Properties

Label 363.3.h.j.251.4
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.4
Root \(2.91048 + 0.945671i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.j.269.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.91048 + 0.945671i) q^{2} +(1.65950 + 2.49921i) q^{3} +(4.34051 + 3.15356i) q^{4} +(6.31437 - 2.05166i) q^{5} +(2.46650 + 8.84324i) q^{6} +(-2.47800 - 1.80037i) q^{7} +(2.45561 + 3.37986i) q^{8} +(-3.49213 + 8.29488i) q^{9} +20.3180 q^{10} +(-0.678356 + 16.0812i) q^{12} +(-5.01988 + 15.4496i) q^{13} +(-5.50960 - 7.58331i) q^{14} +(15.6062 + 12.3762i) q^{15} +(-2.68094 - 8.25108i) q^{16} +(0.766216 - 0.248959i) q^{17} +(-18.0080 + 20.8396i) q^{18} +(16.7481 - 12.1682i) q^{19} +(33.8776 + 11.0075i) q^{20} +(0.387274 - 9.18076i) q^{21} -27.3224i q^{23} +(-4.37190 + 11.7460i) q^{24} +(15.4365 - 11.2153i) q^{25} +(-29.2204 + 40.2185i) q^{26} +(-26.5259 + 5.03778i) q^{27} +(-5.07819 - 15.6291i) q^{28} +(-2.22341 + 3.06025i) q^{29} +(33.7177 + 50.7790i) q^{30} +(-6.42137 + 19.7630i) q^{31} -43.2608i q^{32} +2.46549 q^{34} +(-19.3408 - 6.28420i) q^{35} +(-41.3160 + 24.9913i) q^{36} +(-31.1905 - 22.6613i) q^{37} +(60.2520 - 19.5771i) q^{38} +(-46.9423 + 13.0928i) q^{39} +(22.4400 + 16.3036i) q^{40} +(7.86024 + 10.8187i) q^{41} +(9.80913 - 26.3542i) q^{42} -43.4125 q^{43} +(-5.03227 + 59.5416i) q^{45} +(25.8380 - 79.5212i) q^{46} +(11.6912 + 16.0916i) q^{47} +(16.1722 - 20.3929i) q^{48} +(-12.2427 - 37.6791i) q^{49} +(55.5336 - 18.0440i) q^{50} +(1.89374 + 1.50179i) q^{51} +(-70.5100 + 51.2285i) q^{52} +(16.8103 + 5.46201i) q^{53} +(-81.9669 - 10.4224i) q^{54} -12.7963i q^{56} +(58.2044 + 21.6639i) q^{57} +(-9.36516 + 6.80419i) q^{58} +(-25.5837 + 35.2129i) q^{59} +(28.7098 + 102.934i) q^{60} +(-3.29249 - 10.1333i) q^{61} +(-37.3785 + 51.4471i) q^{62} +(23.5874 - 14.2676i) q^{63} +(30.1867 - 92.9052i) q^{64} +107.854i q^{65} +72.2963 q^{67} +(4.11087 + 1.33570i) q^{68} +(68.2845 - 45.3415i) q^{69} +(-50.3481 - 36.5800i) q^{70} +(2.44412 - 0.794142i) q^{71} +(-36.6108 + 8.56611i) q^{72} +(-36.7931 - 26.7318i) q^{73} +(-69.3492 - 95.4510i) q^{74} +(53.6463 + 19.9674i) q^{75} +111.068 q^{76} +(-149.006 - 6.28555i) q^{78} +(30.3585 - 93.4339i) q^{79} +(-33.8569 - 46.6000i) q^{80} +(-56.6101 - 57.9335i) q^{81} +(12.6461 + 38.9207i) q^{82} +(30.3393 - 9.85783i) q^{83} +(30.6331 - 38.6279i) q^{84} +(4.32739 - 3.14404i) q^{85} +(-126.351 - 41.0540i) q^{86} +(-11.3380 - 0.478272i) q^{87} -18.5409i q^{89} +(-70.9531 + 168.536i) q^{90} +(40.2543 - 29.2464i) q^{91} +(86.1629 - 118.593i) q^{92} +(-60.0481 + 16.7482i) q^{93} +(18.8097 + 57.8902i) q^{94} +(80.7886 - 111.196i) q^{95} +(108.118 - 71.7913i) q^{96} +(-19.5614 + 60.2037i) q^{97} -121.242i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.91048 + 0.945671i 1.45524 + 0.472835i 0.926612 0.376020i \(-0.122707\pi\)
0.528626 + 0.848855i \(0.322707\pi\)
\(3\) 1.65950 + 2.49921i 0.553166 + 0.833071i
\(4\) 4.34051 + 3.15356i 1.08513 + 0.788390i
\(5\) 6.31437 2.05166i 1.26287 0.410333i 0.400357 0.916359i \(-0.368886\pi\)
0.862518 + 0.506027i \(0.168886\pi\)
\(6\) 2.46650 + 8.84324i 0.411083 + 1.47387i
\(7\) −2.47800 1.80037i −0.354000 0.257196i 0.396545 0.918015i \(-0.370209\pi\)
−0.750545 + 0.660819i \(0.770209\pi\)
\(8\) 2.45561 + 3.37986i 0.306951 + 0.422482i
\(9\) −3.49213 + 8.29488i −0.388014 + 0.921653i
\(10\) 20.3180 2.03180
\(11\) 0 0
\(12\) −0.678356 + 16.0812i −0.0565297 + 1.34010i
\(13\) −5.01988 + 15.4496i −0.386144 + 1.18843i 0.549503 + 0.835492i \(0.314817\pi\)
−0.935647 + 0.352938i \(0.885183\pi\)
\(14\) −5.50960 7.58331i −0.393543 0.541665i
\(15\) 15.6062 + 12.3762i 1.04042 + 0.825081i
\(16\) −2.68094 8.25108i −0.167559 0.515693i
\(17\) 0.766216 0.248959i 0.0450715 0.0146446i −0.286394 0.958112i \(-0.592457\pi\)
0.331466 + 0.943467i \(0.392457\pi\)
\(18\) −18.0080 + 20.8396i −1.00044 + 1.15776i
\(19\) 16.7481 12.1682i 0.881479 0.640432i −0.0521636 0.998639i \(-0.516612\pi\)
0.933642 + 0.358207i \(0.116612\pi\)
\(20\) 33.8776 + 11.0075i 1.69388 + 0.550375i
\(21\) 0.387274 9.18076i 0.0184416 0.437179i
\(22\) 0 0
\(23\) 27.3224i 1.18793i −0.804491 0.593965i \(-0.797562\pi\)
0.804491 0.593965i \(-0.202438\pi\)
\(24\) −4.37190 + 11.7460i −0.182163 + 0.489415i
\(25\) 15.4365 11.2153i 0.617462 0.448612i
\(26\) −29.2204 + 40.2185i −1.12386 + 1.54687i
\(27\) −26.5259 + 5.03778i −0.982439 + 0.186585i
\(28\) −5.07819 15.6291i −0.181364 0.558180i
\(29\) −2.22341 + 3.06025i −0.0766691 + 0.105526i −0.845629 0.533771i \(-0.820774\pi\)
0.768960 + 0.639297i \(0.220774\pi\)
\(30\) 33.7177 + 50.7790i 1.12392 + 1.69263i
\(31\) −6.42137 + 19.7630i −0.207141 + 0.637515i 0.792478 + 0.609901i \(0.208791\pi\)
−0.999619 + 0.0276136i \(0.991209\pi\)
\(32\) 43.2608i 1.35190i
\(33\) 0 0
\(34\) 2.46549 0.0725143
\(35\) −19.3408 6.28420i −0.552593 0.179548i
\(36\) −41.3160 + 24.9913i −1.14767 + 0.694204i
\(37\) −31.1905 22.6613i −0.842988 0.612466i 0.0802160 0.996778i \(-0.474439\pi\)
−0.923204 + 0.384311i \(0.874439\pi\)
\(38\) 60.2520 19.5771i 1.58558 0.515186i
\(39\) −46.9423 + 13.0928i −1.20365 + 0.335714i
\(40\) 22.4400 + 16.3036i 0.560999 + 0.407590i
\(41\) 7.86024 + 10.8187i 0.191713 + 0.263871i 0.894043 0.447981i \(-0.147857\pi\)
−0.702330 + 0.711852i \(0.747857\pi\)
\(42\) 9.80913 26.3542i 0.233551 0.627480i
\(43\) −43.4125 −1.00959 −0.504797 0.863238i \(-0.668433\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(44\) 0 0
\(45\) −5.03227 + 59.5416i −0.111828 + 1.32315i
\(46\) 25.8380 79.5212i 0.561695 1.72872i
\(47\) 11.6912 + 16.0916i 0.248749 + 0.342374i 0.915073 0.403289i \(-0.132133\pi\)
−0.666323 + 0.745663i \(0.732133\pi\)
\(48\) 16.1722 20.3929i 0.336921 0.424852i
\(49\) −12.2427 37.6791i −0.249851 0.768962i
\(50\) 55.5336 18.0440i 1.11067 0.360880i
\(51\) 1.89374 + 1.50179i 0.0371321 + 0.0294469i
\(52\) −70.5100 + 51.2285i −1.35596 + 0.985164i
\(53\) 16.8103 + 5.46201i 0.317176 + 0.103057i 0.463279 0.886213i \(-0.346673\pi\)
−0.146102 + 0.989269i \(0.546673\pi\)
\(54\) −81.9669 10.4224i −1.51791 0.193007i
\(55\) 0 0
\(56\) 12.7963i 0.228505i
\(57\) 58.2044 + 21.6639i 1.02113 + 0.380069i
\(58\) −9.36516 + 6.80419i −0.161468 + 0.117314i
\(59\) −25.5837 + 35.2129i −0.433621 + 0.596828i −0.968780 0.247923i \(-0.920252\pi\)
0.535158 + 0.844752i \(0.320252\pi\)
\(60\) 28.7098 + 102.934i 0.478496 + 1.71557i
\(61\) −3.29249 10.1333i −0.0539753 0.166119i 0.920435 0.390896i \(-0.127835\pi\)
−0.974410 + 0.224777i \(0.927835\pi\)
\(62\) −37.3785 + 51.4471i −0.602879 + 0.829792i
\(63\) 23.5874 14.2676i 0.374403 0.226470i
\(64\) 30.1867 92.9052i 0.471667 1.45164i
\(65\) 107.854i 1.65929i
\(66\) 0 0
\(67\) 72.2963 1.07905 0.539525 0.841970i \(-0.318604\pi\)
0.539525 + 0.841970i \(0.318604\pi\)
\(68\) 4.11087 + 1.33570i 0.0604540 + 0.0196427i
\(69\) 68.2845 45.3415i 0.989630 0.657123i
\(70\) −50.3481 36.5800i −0.719258 0.522571i
\(71\) 2.44412 0.794142i 0.0344242 0.0111851i −0.291754 0.956493i \(-0.594239\pi\)
0.326178 + 0.945308i \(0.394239\pi\)
\(72\) −36.6108 + 8.56611i −0.508484 + 0.118974i
\(73\) −36.7931 26.7318i −0.504015 0.366188i 0.306533 0.951860i \(-0.400831\pi\)
−0.810549 + 0.585671i \(0.800831\pi\)
\(74\) −69.3492 95.4510i −0.937152 1.28988i
\(75\) 53.6463 + 19.9674i 0.715285 + 0.266232i
\(76\) 111.068 1.46143
