514107i
\(567\) 115.182 219.744i 0.203143 0.387555i
\(568\) 8.68589 6.31067i 0.0152921 0.0111103i
\(569\) −529.905 + 729.352i −0.931292 + 1.28181i 0.0280618 + 0.999606i \(0.491066\pi\)
−0.959354 + 0.282207i \(0.908934\pi\)
\(570\) −1215.47 + 339.010i −2.13240 + 0.594754i
\(571\) 804.182 1.40837 0.704187 0.710014i \(-0.251312\pi\)
0.704187 + 0.710014i \(0.251312\pi\)
\(572\) 0 0
\(573\) −411.961 17.3779i −0.718955 0.0303279i
\(574\) 38.7348 + 119.213i 0.0674822 + 0.207689i
\(575\) 306.429 421.763i 0.532920 0.733501i
\(576\) 752.262 455.030i 1.30601 0.789983i
\(577\) −243.227 + 748.576i −0.421538 + 1.29736i 0.484733 + 0.874662i \(0.338917\pi\)
−0.906271 + 0.422697i \(0.861083\pi\)
\(578\) 839.238 + 272.685i 1.45197 + 0.471773i
\(579\) −494.687 745.001i −0.854382 1.28670i
\(580\) −109.009 79.2000i −0.187947 0.136552i
\(581\) 92.9285 30.1943i 0.159946 0.0519695i
\(582\) −580.643 24.4934i −0.997669 0.0420849i
\(583\) 0 0
\(584\) 189.998i 0.325340i
\(585\) 945.155 221.145i 1.61565 0.378026i
\(586\) −841.024 611.040i −1.43519 1.04273i
\(587\) −107.287 147.667i −0.182771 0.251563i 0.707794 0.706419i \(-0.249691\pi\)
−0.890565 + 0.454856i \(0.849691\pi\)
\(588\) −597.620 222.437i −1.01636 0.378294i
\(589\) 132.934 409.128i 0.225694 0.694615i
\(590\) 519.809 + 715.456i 0.881033 + 1.21264i
\(591\) 136.657 + 108.373i 0.231230 + 0.183372i
\(592\) −103.360 318.109i −0.174595 0.537347i
\(593\) 685.071i 1.15526i −0.816297 0.577632i \(-0.803977\pi\)
0.816297 0.577632i \(-0.196023\pi\)
\(594\) 0 0
\(595\) −16.3837 −0.0275357
\(596\) 1325.11 430.556i 2.22335 0.722409i
\(597\) 233.101 293.936i 0.390453 0.492356i
\(598\) 1098.87 798.373i 1.83757 1.33507i
\(599\) 343.213 + 111.517i 0.572977 + 0.186171i 0.581152 0.813795i \(-0.302602\pi\)
−0.00817505 + 0.999967i \(0.502602\pi\)
\(600\) 83.4186 224.120i 0.139031 0.373534i
\(601\) −339.372 + 246.568i −0.564679 + 0.410264i −0.833169 0.553019i \(-0.813476\pi\)
0.268489 + 0.963283i \(0.413476\pi\)
\(602\) −239.186 + 329.211i −0.397318 + 0.546862i
\(603\) −148.238 633.556i −0.245834 1.05067i
\(604\) 472.229 0.781836
\(605\) 0 0
\(606\) 58.1783 1379.18i 0.0960039 2.27588i
\(607\) −311.403 958.400i −0.513020 1.57891i −0.786856 0.617137i \(-0.788293\pi\)
0.273836 0.961776i \(-0.411707\pi\)
\(608\) 526.406 724.536i 0.865800 1.19167i
\(609\) 28.9565 19.2274i 0.0475477 0.0315721i
\(610\) −66.8970 + 205.888i −0.109667 + 0.337521i
\(611\) 307.297 + 99.8468i 0.502941 + 0.163415i
\(612\) 20.1342 + 33.2861i 0.0328990 + 0.0543891i
\(613\) −446.778 324.603i −0.728838 0.529532i 0.160358 0.987059i \(-0.448735\pi\)
−0.889196 + 0.457527i \(0.848735\pi\)
\(614\) −1152.92 + 374.608i −1.87773 + 0.610110i
\(615\) −11.2258 + 266.119i −0.0182533 + 0.432714i
\(616\) 0 0
\(617\) 675.556i 1.09490i 0.836837 + 0.547452i \(0.184402\pi\)
−0.836837 + 0.547452i \(0.815598\pi\)
\(618\) −369.401 1324.43i −0.597736 2.14309i
\(619\) 217.722 + 158.184i 0.351732 + 0.255548i 0.749595 0.661896i \(-0.230248\pi\)
−0.397863 + 0.917445i \(0.630248\pi\)
\(620\) 435.082 + 598.838i 0.701744 + 0.965868i
