Properties

Label 363.3.h.j.251.2
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.2
Root \(-1.90610 - 0.619331i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.j.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.90610 - 0.619331i) q^{2} +(-1.63362 + 2.51621i) q^{3} +(0.0135968 + 0.00987866i) q^{4} +(5.21596 - 1.69477i) q^{5} +(4.67221 - 3.78440i) q^{6} +(4.52308 + 3.28621i) q^{7} +(4.69235 + 6.45847i) q^{8} +(-3.66258 - 8.22104i) q^{9} -10.9918 q^{10} +(-0.0470687 + 0.0180744i) q^{12} +(3.00265 - 9.24122i) q^{13} +(-6.58622 - 9.06515i) q^{14} +(-4.25650 + 15.8930i) q^{15} +(-4.96496 - 15.2806i) q^{16} +(-16.9969 + 5.52262i) q^{17} +(1.88972 + 17.9385i) q^{18} +(15.0954 - 10.9674i) q^{19} +(0.0876624 + 0.0284832i) q^{20} +(-15.6578 + 6.01259i) q^{21} +12.3649i q^{23} +(-23.9163 + 1.25625i) q^{24} +(4.10855 - 2.98503i) q^{25} +(-11.4467 + 15.7551i) q^{26} +(26.6691 + 4.21424i) q^{27} +(0.0290361 + 0.0893640i) q^{28} +(1.45613 - 2.00420i) q^{29} +(17.9564 - 27.6576i) q^{30} +(15.2132 - 46.8213i) q^{31} +0.268903i q^{32} +35.8182 q^{34} +(29.1616 + 9.47517i) q^{35} +(0.0314134 - 0.147961i) q^{36} +(31.8192 + 23.1180i) q^{37} +(-35.5658 + 11.5560i) q^{38} +(18.3476 + 22.6519i) q^{39} +(35.4207 + 25.7346i) q^{40} +(33.2237 + 45.7285i) q^{41} +(33.5692 - 1.76328i) q^{42} +43.9060 q^{43} +(-33.0366 - 36.6734i) q^{45} +(7.65794 - 23.5687i) q^{46} +(33.9646 + 46.7482i) q^{47} +(46.5599 + 12.4698i) q^{48} +(-5.48274 - 16.8741i) q^{49} +(-9.68004 + 3.14524i) q^{50} +(13.8704 - 51.7895i) q^{51} +(0.132117 - 0.0959889i) q^{52} +(41.0056 + 13.3235i) q^{53} +(-48.2241 - 24.5498i) q^{54} +44.6323i q^{56} +(2.93623 + 55.8996i) q^{57} +(-4.01681 + 2.91838i) q^{58} +(52.9190 - 72.8367i) q^{59} +(-0.214877 + 0.174046i) q^{60} +(9.53920 + 29.3587i) q^{61} +(-57.9958 + 79.8244i) q^{62} +(10.4499 - 49.2205i) q^{63} +(-19.6933 + 60.6097i) q^{64} -53.2906i q^{65} +34.0775 q^{67} +(-0.285659 - 0.0928164i) q^{68} +(-31.1125 - 20.1995i) q^{69} +(-49.7168 - 36.1213i) q^{70} +(-35.7561 + 11.6179i) q^{71} +(35.9092 - 62.2307i) q^{72} +(-9.81022 - 7.12754i) q^{73} +(-46.3331 - 63.7720i) q^{74} +(0.799160 + 15.2144i) q^{75} +0.313592 q^{76} +(-20.9434 - 54.5402i) q^{78} +(19.5128 - 60.0542i) q^{79} +(-51.7940 - 71.2884i) q^{80} +(-54.1710 + 60.2204i) q^{81} +(-35.0068 - 107.740i) q^{82} +(9.22665 - 2.99792i) q^{83} +(-0.272292 - 0.0729258i) q^{84} +(-79.2955 + 57.6115i) q^{85} +(-83.6893 - 27.1923i) q^{86} +(2.66420 + 6.93803i) q^{87} +34.1289i q^{89} +(40.2583 + 90.3639i) q^{90} +(43.9499 - 31.9315i) q^{91} +(-0.122148 + 0.168123i) q^{92} +(92.9595 + 114.768i) q^{93} +(-35.7874 - 110.142i) q^{94} +(60.1495 - 82.7887i) q^{95} +(-0.676616 - 0.439286i) q^{96} +(-11.6879 + 35.9715i) q^{97} +35.5595i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.90610 0.619331i −0.953052 0.309666i −0.209097 0.977895i \(-0.567052\pi\)
−0.743955 + 0.668229i \(0.767052\pi\)
\(3\) −1.63362 + 2.51621i −0.544540 + 0.838735i
\(4\) 0.0135968 + 0.00987866i 0.00339920 + 0.00246966i
\(5\) 5.21596 1.69477i 1.04319 0.338953i 0.263198 0.964742i \(-0.415223\pi\)
0.779993 + 0.625788i \(0.215223\pi\)
\(6\) 4.67221 3.78440i 0.778702 0.630733i
\(7\) 4.52308 + 3.28621i 0.646155 + 0.469459i 0.861959 0.506978i \(-0.169237\pi\)
−0.215804 + 0.976437i \(0.569237\pi\)
\(8\) 4.69235 + 6.45847i 0.586544 + 0.807308i
\(9\) −3.66258 8.22104i −0.406953 0.913449i
\(10\) −10.9918 −1.09918
\(11\) 0 0
\(12\) −0.0470687 + 0.0180744i −0.00392239 + 0.00150620i
\(13\) 3.00265 9.24122i 0.230973 0.710863i −0.766657 0.642057i \(-0.778081\pi\)
0.997630 0.0688058i \(-0.0219189\pi\)
\(14\) −6.58622 9.06515i −0.470444 0.647511i
\(15\) −4.25650 + 15.8930i −0.283767 + 1.05953i
\(16\) −4.96496 15.2806i −0.310310 0.955036i
\(17\) −16.9969 + 5.52262i −0.999817 + 0.324860i −0.762792 0.646643i \(-0.776172\pi\)
−0.237024 + 0.971504i \(0.576172\pi\)
\(18\) 1.88972 + 17.9385i 0.104984 + 0.996584i
\(19\) 15.0954 10.9674i 0.794493 0.577233i −0.114801 0.993389i \(-0.536623\pi\)
0.909293 + 0.416156i \(0.136623\pi\)
\(20\) 0.0876624 + 0.0284832i 0.00438312 + 0.00142416i
\(21\) −15.6578 + 6.01259i −0.745609 + 0.286314i
\(22\) 0 0
\(23\) 12.3649i 0.537603i 0.963196 + 0.268801i \(0.0866275\pi\)
−0.963196 + 0.268801i \(0.913372\pi\)
\(24\) −23.9163 + 1.25625i −0.996514 + 0.0523437i
\(25\) 4.10855 2.98503i 0.164342 0.119401i
\(26\) −11.4467 + 15.7551i −0.440260 + 0.605965i
\(27\) 26.6691 + 4.21424i 0.987744 + 0.156083i
\(28\) 0.0290361 + 0.0893640i 0.00103700 + 0.00319157i
\(29\) 1.45613 2.00420i 0.0502115 0.0691102i −0.783173 0.621804i \(-0.786400\pi\)
0.833384 + 0.552694i \(0.186400\pi\)
\(30\) 17.9564 27.6576i 0.598546 0.921919i
\(31\) 15.2132 46.8213i 0.490747 1.51037i −0.332733 0.943021i \(-0.607971\pi\)
0.823481 0.567344i \(-0.192029\pi\)
\(32\) 0.268903i 0.00840323i
\(33\) 0 0
\(34\) 35.8182 1.05348
\(35\) 29.1616 + 9.47517i 0.833188 + 0.270719i
\(36\) 0.0314134 0.147961i 0.000872596 0.00411003i
\(37\) 31.8192 + 23.1180i 0.859979 + 0.624811i 0.927879 0.372881i \(-0.121630\pi\)
−0.0679003 + 0.997692i \(0.521630\pi\)
\(38\) −35.5658 + 11.5560i −0.935942 + 0.304106i
\(39\) 18.3476 + 22.6519i 0.470452 + 0.580819i
\(40\) 35.4207 + 25.7346i 0.885518 + 0.643366i
\(41\) 33.2237 + 45.7285i 0.810335 + 1.11533i 0.991272 + 0.131835i \(0.0420870\pi\)