\(77\) 0 0
\(78\) −149.006 6.28555i −1.91033 0.0805840i
\(79\) 30.3585 93.4339i 0.384285 1.18271i −0.552712 0.833372i \(-0.686407\pi\)
0.936998 0.349336i \(-0.113593\pi\)
\(80\) −33.8569 46.6000i −0.423211 0.582500i
\(81\) −56.6101 57.9335i −0.698890 0.715229i
\(82\) 12.6461 + 38.9207i 0.154221 + 0.474643i
\(83\) 30.3393 9.85783i 0.365534 0.118769i −0.120491 0.992714i \(-0.538447\pi\)
0.486024 + 0.873945i \(0.338447\pi\)
\(84\) 30.6331 38.6279i 0.364679 0.459855i
\(85\) 4.32739 3.14404i 0.0509105 0.0369887i
\(86\) −126.351 41.0540i −1.46920 0.477372i
\(87\) −11.3380 0.478272i −0.130321 0.00549738i
\(88\) 0 0
\(89\) 18.5409i 0.208325i −0.994560 0.104162i \(-0.966784\pi\)
0.994560 0.104162i \(-0.0332161\pi\)
\(90\) −70.9531 + 168.536i −0.788368 + 1.87262i
\(91\) 40.2543 29.2464i 0.442354 0.321389i
\(92\) 86.1629 118.593i 0.936553 1.28905i
\(93\) −60.0481 + 16.7482i −0.645678 + 0.180088i
\(94\) 18.8097 + 57.8902i 0.200103 + 0.615853i
\(95\) 80.7886 111.196i 0.850407 1.17048i
\(96\) 108.118 71.7913i 1.12623 0.747826i
\(97\) −19.5614 + 60.2037i −0.201664 + 0.620657i 0.798170 + 0.602432i \(0.205801\pi\)
−0.999834 + 0.0182248i \(0.994199\pi\)
\(98\) 121.242i 1.23716i
\(99\) 0 0
\(100\) 102.371 1.02371
\(101\) −143.000 46.4634i −1.41584 0.460034i −0.501561 0.865122i \(-0.667241\pi\)
−0.914277 + 0.405089i \(0.867241\pi\)
\(102\) 4.09147 + 6.16178i 0.0401125 + 0.0604096i
\(103\) 121.164 + 88.0311i 1.17635 + 0.854671i 0.991756 0.128144i \(-0.0409019\pi\)
0.184597 + 0.982814i \(0.440902\pi\)
\(104\) −64.5443 + 20.9717i −0.620618 + 0.201651i
\(105\) −16.3904 58.7653i −0.156099 0.559670i
\(106\) 43.7608 + 31.7941i 0.412838 + 0.299944i
\(107\) 12.1974 + 16.7883i 0.113995 + 0.156900i 0.862202 0.506565i \(-0.169085\pi\)
−0.748207 + 0.663465i \(0.769085\pi\)
\(108\) −131.023 61.7844i −1.21317 0.572078i
\(109\) 105.794 0.970583 0.485291 0.874352i \(-0.338714\pi\)
0.485291 + 0.874352i \(0.338714\pi\)
\(110\) 0 0
\(111\) 4.87462 115.558i 0.0439155 1.04106i
\(112\) −8.21165 + 25.2729i −0.0733183 + 0.225651i
\(113\) 78.0396 + 107.412i 0.690616 + 0.950552i 1.00000 0.000385488i \(-0.000122705\pi\)
−0.309384 + 0.950937i \(0.600123\pi\)
\(114\) 148.915 + 118.094i 1.30628 + 1.03592i
\(115\) −56.0564 172.524i −0.487447 1.50021i
\(116\) −19.3014 + 6.27141i −0.166391 + 0.0540638i
\(117\) −110.622 95.5912i −0.945491 0.817019i
\(118\) −107.760 + 78.2925i −0.913224 + 0.663496i
\(119\) −2.34690 0.762555i −0.0197219 0.00640802i
\(120\) −3.50703 + 83.1381i −0.0292253 + 0.692817i
\(121\) 0 0
\(122\) 32.6062i 0.267264i
\(123\) −13.9942 + 37.5980i −0.113774 + 0.305675i
\(124\) −90.1957 + 65.5310i −0.727385 + 0.528476i
\(125\) −23.1004 + 31.7950i −0.184803 + 0.254360i
\(126\) 82.1429 19.2196i 0.651928 0.152536i
\(127\) 45.3190 + 139.478i 0.356843 + 1.09825i 0.954933 + 0.296820i \(0.0959263\pi\)
−0.598091 + 0.801428i \(0.704074\pi\)
\(128\) 74.0031 101.857i 0.578150 0.795755i
\(129\) −72.0431 108.497i −0.558473 0.841063i
\(130\) −101.994 + 313.905i −0.784569 + 2.41465i
\(131\) 149.467i 1.14097i 0.821309 + 0.570484i \(0.193244\pi\)
−0.821309 + 0.570484i \(0.806756\pi\)
\(132\) 0 0
\(133\) −63.4091 −0.476760
\(134\) 210.417 + 68.3685i 1.57027 + 0.510213i
\(135\) −157.158 + 86.2326i −1.16414 + 0.638760i
\(136\) 2.72298 + 1.97836i 0.0200219 + 0.0145467i
\(137\) −144.757 + 47.0345i −1.05662 + 0.343318i −0.785264 0.619161i \(-0.787473\pi\)
−0.271359 + 0.962478i \(0.587473\pi\)
\(138\) 241.618 67.3907i 1.75086 0.488338i
\(139\) 90.4769 + 65.7353i 0.650913 + 0.472916i 0.863582 0.504208i \(-0.168216\pi\)
−0.212669 + 0.977124i \(0.568216\pi\)
\(140\) −64.1311 88.2689i −0.458079 0.630492i
\(141\) −20.8147 + 55.9228i −0.147622 + 0.396616i
\(142\) 7.86454 0.0553841
\(143\) 0 0
\(144\) 77.8039 + 6.57574i 0.540305 + 0.0456649i
\(145\) −7.76079 + 23.8853i −0.0535227 + 0.164726i
\(146\) −81.8060 112.596i −0.560315 0.771207i
\(147\) 73.8514 93.1256i 0.502391 0.633507i
\(148\) −63.9190 196.723i −0.431885 1.32921i
\(149\) −246.985 + 80.2503i −1.65762 + 0.538592i −0.980371 0.197164i \(-0.936827\pi\)
−0.677247 + 0.735756i \(0.736827\pi\)
\(150\) 137.254 + 108.846i 0.915025 + 0.725643i
\(151\) 71.2078 51.7355i 0.471575 0.342619i −0.326480 0.945204i \(-0.605863\pi\)
0.798055 + 0.602585i \(0.205863\pi\)
\(152\) 82.2536 + 26.7258i 0.541142 + 0.175828i
\(153\) −0.610640 + 7.22507i −0.00399111 + 0.0472227i
\(154\) 0 0
\(155\) 137.965i 0.890098i
\(156\) −245.042 91.2058i −1.57078 0.584653i
\(157\) 6.19326 4.49967i 0.0394475 0.0286603i −0.567887 0.823107i \(-0.692239\pi\)
0.607334 + 0.794446i \(0.292239\pi\)
\(158\) 176.715 243.228i 1.11845 1.53942i
\(159\) 14.2460 + 51.0768i 0.0895977 + 0.321238i
\(160\) −88.7566 273.165i −0.554729 1.70728i
\(161\) −49.1905 + 67.7049i −0.305531 + 0.420527i
\(162\) −109.976 222.149i −0.678866 1.37129i
\(163\) 81.1315 249.697i 0.497739 1.53188i −0.314905 0.949123i \(-0.601973\pi\)
0.812644 0.582760i \(-0.198027\pi\)
\(164\) 71.7464i 0.437478i
\(165\) 0 0
\(166\) 97.6240 0.588096
\(167\) 152.175 + 49.4447i 0.911228 + 0.296076i 0.726863 0.686782i \(-0.240977\pi\)
0.184364 + 0.982858i \(0.440977\pi\)
\(168\) 31.9807 21.2355i 0.190361 0.126402i
\(169\) −76.7667 55.7743i −0.454241 0.330025i
\(170\) 15.5680 5.05835i 0.0915765 0.0297550i
\(171\) 42.4474 + 181.416i 0.248230 + 1.06091i
\(172\) −188.432 136.904i −1.09554 0.795954i
\(173\) 97.2924 + 133.912i 0.562384 + 0.774055i 0.991627 0.129134i \(-0.0412197\pi\)
−0.429243 + 0.903189i \(0.641220\pi\)
\(174\) −32.5466 12.1140i −0.187049 0.0696206i
\(175\) −58.4435 −0.333963
\(176\) 0 0
\(177\) −130.461 5.50325i −0.737065 0.0310918i
\(178\) 17.5336 53.9628i 0.0985032 0.303162i
\(179\) 34.4072 + 47.3575i 0.192219 + 0.264567i 0.894238 0.447591i \(-0.147718\pi\)
−0.702019 + 0.712158i \(0.747718\pi\)
\(180\) −209.611 + 242.571i −1.16450 + 1.34762i
\(181\) 87.9703 + 270.745i 0.486024 + 1.49583i 0.830492 + 0.557030i \(0.188059\pi\)
−0.344468 + 0.938798i \(0.611941\pi\)
\(182\) 144.817 47.0537i 0.795695 0.258537i
\(183\) 19.8613 25.0448i 0.108531 0.136857i
\(184\) 92.3459 67.0932i 0.501880 0.364637i
\(185\) −243.442 79.0991i −1.31590 0.427563i
\(186\) −190.607 8.04041i −1.02477 0.0432280i
\(187\) 0 0
\(188\) 106.715i 0.567631i
\(189\) 74.8009 + 35.2728i 0.395772 + 0.186628i
\(190\) 340.288 247.234i 1.79099 1.30123i
\(191\) −80.7867 + 111.193i −0.422967 + 0.582164i −0.966321 0.257339i \(-0.917154\pi\)
0.543354 + 0.839504i \(0.317154\pi\)
\(192\) 282.285 78.7330i 1.47023 0.410068i
\(193\) −92.1162 283.505i −0.477286 1.46894i −0.842850 0.538149i \(-0.819124\pi\)
0.365563 0.930786i \(-0.380876\pi\)
\(194\) −113.866 + 156.723i −0.586937 + 0.807849i
\(195\) −269.549 + 178.983i −1.38230 + 0.917861i
\(196\) 65.6840 202.155i 0.335122 1.03140i
\(197\) 58.1375i 0.295114i −0.989054 0.147557i \(-0.952859\pi\)
0.989054 0.147557i \(-0.0471410\pi\)
\(198\) 0 0
\(199\) −125.049 −0.628385 −0.314193 0.949359i \(-0.601734\pi\)
−0.314193 + 0.949359i \(0.601734\pi\)
\(200\) 75.8123 + 24.6329i 0.379061 + 0.123165i
\(201\) 119.976 + 180.684i 0.596894 + 0.898925i
\(202\) −372.258 270.461i −1.84286 1.33892i
\(203\) 11.0192 3.58035i 0.0542818 0.0176372i
\(204\) 3.48378 + 12.4905i 0.0170774 + 0.0612282i
\(205\) 71.8288 + 52.1867i 0.350384 + 0.254569i
\(206\) 269.397 + 370.794i 1.30775 + 1.79997i