\(621\) 314.641 667.240i 0.506668 1.07446i
\(622\) −82.3072 + 253.316i −0.132327 + 0.407260i
\(623\) 33.3805 + 45.9443i 0.0535802 + 0.0737469i
\(624\) −262.712 + 331.276i −0.421012 + 0.530891i
\(625\) −228.038 701.828i −0.364860 1.12292i
\(626\) 1832.83i 2.92784i
\(627\) 0 0
\(628\) 41.0719 0.0654011
\(629\) 29.5404 9.59826i 0.0469641 0.0152596i
\(630\) 423.797 + 366.212i 0.672694 + 0.581288i
\(631\) −75.5208 + 54.8691i −0.119684 + 0.0869558i −0.646017 0.763323i \(-0.723567\pi\)
0.526333 + 0.850279i \(0.323567\pi\)
\(632\) −390.342 126.830i −0.617630 0.200680i
\(633\) −136.059 50.6418i −0.214943 0.0800028i
\(634\) 6.07783 4.41580i 0.00958649 0.00696499i
\(635\) −572.322 + 787.734i −0.901295 + 1.24053i
\(636\) −76.4322 274.035i −0.120176 0.430873i
\(637\) 643.584 1.01034
\(638\) 0 0
\(639\) −1.94785 + 23.0469i −0.00304828 + 0.0360672i
\(640\) 258.308 + 794.990i 0.403606 + 1.24217i
\(641\) 8.68174 11.9494i 0.0135441 0.0186418i −0.802191 0.597067i \(-0.796333\pi\)
0.815735 + 0.578425i \(0.196333\pi\)
\(642\) 105.386 + 158.712i 0.164153 + 0.247215i
\(643\) −134.744 + 414.698i −0.209555 + 0.644943i 0.789941 + 0.613183i \(0.210111\pi\)
−0.999496 + 0.0317599i \(0.989889\pi\)
\(644\) 427.023 + 138.748i 0.663079 + 0.215448i
\(645\) −720.348 + 478.317i −1.11682 + 0.741577i
\(646\) 41.2922 + 30.0005i 0.0639198 + 0.0464405i
\(647\) −298.985 + 97.1462i −0.462110 + 0.150149i −0.530814 0.847488i \(-0.678114\pi\)
0.0687036 + 0.997637i \(0.478114\pi\)
\(648\) 56.7948 333.596i 0.0876462 0.514809i
\(649\) 0 0
\(650\) 948.550i 1.45931i
\(651\) −183.926 + 51.2994i −0.282528 + 0.0788010i
\(652\) 1139.59 + 827.958i 1.74783 + 1.26987i
\(653\) −112.807 155.266i −0.172752 0.237773i 0.713858 0.700291i \(-0.246946\pi\)
−0.886610 + 0.462517i \(0.846946\pi\)
\(654\) 338.802 910.258i 0.518046 1.39183i
\(655\) 306.656 943.789i 0.468177 1.44090i
\(656\) −68.1931 93.8598i −0.103953 0.143079i
\(657\) 309.700 + 267.618i 0.471386 + 0.407334i
\(658\) 57.6135 + 177.316i 0.0875586 + 0.269478i
\(659\) 127.678i 0.193745i 0.995297 + 0.0968724i \(0.0308839\pi\)
−0.995297 + 0.0968724i \(0.969116\pi\)
\(660\) 0 0
\(661\) 580.599 0.878364 0.439182 0.898398i \(-0.355268\pi\)
0.439182 + 0.898398i \(0.355268\pi\)
\(662\) −1071.27 + 348.076i −1.61823 + 0.525795i
\(663\) −30.7631 24.3961i −0.0463998 0.0367965i
\(664\) 107.820 78.3355i 0.162379 0.117975i
\(665\) 400.388 + 130.094i 0.602088 + 0.195630i
\(666\) −978.663 412.015i −1.46946 0.618641i
\(667\) 83.6135 60.7488i 0.125358 0.0910776i
\(668\) −504.590 + 694.508i −0.755374 + 1.03968i
\(669\) 611.798 170.639i 0.914497 0.255066i
\(670\) 1468.92 2.19241
\(671\) 0 0
\(672\) −397.167 16.7538i −0.591023 0.0249313i
\(673\) 168.866 + 519.715i 0.250915 + 0.772236i 0.994607 + 0.103714i \(0.0330728\pi\)
−0.743692 + 0.668522i \(0.766927\pi\)
\(674\) −1064.66 + 1465.37i −1.57961 + 2.17415i
\(675\) 247.822 + 451.654i 0.367144 + 0.669117i
\(676\) −157.319 + 484.177i −0.232720 + 0.716238i
\(677\) 27.7389 + 9.01292i 0.0409733 + 0.0133130i 0.329432 0.944179i \(-0.393143\pi\)