−0.180937 + 0.983495i \(0.557913\pi\)
\(42\) 33.5692 1.76328i 0.799266 0.0419828i
\(43\) 43.9060 1.02107 0.510534 0.859857i \(-0.329448\pi\)
0.510534 + 0.859857i \(0.329448\pi\)
\(44\) 0 0
\(45\) −33.0366 36.6734i −0.734147 0.814964i
\(46\) 7.65794 23.5687i 0.166477 0.512364i
\(47\) 33.9646 + 46.7482i 0.722651 + 0.994643i 0.999432 + 0.0337102i \(0.0107323\pi\)
−0.276781 + 0.960933i \(0.589268\pi\)
\(48\) 46.5599 + 12.4698i 0.969998 + 0.259787i
\(49\) −5.48274 16.8741i −0.111893 0.344370i
\(50\) −9.68004 + 3.14524i −0.193601 + 0.0629047i
\(51\) 13.8704 51.7895i 0.271968 1.01548i
\(52\) 0.132117 0.0959889i 0.00254072 0.00184594i
\(53\) 41.0056 + 13.3235i 0.773690 + 0.251387i 0.669144 0.743133i \(-0.266661\pi\)
0.104546 + 0.994520i \(0.466661\pi\)
\(54\) −48.2241 24.5498i −0.893038 0.454625i
\(55\) 0 0
\(56\) 44.6323i 0.797005i
\(57\) 2.93623 + 55.8996i 0.0515127 + 0.980695i
\(58\) −4.01681 + 2.91838i −0.0692553 + 0.0503169i
\(59\) 52.9190 72.8367i 0.896932 1.23452i −0.0745046 0.997221i \(-0.523738\pi\)
0.971436 0.237300i \(-0.0762625\pi\)
\(60\) −0.214877 + 0.174046i −0.00358128 + 0.00290076i
\(61\) 9.53920 + 29.3587i 0.156380 + 0.481289i 0.998298 0.0583165i \(-0.0185733\pi\)
−0.841918 + 0.539606i \(0.818573\pi\)
\(62\) −57.9958 + 79.8244i −0.935416 + 1.28749i
\(63\) 10.4499 49.2205i 0.165872 0.781278i
\(64\) −19.6933 + 60.6097i −0.307708 + 0.947027i
\(65\) 53.2906i 0.819855i
\(66\) 0 0
\(67\) 34.0775 0.508620 0.254310 0.967123i \(-0.418152\pi\)
0.254310 + 0.967123i \(0.418152\pi\)
\(68\) −0.285659 0.0928164i −0.00420087 0.00136495i
\(69\) −31.1125 20.1995i −0.450906 0.292746i
\(70\) −49.7168 36.1213i −0.710240 0.516019i
\(71\) −35.7561 + 11.6179i −0.503607 + 0.163632i −0.549793 0.835301i \(-0.685293\pi\)
0.0461856 + 0.998933i \(0.485293\pi\)
\(72\) 35.9092 62.2307i 0.498739 0.864315i
\(73\) −9.81022 7.12754i −0.134387 0.0976375i 0.518561 0.855041i \(-0.326468\pi\)
−0.652948 + 0.757403i \(0.726468\pi\)
\(74\) −46.3331 63.7720i −0.626123 0.861784i
\(75\) 0.799160 + 15.2144i 0.0106555 + 0.202858i
\(76\) 0.313592 0.00412621
\(77\) 0 0
\(78\) −20.9434 54.5402i −0.268506 0.699233i
\(79\) 19.5128 60.0542i 0.246997 0.760180i −0.748304 0.663356i \(-0.769132\pi\)
0.995302 0.0968240i \(-0.0308684\pi\)
\(80\) −51.7940 71.2884i −0.647425 0.891104i
\(81\) −54.1710 + 60.2204i −0.668778 + 0.743462i
\(82\) −35.0068 107.740i −0.426912 1.31390i
\(83\) 9.22665 2.99792i 0.111164 0.0361195i −0.252907 0.967491i \(-0.581387\pi\)
0.364071 + 0.931371i \(0.381387\pi\)
\(84\) −0.272292 0.0729258i −0.00324157 0.000868165i
\(85\) −79.2955 + 57.6115i −0.932888 + 0.677783i
\(86\) −83.6893 27.1923i −0.973132 0.316190i
\(87\) 2.66420 + 6.93803i 0.0306230 + 0.0797474i
\(88\) 0 0
\(89\) 34.1289i 0.383471i 0.981447 + 0.191735i \(0.0614115\pi\)
−0.981447 + 0.191735i \(0.938588\pi\)
\(90\) 40.2583 + 90.3639i 0.447314 + 1.00404i
\(91\) 43.9499 31.9315i 0.482966 0.350895i
\(92\) −0.122148 + 0.168123i −0.00132770 + 0.00182742i
\(93\) 92.9595 + 114.768i 0.999565 + 1.23406i
\(94\) −35.7874 110.142i −0.380717 1.17173i
\(95\) 60.1495 82.7887i 0.633153 0.871460i
\(96\) −0.676616 0.439286i −0.00704809 0.00457589i
\(97\) −11.6879 + 35.9715i −0.120493 + 0.370841i −0.993053 0.117667i \(-0.962458\pi\)
0.872560 + 0.488507i \(0.162458\pi\)
\(98\) 35.5595i 0.362852i
\(99\) 0 0
\(100\) 0.0853512 0.000853512
\(101\) −44.6091 14.4944i −0.441674 0.143509i 0.0797339 0.996816i \(-0.474593\pi\)
−0.521408 + 0.853308i \(0.674593\pi\)
\(102\) −58.5132 + 90.1259i −0.573659 + 0.883587i
\(103\) −84.7824 61.5980i −0.823130 0.598039i 0.0944773 0.995527i \(-0.469882\pi\)
−0.917607 + 0.397488i \(0.869882\pi\)
\(104\) 73.7736 23.9705i 0.709362 0.230486i
\(105\) −71.4804 + 57.8977i −0.680766 + 0.551407i
\(106\) −69.9092 50.7920i −0.659521 0.479170i
\(107\) 27.4085 + 37.7246i 0.256154 + 0.352566i 0.917655 0.397378i \(-0.130080\pi\)
−0.661500 + 0.749945i \(0.730080\pi\)
\(108\) 0.320983 + 0.320755i 0.00297207 + 0.00296995i
\(109\) 168.413 1.54507 0.772537 0.634969i \(-0.218987\pi\)
0.772537 + 0.634969i \(0.218987\pi\)
\(110\) 0 0
\(111\) −110.150 + 42.2977i −0.992344 + 0.381060i
\(112\) 27.7583 85.4312i 0.247842 0.762779i
\(113\) 27.2263 + 37.4738i 0.240941 + 0.331627i 0.912313 0.409494i \(-0.134295\pi\)
−0.671372 + 0.741121i \(0.734295\pi\)
\(114\) 29.0236 108.369i 0.254593 0.950606i
\(115\) 20.9556 + 64.4946i 0.182222 + 0.560822i
\(116\) 0.0395975 0.0128660i 0.000341358 0.000110914i
\(117\) −86.9699 + 9.16177i −0.743332 + 0.0783057i
\(118\) −145.979 + 106.060i −1.23711 + 0.898814i
\(119\) −95.0269 30.8761i −0.798545 0.259463i
\(120\) −122.618 + 47.0852i −1.02181 + 0.392376i
\(121\) 0 0
\(122\) 61.8686i 0.507120i
\(123\) −169.337 + 8.89474i −1.37673 + 0.0723149i
\(124\) 0.669382 0.486335i 0.00539824 0.00392205i
\(125\) −64.2199 + 88.3911i −0.513759 + 0.707129i
\(126\) −50.4024 + 87.3474i −0.400019 + 0.693234i
\(127\) 21.1024 + 64.9465i 0.166161 + 0.511390i 0.999120 0.0419443i \(-0.0133552\pi\)
−0.832959 + 0.553334i \(0.813355\pi\)
\(128\) 75.7072 104.202i 0.591462 0.814078i
\(129\) −71.7256 + 110.476i −0.556012 + 0.856406i
\(130\) −33.0045 + 101.577i −0.253881 + 0.781365i
\(131\) 162.272i 1.23872i 0.785109 + 0.619358i \(0.212607\pi\)
−0.785109 + 0.619358i \(0.787393\pi\)
\(132\) 0 0