\(207\) 226.636 + 95.4133i 1.09486 + 0.460934i
\(208\) 140.934 0.677566
\(209\) 0 0
\(210\) 7.86865 186.535i 0.0374698 0.888262i
\(211\) 14.9542 46.0242i 0.0708728 0.218124i −0.909346 0.416040i \(-0.863417\pi\)
0.980219 + 0.197916i \(0.0634175\pi\)
\(212\) 55.7406 + 76.7204i 0.262927 + 0.361889i
\(213\) 6.04074 + 4.79049i 0.0283603 + 0.0224906i
\(214\) 19.6241 + 60.3967i 0.0917013 + 0.282228i
\(215\) −274.123 + 89.0679i −1.27499 + 0.414269i
\(216\) −82.1642 77.2828i −0.380390 0.357791i
\(217\) 51.4928 37.4117i 0.237294 0.172404i
\(218\) 307.909 + 100.046i 1.41243 + 0.458926i
\(219\) 5.75021 136.315i 0.0262567 0.622444i
\(220\) 0 0
\(221\) 13.0875i 0.0592193i
\(222\) 123.467 331.719i 0.556159 1.49423i
\(223\) −171.282 + 124.444i −0.768082 + 0.558044i −0.901378 0.433032i \(-0.857444\pi\)
0.133297 + 0.991076i \(0.457444\pi\)
\(224\) −77.8855 + 107.200i −0.347703 + 0.478573i
\(225\) 39.1233 + 167.210i 0.173881 + 0.743153i
\(226\) 125.556 + 386.421i 0.555556 + 1.70983i
\(227\) 71.3484 98.2027i 0.314310 0.432611i −0.622409 0.782692i \(-0.713846\pi\)
0.936719 + 0.350081i \(0.113846\pi\)
\(228\) 184.318 + 277.583i 0.808412 + 1.21747i
\(229\) 99.7951 307.138i 0.435786 1.34121i −0.456492 0.889727i \(-0.650894\pi\)
0.892279 0.451485i \(-0.149106\pi\)
\(230\) 555.137i 2.41364i
\(231\) 0 0
\(232\) −15.8030 −0.0681166
\(233\) −382.714 124.351i −1.64255 0.533697i −0.665443 0.746449i \(-0.731757\pi\)
−0.977106 + 0.212752i \(0.931757\pi\)
\(234\) −231.566 382.828i −0.989599 1.63602i
\(235\) 106.837 + 77.6218i 0.454626 + 0.330305i
\(236\) −222.092 + 72.1621i −0.941068 + 0.305771i
\(237\) 283.891 79.1811i 1.19785 0.334098i
\(238\) −6.10948 4.43879i −0.0256701 0.0186504i
\(239\) −0.188940 0.260053i −0.000790543 0.00108809i 0.808622 0.588329i \(-0.200214\pi\)
−0.809412 + 0.587241i \(0.800214\pi\)
\(240\) 60.2779 161.948i 0.251158 0.674784i
\(241\) −290.799 −1.20664 −0.603318 0.797500i \(-0.706155\pi\)
−0.603318 + 0.797500i \(0.706155\pi\)
\(242\) 0 0
\(243\) 50.8438 237.621i 0.209234 0.977866i
\(244\) 17.6648 54.3665i 0.0723965 0.222814i
\(245\) −154.610 212.802i −0.631060 0.868580i
\(246\) −76.2850 + 96.1943i −0.310102 + 0.391034i
\(247\) 103.920 + 319.834i 0.420730 + 1.29487i
\(248\) −82.5644 + 26.8268i −0.332921 + 0.108173i
\(249\) 74.9848 + 59.4653i 0.301144 + 0.238816i
\(250\) −97.3007 + 70.6931i −0.389203 + 0.282772i
\(251\) 107.109 + 34.8019i 0.426730 + 0.138653i 0.514505 0.857487i \(-0.327976\pi\)
−0.0877748 + 0.996140i \(0.527976\pi\)
\(252\) 147.375 + 12.4557i 0.584821 + 0.0494272i
\(253\) 0 0
\(254\) 448.803i 1.76694i
\(255\) 15.0389 + 5.59755i 0.0589762 + 0.0219512i
\(256\) −4.41230 + 3.20572i −0.0172355 + 0.0125224i
\(257\) −115.540 + 159.027i −0.449572 + 0.618783i −0.972306 0.233713i \(-0.924912\pi\)
0.522733 + 0.852496i \(0.324912\pi\)
\(258\) −107.077 383.907i −0.415027 1.48801i
\(259\) 36.4915 + 112.309i 0.140894 + 0.433626i
\(260\) −340.123 + 468.139i −1.30816 + 1.80053i
\(261\) −17.6200 29.1297i −0.0675097 0.111608i
\(262\) −141.346 + 435.020i −0.539490 + 1.66038i
\(263\) 378.327i 1.43850i 0.694749 + 0.719252i \(0.255515\pi\)
−0.694749 + 0.719252i \(0.744485\pi\)
\(264\) 0 0
\(265\) 117.353 0.442842
\(266\) −184.551 59.9641i −0.693799 0.225429i
\(267\) 46.3376 30.7686i 0.173549 0.115238i
\(268\) 313.803 + 227.991i 1.17090 + 0.850712i
\(269\) 191.309 62.1601i 0.711186 0.231078i 0.0689882 0.997617i \(-0.478023\pi\)
0.642198 + 0.766539i \(0.278023\pi\)
\(270\) −538.953 + 102.358i −1.99612 + 0.379103i
\(271\) 64.8950 + 47.1490i 0.239465 + 0.173981i 0.701045 0.713117i \(-0.252717\pi\)
−0.461580 + 0.887099i \(0.652717\pi\)
\(272\) −4.10836 5.65467i −0.0151043 0.0207892i
\(273\) 139.895 + 52.0695i 0.512436 + 0.190731i
\(274\) −465.792 −1.69997
\(275\) 0 0
\(276\) 439.376 + 18.5343i 1.59194 + 0.0671533i
\(277\) −67.6484 + 208.200i −0.244218 + 0.751626i 0.751546 + 0.659681i \(0.229308\pi\)
−0.995764 + 0.0919450i \(0.970692\pi\)
\(278\) 201.167 + 276.882i 0.723622 + 0.995980i
\(279\) −141.507 122.279i −0.507194 0.438277i
\(280\) −26.2537 80.8006i −0.0937633 0.288574i
\(281\) 472.140 153.407i 1.68021 0.545934i 0.695260 0.718759i \(-0.255289\pi\)
0.984953 + 0.172825i \(0.0552894\pi\)
\(282\) −113.465 + 143.078i −0.402359 + 0.507369i
\(283\) −248.936 + 180.862i −0.879632 + 0.639090i −0.933154 0.359477i \(-0.882955\pi\)
0.0535221 + 0.998567i \(0.482955\pi\)
\(284\) 13.1131 + 4.26070i 0.0461728 + 0.0150025i
\(285\) 411.971 + 17.3783i 1.44551 + 0.0609764i
\(286\) 0 0
\(287\) 40.9601i 0.142718i
\(288\) 358.843 + 151.072i 1.24598 + 0.524556i
\(289\) −233.281 + 169.488i −0.807200 + 0.586465i
\(290\) −45.1752 + 62.1783i −0.155777 + 0.214408i
\(291\) −182.924 + 51.0200i −0.628604 + 0.175326i
\(292\) −75.4004 232.059i −0.258221 0.794721i
\(293\) −199.670 + 274.822i −0.681466 + 0.937957i −0.999950 0.00997075i \(-0.996826\pi\)
0.318484 + 0.947928i \(0.396826\pi\)
\(294\) 303.009 201.201i 1.03064 0.684355i
\(295\) −89.2997 + 274.836i −0.302711 + 0.931648i
\(296\) 161.067i 0.544145i
\(297\) 0 0
\(298\) −794.734 −2.66689
\(299\) 422.120 + 137.155i 1.41177 + 0.458712i
\(300\) 169.884 + 255.846i 0.566279 + 0.852819i
\(301\) 107.576 + 78.1587i 0.357396 + 0.259664i
\(302\) 256.173 83.2358i 0.848256 0.275615i
\(303\) −121.186 434.492i −0.399953 1.43397i
\(304\) −145.301 105.568i −0.477965 0.347262i
\(305\) −41.5801 57.2300i −0.136328 0.187639i
\(306\) −8.60979 + 20.4509i −0.0281366 + 0.0668331i
\(307\) 396.129 1.29032 0.645161 0.764047i \(-0.276790\pi\)
0.645161 + 0.764047i \(0.276790\pi\)
\(308\) 0 0
\(309\) −18.9362 + 448.903i −0.0612821 + 1.45276i
\(310\) −130.470 + 401.544i −0.420870 + 1.29530i
\(311\) −51.1584 70.4134i −0.164496 0.226410i 0.718809 0.695207i \(-0.244687\pi\)
−0.883306 + 0.468797i \(0.844687\pi\)
\(312\) −159.524 126.507i −0.511295 0.405472i
\(313\) −185.075 569.601i −0.591292 1.81981i −0.572378 0.819990i \(-0.693979\pi\)
−0.0189146 0.999821i \(-0.506021\pi\)
\(314\) 22.2805 7.23939i 0.0709572 0.0230554i
\(315\) 119.667 138.484i 0.379895 0.439632i
\(316\) 426.421 309.813i 1.34943 0.980421i
\(317\) 2.33475 + 0.758605i 0.00736513 + 0.00239308i 0.312697 0.949853i \(-0.398767\pi\)
−0.305332 + 0.952246i \(0.598767\pi\)
\(318\) −6.83917 + 162.130i −0.0215068 + 0.509843i
\(319\) 0 0
\(320\) 648.571i 2.02678i
\(321\) −21.7159 + 58.3441i −0.0676509 + 0.181757i
\(322\) −207.194 + 150.535i −0.643460 + 0.467501i
\(323\) 9.80328 13.4931i 0.0303507 0.0417742i
\(324\) −63.0195 429.984i −0.194505 1.32711i
\(325\) 95.7823 + 294.788i 0.294715 + 0.907039i
\(326\) 472.262 650.013i 1.44866 1.99391i
\(327\) 175.564 + 264.400i 0.536894 + 0.808564i
\(328\) −17.2640 + 53.1330i −0.0526340 + 0.161991i
\(329\) 60.9235i 0.185178i
\(330\) 0 0
\(331\) 368.074 1.11200 0.556002 0.831181i \(-0.312335\pi\)
0.556002 + 0.831181i \(0.312335\pi\)
\(332\) 162.775 + 52.8888i 0.490286 + 0.159304i
\(333\) 296.894 179.586i 0.891573 0.539297i
\(334\) 396.143 + 287.815i 1.18606 + 0.861721i
\(335\) 456.506 148.328i 1.36270 0.442769i
\(336\) −76.7895 + 21.4176i −0.228540 + 0.0637430i
\(337\) 478.841 + 347.898i 1.42089 + 1.03234i 0.991624 + 0.129162i \(0.0412286\pi\)
0.429269 + 0.903177i \(0.358771\pi\)
\(338\) −170.684 234.926i −0.504981 0.695047i
\(339\) −138.940 + 373.288i −0.409851 + 1.10115i
\(340\) 28.6980 0.0844059
\(341\) 0 0