−0.288459 + 0.957492i \(0.593143\pi\)
\(678\) 674.266 + 1015.45i 0.994492 + 1.49771i
\(679\) 156.862 + 113.967i 0.231019 + 0.167845i
\(680\) −21.2528 + 6.90545i −0.0312541 + 0.0101551i
\(681\) 363.832 + 15.3476i 0.534261 + 0.0225369i
\(682\) 0 0
\(683\) 82.4506i 0.120718i 0.998177 + 0.0603592i \(0.0192246\pi\)
−0.998177 + 0.0603592i \(0.980775\pi\)
\(684\) −227.737 973.328i −0.332949 1.42299i
\(685\) −817.553 593.987i −1.19351 0.867134i
\(686\) 488.251 + 672.019i 0.711735 + 0.979620i
\(687\) −907.976 337.953i −1.32165 0.491926i
\(688\) 116.386 358.200i 0.169166 0.520640i
\(689\) 168.772 + 232.294i 0.244952 + 0.337147i
\(690\) 1304.89 + 1034.82i 1.89115 + 1.49974i
\(691\) 299.041 + 920.352i 0.432765 + 1.33191i 0.895360 + 0.445344i \(0.146918\pi\)
−0.462595 + 0.886570i \(0.653082\pi\)
\(692\) 888.061i 1.28333i
\(693\) 0 0
\(694\) −901.554 −1.29907
\(695\) −706.172 + 229.449i −1.01607 + 0.330143i
\(696\) 29.4581 37.1463i 0.0423249 0.0533711i
\(697\) 8.71606 6.33259i 0.0125051 0.00908549i
\(698\) −1199.14 389.624i −1.71796 0.558201i
\(699\) −421.112 + 1131.40i −0.602449 + 1.61860i
\(700\) −253.674 + 184.305i −0.362392 + 0.263293i
\(701\) 184.624 254.112i 0.263372 0.362500i −0.656766 0.754094i \(-0.728076\pi\)
0.920138 + 0.391594i \(0.128076\pi\)
\(702\) 250.442 + 1318.67i 0.356755 + 1.87845i
\(703\) −798.129 −1.13532
\(704\) 0 0
\(705\) −16.6971 + 395.822i −0.0236838 + 0.561450i
\(706\) −128.211 394.592i −0.181602 0.558912i
\(707\) −270.702 + 372.589i −0.382888 + 0.527000i
\(708\) −583.619 + 387.528i −0.824321 + 0.547356i
\(709\) 101.157 311.330i 0.142676 0.439111i −0.854029 0.520226i \(-0.825848\pi\)
0.996705 + 0.0811142i \(0.0258478\pi\)
\(710\) −49.6596 16.1354i −0.0699432 0.0227259i
\(711\) 756.544 457.620i 1.06406 0.643629i
\(712\) 62.6656 + 45.5292i 0.0880134 + 0.0639455i
\(713\) −539.971 + 175.447i −0.757323 + 0.246069i
\(714\) 0.954820 22.6351i 0.00133728 0.0317018i
\(715\) 0 0
\(716\) 314.061i 0.438632i
\(717\) 0.259076 + 0.928877i 0.000361334 + 0.00129550i
\(718\) 690.192 + 501.454i 0.961270 + 0.698404i
\(719\) −650.211 894.939i −0.904327 1.24470i −0.969067 0.246797i \(-0.920622\pi\)
0.0647402 0.997902i \(-0.479378\pi\)
\(720\) −477.792 201.149i −0.663600 0.279374i
\(721\) −141.757 + 436.282i −0.196611 + 0.605107i
\(722\) −121.532 167.275i −0.168327 0.231682i
\(723\) 542.073 683.546i 0.749755 0.945431i
\(724\) −471.975 1452.59i −0.651899 2.00634i
\(725\) 72.1759i 0.0995530i
\(726\) 0 0
\(727\) 577.040 0.793727 0.396864 0.917878i \(-0.370099\pi\)
0.396864 + 0.917878i \(0.370099\pi\)
\(728\) −197.698 + 64.2359i −0.271563 + 0.0882361i
\(729\) 463.770 + 562.457i 0.636173 + 0.771546i
\(730\) −747.563 + 543.136i −1.02406 + 0.744023i
\(731\) 33.2634 + 10.8079i 0.0455040 + 0.0147851i
\(732\) −160.721 59.8211i −0.219564 0.0817229i
\(733\) 501.026 364.016i 0.683527 0.496612i −0.190999 0.981590i \(-0.561173\pi\)
0.874526 + 0.484979i \(0.161173\pi\)
\(734\) −317.281 + 436.700i −0.432263 + 0.594959i
\(735\) 212.003 + 760.102i 0.288439 + 1.03415i