\(133\) 104.319 0.784353
\(134\) −64.9553 21.1053i −0.484741 0.157502i
\(135\) 146.247 23.2166i 1.08331 0.171975i
\(136\) −115.423 83.8598i −0.848699 0.616616i
\(137\) −50.2796 + 16.3368i −0.367004 + 0.119247i −0.486713 0.873562i \(-0.661804\pi\)
0.119708 + 0.992809i \(0.461804\pi\)
\(138\) 46.7936 + 57.7713i 0.339084 + 0.418632i
\(139\) −70.0088 50.8644i −0.503661 0.365931i 0.306753 0.951789i \(-0.400758\pi\)
−0.810414 + 0.585858i \(0.800758\pi\)
\(140\) 0.302902 + 0.416909i 0.00216359 + 0.00297792i
\(141\) −173.113 + 9.09308i −1.22775 + 0.0644899i
\(142\) 75.3502 0.530635
\(143\) 0 0
\(144\) −107.438 + 96.7835i −0.746095 + 0.672107i
\(145\) 4.19849 12.9216i 0.0289551 0.0891146i
\(146\) 14.2850 + 19.6616i 0.0978424 + 0.134669i
\(147\) 51.4155 + 13.7702i 0.349765 + 0.0936748i
\(148\) 0.204265 + 0.628662i 0.00138017 + 0.00424772i
\(149\) 61.2955 19.9161i 0.411379 0.133665i −0.0960136 0.995380i \(-0.530609\pi\)
0.507393 + 0.861715i \(0.330609\pi\)
\(150\) 7.89944 29.4951i 0.0526629 0.196634i
\(151\) 36.1103 26.2357i 0.239141 0.173746i −0.461760 0.887005i \(-0.652782\pi\)
0.700901 + 0.713259i \(0.252782\pi\)
\(152\) 141.666 + 46.0299i 0.932010 + 0.302828i
\(153\) 107.654 + 119.505i 0.703622 + 0.781079i
\(154\) 0 0
\(155\) 270.001i 1.74194i
\(156\) 0.0256984 + 0.489244i 0.000164733 + 0.00313618i
\(157\) 114.125 82.9166i 0.726910 0.528131i −0.161675 0.986844i \(-0.551689\pi\)
0.888584 + 0.458713i \(0.151689\pi\)
\(158\) −74.3869 + 102.385i −0.470803 + 0.648005i
\(159\) −100.512 + 81.4129i −0.632152 + 0.512031i
\(160\) 0.455729 + 1.40259i 0.00284830 + 0.00876618i
\(161\) −40.6336 + 55.9273i −0.252382 + 0.347375i
\(162\) 140.552 81.2367i 0.867605 0.501461i
\(163\) 37.3801 115.044i 0.229326 0.705793i −0.768498 0.639853i \(-0.778995\pi\)
0.997824 0.0659401i \(-0.0210046\pi\)
\(164\) 0.949967i 0.00579248i
\(165\) 0 0
\(166\) −19.4437 −0.117130
\(167\) 102.174 + 33.1982i 0.611819 + 0.198792i 0.598504 0.801119i \(-0.295762\pi\)
0.0133141 + 0.999911i \(0.495762\pi\)
\(168\) −112.304 72.9121i −0.668476 0.434001i
\(169\) 60.3397 + 43.8393i 0.357039 + 0.259404i
\(170\) 186.826 60.7035i 1.09898 0.357079i
\(171\) −145.452 83.9305i −0.850594 0.490822i
\(172\) 0.596981 + 0.433732i 0.00347082 + 0.00252170i
\(173\) −193.272 266.016i −1.11718 1.53767i −0.810393 0.585887i \(-0.800746\pi\)
−0.306787 0.951778i \(-0.599254\pi\)
\(174\) −0.781316 14.8746i −0.00449032 0.0854864i
\(175\) 28.3928 0.162244
\(176\) 0 0
\(177\) 96.8227 + 252.142i 0.547021 + 1.42453i
\(178\) 21.1371 65.0533i 0.118748 0.365468i
\(179\) −28.3892 39.0743i −0.158599 0.218292i 0.722321 0.691558i \(-0.243075\pi\)
−0.880920 + 0.473265i \(0.843075\pi\)
\(180\) −0.0869087 0.824998i −0.000482826 0.00458332i
\(181\) 0.0205705 + 0.0633093i 0.000113649 + 0.000349775i 0.951113 0.308842i \(-0.0999415\pi\)
−0.951000 + 0.309192i \(0.899941\pi\)
\(182\) −103.549 + 33.6452i −0.568952 + 0.184864i
\(183\) −89.4558 23.9582i −0.488830 0.130919i
\(184\) −79.8581 + 58.0203i −0.434011 + 0.315328i
\(185\) 205.147 + 66.6564i 1.10890 + 0.360305i
\(186\) −106.111 276.332i −0.570492 1.48566i
\(187\) 0 0
\(188\) 0.971151i 0.00516570i
\(189\) 106.778 + 106.702i 0.564961 + 0.564559i
\(190\) −165.925 + 120.552i −0.873289 + 0.634482i
\(191\) 116.037 159.711i 0.607523 0.836183i −0.388848 0.921302i \(-0.627127\pi\)
0.996371 + 0.0851188i \(0.0271270\pi\)
\(192\) −120.335 148.566i −0.626746 0.773779i
\(193\) −0.470837 1.44909i −0.00243957 0.00750823i 0.949829 0.312769i \(-0.101256\pi\)
−0.952269 + 0.305260i \(0.901256\pi\)
\(194\) 44.5566 61.3269i 0.229673 0.316118i
\(195\) 134.090 + 87.0565i 0.687642 + 0.446444i
\(196\) 0.0921460 0.283596i 0.000470133 0.00144692i
\(197\) 215.460i 1.09370i −0.837229 0.546852i \(-0.815826\pi\)
0.837229 0.546852i \(-0.184174\pi\)
\(198\) 0 0
\(199\) −106.663 −0.535993 −0.267997 0.963420i \(-0.586362\pi\)
−0.267997 + 0.963420i \(0.586362\pi\)
\(200\) 38.5575 + 12.5281i 0.192787 + 0.0626404i
\(201\) −55.6697 + 85.7461i −0.276964 + 0.426597i
\(202\) 76.0527 + 55.2555i 0.376499 + 0.273542i
\(203\) 13.1724 4.27999i 0.0648889 0.0210837i
\(204\) 0.700204 0.567151i 0.00343237 0.00278015i
\(205\) 250.793 + 182.212i 1.22338 + 0.888837i
\(206\) 123.455 + 169.921i 0.599294 + 0.824858i
\(207\) 101.652 45.2873i 0.491073 0.218779i
\(208\) −156.119 −0.750573
\(209\) 0 0
\(210\) 172.107 66.0891i 0.819557 0.314710i
\(211\) −66.3847 + 204.311i −0.314619 + 0.968299i 0.661291 + 0.750129i \(0.270009\pi\)
−0.975911 + 0.218170i \(0.929991\pi\)
\(212\) 0.425926 + 0.586237i 0.00200909 + 0.00276527i
\(213\) 29.1789 108.949i 0.136990 0.511497i
\(214\) −28.8795 88.8820i −0.134951 0.415336i
\(215\) 229.012 74.4104i 1.06517 0.346095i
\(216\) 97.9232 + 192.016i 0.453348 + 0.888964i
\(217\) 222.675 161.783i 1.02615 0.745544i
\(218\) −321.013 104.303i −1.47254 0.478456i
\(219\) 33.9605 13.0408i 0.155071 0.0595472i
\(220\) 0 0
\(221\) 173.654i 0.785767i
\(222\) 236.154 12.4044i 1.06376 0.0558757i
\(223\) −36.2187 + 26.3144i −0.162416 + 0.118002i −0.666024 0.745930i \(-0.732005\pi\)
0.503609 + 0.863932i \(0.332005\pi\)
\(224\) −0.883674 + 1.21627i −0.00394497 + 0.00542979i
\(225\) −39.5880 22.8436i −0.175946 0.101527i
\(226\) −28.6875 88.2911i −0.126936 0.390669i
\(227\) −131.960 + 181.627i −0.581322 + 0.800121i −0.993840 0.110829i \(-0.964649\pi\)