\(342\) −48.0182 + 568.149i −0.140404 + 1.66125i
\(343\) −83.8781 + 258.150i −0.244543 + 0.752625i
\(344\) −106.604 146.728i −0.309896 0.426536i
\(345\) 338.148 426.400i 0.980139 1.23594i
\(346\) 156.531 + 481.753i 0.452402 + 1.39235i
\(347\) −280.182 + 91.0367i −0.807442 + 0.262354i −0.683514 0.729938i \(-0.739549\pi\)
−0.123928 + 0.992291i \(0.539549\pi\)
\(348\) −47.7042 37.8309i −0.137081 0.108710i
\(349\) 333.322 242.172i 0.955076 0.693903i 0.00307413 0.999995i \(-0.499021\pi\)
0.952002 + 0.306092i \(0.0990215\pi\)
\(350\) −170.098 55.2683i −0.485995 0.157909i
\(351\) 55.3248 435.102i 0.157620 1.23961i
\(352\) 0 0
\(353\) 135.577i 0.384070i 0.981388 + 0.192035i \(0.0615086\pi\)
−0.981388 + 0.192035i \(0.938491\pi\)
\(354\) −374.498 139.390i −1.05790 0.393756i
\(355\) 13.8038 10.0290i 0.0388838 0.0282507i
\(356\) 58.4698 80.4768i 0.164241 0.226058i
\(357\) −1.98890 7.13087i −0.00557114 0.0199744i
\(358\) 55.3568 + 170.371i 0.154628 + 0.475896i
\(359\) 163.860 225.534i 0.456435 0.628229i −0.517330 0.855786i \(-0.673074\pi\)
0.973765 + 0.227557i \(0.0730739\pi\)
\(360\) −213.600 + 129.203i −0.593332 + 0.358896i
\(361\) 20.8784 64.2571i 0.0578349 0.177997i
\(362\) 871.187i 2.40659i
\(363\) 0 0
\(364\) 266.954 0.733391
\(365\) −287.170 93.3072i −0.786767 0.255636i
\(366\) 81.4898 54.1100i 0.222650 0.147841i
\(367\) 142.701 + 103.678i 0.388830 + 0.282502i 0.764976 0.644059i \(-0.222751\pi\)
−0.376146 + 0.926560i \(0.622751\pi\)
\(368\) −225.439 + 73.2497i −0.612607 + 0.199048i
\(369\) −117.189 + 27.4195i −0.317585 + 0.0743077i
\(370\) −633.730 460.432i −1.71278 1.24441i
\(371\) −31.8224 43.7998i −0.0857746 0.118059i
\(372\) −313.456 116.670i −0.842623 0.313628i
\(373\) −163.109 −0.437289 −0.218645 0.975805i \(-0.570164\pi\)
−0.218645 + 0.975805i \(0.570164\pi\)
\(374\) 0 0
\(375\) −117.797 4.96908i −0.314126 0.0132509i
\(376\) −25.6782 + 79.0293i −0.0682930 + 0.210184i
\(377\) −36.1185 49.7128i −0.0958049 0.131864i
\(378\) 184.350 + 173.398i 0.487698 + 0.458724i
\(379\) 16.4492 + 50.6253i 0.0434015 + 0.133576i 0.970409 0.241466i \(-0.0776283\pi\)
−0.927008 + 0.375042i \(0.877628\pi\)
\(380\) 701.327 227.875i 1.84560 0.599671i
\(381\) −273.377 + 344.725i −0.717526 + 0.904790i
\(382\) −340.280 + 247.228i −0.890785 + 0.647193i
\(383\) −85.2768 27.7081i −0.222655 0.0723449i 0.195565 0.980691i \(-0.437346\pi\)
−0.418220 + 0.908346i \(0.637346\pi\)
\(384\) 377.369 + 15.9187i 0.982733 + 0.0414549i
\(385\) 0 0
\(386\) 912.245i 2.36333i
\(387\) 151.602 360.102i 0.391736 0.930496i
\(388\) −274.762 + 199.626i −0.708150 + 0.514501i
\(389\) −158.468 + 218.112i −0.407372 + 0.560699i −0.962575 0.271016i \(-0.912640\pi\)
0.555203 + 0.831715i \(0.312640\pi\)
\(390\) −953.774 + 266.021i −2.44557 + 0.682104i
\(391\) −6.80215 20.9349i −0.0173968 0.0535419i
\(392\) 97.2868 133.904i 0.248181 0.341591i
\(393\) −373.549 + 248.040i −0.950508 + 0.631145i
\(394\) 54.9789 169.208i 0.139540 0.429461i
\(395\) 652.262i 1.65130i
\(396\) 0 0
\(397\) 211.490 0.532720 0.266360 0.963874i \(-0.414179\pi\)
0.266360 + 0.963874i \(0.414179\pi\)
\(398\) −363.951 118.255i −0.914450 0.297123i
\(399\) −105.227 158.473i −0.263728 0.397175i
\(400\) −133.923 97.3006i −0.334807 0.243252i
\(401\) −427.784 + 138.995i −1.06679 + 0.346622i −0.789237 0.614088i \(-0.789524\pi\)
−0.277555 + 0.960710i \(0.589524\pi\)
\(402\) 178.319 + 639.333i 0.443579 + 1.59038i
\(403\) −273.095 198.415i −0.677655 0.492345i
\(404\) −474.165 652.633i −1.17368 1.61543i
\(405\) −476.317 249.669i −1.17609 0.616467i
\(406\) 35.4569 0.0873323
\(407\) 0 0
\(408\) −0.425560 + 10.0884i −0.00104304 + 0.0247264i
\(409\) 47.6795 146.742i 0.116576 0.358783i −0.875697 0.482862i \(-0.839597\pi\)
0.992272 + 0.124078i \(0.0395974\pi\)
\(410\) 159.705 + 219.814i 0.389523 + 0.536133i
\(411\) −357.774 283.726i −0.870496 0.690330i
\(412\) 248.303 + 764.199i 0.602678 + 1.85485i
\(413\) 126.793 41.1974i 0.307004 0.0997516i
\(414\) 569.389 + 492.021i 1.37534 + 1.18846i
\(415\) 171.349 124.492i 0.412888 0.299981i
\(416\) 668.362 + 217.164i 1.60664 + 0.522028i
\(417\) −14.1402 + 335.209i −0.0339093 + 0.803858i
\(418\) 0 0
\(419\) 755.530i 1.80317i −0.432599 0.901587i \(-0.642403\pi\)
0.432599 0.901587i \(-0.357597\pi\)
\(420\) 114.177 306.759i 0.271851 0.730380i
\(421\) 353.452 256.798i 0.839553 0.609971i −0.0826929 0.996575i \(-0.526352\pi\)
0.922246 + 0.386604i \(0.126352\pi\)
\(422\) 87.0474 119.810i 0.206274 0.283911i
\(423\) −174.305 + 40.7834i −0.412068 + 0.0964147i
\(424\) 22.8188 + 70.2292i 0.0538180 + 0.165635i
\(425\) 9.03558 12.4364i 0.0212602 0.0292621i
\(426\) 13.0512 + 19.6552i 0.0306366 + 0.0461389i
\(427\) −10.0848 + 31.0379i −0.0236179 + 0.0726883i
\(428\) 111.335i 0.260129i
\(429\) 0 0
\(430\) −882.057 −2.05129
\(431\) 9.25765 + 3.00799i 0.0214795 + 0.00697910i 0.319737 0.947506i \(-0.396405\pi\)
−0.298258 + 0.954485i \(0.596405\pi\)
\(432\) 112.681 + 205.361i 0.260837 + 0.475373i
\(433\) 47.9543 + 34.8408i 0.110749 + 0.0804638i 0.641781 0.766888i \(-0.278196\pi\)
−0.531032 + 0.847352i \(0.678196\pi\)
\(434\) 185.248 60.1907i 0.426838 0.138688i
\(435\) −72.5734 + 20.2417i −0.166835 + 0.0465327i
\(436\) 459.197 + 333.626i 1.05320 + 0.765198i
\(437\) −332.465 457.598i −0.760788 1.04714i
\(438\) 145.645 391.304i 0.332523 0.893388i
\(439\) −444.724 −1.01304 −0.506519 0.862229i \(-0.669068\pi\)
−0.506519 + 0.862229i \(0.669068\pi\)
\(440\) 0 0
\(441\) 355.297 + 30.0286i 0.805662 + 0.0680920i
\(442\) −12.3764 + 38.0908i −0.0280010 + 0.0861782i
\(443\) −314.672 433.108i −0.710320 0.977671i −0.999790 0.0204842i \(-0.993479\pi\)
0.289470 0.957187i \(-0.406521\pi\)
\(444\) 385.578 486.208i 0.868419 1.09506i
\(445\) −38.0397 117.074i −0.0854824 0.263088i
\(446\) −616.196 + 200.214i −1.38160 + 0.448910i
\(447\) −610.434 484.093i −1.36562 1.08298i
\(448\) −242.067 + 175.872i −0.540327 + 0.392571i
\(449\) −731.756 237.762i −1.62975 0.529537i −0.655534 0.755166i \(-0.727556\pi\)
−0.974213 + 0.225629i \(0.927556\pi\)
\(450\) −44.2578 + 523.657i −0.0983508 + 1.16368i
\(451\) 0 0
\(452\) 712.327i 1.57594i
\(453\) 247.467 + 92.1084i 0.546285 + 0.203330i
\(454\) 300.525 218.344i 0.661950 0.480935i
\(455\) 194.177 267.261i 0.426762 0.587387i
\(456\) 69.7063 + 249.921i 0.152865 + 0.548072i
\(457\) −52.4263 161.352i −0.114718 0.353067i 0.877170 0.480180i \(-0.159429\pi\)
−0.991888 + 0.127113i \(0.959429\pi\)
\(458\) 580.902 799.543i 1.26835 1.74573i
\(459\) −19.0703 + 10.4639i −0.0415476 + 0.0227971i
\(460\) 300.751 925.618i 0.653807 2.01221i
\(461\) 266.355i 0.577777i −0.957363 0.288888i \(-0.906714\pi\)
0.957363 0.288888i \(-0.0932857\pi\)
\(462\) 0 0
\(463\) −704.848 −1.52235 −0.761175 0.648547i \(-0.775377\pi\)
−0.761175 + 0.648547i \(0.775377\pi\)
\(464\) 31.2112 + 10.1411i 0.0672656 + 0.0218559i
\(465\) −344.804 + 228.953i −0.741514 + 0.492372i
\(466\) −996.284 723.843i −2.13795 1.55331i
\(467\) 642.132 208.641i 1.37502 0.446770i 0.473988 0.880531i \(-0.342814\pi\)
0.901028 + 0.433762i \(0.142814\pi\)
\(468\) −178.705 763.769i −0.381848 1.63198i
\(469\) −179.150 130.160i −0.381983 0.277527i
\(470\) 237.542 + 326.949i 0.505409 + 0.695636i
\(471\) 21.5233 + 8.01109i 0.0456971 + 0.0170087i
\(472\) −181.838 −0.385250
\(473\) 0 0
\(474\) 901.138 + 38.0129i 1.90113 + 0.0801960i