\(736\) −1181.99 −1.60596
\(737\) 0 0
\(738\) −367.005 31.0181i −0.497297 0.0420299i
\(739\) 345.884 + 1064.52i 0.468044 + 1.44049i 0.855114 + 0.518440i \(0.173487\pi\)
−0.387070 + 0.922050i \(0.626513\pi\)
\(740\) 807.217 1111.04i 1.09083 1.50140i
\(741\) 558.079 + 840.469i 0.753142 + 1.13424i
\(742\) −51.1981 + 157.572i −0.0690002 + 0.212361i
\(743\) 1092.36 + 354.930i 1.47020 + 0.477698i 0.931170 0.364586i \(-0.118790\pi\)
0.539034 + 0.842284i \(0.318790\pi\)
\(744\) −216.965 + 144.067i −0.291620 + 0.193638i
\(745\) −1394.91 1013.46i −1.87236 1.36035i
\(746\) 474.724 154.247i 0.636360 0.206766i
\(747\) −24.1791 + 286.086i −0.0323682 + 0.382979i
\(748\) 0 0
\(749\) 63.5613i 0.0848616i
\(750\) 347.546 96.9352i 0.463394 0.129247i
\(751\) 221.394 + 160.852i 0.294799 + 0.214184i 0.725346 0.688384i \(-0.241680\pi\)
−0.430548 + 0.902568i \(0.641680\pi\)
\(752\) −101.430 139.606i −0.134880 0.185646i
\(753\) 117.856 316.642i 0.156515 0.420508i
\(754\) −58.1099 + 178.844i −0.0770689 + 0.237194i
\(755\) −343.489 472.772i −0.454952 0.626188i
\(756\) −303.996 + 323.197i −0.402111 + 0.427510i
\(757\) −172.433 530.695i −0.227785 0.701051i −0.997997 0.0632624i \(-0.979850\pi\)
0.770212 0.637788i \(-0.220150\pi\)
\(758\) 162.899i 0.214906i
\(759\) 0 0
\(760\) 574.212 0.755543
\(761\) 401.113 130.329i 0.527086 0.171261i −0.0333725 0.999443i \(-0.510625\pi\)
0.560459 + 0.828182i \(0.310625\pi\)
\(762\) −1054.95 836.604i −1.38444 1.09791i
\(763\) −262.156 + 190.468i −0.343586 + 0.249630i
\(764\) 701.310 + 227.870i 0.917945 + 0.298259i
\(765\) 18.6792 44.3689i 0.0244173 0.0579986i
\(766\) −221.993 + 161.287i −0.289808 + 0.210558i
\(767\) 415.598 572.021i 0.541848 0.745790i
\(768\) 15.7602 4.39573i 0.0205211 0.00572360i
\(769\) 108.997 0.141738 0.0708692 0.997486i \(-0.477423\pi\)
0.0708692 + 0.997486i \(0.477423\pi\)
\(770\) 0 0
\(771\) −589.181 24.8536i −0.764178 0.0322355i
\(772\) 494.218 + 1521.05i 0.640179 + 1.97027i
\(773\) 606.367 834.592i 0.784433 1.07968i −0.210346 0.977627i \(-0.567459\pi\)
0.994779 0.102053i \(-0.0325410\pi\)
\(774\) −618.842 1023.08i −0.799537 1.32181i
\(775\) 122.524 377.089i 0.158095 0.486567i
\(776\) 251.515 + 81.7222i 0.324117 + 0.105312i
\(777\) 195.968 + 295.129i 0.252212 + 0.379832i
\(778\) −667.478 484.951i −0.857941 0.623331i
\(779\) −263.288 + 85.5475i −0.337982 + 0.109817i
\(780\) −1734.41 73.1631i −2.22360 0.0937988i
\(781\) 0 0
\(782\) 67.3630i 0.0861420i
\(783\) 19.0563 + 100.339i 0.0243376 + 0.128147i
\(784\) −278.072 202.031i −0.354683 0.257692i
\(785\) −29.8748 41.1191i −0.0380570 0.0523810i
\(786\) 1286.03 + 478.665i 1.63617 + 0.608989i
\(787\) −64.0985 + 197.275i −0.0814467 + 0.250667i −0.983485 0.180988i \(-0.942070\pi\)
0.902039 + 0.431655i \(0.142070\pi\)
\(788\) −183.340 252.346i −0.232665 0.320236i
\(789\) −889.286 705.231i −1.12710 0.893829i
\(790\) 616.825 + 1898.39i 0.780791 + 2.40303i
\(791\) 406.668i 0.514119i
\(792\) 0 0
\(793\) 173.082 0.218263
\(794\) −615.536 + 200.000i −0.775234 + 0.251889i