0.412518 + 0.910950i \(0.364649\pi\)
\(228\) −0.512290 + 0.789062i −0.00224689 + 0.00346080i
\(229\) −32.1689 + 99.0057i −0.140476 + 0.432339i −0.996401 0.0847591i \(-0.972988\pi\)
0.855926 + 0.517099i \(0.172988\pi\)
\(230\) 135.912i 0.590921i
\(231\) 0 0
\(232\) 19.7767 0.0852446
\(233\) −58.5176 19.0135i −0.251148 0.0816030i 0.180737 0.983531i \(-0.442152\pi\)
−0.431886 + 0.901928i \(0.642152\pi\)
\(234\) 171.448 + 36.3999i 0.732683 + 0.155555i
\(235\) 256.385 + 186.275i 1.09100 + 0.792658i
\(236\) 1.43906 0.467578i 0.00609770 0.00198126i
\(237\) 119.232 + 147.204i 0.503090 + 0.621113i
\(238\) 162.009 + 117.706i 0.680709 + 0.494564i
\(239\) −87.7330 120.754i −0.367084 0.505247i 0.585022 0.811018i \(-0.301086\pi\)
−0.952105 + 0.305770i \(0.901086\pi\)
\(240\) 263.988 13.8664i 1.09995 0.0577768i
\(241\) −358.881 −1.48913 −0.744567 0.667548i \(-0.767344\pi\)
−0.744567 + 0.667548i \(0.767344\pi\)
\(242\) 0 0
\(243\) −63.0323 234.683i −0.259392 0.965772i
\(244\) −0.160321 + 0.493418i −0.000657055 + 0.00202221i
\(245\) −57.1954 78.7227i −0.233451 0.321317i
\(246\) 328.283 + 87.9215i 1.33449 + 0.357405i
\(247\) −56.0262 172.431i −0.226827 0.698101i
\(248\) 373.780 121.448i 1.50718 0.489711i
\(249\) −7.52944 + 28.1136i −0.0302387 + 0.112906i
\(250\) 177.153 128.709i 0.708613 0.514837i
\(251\) 339.548 + 110.326i 1.35278 + 0.439545i 0.893627 0.448811i \(-0.148152\pi\)
0.459155 + 0.888356i \(0.348152\pi\)
\(252\) 0.628318 0.566010i 0.00249332 0.00224607i
\(253\) 0 0
\(254\) 136.864i 0.538836i
\(255\) −15.4239 293.639i −0.0604859 1.15153i
\(256\) −2.61054 + 1.89667i −0.0101974 + 0.00740886i
\(257\) −38.8488 + 53.4707i −0.151162 + 0.208057i −0.877882 0.478877i \(-0.841044\pi\)
0.726720 + 0.686934i \(0.241044\pi\)
\(258\) 205.138 166.158i 0.795108 0.644022i
\(259\) 67.9503 + 209.130i 0.262356 + 0.807450i
\(260\) 0.526440 0.724582i 0.00202477 0.00278685i
\(261\) −21.8098 4.63041i −0.0835624 0.0177410i
\(262\) 100.500 309.307i 0.383587 1.18056i
\(263\) 85.4194i 0.324789i −0.986726 0.162394i \(-0.948078\pi\)
0.986726 0.162394i \(-0.0519216\pi\)
\(264\) 0 0
\(265\) 236.464 0.892315
\(266\) −198.843 64.6079i −0.747529 0.242887i
\(267\) −85.8753 55.7536i −0.321630 0.208815i
\(268\) 0.463345 + 0.336640i 0.00172890 + 0.00125612i
\(269\) −153.866 + 49.9940i −0.571991 + 0.185851i −0.580710 0.814111i \(-0.697225\pi\)
0.00871848 + 0.999962i \(0.497225\pi\)
\(270\) −293.141 46.3220i −1.08571 0.171563i
\(271\) −210.339 152.820i −0.776160 0.563913i 0.127664 0.991817i \(-0.459252\pi\)
−0.903824 + 0.427904i \(0.859252\pi\)
\(272\) 168.778 + 232.303i 0.620506 + 0.854053i
\(273\) 8.54877 + 162.751i 0.0313142 + 0.596157i
\(274\) 105.956 0.386701
\(275\) 0 0
\(276\) −0.223487 0.581998i −0.000809737 0.00210869i
\(277\) 26.8202 82.5441i 0.0968239 0.297993i −0.890901 0.454198i \(-0.849926\pi\)
0.987725 + 0.156205i \(0.0499259\pi\)
\(278\) 101.942 + 140.312i 0.366699 + 0.504718i
\(279\) −440.639 + 46.4188i −1.57935 + 0.166376i
\(280\) 75.6413 + 232.800i 0.270147 + 0.831429i
\(281\) −460.991 + 149.785i −1.64054 + 0.533043i −0.976659 0.214796i \(-0.931091\pi\)
−0.663880 + 0.747839i \(0.731091\pi\)
\(282\) 335.604 + 89.8821i 1.19008 + 0.318731i
\(283\) 349.554 253.966i 1.23517 0.897406i 0.237906 0.971288i \(-0.423539\pi\)
0.997267 + 0.0738826i \(0.0235390\pi\)
\(284\) −0.600938 0.195257i −0.00211598 0.000687523i
\(285\) 110.052 + 286.594i 0.386148 + 1.00559i
\(286\) 0 0
\(287\) 316.014i 1.10109i
\(288\) 2.21067 0.984880i 0.00767592 0.00341972i
\(289\) 24.5889 17.8649i 0.0850826 0.0618161i
\(290\) −16.0055 + 22.0297i −0.0551914 + 0.0759645i
\(291\) −71.4183 88.1728i −0.245424 0.302999i
\(292\) −0.0629771 0.193823i −0.000215675 0.000663779i
\(293\) −3.25020 + 4.47352i −0.0110928 + 0.0152680i −0.814527 0.580125i \(-0.803004\pi\)
0.803435 + 0.595393i \(0.203004\pi\)
\(294\) −89.4750 58.0906i −0.304337 0.197587i
\(295\) 152.582 469.599i 0.517227 1.59186i
\(296\) 313.981i 1.06075i
\(297\) 0 0
\(298\) −129.170 −0.433458
\(299\) 114.266 + 37.1274i 0.382162 + 0.124172i
\(300\) −0.139431 + 0.214761i −0.000464771 + 0.000715871i
\(301\) 198.590 + 144.284i 0.659769 + 0.479350i
\(302\) −85.0786 + 27.6437i −0.281717 + 0.0915354i
\(303\) 109.345 88.5673i 0.360874 0.292301i
\(304\) −242.536 176.213i −0.797817 0.579648i
\(305\) 99.5122 + 136.967i 0.326269 + 0.449071i
\(306\) −131.187 294.463i −0.428716 0.962296i
\(307\) −219.257 −0.714191 −0.357095 0.934068i \(-0.616233\pi\)
−0.357095 + 0.934068i \(0.616233\pi\)
\(308\) 0 0
\(309\) 293.495 112.702i 0.949823 0.364732i
\(310\) −167.220 + 514.650i −0.539419 + 1.66016i
\(311\) −83.5538 115.002i −0.268662 0.369781i 0.653276 0.757120i \(-0.273394\pi\)
−0.921937 + 0.387339i \(0.873394\pi\)
\(312\) −60.2033 + 224.788i −0.192959 + 0.720475i
\(313\) 29.1359 + 89.6710i 0.0930859 + 0.286489i 0.986750 0.162247i \(-0.0518743\pi\)
−0.893664 + 0.448736i \(0.851874\pi\)
\(314\) −268.887 + 87.3666i −0.856327 + 0.278238i
\(315\) −28.9109 274.442i −0.0917805 0.871245i
\(316\) 0.858566 0.623785i 0.00271698 0.00197400i
\(317\) −476.684 154.884i −1.50373 0.488593i −0.562630 0.826709i \(-0.690210\pi\)
−0.941104 + 0.338116i \(0.890210\pi\)
\(318\) 242.008 92.9312i 0.761032 0.292237i
\(319\) 0 0
\(320\) 349.513i 1.09223i