\(475\) 122.063 375.670i 0.256974 0.790884i
\(476\) −7.78198 10.7110i −0.0163487 0.0225020i
\(477\) −104.011 + 120.366i −0.218052 + 0.252339i
\(478\) −0.303980 0.935553i −0.000635941 0.00195722i
\(479\) 665.556 216.252i 1.38947 0.451466i 0.483700 0.875234i \(-0.339293\pi\)
0.905771 + 0.423768i \(0.139293\pi\)
\(480\) 535.405 675.138i 1.11543 1.40654i
\(481\) 506.680 368.124i 1.05339 0.765331i
\(482\) −846.365 275.001i −1.75594 0.570541i
\(483\) −250.841 10.5813i −0.519339 0.0219074i
\(484\) 0 0
\(485\) 420.282i 0.866560i
\(486\) 372.691 643.510i 0.766854 1.32409i
\(487\) 528.569 384.028i 1.08536 0.788558i 0.106747 0.994286i \(-0.465956\pi\)
0.978609 + 0.205729i \(0.0659564\pi\)
\(488\) 26.1639 36.0115i 0.0536145 0.0737941i
\(489\) 758.683 211.607i 1.55150 0.432734i
\(490\) −248.747 765.565i −0.507647 1.56238i
\(491\) −36.3470 + 50.0274i −0.0740265 + 0.101889i −0.844425 0.535674i \(-0.820057\pi\)
0.770398 + 0.637563i \(0.220057\pi\)
\(492\) −179.309 + 119.063i −0.364450 + 0.241998i
\(493\) −0.941732 + 2.89835i −0.00191021 + 0.00587901i
\(494\) 1029.14i 2.08329i
\(495\) 0 0
\(496\) 180.281 0.363470
\(497\) −7.48628 2.43244i −0.0150629 0.00489424i
\(498\) 162.007 + 243.983i 0.325315 + 0.489926i
\(499\) −266.970 193.965i −0.535010 0.388707i 0.287219 0.957865i \(-0.407269\pi\)
−0.822228 + 0.569158i \(0.807269\pi\)
\(500\) −200.535 + 65.1577i −0.401069 + 0.130315i
\(501\) 128.962 + 462.371i 0.257408 + 0.922897i
\(502\) 278.828 + 202.580i 0.555434 + 0.403547i
\(503\) −204.067 280.874i −0.405700 0.558398i 0.556463 0.830872i \(-0.312158\pi\)
−0.962163 + 0.272474i \(0.912158\pi\)
\(504\) 106.144 + 44.6863i 0.210603 + 0.0886633i
\(505\) −998.280 −1.97679
\(506\) 0 0
\(507\) 11.9975 284.414i 0.0236637 0.560974i
\(508\) −243.144 + 748.320i −0.478630 + 1.47307i
\(509\) 503.258 + 692.675i 0.988719 + 1.36086i 0.931997 + 0.362465i \(0.118065\pi\)
0.0567219 + 0.998390i \(0.481935\pi\)
\(510\) 38.4770 + 30.5134i 0.0754450 + 0.0598302i
\(511\) 43.0462 + 132.483i 0.0842391 + 0.259261i
\(512\) −494.832 + 160.781i −0.966468 + 0.314025i
\(513\) −382.957 + 407.145i −0.746504 + 0.793655i
\(514\) −486.664 + 353.582i −0.946817 + 0.687903i
\(515\) 945.687 + 307.272i 1.83629 + 0.596645i
\(516\) 29.4492 698.125i 0.0570720 1.35295i
\(517\) 0 0
\(518\) 361.382i 0.697649i
\(519\) −173.217 + 465.381i −0.333751 + 0.896687i
\(520\) −364.530 + 264.846i −0.701019 + 0.509320i
\(521\) 418.891 576.554i 0.804013 1.10663i −0.188207 0.982129i \(-0.560268\pi\)
0.992220 0.124499i \(-0.0397325\pi\)
\(522\) −23.7356 101.444i −0.0454705 0.194337i
\(523\) −155.721 479.261i −0.297746 0.916369i −0.982285 0.187392i \(-0.939996\pi\)
0.684539 0.728976i \(-0.260004\pi\)
\(524\) −471.353 + 648.762i −0.899529 + 1.23809i
\(525\) −96.9869 146.063i −0.184737 0.278215i
\(526\) −357.772 + 1101.11i −0.680176 + 2.09337i
\(527\) 16.7414i 0.0317673i
\(528\) 0 0
\(529\) −217.513 −0.411179
\(530\) 341.553 + 110.977i 0.644440 + 0.209391i
\(531\) −202.745 335.181i −0.381818 0.631226i
\(532\) −275.227 199.964i −0.517345 0.375873i
\(533\) −206.602 + 67.1290i −0.387621 + 0.125946i
\(534\) 163.961 45.7311i 0.307044 0.0856387i
\(535\) 111.463 + 80.9826i 0.208342 + 0.151369i
\(536\) 177.532 + 244.351i 0.331216 + 0.455879i
\(537\) −61.2576 + 164.581i −0.114074 + 0.306482i
\(538\) 615.583 1.14421
\(539\) 0 0
\(540\) −954.086 121.315i −1.76683 0.224658i
\(541\) 181.281 557.925i 0.335085 1.03128i −0.631596 0.775298i \(-0.717600\pi\)
0.966680 0.255987i \(-0.0824004\pi\)
\(542\) 144.288 + 198.595i 0.266214 + 0.366412i
\(543\) −530.662 + 669.157i −0.977279 + 1.23233i
\(544\) −10.7702 33.1471i −0.0197981 0.0609322i
\(545\) 668.020 217.053i 1.22572 0.398262i
\(546\) 357.920 + 283.842i 0.655531 + 0.519856i
\(547\) 557.289 404.894i 1.01881 0.740209i 0.0527711 0.998607i \(-0.483195\pi\)
0.966039 + 0.258398i \(0.0831946\pi\)
\(548\) −776.646 252.348i −1.41724 0.460489i
\(549\) 95.5519 + 8.07575i 0.174047 + 0.0147099i
\(550\) 0 0
\(551\) 78.3083i 0.142120i
\(552\) 320.928 + 119.451i 0.581391 + 0.216396i
\(553\) −243.444 + 176.873i −0.440225 + 0.319842i
\(554\) −393.778 + 541.989i −0.710790 + 0.978319i
\(555\) −206.306 739.678i −0.371723 1.33275i
\(556\) 185.415 + 570.649i 0.333480 + 1.02635i
\(557\) −363.725 + 500.624i −0.653007 + 0.898787i −0.999225 0.0393671i \(-0.987466\pi\)
0.346218 + 0.938154i \(0.387466\pi\)
\(558\) −296.217 489.710i −0.530855 0.877616i
\(559\) 217.925 670.706i 0.389849 1.19983i
\(560\) 176.430i 0.315053i
\(561\) 0 0
\(562\) 1519.22 2.70325
\(563\) 541.408 + 175.914i 0.961648 + 0.312458i 0.747440 0.664330i \(-0.231283\pi\)
0.214208 + 0.976788i \(0.431283\pi\)
\(564\) −266.702 + 177.093i −0.472876 + 0.313994i
\(565\) 713.145 + 518.130i 1.26220 + 0.917045i
\(566\) −895.558 + 290.984i −1.58226 + 0.514107i
\(567\) 35.9779 + 245.479i 0.0634531 + 0.432943i
\(568\) 8.68589 + 6.31067i 0.0152921 + 0.0111103i
\(569\) 529.905 + 729.352i 0.931292 + 1.28181i 0.959354 + 0.282207i \(0.0910665\pi\)
−0.0280618 + 0.999606i \(0.508934\pi\)
\(570\) 1182.60 + 440.168i 2.07473 + 0.772225i
\(571\) 804.182 1.40837 0.704187 0.710014i \(-0.251312\pi\)
0.704187 + 0.710014i \(0.251312\pi\)
\(572\) 0 0
\(573\) −411.961 17.3779i −0.718955 0.0303279i
\(574\) 38.7348 119.213i 0.0674822 0.207689i
\(575\) −306.429 421.763i −0.532920 0.733501i
\(576\) 665.221 + 574.832i 1.15490 + 0.997972i
\(577\) −243.227 748.576i −0.421538 1.29736i −0.906271 0.422697i \(-0.861083\pi\)
0.484733 0.874662i \(-0.338917\pi\)
\(578\) −839.238 + 272.685i −1.45197 + 0.471773i
\(579\) 555.671 700.694i 0.959709 1.21018i
\(580\) −109.009 + 79.2000i −0.187947 + 0.136552i
\(581\) −92.9285 30.1943i −0.159946 0.0519695i
\(582\) −580.643 24.4934i −0.997669 0.0420849i
\(583\) 0 0
\(584\) 189.998i 0.325340i
\(585\) −894.632 376.638i −1.52929 0.643826i
\(586\) −841.024 + 611.040i −1.43519 + 1.04273i
\(587\) 107.287 147.667i 0.182771 0.251563i −0.707794 0.706419i \(-0.750309\pi\)
0.890565 + 0.454856i \(0.150309\pi\)
\(588\) 614.230 171.317i 1.04461 0.291355i
\(589\) 132.934 + 409.128i 0.225694 + 0.694615i
\(590\) −519.809 + 715.456i −0.881033 + 1.21264i
\(591\) 145.298 96.4791i 0.245851 0.163247i
\(592\) −103.360 + 318.109i −0.174595 + 0.537347i
\(593\) 685.071i 1.15526i −0.816297 0.577632i \(-0.803977\pi\)
0.816297 0.577632i \(-0.196023\pi\)
\(594\) 0 0
\(595\) −16.3837 −0.0275357
\(596\) −1325.11 430.556i −2.22335 0.722409i
\(597\) −207.518 312.523i −0.347602 0.523489i
\(598\) 1098.87 + 798.373i 1.83757 + 1.33507i
\(599\) −343.213 + 111.517i −0.572977 + 0.186171i −0.581152 0.813795i \(-0.697398\pi\)
0.00817505 + 0.999967i \(0.497398\pi\)
\(600\) 64.2476 + 230.349i 0.107079 + 0.383915i
\(601\) −339.372 246.568i −0.564679 0.410264i 0.268489 0.963283i \(-0.413476\pi\)
−0.833169 + 0.553019i \(0.813476\pi\)
\(602\) 239.186 + 329.211i 0.397318 + 0.546862i
\(603\) −252.468 + 599.689i −0.418686 + 0.994510i
\(604\) 472.229 0.781836
\(605\) 0 0
\(606\) 58.1783 1379.18i 0.0960039 2.27588i
\(607\) −311.403 + 958.400i −0.513020 + 1.57891i 0.273836 + 0.961776i \(0.411707\pi\)
−0.786856 + 0.617137i \(0.788293\pi\)
\(608\) −526.406 724.536i −0.865800 1.19167i
\(609\) 27.2344 + 21.5977i 0.0447199 + 0.0354642i
\(610\) −66.8970 205.888i −0.109667 0.337521i
\(611\) −307.297 + 99.8468i −0.502941 + 0.163415i