\(795\) −218.755 + 275.847i −0.275164 + 0.346978i
\(796\) −542.774 + 394.349i −0.681877 + 0.495413i
\(797\) 211.514 + 68.7252i 0.265388 + 0.0862298i 0.438689 0.898639i \(-0.355443\pi\)
−0.173300 + 0.984869i \(0.555443\pi\)
\(798\) −203.067 + 545.578i −0.254469 + 0.683682i
\(799\) 12.9641 9.41900i 0.0162255 0.0117885i
\(800\) 485.183 667.797i 0.606479 0.834746i
\(801\) −162.480 + 38.0166i −0.202846 + 0.0474614i
\(802\) −1376.50 −1.71633
\(803\) 0 0
\(804\) −49.0426 + 1162.61i −0.0609983 + 1.44603i
\(805\) −171.699 528.436i −0.213291 0.656443i
\(806\) 607.201 835.740i 0.753351 1.03690i
\(807\) 502.727 333.815i 0.622958 0.413649i
\(808\) −194.112 + 597.415i −0.240237 + 0.739375i
\(809\) −715.778 232.570i −0.884769 0.287479i −0.168833 0.985645i \(-0.554000\pi\)
−0.715936 + 0.698166i \(0.754000\pi\)
\(810\) −1474.92 + 730.168i −1.82088 + 0.901442i
\(811\) 187.891 + 136.511i 0.231678 + 0.168324i 0.697568 0.716519i \(-0.254266\pi\)
−0.465890 + 0.884843i \(0.654266\pi\)
\(812\) −59.1197 + 19.2092i −0.0728076 + 0.0236566i
\(813\) −10.1421 + 240.430i −0.0124749 + 0.295732i
\(814\) 0 0
\(815\) 1743.13i 2.13881i
\(816\) 5.63343 + 20.1978i 0.00690372 + 0.0247522i
\(817\) −727.077 528.252i −0.889935 0.646576i
\(818\) −277.540 382.001i −0.339291 0.466994i
\(819\) 173.758 412.728i 0.212158 0.503942i
\(820\) 147.199 453.033i 0.179511 0.552480i
\(821\) 285.054 + 392.343i 0.347204 + 0.477885i 0.946528 0.322621i \(-0.104564\pi\)
−0.599324 + 0.800506i \(0.704564\pi\)
\(822\) 868.273 1094.88i 1.05629 1.33197i
\(823\) 48.4819 + 149.212i 0.0589088 + 0.181302i 0.976181 0.216959i \(-0.0696137\pi\)
−0.917272 + 0.398261i \(0.869614\pi\)
\(824\) 625.689i 0.759331i
\(825\) 0 0
\(826\) 407.986 0.493930
\(827\) 150.007 48.7401i 0.181386 0.0589360i −0.216916 0.976190i \(-0.569600\pi\)
0.398302 + 0.917254i \(0.369600\pi\)
\(828\) −862.598 + 998.238i −1.04179 + 1.20560i
\(829\) −1057.08 + 768.011i −1.27512 + 0.926431i −0.999394 0.0348051i \(-0.988919\pi\)
−0.275728 + 0.961236i \(0.588919\pi\)
\(830\) −616.434 200.292i −0.742692 0.241315i
\(831\) 615.493 + 229.089i 0.740665 + 0.275679i
\(832\) 1283.81 932.745i 1.54304 1.12109i
\(833\) 18.7611 25.8224i 0.0225223 0.0309993i
\(834\) −275.842 988.989i −0.330746 1.18584i
\(835\) 1062.33 1.27226
\(836\) 0 0
\(837\) 70.7709 556.579i 0.0845530 0.664969i
\(838\) 714.482 + 2198.95i 0.852604 + 2.62405i
\(839\) −754.318 + 1038.23i −0.899068 + 1.23746i 0.0716959 + 0.997427i \(0.477159\pi\)
−0.970764 + 0.240035i \(0.922841\pi\)
\(840\) −140.989 212.330i −0.167844 0.252774i
\(841\) 255.462 786.230i 0.303759 0.934875i
\(842\) −1271.56 413.154i −1.51016 0.490682i
\(843\) 1240.70 823.837i 1.47177 0.977268i
\(844\) 210.049 + 152.609i 0.248873 + 0.180817i
\(845\) 599.164 194.680i 0.709069 0.230391i
\(846\) −545.878 46.1359i −0.645246 0.0545342i
\(847\) 0 0
\(848\) 153.347i 0.180834i
\(849\) 889.167 248.001i 1.04731 0.292109i
\(850\) 38.0586 + 27.6512i 0.0447748 + 0.0325308i
\(851\) 619.160 + 852.200i 0.727567 + 1.00141i
\(852\) 14.4287 38.7656i 0.0169351 0.0454995i