\(321\) −139.698 + 7.33788i −0.435196 + 0.0228594i
\(322\) 112.089 81.4377i 0.348104 0.252912i
\(323\) −196.005 + 269.778i −0.606827 + 0.835226i
\(324\) −1.33145 + 0.283669i −0.00410941 + 0.000875521i
\(325\) −15.2488 46.9310i −0.0469194 0.144403i
\(326\) −142.501 + 196.136i −0.437119 + 0.601643i
\(327\) −275.123 + 423.762i −0.841354 + 1.29591i
\(328\) −139.439 + 429.149i −0.425118 + 1.30838i
\(329\) 323.061i 0.981948i
\(330\) 0 0
\(331\) −653.489 −1.97429 −0.987143 0.159839i \(-0.948903\pi\)
−0.987143 + 0.159839i \(0.948903\pi\)
\(332\) 0.155068 + 0.0503847i 0.000467073 + 0.000151761i
\(333\) 73.5137 346.259i 0.220762 1.03982i
\(334\) −174.193 126.559i −0.521536 0.378918i
\(335\) 177.747 57.7535i 0.530588 0.172398i
\(336\) 169.616 + 209.408i 0.504810 + 0.623237i
\(337\) 533.438 + 387.565i 1.58290 + 1.15005i 0.913272 + 0.407349i \(0.133547\pi\)
0.669629 + 0.742696i \(0.266453\pi\)
\(338\) −87.8627 120.933i −0.259949 0.357789i
\(339\) −138.769 + 7.28910i −0.409349 + 0.0215018i
\(340\) −1.64729 −0.00484497
\(341\) 0 0
\(342\) 225.265 + 250.063i 0.658670 + 0.731179i
\(343\) 115.309 354.884i 0.336177 1.03465i
\(344\) 206.022 + 283.565i 0.598902 + 0.824317i
\(345\) −196.515 52.6311i −0.569609 0.152554i
\(346\) 203.645 + 626.754i 0.588569 + 1.81143i
\(347\) −264.279 + 85.8695i −0.761611 + 0.247463i −0.663970 0.747759i \(-0.731130\pi\)
−0.0976413 + 0.995222i \(0.531130\pi\)
\(348\) −0.0323137 + 0.120654i −9.28556e−5 + 0.000346706i
\(349\) −204.499 + 148.578i −0.585958 + 0.425724i −0.840867 0.541242i \(-0.817954\pi\)
0.254909 + 0.966965i \(0.417954\pi\)
\(350\) −54.1196 17.5845i −0.154627 0.0502415i
\(351\) 119.023 233.801i 0.339096 0.666100i
\(352\) 0 0
\(353\) 560.803i 1.58868i −0.607476 0.794338i \(-0.707818\pi\)
0.607476 0.794338i \(-0.292182\pi\)
\(354\) −28.3947 540.575i −0.0802109 1.52705i
\(355\) −166.813 + 121.197i −0.469895 + 0.341399i
\(356\) −0.337148 + 0.464044i −0.000947044 + 0.00130349i
\(357\) 232.928 188.667i 0.652460 0.528480i
\(358\) 29.9128 + 92.0620i 0.0835552 + 0.257157i
\(359\) 174.022 239.520i 0.484740 0.667187i −0.494667 0.869083i \(-0.664710\pi\)
0.979407 + 0.201895i \(0.0647100\pi\)
\(360\) 81.8344 385.450i 0.227318 1.07070i
\(361\) −3.96952 + 12.2169i −0.0109959 + 0.0338419i
\(362\) 0.133414i 0.000368547i
\(363\) 0 0
\(364\) 0.913018 0.00250829
\(365\) −63.2492 20.5509i −0.173285 0.0563038i
\(366\) 155.674 + 101.070i 0.425339 + 0.276147i
\(367\) −68.6514 49.8782i −0.187061 0.135908i 0.490313 0.871546i \(-0.336882\pi\)
−0.677375 + 0.735638i \(0.736882\pi\)
\(368\) 188.942 61.3910i 0.513430 0.166823i
\(369\) 254.252 440.618i 0.689028 1.19409i
\(370\) −349.750 254.108i −0.945270 0.686779i
\(371\) 141.688 + 195.016i 0.381908 + 0.525651i
\(372\) 0.130203 + 2.47879i 0.000350007 + 0.00666341i
\(373\) −316.098 −0.847447 −0.423724 0.905792i \(-0.639277\pi\)
−0.423724 + 0.905792i \(0.639277\pi\)
\(374\) 0 0
\(375\) −117.499 305.988i −0.313332 0.815968i
\(376\) −142.548 + 438.718i −0.379118 + 1.16680i
\(377\) −14.1490 19.4744i −0.0375304 0.0516562i
\(378\) −137.446 269.515i −0.363613 0.713003i
\(379\) −33.6016 103.415i −0.0886586 0.272863i 0.896891 0.442253i \(-0.145820\pi\)
−0.985549 + 0.169389i \(0.945820\pi\)
\(380\) 1.63568 0.531466i 0.00430443 0.00139859i
\(381\) −197.892 52.9999i −0.519402 0.139107i
\(382\) −320.092 + 232.561i −0.837938 + 0.608797i
\(383\) 420.380 + 136.590i 1.09760 + 0.356631i 0.801178 0.598426i \(-0.204207\pi\)
0.296420 + 0.955058i \(0.404207\pi\)
\(384\) 138.517 + 360.721i 0.360721 + 0.939378i
\(385\) 0 0
\(386\) 3.05372i 0.00791119i
\(387\) −160.809 360.953i −0.415527 0.932694i
\(388\) −0.514268 + 0.373638i −0.00132543 + 0.000962983i
\(389\) 299.534 412.273i 0.770010 1.05983i −0.226305 0.974056i \(-0.572665\pi\)
0.996315 0.0857708i \(-0.0273353\pi\)
\(390\) −201.673 248.985i −0.517110 0.638423i
\(391\) −68.2865 210.164i −0.174646 0.537504i
\(392\) 83.2541 114.589i 0.212383 0.292320i
\(393\) −408.309 265.090i −1.03895 0.674529i
\(394\) −133.441 + 410.689i −0.338682 + 1.04236i
\(395\) 346.310i 0.876734i
\(396\) 0 0
\(397\) 13.0481 0.0328668 0.0164334 0.999865i \(-0.494769\pi\)
0.0164334 + 0.999865i \(0.494769\pi\)
\(398\) 203.310 + 66.0595i 0.510830 + 0.165979i
\(399\) −170.417 + 262.488i −0.427111 + 0.657864i
\(400\) −66.0118 47.9604i −0.165029 0.119901i
\(401\) −522.706 + 169.837i −1.30351 + 0.423535i −0.876800 0.480855i \(-0.840326\pi\)
−0.426706 + 0.904390i \(0.640326\pi\)
\(402\) 159.217 128.963i 0.396063 0.320804i
\(403\) −387.006 281.176i −0.960313 0.697708i
\(404\) −0.463356 0.637754i −0.00114692 0.00157860i
\(405\) −180.494 + 405.914i −0.445664 + 1.00226i
\(406\) −27.7588 −0.0683714
\(407\) 0 0
\(408\) 399.566 153.433i 0.979327 0.376062i
\(409\) −191.024 + 587.911i −0.467051 + 1.43744i 0.389334 + 0.921097i \(0.372705\pi\)
−0.856385 + 0.516339i \(0.827295\pi\)
\(410\) −365.188 502.638i −0.890702 1.22595i
\(411\) 41.0308 153.202i 0.0998317 0.372754i
\(412\) −0.544264 1.67507i −0.00132103 0.00406571i
\(413\) 478.714 155.544i 1.15911 0.376619i
\(414\) −221.807 + 23.3661i −0.535766 + 0.0564398i
\(415\) 43.0450 31.2740i 0.103723 0.0753591i
\(416\) 2.48500 + 0.807424i 0.00597355 + 0.00194092i
\(417\) 242.353 93.0636i 0.581182 0.223174i
\(418\) 0 0
\(419\) 440.342i 1.05094i 0.850814 + 0.525468i \(0.176110\pi\)