\(612\) −25.4352 + 29.4348i −0.0415608 + 0.0480960i
\(613\) −446.778 + 324.603i −0.728838 + 0.529532i −0.889196 0.457527i \(-0.848735\pi\)
0.160358 + 0.987059i \(0.448735\pi\)
\(614\) 1152.92 + 374.608i 1.87773 + 0.610110i
\(615\) −11.2258 + 266.119i −0.0182533 + 0.432714i
\(616\) 0 0
\(617\) 675.556i 1.09490i 0.836837 + 0.547452i \(0.184402\pi\)
−0.836837 + 0.547452i \(0.815598\pi\)
\(618\) −479.628 + 1288.61i −0.776097 + 2.08514i
\(619\) 217.722 158.184i 0.351732 0.255548i −0.397863 0.917445i \(-0.630248\pi\)
0.749595 + 0.661896i \(0.230248\pi\)
\(620\) −435.082 + 598.838i −0.701744 + 0.965868i
\(621\) 137.644 + 724.750i 0.221650 + 1.16707i
\(622\) −82.3072 253.316i −0.132327 0.407260i
\(623\) −33.3805 + 45.9443i −0.0535802 + 0.0737469i
\(624\) 233.880 + 352.224i 0.374807 + 0.564461i
\(625\) −228.038 + 701.828i −0.364860 + 1.12292i
\(626\) 1832.83i 2.92784i
\(627\) 0 0
\(628\) 41.0719 0.0654011
\(629\) −29.5404 9.59826i −0.0469641 0.0152596i
\(630\) 479.249 289.889i 0.760712 0.460142i
\(631\) −75.5208 54.8691i −0.119684 0.0869558i 0.526333 0.850279i \(-0.323567\pi\)
−0.646017 + 0.763323i \(0.723567\pi\)
\(632\) 390.342 126.830i 0.617630 0.200680i
\(633\) 139.841 39.0034i 0.220917 0.0616168i
\(634\) 6.07783 + 4.41580i 0.00958649 + 0.00696499i
\(635\) 572.322 + 787.734i 0.901295 + 1.24053i
\(636\) −99.2390 + 266.625i −0.156036 + 0.419222i
\(637\) 643.584 1.01034
\(638\) 0 0
\(639\) −1.94785 + 23.0469i −0.00304828 + 0.0360672i
\(640\) 258.308 794.990i 0.403606 1.24217i
\(641\) −8.68174 11.9494i −0.0135441 0.0186418i 0.802191 0.597067i \(-0.203667\pi\)
−0.815735 + 0.578425i \(0.803667\pi\)
\(642\) −118.378 + 149.273i −0.184389 + 0.232512i
\(643\) −134.744 414.698i −0.209555 0.644943i −0.999496 0.0317599i \(-0.989889\pi\)
0.789941 0.613183i \(-0.210111\pi\)
\(644\) −427.023 + 138.748i −0.663079 + 0.215448i
\(645\) −677.506 537.283i −1.05040 0.832997i
\(646\) 41.2922 30.0005i 0.0639198 0.0464405i
\(647\) 298.985 + 97.1462i 0.462110 + 0.150149i 0.530814 0.847488i \(-0.321886\pi\)
−0.0687036 + 0.997637i \(0.521886\pi\)
\(648\) 56.7948 333.596i 0.0876462 0.514809i
\(649\) 0 0
\(650\) 948.550i 1.45931i
\(651\) 178.952 + 66.6068i 0.274888 + 0.102315i
\(652\) 1139.59 827.958i 1.74783 1.26987i
\(653\) 112.807 155.266i 0.172752 0.237773i −0.713858 0.700291i \(-0.753054\pi\)
0.886610 + 0.462517i \(0.153054\pi\)
\(654\) 260.940 + 935.557i 0.398990 + 1.43052i
\(655\) 306.656 + 943.789i 0.468177 + 1.44090i
\(656\) 68.1931 93.8598i 0.103953 0.143079i
\(657\) 350.223 211.844i 0.533064 0.322441i
\(658\) 57.6135 177.316i 0.0875586 0.269478i
\(659\) 127.678i 0.193745i 0.995297 + 0.0968724i \(0.0308839\pi\)
−0.995297 + 0.0968724i \(0.969116\pi\)
\(660\) 0 0
\(661\) 580.599 0.878364 0.439182 0.898398i \(-0.355268\pi\)
0.439182 + 0.898398i \(0.355268\pi\)
\(662\) 1071.27 + 348.076i 1.61823 + 0.525795i
\(663\) −32.7084 + 21.7186i −0.0493339 + 0.0327581i
\(664\) 107.820 + 78.3355i 0.162379 + 0.117975i
\(665\) −400.388 + 130.094i −0.602088 + 0.195630i
\(666\) 1033.93 241.917i 1.55245 0.363238i
\(667\) 83.6135 + 60.7488i 0.125358 + 0.0910776i
\(668\) 504.590 + 694.508i 0.755374 + 1.03968i
\(669\) −595.254 221.556i −0.889767 0.331175i
\(670\) 1468.92 2.19241
\(671\) 0 0
\(672\) −397.167 16.7538i −0.591023 0.0249313i
\(673\) 168.866 519.715i 0.250915 0.772236i −0.743692 0.668522i \(-0.766927\pi\)
0.994607 0.103714i \(-0.0330728\pi\)
\(674\) 1064.66 + 1465.37i 1.57961 + 2.17415i
\(675\) −352.967 + 375.261i −0.522914 + 0.555943i
\(676\) −157.319 484.177i −0.232720 0.716238i
\(677\) −27.7389 + 9.01292i −0.0409733 + 0.0133130i −0.329432 0.944179i \(-0.606857\pi\)
0.288459 + 0.957492i \(0.406857\pi\)
\(678\) −757.388 + 955.055i −1.11709 + 1.40864i
\(679\) 156.862 113.967i 0.231019 0.167845i
\(680\) 21.2528 + 6.90545i 0.0312541 + 0.0101551i
\(681\) 363.832 + 15.3476i 0.534261 + 0.0225369i
\(682\) 0 0
\(683\) 82.4506i 0.120718i 0.998177 + 0.0603592i \(0.0192246\pi\)
−0.998177 + 0.0603592i \(0.980775\pi\)
\(684\) −387.865 + 921.299i −0.567054 + 1.34693i
\(685\) −817.553 + 593.987i −1.19351 + 0.867134i
\(686\) −488.251 + 672.019i −0.711735 + 0.979620i
\(687\) 933.212 260.286i 1.35839 0.378873i
\(688\) 116.386 + 358.200i 0.169166 + 0.520640i
\(689\) −168.772 + 232.294i −0.244952 + 0.337147i
\(690\) 1387.41 921.249i 2.01073 1.33514i
\(691\) 299.041 920.352i 0.432765 1.33191i −0.462595 0.886570i \(-0.653082\pi\)
0.895360 0.445344i \(-0.146918\pi\)
\(692\) 888.061i 1.28333i
\(693\) 0 0
\(694\) −901.554 −1.29907
\(695\) 706.172 + 229.449i 1.01607 + 0.330143i
\(696\) −26.2251 39.4952i −0.0376798 0.0567459i
\(697\) 8.71606 + 6.33259i 0.0125051 + 0.00908549i
\(698\) 1199.14 389.624i 1.71796 0.558201i
\(699\) −324.333 1162.84i −0.463996 1.66358i
\(700\) −253.674 184.305i −0.362392 0.263293i
\(701\) −184.624 254.112i −0.263372 0.362500i 0.656766 0.754094i \(-0.271924\pi\)
−0.920138 + 0.391594i \(0.871924\pi\)
\(702\) 572.485 1214.04i 0.815506 1.72940i
\(703\) −798.129 −1.13532
\(704\) 0 0
\(705\) −16.6971 + 395.822i −0.0236838 + 0.561450i
\(706\) −128.211 + 394.592i −0.181602 + 0.558912i
\(707\) 270.702 + 372.589i 0.382888 + 0.527000i
\(708\) −548.910 435.302i −0.775296 0.614834i
\(709\) 101.157 + 311.330i 0.142676 + 0.439111i 0.996705 0.0811142i \(-0.0258478\pi\)
−0.854029 + 0.520226i \(0.825848\pi\)
\(710\) 49.6596 16.1354i 0.0699432 0.0227259i
\(711\) 669.008 + 578.103i 0.940939 + 0.813085i
\(712\) 62.6656 45.5292i 0.0880134 0.0639455i
\(713\) 539.971 + 175.447i 0.757323 + 0.246069i
\(714\) 0.954820 22.6351i 0.00133728 0.0317018i
\(715\) 0 0
\(716\) 314.061i 0.438632i
\(717\) 0.336383 0.903758i 0.000469153 0.00126047i
\(718\) 690.192 501.454i 0.961270 0.698404i
\(719\) 650.211 894.939i 0.904327 1.24470i −0.0647402 0.997902i \(-0.520622\pi\)
0.969067 0.246797i \(-0.0793781\pi\)
\(720\) 504.774 118.106i 0.701075 0.164036i
\(721\) −141.757 436.282i −0.196611 0.605107i
\(722\) 121.532 167.275i 0.168327 0.231682i
\(723\) −482.581 726.770i −0.667471 1.00521i
\(724\) −471.975 + 1452.59i −0.651899 + 2.00634i
\(725\) 72.1759i 0.0995530i
\(726\) 0 0
\(727\) 577.040 0.793727 0.396864 0.917878i \(-0.370099\pi\)
0.396864 + 0.917878i \(0.370099\pi\)
\(728\) 197.698 + 64.2359i 0.271563 + 0.0882361i
\(729\) 678.241 267.263i 0.930372 0.366616i
\(730\) −747.563 543.136i −1.02406 0.744023i
\(731\) −33.2634 + 10.8079i −0.0455040 + 0.0147851i
\(732\) 165.188 46.0732i 0.225667 0.0629416i
\(733\) 501.026 + 364.016i 0.683527 + 0.496612i 0.874526 0.484979i \(-0.161173\pi\)
−0.190999 + 0.981590i \(0.561173\pi\)
\(734\) 317.281 + 436.700i 0.432263 + 0.594959i
\(735\) 275.263 739.548i 0.374507 1.00619i
\(736\) −1181.99 −1.60596
\(737\) 0 0
\(738\) −367.005 31.0181i −0.497297 0.0420299i
\(739\) 345.884 1064.52i 0.468044 1.44049i −0.387070 0.922050i \(-0.626513\pi\)
0.855114 0.518440i \(-0.173487\pi\)
\(740\) −807.217 1111.04i −1.09083 1.50140i
\(741\) −626.877 + 790.483i −0.845988 + 1.06678i
\(742\) −51.1981 157.572i −0.0690002 0.212361i
\(743\) −1092.36 + 354.930i −1.47020 + 0.477698i −0.931170 0.364586i \(-0.881210\pi\)
−0.539034 + 0.842284i \(0.681210\pi\)
\(744\) −204.061 161.827i −0.274276 0.217509i
\(745\) −1394.91 + 1013.46i −1.87236 + 1.36035i
\(746\) −474.724 154.247i −0.636360 0.206766i
\(747\) −24.1791 + 286.086i −0.0323682 + 0.382979i