\(853\) −153.468 + 472.325i −0.179915 + 0.553723i −0.999824 0.0187721i \(-0.994024\pi\)
0.819908 + 0.572495i \(0.194024\pi\)
\(854\) 58.7033 + 80.7982i 0.0687392 + 0.0946114i
\(855\) −808.796 + 935.975i −0.945960 + 1.09471i
\(856\) −26.7900 82.4511i −0.0312967 0.0963214i
\(857\) 479.970i 0.560059i 0.959991 + 0.280029i \(0.0903442\pi\)
−0.959991 + 0.280029i \(0.909656\pi\)
\(858\) 0 0
\(859\) 658.810 0.766950 0.383475 0.923551i \(-0.374727\pi\)
0.383475 + 0.923551i \(0.374727\pi\)
\(860\) 1470.71 477.864i 1.71013 0.555655i
\(861\) 96.2798 + 76.3528i 0.111823 + 0.0886793i
\(862\) 24.0996 17.5094i 0.0279578 0.0203125i
\(863\) 512.443 + 166.503i 0.593793 + 0.192935i 0.590470 0.807060i \(-0.298942\pi\)
0.00332255 + 0.999994i \(0.498942\pi\)
\(864\) 498.185 1056.47i 0.576603 1.22277i
\(865\) 889.082 645.956i 1.02784 0.746770i
\(866\) −106.622 + 146.752i −0.123120 + 0.169460i
\(867\) 833.249 232.405i 0.961072 0.268056i
\(868\) 341.485 0.393416
\(869\) 0 0
\(870\) −230.365 9.71754i −0.264787 0.0111696i
\(871\) −362.918 1116.95i −0.416669 1.28237i
\(872\) −259.788 + 357.567i −0.297922 + 0.410054i
\(873\) −487.475 + 294.865i −0.558391 + 0.337761i
\(874\) −534.893 + 1646.23i −0.612005 + 1.88356i
\(875\) −114.486 37.1986i −0.130841 0.0425127i
\(876\) −404.919 609.810i −0.462237 0.696130i
\(877\) 68.5357 + 49.7941i 0.0781479 + 0.0567777i 0.626173 0.779684i \(-0.284620\pi\)
−0.548025 + 0.836462i \(0.684620\pi\)
\(878\) 1294.36 420.562i 1.47421 0.479001i
\(879\) −1018.19 42.9505i −1.15835 0.0488629i
\(880\) 0 0
\(881\) 364.734i 0.414000i −0.978341 0.207000i \(-0.933630\pi\)
0.978341 0.207000i \(-0.0663701\pi\)
\(882\) −1062.48 + 248.596i −1.20463 + 0.281855i
\(883\) −180.241 130.953i −0.204123 0.148304i 0.481027 0.876706i \(-0.340264\pi\)
−0.685151 + 0.728401i \(0.740264\pi\)
\(884\) 41.2721 + 56.8062i 0.0466879 + 0.0642604i
\(885\) 812.485 + 302.411i 0.918063 + 0.341707i
\(886\) −506.266 + 1558.13i −0.571406 + 1.75861i
\(887\) −801.425 1103.07i −0.903523 1.24359i −0.969331 0.245761i \(-0.920962\pi\)
0.0658073 0.997832i \(-0.479038\pi\)
\(888\) 378.600 + 300.241i 0.426351 + 0.338110i
\(889\) 138.811 + 427.217i 0.156143 + 0.480559i
\(890\) 376.714i 0.423274i
\(891\) 0 0
\(892\) −1135.89 −1.27342
\(893\) −391.611 + 127.242i −0.438534 + 0.142488i
\(894\) 1481.45 1868.08i 1.65710 2.08958i
\(895\) 314.422 228.441i 0.351309 0.255241i
\(896\) 366.760 + 119.167i 0.409330 + 0.132999i
\(897\) 464.471 1247.89i 0.517805 1.39118i
\(898\) −1904.91 + 1384.00i −2.12129 + 1.54120i
\(899\) 46.2024 63.5921i 0.0513931 0.0707365i
\(900\) −209.903 897.106i −0.233225 0.996784i
\(901\) 14.2402 0.0158049
\(902\) 0 0
\(903\) −16.8126 + 398.560i −0.0186186 + 0.441373i
\(904\) −171.404 527.526i −0.189606 0.583546i
\(905\) −1110.95 + 1529.10i −1.22757 + 1.68961i
\(906\) 673.179 446.997i 0.743024 0.493374i
\(907\) 203.099 625.073i 0.223924 0.689166i −0.774476 0.632604i \(-0.781986\pi\)
0.998399 0.0565619i \(-0.0180138\pi\)
\(908\) −619.376 201.248i −0.682132 0.221638i
\(909\) −700.383 1157.88i −0.770498 1.27380i