−0.850814 + 0.525468i \(0.823890\pi\)
\(420\) −1.54386 + 0.0810938i −0.00367585 + 0.000193080i
\(421\) −464.562 + 337.524i −1.10347 + 0.801719i −0.981623 0.190829i \(-0.938882\pi\)
−0.121849 + 0.992549i \(0.538882\pi\)
\(422\) 253.072 348.324i 0.599697 0.825413i
\(423\) 259.921 450.443i 0.614471 1.06488i
\(424\) 106.363 + 327.352i 0.250856 + 0.772056i
\(425\) −53.3473 + 73.4262i −0.125523 + 0.172768i
\(426\) −123.094 + 189.597i −0.288952 + 0.445063i
\(427\) −53.3322 + 164.140i −0.124900 + 0.384402i
\(428\) 0.783693i 0.00183106i
\(429\) 0 0
\(430\) −482.605 −1.12234
\(431\) 629.106 + 204.409i 1.45964 + 0.474267i 0.927961 0.372677i \(-0.121560\pi\)
0.531682 + 0.846944i \(0.321560\pi\)
\(432\) −68.0149 428.442i −0.157442 0.991765i
\(433\) −172.144 125.070i −0.397560 0.288845i 0.370986 0.928638i \(-0.379020\pi\)
−0.768547 + 0.639794i \(0.779020\pi\)
\(434\) −524.640 + 170.466i −1.20885 + 0.392778i
\(435\) 25.6547 + 31.6732i 0.0589764 + 0.0728121i
\(436\) 2.28988 + 1.66370i 0.00525202 + 0.00381581i
\(437\) 135.611 + 186.652i 0.310322 + 0.427121i
\(438\) −72.8089 + 3.82441i −0.166230 + 0.00873154i
\(439\) 103.815 0.236482 0.118241 0.992985i \(-0.462275\pi\)
0.118241 + 0.992985i \(0.462275\pi\)
\(440\) 0 0
\(441\) −118.642 + 106.877i −0.269029 + 0.242351i
\(442\) 107.550 331.004i 0.243325 0.748877i
\(443\) 162.680 + 223.910i 0.367225 + 0.505441i 0.952144 0.305650i \(-0.0988738\pi\)
−0.584919 + 0.811092i \(0.698874\pi\)
\(444\) −1.91553 0.513022i −0.00431427 0.00115546i
\(445\) 57.8405 + 178.015i 0.129979 + 0.400033i
\(446\) 85.3340 27.7267i 0.191332 0.0621675i
\(447\) −50.0205 + 186.768i −0.111903 + 0.417824i
\(448\) −288.251 + 209.427i −0.643417 + 0.467470i
\(449\) −473.509 153.852i −1.05459 0.342656i −0.270119 0.962827i \(-0.587063\pi\)
−0.784466 + 0.620171i \(0.787063\pi\)
\(450\) 61.3111 + 68.0603i 0.136247 + 0.151245i
\(451\) 0 0
\(452\) 0.778483i 0.00172231i
\(453\) 7.02388 + 133.720i 0.0155052 + 0.295188i
\(454\) 364.017 264.474i 0.801800 0.582542i
\(455\) 175.124 241.038i 0.384889 0.529754i
\(456\) −347.248 + 281.264i −0.761509 + 0.616807i
\(457\) −250.649 771.417i −0.548465 1.68800i −0.712605 0.701565i \(-0.752485\pi\)
0.164140 0.986437i \(-0.447515\pi\)
\(458\) 122.635 168.792i 0.267761 0.368542i
\(459\) −476.565 + 75.6544i −1.03827 + 0.164824i
\(460\) −0.352191 + 1.08393i −0.000765633 + 0.00235638i
\(461\) 790.057i 1.71379i −0.515492 0.856894i \(-0.672391\pi\)
0.515492 0.856894i \(-0.327609\pi\)
\(462\) 0 0
\(463\) 540.381 1.16713 0.583565 0.812067i \(-0.301658\pi\)
0.583565 + 0.812067i \(0.301658\pi\)
\(464\) −37.8549 12.2998i −0.0815839 0.0265082i
\(465\) 679.377 + 441.078i 1.46103 + 0.948555i
\(466\) 99.7650 + 72.4835i 0.214088 + 0.155544i
\(467\) 264.267 85.8654i 0.565881 0.183866i −0.0120845 0.999927i \(-0.503847\pi\)
0.577966 + 0.816061i \(0.303847\pi\)
\(468\) −1.27302 0.734575i −0.00272013 0.00156960i
\(469\) 154.136 + 111.986i 0.328647 + 0.238776i
\(470\) −373.331 513.846i −0.794322 1.09329i
\(471\) 22.1986 + 422.616i 0.0471308 + 0.897273i
\(472\) 718.728 1.52273
\(473\) 0 0
\(474\) −136.101 354.430i −0.287133 0.747743i
\(475\) 29.2819 90.1203i 0.0616460 0.189727i
\(476\) −0.987047 1.35855i −0.00207363 0.00285411i
\(477\) −40.6530 385.907i −0.0852265 0.809029i
\(478\) 92.4415 + 284.506i 0.193392 + 0.595200i
\(479\) −447.212 + 145.308i −0.933636 + 0.303357i −0.736049 0.676929i \(-0.763311\pi\)
−0.197587 + 0.980285i \(0.563311\pi\)
\(480\) −4.27369 1.14459i −0.00890352 0.00238456i
\(481\) 309.181 224.633i 0.642787 0.467012i
\(482\) 684.065 + 222.266i 1.41922 + 0.461133i
\(483\) −74.3449 193.606i −0.153923 0.400841i
\(484\) 0 0
\(485\) 207.434i 0.427699i
\(486\) −25.2001 + 486.368i −0.0518521 + 1.00076i
\(487\) −205.651 + 149.414i −0.422282 + 0.306806i −0.778555 0.627576i \(-0.784047\pi\)
0.356274 + 0.934382i \(0.384047\pi\)
\(488\) −144.851 + 199.370i −0.296825 + 0.408545i
\(489\) 228.410 + 281.994i 0.467096 + 0.576676i
\(490\) 60.2650 + 185.477i 0.122990 + 0.378524i
\(491\) 72.3701 99.6089i 0.147393 0.202869i −0.728936 0.684582i \(-0.759985\pi\)
0.876329 + 0.481712i \(0.159985\pi\)
\(492\) −2.39031 1.55188i −0.00485836 0.00315424i
\(493\) −13.6813 + 42.1068i −0.0277512 + 0.0854093i
\(494\) 363.370i 0.735567i
\(495\) 0 0
\(496\) −790.989 −1.59474
\(497\) −199.907 64.9537i −0.402227 0.130691i
\(498\) 31.7635 48.9242i 0.0637822 0.0982414i
\(499\) −52.8516 38.3990i −0.105915 0.0769518i 0.533567 0.845758i \(-0.320851\pi\)
−0.639482 + 0.768806i \(0.720851\pi\)
\(500\) −1.74637 + 0.567430i −0.00349274 + 0.00113486i
\(501\) −250.446 + 202.857i −0.499893 + 0.404904i
\(502\) −578.886 420.585i −1.15316 0.837820i
\(503\) −250.337 344.560i −0.497688 0.685009i 0.484095 0.875016i \(-0.339149\pi\)
−0.981783 + 0.190007i \(0.939149\pi\)
\(504\) 366.924 163.469i 0.728023 0.324344i
\(505\) −257.243 −0.509393
\(506\) 0 0
\(507\) −208.881 + 80.2103i −0.411994 + 0.158206i
\(508\) −0.354659 + 1.09153i −0.000698148 + 0.00214868i
\(509\) −41.0633 56.5188i −0.0806745 0.111039i 0.766772 0.641919i \(-0.221861\pi\)
−0.847447 + 0.530880i \(0.821861\pi\)
\(510\) −152.460 + 569.259i −0.298941 + 1.11619i
\(511\) −20.9498 64.4769i −0.0409977 0.126178i
\(512\) −483.837 + 157.208i −0.944993 + 0.307047i
\(513\) 448.799 228.876i 0.874852 0.446151i