\(748\) 0 0
\(749\) 63.5613i 0.0848616i
\(750\) −338.147 125.860i −0.450863 0.167813i
\(751\) 221.394 160.852i 0.294799 0.214184i −0.430548 0.902568i \(-0.641680\pi\)
0.725346 + 0.688384i \(0.241680\pi\)
\(752\) 101.430 139.606i 0.134880 0.185646i
\(753\) 90.7704 + 325.443i 0.120545 + 0.432195i
\(754\) −58.1099 178.844i −0.0770689 0.237194i
\(755\) 343.489 472.772i 0.454952 0.626188i
\(756\) 213.439 + 388.991i 0.282327 + 0.514538i
\(757\) −172.433 + 530.695i −0.227785 + 0.701051i 0.770212 + 0.637788i \(0.220150\pi\)
−0.997997 + 0.0632624i \(0.979850\pi\)
\(758\) 162.899i 0.214906i
\(759\) 0 0
\(760\) 574.212 0.755543
\(761\) −401.113 130.329i −0.527086 0.171261i 0.0333725 0.999443i \(-0.489375\pi\)
−0.560459 + 0.828182i \(0.689375\pi\)
\(762\) −1121.65 + 744.788i −1.47199 + 0.977412i
\(763\) −262.156 190.468i −0.343586 0.249630i
\(764\) −701.310 + 227.870i −0.917945 + 0.298259i
\(765\) 10.9676 + 46.8746i 0.0143367 + 0.0612740i
\(766\) −221.993 161.287i −0.289808 0.210558i
\(767\) −415.598 572.021i −0.541848 0.745790i
\(768\) −15.3340 5.70738i −0.0199661 0.00743148i
\(769\) 108.997 0.141738 0.0708692 0.997486i \(-0.477423\pi\)
0.0708692 + 0.997486i \(0.477423\pi\)
\(770\) 0 0
\(771\) −589.181 24.8536i −0.764178 0.0322355i
\(772\) 494.218 1521.05i 0.640179 1.97027i
\(773\) −606.367 834.592i −0.784433 1.07968i −0.994779 0.102053i \(-0.967459\pi\)
0.210346 0.977627i \(-0.432541\pi\)
\(774\) 781.772 904.702i 1.01004 1.16887i
\(775\) 122.524 + 377.089i 0.158095 + 0.486567i
\(776\) −251.515 + 81.7222i −0.324117 + 0.105312i
\(777\) −220.127 + 277.577i −0.283304 + 0.357242i
\(778\) −667.478 + 484.951i −0.857941 + 0.623331i
\(779\) 263.288 + 85.5475i 0.337982 + 0.109817i
\(780\) −1734.41 73.1631i −2.22360 0.0937988i
\(781\) 0 0
\(782\) 67.3630i 0.0861420i
\(783\) 43.5608 92.3769i 0.0556332 0.117978i
\(784\) −278.072 + 202.031i −0.354683 + 0.257692i
\(785\) 29.8748 41.1191i 0.0380570 0.0523810i
\(786\) −1321.77 + 368.660i −1.68164 + 0.469033i
\(787\) −64.0985 197.275i −0.0814467 0.250667i 0.902039 0.431655i \(-0.142070\pi\)
−0.983485 + 0.180988i \(0.942070\pi\)
\(788\) 183.340 252.346i 0.232665 0.320236i
\(789\) −945.519 + 627.833i −1.19838 + 0.795732i
\(790\) 616.825 1898.39i 0.780791 2.40303i
\(791\) 406.668i 0.514119i
\(792\) 0 0
\(793\) 173.082 0.218263
\(794\) 615.536 + 200.000i 0.775234 + 0.251889i
\(795\) 194.747 + 293.290i 0.244965 + 0.368918i
\(796\) −542.774 394.349i −0.681877 0.495413i
\(797\) −211.514 + 68.7252i −0.265388 + 0.0862298i −0.438689 0.898639i \(-0.644557\pi\)
0.173300 + 0.984869i \(0.444557\pi\)
\(798\) −156.398 560.741i −0.195988 0.702683i
\(799\) 12.9641 + 9.41900i 0.0162255 + 0.0117885i
\(800\) −485.183 667.797i −0.606479 0.834746i
\(801\) 153.794 + 64.7471i 0.192003 + 0.0808328i
\(802\) −1376.50 −1.71633
\(803\) 0 0
\(804\) −49.0426 + 1162.61i −0.0609983 + 1.44603i
\(805\) −171.699 + 528.436i −0.213291 + 0.656443i
\(806\) −607.201 835.740i −0.753351 1.03690i
\(807\) 472.828 + 374.967i 0.585909 + 0.464643i
\(808\) −194.112 597.415i −0.240237 0.739375i
\(809\) 715.778 232.570i 0.884769 0.287479i 0.168833 0.985645i \(-0.446000\pi\)
0.715936 + 0.698166i \(0.246000\pi\)
\(810\) −1150.21 1177.09i −1.42001 1.45320i
\(811\) 187.891 136.511i 0.231678 0.168324i −0.465890 0.884843i \(-0.654266\pi\)
0.697568 + 0.716519i \(0.254266\pi\)
\(812\) 59.1197 + 19.2092i 0.0728076 + 0.0236566i
\(813\) −10.1421 + 240.430i −0.0124749 + 0.295732i
\(814\) 0 0
\(815\) 1743.13i 2.13881i
\(816\) 7.31441 19.6516i 0.00896373 0.0240828i
\(817\) −727.077 + 528.252i −0.889935 + 0.646576i
\(818\) 277.540 382.001i 0.339291 0.466994i
\(819\) 102.023 + 436.037i 0.124570 + 0.532401i
\(820\) 147.199 + 453.033i 0.179511 + 0.552480i
\(821\) −285.054 + 392.343i −0.347204 + 0.477885i −0.946528 0.322621i \(-0.895436\pi\)
0.599324 + 0.800506i \(0.295436\pi\)
\(822\) −772.981 1164.11i −0.940367 1.41620i
\(823\) 48.4819 149.212i 0.0589088 0.181302i −0.917272 0.398261i \(-0.869614\pi\)
0.976181 + 0.216959i \(0.0696137\pi\)
\(824\) 625.689i 0.759331i
\(825\) 0 0
\(826\) 407.986 0.493930
\(827\) −150.007 48.7401i −0.181386 0.0589360i 0.216916 0.976190i \(-0.430400\pi\)
−0.398302 + 0.917254i \(0.630400\pi\)
\(828\) 682.823 + 1128.85i 0.824666 + 1.36335i
\(829\) −1057.08 768.011i −1.27512 0.926431i −0.275728 0.961236i \(-0.588919\pi\)
−0.999394 + 0.0348051i \(0.988919\pi\)
\(830\) 616.434 200.292i 0.742692 0.241315i
\(831\) −632.599 + 176.441i −0.761251 + 0.212323i
\(832\) 1283.81 + 932.745i 1.54304 + 1.12109i
\(833\) −18.7611 25.8224i −0.0225223 0.0309993i
\(834\) −358.152 + 962.245i −0.429439 + 1.15377i
\(835\) 1062.33 1.27226
\(836\) 0 0
\(837\) 70.7709 556.579i 0.0845530 0.664969i
\(838\) 714.482 2198.95i 0.852604 2.62405i
\(839\) 754.318 + 1038.23i 0.899068 + 1.23746i 0.970764 + 0.240035i \(0.0771589\pi\)
−0.0716959 + 0.997427i \(0.522841\pi\)
\(840\) 158.370 199.702i 0.188536 0.237741i
\(841\) 255.462 + 786.230i 0.303759 + 0.934875i
\(842\) 1271.56 413.154i 1.51016 0.490682i
\(843\) 1166.91 + 925.398i 1.38424 + 1.09774i
\(844\) 210.049 152.609i 0.248873 0.180817i
\(845\) −599.164 194.680i −0.709069 0.230391i
\(846\) −545.878 46.1359i −0.645246 0.0545342i
\(847\) 0 0
\(848\) 153.347i 0.180834i
\(849\) −865.123 322.002i −1.01899 0.379273i
\(850\) 38.0586 27.6512i 0.0447748 0.0325308i
\(851\) −619.160 + 852.200i −0.727567 + 1.00141i
\(852\) 11.1128 + 39.8430i 0.0130431 + 0.0467641i
\(853\) −153.468 472.325i −0.179915 0.553723i 0.819908 0.572495i \(-0.194024\pi\)
−0.999824 + 0.0187721i \(0.994024\pi\)
\(854\) −58.7033 + 80.7982i −0.0687392 + 0.0946114i
\(855\) 640.234 + 1058.44i 0.748811 + 1.23794i
\(856\) −26.7900 + 82.4511i −0.0312967 + 0.0963214i
\(857\) 479.970i 0.560059i 0.959991 + 0.280029i \(0.0903442\pi\)
−0.959991 + 0.280029i \(0.909656\pi\)
\(858\) 0 0
\(859\) 658.810 0.766950 0.383475 0.923551i \(-0.374727\pi\)
0.383475 + 0.923551i \(0.374727\pi\)
\(860\) −1470.71 477.864i −1.71013 0.555655i
\(861\) 102.368 67.9732i 0.118894 0.0789468i
\(862\) 24.0996 + 17.5094i 0.0279578 + 0.0203125i
\(863\) −512.443 + 166.503i −0.593793 + 0.192935i −0.590470 0.807060i \(-0.701058\pi\)
−0.00332255 + 0.999994i \(0.501058\pi\)
\(864\) 217.939 + 1147.53i 0.252244 + 1.32816i
\(865\) 889.082 + 645.956i 1.02784 + 0.746770i
\(866\) 106.622 + 146.752i 0.123120 + 0.169460i
\(867\) −810.717 301.752i −0.935083 0.348042i
\(868\) 341.485 0.393416
\(869\) 0 0
\(870\) −230.365 9.71754i −0.264787 0.0111696i
\(871\) −362.918 + 1116.95i −0.416669 + 1.28237i
\(872\) 259.788 + 357.567i 0.297922 + 0.410054i
\(873\) −431.072 372.498i −0.493782 0.426687i
\(874\) −534.893 1646.23i −0.612005 1.88356i
\(875\) 114.486 37.1986i 0.130841 0.0425127i
\(876\) 454.837 573.543i 0.519220 0.654729i
\(877\) 68.5357 49.7941i 0.0781479 0.0567777i −0.548025 0.836462i \(-0.684620\pi\)
0.626173 + 0.779684i \(0.284620\pi\)
\(878\) −1294.36 420.562i −1.47421 0.479001i
\(879\) −1018.19 42.9505i −1.15835 0.0488629i
\(880\) 0 0
\(881\) 364.734i 0.414000i −0.978341 0.207000i \(-0.933630\pi\)
0.978341 0.207000i \(-0.0663701\pi\)
\(882\) 1005.69 + 423.391i 1.14023 + 0.480035i
\(883\) −180.241 + 130.953i −0.204123 + 0.148304i −0.685151 0.728401i \(-0.740264\pi\)
0.481027 + 0.876706i \(0.340264\pi\)
\(884\) −41.2721 + 56.8062i −0.0466879 + 0.0642604i