\(910\) 817.887 + 594.230i 0.898777 + 0.653000i
\(911\) 331.388 107.674i 0.363763 0.118194i −0.121432 0.992600i \(-0.538749\pi\)
0.485195 + 0.874406i \(0.338749\pi\)
\(912\) 22.7085 538.329i 0.0248996 0.590273i
\(913\) 0 0
\(914\) 519.188i 0.568039i
\(915\) 57.0151 + 204.418i 0.0623116 + 0.223408i
\(916\) 1401.74 + 1018.42i 1.53028 + 1.11182i
\(917\) −269.096 370.379i −0.293453 0.403903i
\(918\) 60.2096 + 28.3922i 0.0655879 + 0.0309283i
\(919\) −197.588 + 608.115i −0.215004 + 0.661714i 0.784150 + 0.620572i \(0.213099\pi\)
−0.999153 + 0.0411417i \(0.986901\pi\)
\(920\) −445.453 613.114i −0.484188 0.666428i
\(921\) −738.416 + 931.131i −0.801754 + 1.01100i
\(922\) 251.884 + 775.220i 0.273193 + 0.840803i
\(923\) 41.7471i 0.0452298i
\(924\) 0 0
\(925\) −735.627 −0.795272
\(926\) 2051.44 666.554i 2.21538 0.719821i
\(927\) −1019.88 881.301i −1.10020 0.950703i
\(928\) 132.389 96.1863i 0.142661 0.103649i
\(929\) −299.056 97.1692i −0.321912 0.104595i 0.143604 0.989635i \(-0.454131\pi\)
−0.465515 + 0.885040i \(0.654131\pi\)
\(930\) 1187.07 + 441.831i 1.27641 + 0.475087i
\(931\) −663.529 + 482.082i −0.712706 + 0.517811i
\(932\) 1269.02 1746.66i 1.36161 1.87410i
\(933\) 70.1490 + 251.508i 0.0751865 + 0.269569i
\(934\) 2066.22 2.21222
\(935\) 0 0
\(936\) 51.4389 608.623i 0.0549561 0.650238i
\(937\) −469.735 1445.70i −0.501318 1.54290i −0.806874 0.590724i \(-0.798842\pi\)
0.305556 0.952174i \(-0.401158\pi\)
\(938\) 398.324 548.245i 0.424652 0.584483i
\(939\) −993.897 1496.81i −1.05846 1.59405i
\(940\) 218.942 673.835i 0.232917 0.716846i
\(941\) 1067.37 + 346.811i 1.13430 + 0.368556i 0.815208 0.579169i \(-0.196623\pi\)
0.319090 + 0.947724i \(0.396623\pi\)
\(942\) 58.5494 38.8773i 0.0621544 0.0412711i
\(943\) 295.593 + 214.761i 0.313460 + 0.227742i
\(944\) −359.133 + 116.689i −0.380437 + 0.123611i
\(945\) 544.689 + 69.2591i 0.576390 + 0.0732900i
\(946\) 0 0
\(947\) 865.333i 0.913762i 0.889528 + 0.456881i \(0.151033\pi\)
−0.889528 + 0.456881i \(0.848967\pi\)
\(948\) −1523.12 + 424.819i −1.60667 + 0.448122i
\(949\) 597.691 + 434.248i 0.629812 + 0.457585i
\(950\) −710.520 977.947i −0.747916 1.02942i
\(951\) 2.56899 6.90210i 0.00270136 0.00725773i
\(952\) −3.18575 + 9.80474i −0.00334638 + 0.0102991i
\(953\) −298.122 410.330i −0.312825 0.430567i 0.623435 0.781875i \(-0.285737\pi\)
−0.936260 + 0.351309i \(0.885737\pi\)
\(954\) −368.350 318.299i −0.386111 0.333647i
\(955\) −281.986 867.863i −0.295273 0.908757i
\(956\) 1.72460i 0.00180397i
\(957\) 0 0
\(958\) 2141.59 2.23548
\(959\) −443.388 + 144.066i −0.462345 + 0.150225i
\(960\) 1524.52 + 1208.99i 1.58804 + 1.25936i
\(961\) 428.125 311.051i 0.445500 0.323674i
\(962\) −1822.80 592.265i −1.89481 0.615660i
\(963\) 172.131 + 72.4668i 0.178745 + 0.0752511i
\(964\) −1262.22 + 917.054i −1.30935 + 0.951301i
\(965\) 1163.31 1601.16i 1.20550 1.65924i
\(966\) 740.071 206.416i 0.766120 0.213681i
\(967\) 569.116 0.588537 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(968\) 0 0
\(969\) 49.9906 + 2.10876i 0.0515899 + 0.00217623i