\(514\) 107.166 77.8606i 0.208494 0.151480i
\(515\) −546.616 177.606i −1.06139 0.344866i
\(516\) −2.06660 + 0.793574i −0.00400503 + 0.00153793i
\(517\) 0 0
\(518\) 440.706i 0.850785i
\(519\) 985.084 51.7433i 1.89804 0.0996980i
\(520\) 344.176 250.058i 0.661876 0.480881i
\(521\) 59.1550 81.4198i 0.113541 0.156276i −0.748464 0.663175i \(-0.769208\pi\)
0.862005 + 0.506899i \(0.169208\pi\)
\(522\) 38.7040 + 22.3335i 0.0741456 + 0.0427845i
\(523\) 263.265 + 810.248i 0.503376 + 1.54923i 0.803484 + 0.595326i \(0.202977\pi\)
−0.300109 + 0.953905i \(0.597023\pi\)
\(524\) −1.60303 + 2.20638i −0.00305921 + 0.00421064i
\(525\) −46.3829 + 71.4420i −0.0883485 + 0.136080i
\(526\) −52.9029 + 162.818i −0.100576 + 0.309541i
\(527\) 879.833i 1.66951i
\(528\) 0 0
\(529\) 376.110 0.710983
\(530\) −450.724 146.449i −0.850423 0.276319i
\(531\) −792.614 168.279i −1.49268 0.316909i
\(532\) 1.41840 + 1.03053i 0.00266617 + 0.00193709i
\(533\) 522.347 169.721i 0.980013 0.318425i
\(534\) 129.157 + 159.457i 0.241868 + 0.298610i
\(535\) 206.896 + 150.319i 0.386722 + 0.280970i
\(536\) 159.904 + 220.089i 0.298328 + 0.410613i
\(537\) 144.696 7.60041i 0.269453 0.0141535i
\(538\) 324.247 0.602689
\(539\) 0 0
\(540\) 2.21784 + 1.12905i 0.00410711 + 0.00209084i
\(541\) −226.023 + 695.627i −0.417787 + 1.28582i 0.491947 + 0.870625i \(0.336285\pi\)
−0.909734 + 0.415192i \(0.863715\pi\)
\(542\) 306.282 + 421.561i 0.565096 + 0.777788i
\(543\) −0.192904 0.0516638i −0.000355255 9.51452e-5i
\(544\) −1.48505 4.57052i −0.00272988 0.00840169i
\(545\) 878.436 285.421i 1.61181 0.523708i
\(546\) 84.5017 315.515i 0.154765 0.577865i
\(547\) −99.7347 + 72.4615i −0.182330 + 0.132471i −0.675207 0.737629i \(-0.735946\pi\)
0.492876 + 0.870099i \(0.335946\pi\)
\(548\) −0.845027 0.274566i −0.00154202 0.000501033i
\(549\) 206.421 185.951i 0.375994 0.338708i
\(550\) 0 0
\(551\) 46.2241i 0.0838913i
\(552\) −15.5333 295.722i −0.0281401 0.535729i
\(553\) 285.609 207.507i 0.516472 0.375239i
\(554\) −102.244 + 140.727i −0.184556 + 0.254020i
\(555\) −502.854 + 407.302i −0.906043 + 0.733877i
\(556\) −0.449425 1.38319i −0.000808318 0.00248775i
\(557\) −118.600 + 163.240i −0.212927 + 0.293069i −0.902099 0.431529i \(-0.857974\pi\)
0.689172 + 0.724598i \(0.257974\pi\)
\(558\) 868.654 + 184.423i 1.55673 + 0.330506i
\(559\) 131.834 405.745i 0.235840 0.725840i
\(560\) 492.649i 0.879731i
\(561\) 0 0
\(562\) 971.465 1.72858
\(563\) −460.414 149.597i −0.817786 0.265715i −0.129894 0.991528i \(-0.541464\pi\)
−0.687892 + 0.725813i \(0.741464\pi\)
\(564\) −2.44362 1.58649i −0.00433265 0.00281293i
\(565\) 205.521 + 149.319i 0.363753 + 0.264282i
\(566\) −823.575 + 267.596i −1.45508 + 0.472784i
\(567\) −442.917 + 94.3647i −0.781159 + 0.166428i
\(568\) −242.814 176.415i −0.427489 0.310589i
\(569\) 274.742 + 378.150i 0.482850 + 0.664586i 0.979050 0.203622i \(-0.0652714\pi\)
−0.496199 + 0.868209i \(0.665271\pi\)
\(570\) −32.2744 614.437i −0.0566217 1.07796i
\(571\) −656.796 −1.15026 −0.575128 0.818064i \(-0.695048\pi\)
−0.575128 + 0.818064i \(0.695048\pi\)
\(572\) 0 0
\(573\) 212.306 + 552.879i 0.370516 + 0.964885i
\(574\) 195.717 602.356i 0.340971 1.04940i
\(575\) 36.9095 + 50.8016i 0.0641905 + 0.0883506i
\(576\) 570.403 60.0886i 0.990284 0.104321i
\(577\) −269.912 830.704i −0.467785 1.43969i −0.855446 0.517893i \(-0.826717\pi\)
0.387660 0.921802i \(-0.373283\pi\)
\(578\) −57.9332 + 18.8236i −0.100230 + 0.0325669i
\(579\) 4.41537 + 1.18253i 0.00762586 + 0.00204237i
\(580\) 0.184734 0.134217i 0.000318507 0.000231409i
\(581\) 51.5847 + 16.7609i 0.0887861 + 0.0288483i
\(582\) 81.5225 + 212.298i 0.140073 + 0.364774i
\(583\) 0 0
\(584\) 96.8039i 0.165760i
\(585\) −438.104 + 195.181i −0.748896 + 0.333643i
\(586\) 8.96581 6.51405i 0.0153000 0.0111161i
\(587\) −464.705 + 639.611i −0.791661 + 1.08963i 0.202239 + 0.979336i \(0.435178\pi\)
−0.993899 + 0.110291i \(0.964822\pi\)
\(588\) 0.563055 + 0.695146i 0.000957576 + 0.00118222i
\(589\) −283.861 873.634i −0.481937 1.48325i
\(590\) −581.674 + 800.605i −0.985888 + 1.35696i
\(591\) 542.141 + 351.979i 0.917328 + 0.595565i
\(592\) 195.275 600.996i 0.329857 1.01520i
\(593\) 928.634i 1.56599i 0.622026 + 0.782997i \(0.286310\pi\)
−0.622026 + 0.782997i \(0.713690\pi\)
\(594\) 0 0
\(595\) −547.984 −0.920981
\(596\) 1.03017 + 0.334722i 0.00172847 + 0.000561614i
\(597\) 174.246 268.385i 0.291870 0.449556i
\(598\) −194.810 141.537i −0.325769 0.236685i
\(599\) 872.469 283.482i 1.45654 0.473259i 0.529530 0.848291i \(-0.322368\pi\)
0.927012 + 0.375032i \(0.122368\pi\)
\(600\) −94.5115 + 76.5524i −0.157519 + 0.127587i
\(601\) 773.147 + 561.724i 1.28643 + 0.934649i 0.999727 0.0233687i \(-0.00743915\pi\)
0.286708 + 0.958018i \(0.407439\pi\)
\(602\) −289.174 398.014i −0.480356 0.661153i
\(603\) −124.812 280.153i −0.206985 0.464598i
\(604\) 0.750158 0.00124198
\(605\) 0 0
\(606\) −263.275 + 101.098i −0.434448 + 0.166828i
\(607\) 241.534 743.364i 0.397914 1.22465i −0.528756 0.848774i \(-0.677341\pi\)
0.926669 0.375878i \(-0.122659\pi\)
\(608\) 2.94918 + 4.05919i 0.00485062 + 0.00667631i
\(609\) −10.7494 + 40.1364i −0.0176509 + 0.0659055i
\(610\) −104.853 322.704i −0.171890 0.529023i
\(611\) 533.995 173.505i 0.873968 0.283969i
\(612\) 0.283204 + 2.68836i 0.000462751 + 0.00439275i