\(885\) −835.067 + 232.912i −0.943578 + 0.263177i
\(886\) −506.266 1558.13i −0.571406 1.75861i
\(887\) 801.425 1103.07i 0.903523 1.24359i −0.0658073 0.997832i \(-0.520962\pi\)
0.969331 0.245761i \(-0.0790377\pi\)
\(888\) 402.540 267.290i 0.453311 0.301003i
\(889\) 138.811 427.217i 0.156143 0.480559i
\(890\) 376.714i 0.423274i
\(891\) 0 0
\(892\) −1135.89 −1.27342
\(893\) 391.611 + 127.242i 0.438534 + 0.142488i
\(894\) −1318.86 1986.21i −1.47524 2.22171i
\(895\) 314.422 + 228.441i 0.351309 + 0.255241i
\(896\) −366.760 + 119.167i −0.409330 + 0.132999i
\(897\) 357.728 + 1282.58i 0.398805 + 1.42985i
\(898\) −1904.91 1384.00i −2.12129 1.54120i
\(899\) −46.2024 63.5921i −0.0513931 0.0707365i
\(900\) −357.491 + 849.151i −0.397212 + 0.943502i
\(901\) 14.2402 0.0158049
\(902\) 0 0
\(903\) −16.8126 + 398.560i −0.0186186 + 0.441373i
\(904\) −171.404 + 527.526i −0.189606 + 0.583546i
\(905\) 1110.95 + 1529.10i 1.22757 + 1.68961i
\(906\) 633.143 + 502.102i 0.698834 + 0.554196i
\(907\) 203.099 + 625.073i 0.223924 + 0.689166i 0.998399 + 0.0565619i \(0.0180138\pi\)
−0.774476 + 0.632604i \(0.781986\pi\)
\(908\) 619.376 201.248i 0.682132 0.221638i
\(909\) 884.781 1023.91i 0.973357 1.12641i
\(910\) 817.887 594.230i 0.898777 0.653000i
\(911\) −331.388 107.674i −0.363763 0.118194i 0.121432 0.992600i \(-0.461251\pi\)
−0.485195 + 0.874406i \(0.661251\pi\)
\(912\) 22.7085 538.329i 0.0248996 0.590273i
\(913\) 0 0
\(914\) 519.188i 0.568039i
\(915\) 74.0280 198.891i 0.0809049 0.217367i
\(916\) 1401.74 1018.42i 1.53028 1.11182i
\(917\) 269.096 370.379i 0.293453 0.403903i
\(918\) −65.3991 + 12.4206i −0.0712409 + 0.0135301i
\(919\) −197.588 608.115i −0.215004 0.661714i −0.999153 0.0411417i \(-0.986901\pi\)
0.784150 0.620572i \(-0.213099\pi\)
\(920\) 445.453 613.114i 0.484188 0.666428i
\(921\) 657.376 + 990.010i 0.713763 + 1.07493i
\(922\) 251.884 775.220i 0.273193 0.840803i
\(923\) 41.7471i 0.0452298i
\(924\) 0 0
\(925\) −735.627 −0.795272
\(926\) −2051.44 666.554i −2.21538 0.719821i
\(927\) −1153.33 + 697.629i −1.24415 + 0.752566i
\(928\) 132.389 + 96.1863i 0.142661 + 0.103649i
\(929\) 299.056 97.1692i 0.321912 0.104595i −0.143604 0.989635i \(-0.545869\pi\)
0.465515 + 0.885040i \(0.345869\pi\)
\(930\) −1220.06 + 340.291i −1.31189 + 0.365904i
\(931\) −663.529 482.082i −0.712706 0.517811i
\(932\) −1269.02 1746.66i −1.36161 1.87410i
\(933\) 91.0809 244.707i 0.0976215 0.262279i
\(934\) 2066.22 2.21222
\(935\) 0 0
\(936\) 51.4389 608.623i 0.0549561 0.650238i
\(937\) −469.735 + 1445.70i −0.501318 + 1.54290i 0.305556 + 0.952174i \(0.401158\pi\)
−0.806874 + 0.590724i \(0.798842\pi\)
\(938\) −398.324 548.245i −0.424652 0.584483i
\(939\) 1116.42 1407.79i 1.18895 1.49925i
\(940\) 218.942 + 673.835i 0.232917 + 0.716846i
\(941\) −1067.37 + 346.811i −1.13430 + 0.368556i −0.815208 0.579169i \(-0.803377\pi\)
−0.319090 + 0.947724i \(0.603377\pi\)
\(942\) 55.0673 + 43.6701i 0.0584579 + 0.0463589i
\(943\) 295.593 214.761i 0.313460 0.227742i
\(944\) 359.133 + 116.689i 0.380437 + 0.123611i
\(945\) 544.689 + 69.2591i 0.576390 + 0.0732900i
\(946\) 0 0
\(947\) 865.333i 0.913762i 0.889528 + 0.456881i \(0.151033\pi\)
−0.889528 + 0.456881i \(0.848967\pi\)
\(948\) 1481.93 + 551.582i 1.56322 + 0.581838i
\(949\) 597.691 434.248i 0.629812 0.457585i
\(950\) 710.520 977.947i 0.747916 1.02942i
\(951\) 1.97859 + 7.09393i 0.00208054 + 0.00745945i
\(952\) −3.18575 9.80474i −0.00334638 0.0102991i
\(953\) 298.122 410.330i 0.312825 0.430567i −0.623435 0.781875i \(-0.714263\pi\)
0.936260 + 0.351309i \(0.114263\pi\)
\(954\) −416.547 + 251.962i −0.436632 + 0.264111i
\(955\) −281.986 + 867.863i −0.295273 + 0.908757i
\(956\) 1.72460i 0.00180397i
\(957\) 0 0
\(958\) 2141.59 2.23548
\(959\) 443.388 + 144.066i 0.462345 + 0.150225i
\(960\) 1620.92 1076.30i 1.68845 1.12115i
\(961\) 428.125 + 311.051i 0.445500 + 0.323674i
\(962\) 1822.80 592.265i 1.89481 0.615660i
\(963\) −181.852 + 42.5493i −0.188839 + 0.0441841i
\(964\) −1262.22 917.054i −1.30935 0.951301i
\(965\) −1163.31 1601.16i −1.20550 1.65924i
\(966\) −720.059 268.009i −0.745402 0.277442i
\(967\) 569.116 0.588537 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(968\) 0 0
\(969\) 49.9906 + 2.10876i 0.0515899 + 0.00217623i
\(970\) −397.448 + 1223.22i −0.409740 + 1.26105i
\(971\) −736.695 1013.97i −0.758697 1.04426i −0.997321 0.0731450i \(-0.976696\pi\)
0.238624 0.971112i \(-0.423304\pi\)
\(972\) 970.041 871.058i 0.997985 0.896150i
\(973\) −105.854 325.784i −0.108791 0.334825i
\(974\) 1901.55 617.851i 1.95231 0.634344i
\(975\) −577.786 + 728.580i −0.592601 + 0.747262i
\(976\) −74.7833 + 54.3333i −0.0766223 + 0.0556693i
\(977\) 1085.77 + 352.788i 1.11133 + 0.361093i 0.806453 0.591298i \(-0.201384\pi\)
0.304878 + 0.952391i \(0.401384\pi\)
\(978\) 2408.24 + 101.587i 2.46241 + 0.103873i
\(979\) 0 0
\(980\) 1411.24i 1.44004i
\(981\) −369.444 + 877.545i −0.376600 + 0.894541i
\(982\) −153.097 + 111.231i −0.155903 + 0.113270i
\(983\) −391.031 + 538.208i −0.397793 + 0.547515i −0.960188 0.279353i \(-0.909880\pi\)
0.562395 + 0.826869i \(0.309880\pi\)
\(984\) −161.440 + 45.0279i −0.164065 + 0.0457600i
\(985\) −119.279 367.102i −0.121095 0.372692i
\(986\) −5.48178 + 7.54502i −0.00555961 + 0.00765215i
\(987\) 152.261 101.102i 0.154266 0.102434i
\(988\) −557.549 + 1715.96i −0.564321 + 1.73680i
\(989\) 1186.13i 1.19933i
\(990\) 0 0
\(991\) −1471.97 −1.48534 −0.742670 0.669658i \(-0.766441\pi\)
−0.742670 + 0.669658i \(0.766441\pi\)
\(992\) 854.961 + 277.794i 0.861856 + 0.280034i
\(993\) 610.818 + 919.894i 0.615124 + 0.926379i
\(994\) −19.4883 14.1591i −0.0196060 0.0142446i
\(995\) −789.604 + 256.558i −0.793572 + 0.257847i
\(996\) 137.945 + 494.579i 0.138499 + 0.496565i
\(997\) 502.232 + 364.893i 0.503743 + 0.365991i 0.810445 0.585815i \(-0.199225\pi\)
−0.306702 + 0.951806i \(0.599225\pi\)
\(998\) −593.582 816.996i −0.594772 0.818633i
\(999\) 941.518 + 443.978i 0.942461 + 0.444422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.251.4 16
3.2 odd 2 inner 363.3.h.j.251.1 16
11.2 odd 10 363.3.h.o.245.4 16
11.3 even 5 363.3.h.n.323.4 16
11.4 even 5 363.3.b.l.122.7 8
11.5 even 5 inner 363.3.h.j.269.1 16
11.6 odd 10 33.3.h.b.5.4 yes 16
11.7 odd 10 363.3.b.m.122.2 8
11.8 odd 10 363.3.h.o.323.1 16
11.9 even 5 363.3.h.n.245.1 16
11.10 odd 2 33.3.h.b.20.1 yes 16
33.2 even 10 363.3.h.o.245.1 16
33.5 odd 10 inner 363.3.h.j.269.4 16
33.8 even 10 363.3.h.o.323.4 16
33.14 odd 10 363.3.h.n.323.1 16
33.17 even 10 33.3.h.b.5.1 16
33.20 odd 10 363.3.h.n.245.4 16
33.26 odd 10 363.3.b.l.122.2 8
33.29 even 10 363.3.b.m.122.7 8
33.32 even 2 33.3.h.b.20.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.1 16 33.17 even 10
33.3.h.b.5.4 yes 16 11.6 odd 10
33.3.h.b.20.1 yes 16 11.10 odd 2
33.3.h.b.20.4 yes 16 33.32 even 2
363.3.b.l.122.2 8 33.26 odd 10
363.3.b.l.122.7 8 11.4 even 5
363.3.b.m.122.2 8 11.7 odd 10
363.3.b.m.122.7 8 33.29 even 10
363.3.h.j.251.1 16 3.2 odd 2 inner
363.3.h.j.251.4 16 1.1 even 1 trivial
363.3.h.j.269.1 16 11.5 even 5 inner
363.3.h.j.269.4 16 33.5 odd 10 inner
363.3.h.n.245.1 16 11.9 even 5
363.3.h.n.245.4 16 33.20 odd 10
363.3.h.n.323.1 16 33.14 odd 10
363.3.h.n.323.4 16 11.3 even 5
363.3.h.o.245.1 16 33.2 even 10
363.3.h.o.245.4 16 11.2 odd 10
363.3.h.o.323.1 16 11.8 odd 10
363.3.h.o.323.4 16 33.8 even 10