\(970\) −397.448 1223.22i −0.409740 1.26105i
\(971\) 736.695 1013.97i 0.758697 1.04426i −0.238624 0.971112i \(-0.576696\pi\)
0.997321 0.0731450i \(-0.0233036\pi\)
\(972\) −528.666 1191.74i −0.543895 1.22607i
\(973\) −105.854 + 325.784i −0.108791 + 0.334825i
\(974\) −1901.55 617.851i −1.95231 0.634344i
\(975\) 514.375 + 774.651i 0.527564 + 0.794514i
\(976\) −74.7833 54.3333i −0.0766223 0.0556693i
\(977\) −1085.77 + 352.788i −1.11133 + 0.361093i −0.806453 0.591298i \(-0.798616\pi\)
−0.304878 + 0.952391i \(0.598616\pi\)
\(978\) 2408.24 + 101.587i 2.46241 + 0.103873i
\(979\) 0 0
\(980\) 1411.24i 1.44004i
\(981\) −216.921 927.102i −0.221122 0.945059i
\(982\) −153.097 111.231i −0.155903 0.113270i
\(983\) 391.031 + 538.208i 0.397793 + 0.547515i 0.960188 0.279353i \(-0.0901200\pi\)
−0.562395 + 0.826869i \(0.690120\pi\)
\(984\) 157.075 + 58.4639i 0.159629 + 0.0594145i
\(985\) −119.279 + 367.102i −0.121095 + 0.372692i
\(986\) 5.48178 + 7.54502i 0.00555961 + 0.00765215i
\(987\) 143.205 + 113.566i 0.145091 + 0.115062i
\(988\) −557.549 1715.96i −0.564321 1.73680i
\(989\) 1186.13i 1.19933i
\(990\) 0 0
\(991\) −1471.97 −1.48534 −0.742670 0.669658i \(-0.766441\pi\)
−0.742670 + 0.669658i \(0.766441\pi\)
\(992\) −854.961 + 277.794i −0.861856 + 0.280034i
\(993\) −686.118 + 865.185i −0.690955 + 0.871284i
\(994\) −19.4883 + 14.1591i −0.0196060 + 0.0142446i
\(995\) 789.604 + 256.558i 0.793572 + 0.257847i
\(996\) 179.106 481.204i 0.179826 0.483137i
\(997\) 502.232 364.893i 0.503743 0.365991i −0.306702 0.951806i \(-0.599225\pi\)
0.810445 + 0.585815i \(0.199225\pi\)
\(998\) 593.582 816.996i 0.594772 0.818633i
\(999\) −1022.67 + 194.225i −1.02369 + 0.194419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.269.1 16
3.2 odd 2 inner 363.3.h.j.269.4 16
11.2 odd 10 33.3.h.b.20.1 yes 16
11.3 even 5 363.3.b.l.122.7 8
11.4 even 5 363.3.h.n.245.1 16
11.5 even 5 363.3.h.n.323.4 16
11.6 odd 10 363.3.h.o.323.1 16
11.7 odd 10 363.3.h.o.245.4 16
11.8 odd 10 363.3.b.m.122.2 8
11.9 even 5 inner 363.3.h.j.251.4 16
11.10 odd 2 33.3.h.b.5.4 yes 16
33.2 even 10 33.3.h.b.20.4 yes 16
33.5 odd 10 363.3.h.n.323.1 16
33.8 even 10 363.3.b.m.122.7 8
33.14 odd 10 363.3.b.l.122.2 8
33.17 even 10 363.3.h.o.323.4 16
33.20 odd 10 inner 363.3.h.j.251.1 16
33.26 odd 10 363.3.h.n.245.4 16
33.29 even 10 363.3.h.o.245.1 16
33.32 even 2 33.3.h.b.5.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.1 16 33.32 even 2
33.3.h.b.5.4 yes 16 11.10 odd 2
33.3.h.b.20.1 yes 16 11.2 odd 10
33.3.h.b.20.4 yes 16 33.2 even 10
363.3.b.l.122.2 8 33.14 odd 10
363.3.b.l.122.7 8 11.3 even 5
363.3.b.m.122.2 8 11.8 odd 10
363.3.b.m.122.7 8 33.8 even 10
363.3.h.j.251.1 16 33.20 odd 10 inner
363.3.h.j.251.4 16 11.9 even 5 inner
363.3.h.j.269.1 16 1.1 even 1 trivial
363.3.h.j.269.4 16 3.2 odd 2 inner
363.3.h.n.245.1 16 11.4 even 5
363.3.h.n.245.4 16 33.26 odd 10
363.3.h.n.323.1 16 33.5 odd 10
363.3.h.n.323.4 16 11.5 even 5
363.3.h.o.245.1 16 33.29 even 10
363.3.h.o.245.4 16 11.7 odd 10
363.3.h.o.323.1 16 11.6 odd 10
363.3.h.o.323.4 16 33.17 even 10