\(613\) 69.5578 50.5367i 0.113471 0.0824416i −0.529603 0.848246i \(-0.677659\pi\)
0.643074 + 0.765804i \(0.277659\pi\)
\(614\) 417.926 + 135.792i 0.680661 + 0.221160i
\(615\) −868.181 + 333.382i −1.41168 + 0.542084i
\(616\) 0 0
\(617\) 7.47837i 0.0121205i 0.999982 + 0.00606027i \(0.00192905\pi\)
−0.999982 + 0.00606027i \(0.998071\pi\)
\(618\) −629.233 + 33.0516i −1.01818 + 0.0534815i
\(619\) −263.047 + 191.115i −0.424955 + 0.308748i −0.779628 0.626243i \(-0.784592\pi\)
0.354674 + 0.934990i \(0.384592\pi\)
\(620\) 2.66724 3.67115i 0.00430201 0.00592121i
\(621\) −52.1085 + 329.760i −0.0839106 + 0.531014i
\(622\) 88.0380 + 270.953i 0.141540 + 0.435616i
\(623\) −112.155 + 154.368i −0.180024 + 0.247782i
\(624\) 255.039 392.828i 0.408717 0.629532i
\(625\) −224.399 + 690.629i −0.359038 + 1.10501i
\(626\) 188.967i 0.301864i
\(627\) 0 0
\(628\) 2.37084 0.00377522
\(629\) −668.500 217.209i −1.06280 0.345324i
\(630\) −114.863 + 541.021i −0.182323 + 0.858763i
\(631\) 554.612 + 402.949i 0.878941 + 0.638588i 0.932971 0.359951i \(-0.117207\pi\)
−0.0540299 + 0.998539i \(0.517207\pi\)
\(632\) 479.419 155.773i 0.758574 0.246476i
\(633\) −405.641 500.804i −0.640824 0.791159i
\(634\) 812.685 + 590.450i 1.28184 + 0.931309i
\(635\) 220.139 + 302.995i 0.346675 + 0.477157i
\(636\) −2.17089 + 0.114030i −0.00341336 + 0.000179292i
\(637\) −172.400 −0.270644
\(638\) 0 0
\(639\) 226.471 + 251.401i 0.354414 + 0.393429i
\(640\) 218.287 671.819i 0.341074 1.04972i
\(641\) 160.641 + 221.104i 0.250610 + 0.344935i 0.915725 0.401806i \(-0.131617\pi\)
−0.665115 + 0.746741i \(0.731617\pi\)
\(642\) 270.823 + 72.5325i 0.421843 + 0.112979i
\(643\) 57.0519 + 175.588i 0.0887277 + 0.273076i 0.985568 0.169278i \(-0.0541436\pi\)
−0.896841 + 0.442354i \(0.854144\pi\)
\(644\) −1.10497 + 0.359028i −0.00171580 + 0.000557496i
\(645\) −186.886 + 697.798i −0.289745 + 1.08186i
\(646\) 540.688 392.833i 0.836979 0.608101i
\(647\) −342.473 111.276i −0.529325 0.171988i 0.0321480 0.999483i \(-0.489765\pi\)
−0.561473 + 0.827495i \(0.689765\pi\)
\(648\) −643.121 67.2862i −0.992471 0.103837i
\(649\) 0 0
\(650\) 98.8995i 0.152153i
\(651\) 43.3130 + 824.589i 0.0665330 + 1.26665i
\(652\) 1.64473 1.19497i 0.00252260 0.00183277i
\(653\) −605.633 + 833.583i −0.927463 + 1.27654i 0.0333778 + 0.999443i \(0.489374\pi\)
−0.960841 + 0.277101i \(0.910626\pi\)
\(654\) 786.862 637.343i 1.20315 0.974530i
\(655\) 275.013 + 846.402i 0.419867 + 1.29222i
\(656\) 533.804 734.718i 0.813725 1.12000i
\(657\) −22.6651 + 106.755i −0.0344978 + 0.162489i
\(658\) 200.082 615.788i 0.304076 0.935848i
\(659\) 1071.63i 1.62614i −0.582166 0.813070i \(-0.697795\pi\)
0.582166 0.813070i \(-0.302205\pi\)
\(660\) 0 0
\(661\) 441.357 0.667712 0.333856 0.942624i \(-0.391650\pi\)
0.333856 + 0.942624i \(0.391650\pi\)
\(662\) 1245.62 + 404.726i 1.88160 + 0.611368i
\(663\) −436.950 283.685i −0.659050 0.427881i
\(664\) 62.6566 + 45.5227i 0.0943624 + 0.0685583i
\(665\) 544.123 176.796i 0.818230 0.265859i
\(666\) −354.574 + 614.476i −0.532393 + 0.922637i
\(667\) 24.7816 + 18.0049i 0.0371539 + 0.0269939i
\(668\) 1.06128 + 1.46073i 0.00158874 + 0.00218672i
\(669\) −7.04497 134.122i −0.0105306 0.200481i
\(670\) −374.573 −0.559064
\(671\) 0 0
\(672\) −1.61681 4.21043i −0.00240596 0.00626552i
\(673\) 114.553 352.559i 0.170213 0.523861i −0.829170 0.558997i \(-0.811186\pi\)
0.999383 + 0.0351357i \(0.0111864\pi\)
\(674\) −776.757 1069.11i −1.15246 1.58622i
\(675\) 122.151 62.2937i 0.180964 0.0922870i
\(676\) 0.387353 + 1.19215i 0.000573007 + 0.00176353i
\(677\) 71.5458 23.2466i 0.105681 0.0343377i −0.255699 0.966756i \(-0.582306\pi\)
0.361380 + 0.932419i \(0.382306\pi\)
\(678\) 269.023 + 72.0503i 0.396789 + 0.106269i
\(679\) −171.075 + 124.294i −0.251952 + 0.183054i
\(680\) −744.164 241.794i −1.09436 0.355579i
\(681\) −241.440 628.749i −0.354537 0.923272i
\(682\) 0 0
\(683\) 987.234i 1.44544i −0.691142 0.722719i \(-0.742892\pi\)
0.691142 0.722719i \(-0.257108\pi\)
\(684\) −1.14856 2.57805i −0.00167918 0.00376908i
\(685\) −234.569 + 170.424i −0.342436 + 0.248795i
\(686\) −439.581 + 605.031i −0.640788 + 0.881970i
\(687\) −196.567 242.681i −0.286124 0.353248i
\(688\) −217.991 670.908i −0.316848 0.975157i
\(689\) 246.251 338.936i 0.357404 0.491924i
\(690\) 341.982 + 222.028i 0.495626 + 0.321780i
\(691\) 317.299 976.547i 0.459188 1.41324i −0.406958 0.913447i \(-0.633411\pi\)
0.866147 0.499790i \(-0.166589\pi\)
\(692\) 5.52624i 0.00798589i
\(693\) 0 0
\(694\) 556.925 0.802486
\(695\) −451.366 146.658i −0.649448 0.211018i
\(696\) −32.3076 + 49.7623i −0.0464190 + 0.0714976i
\(697\) −817.241 593.760i −1.17251 0.851880i
\(698\) 481.816 156.551i 0.690281 0.224286i
\(699\) 143.437 116.181i 0.205204 0.166211i
\(700\) 0.386051 + 0.280482i 0.000551501 + 0.000400689i
\(701\) −109.885 151.244i −0.156754 0.215754i 0.723415 0.690413i \(-0.242571\pi\)
−0.880170 + 0.474659i \(0.842571\pi\)
\(702\) −371.670 + 371.935i −0.529444 + 0.529822i
\(703\) 733.868 1.04391
\(704\) 0 0
\(705\) −887.541 + 340.816i −1.25892 + 0.483427i
\(706\) −347.322 + 1068.95i −0.491958 + 1.51409i
\(707\) −154.139 212.154i −0.218018 0.300077i
\(708\) −1.17435 + 4.38481i −0.00165868 + 0.00619323i
\(709\) −220.538 678.745i −0.311055 0.957327i −0.977348 0.211638i \(-0.932120\pi\)
0.666294 0.745690i \(-0.267880\pi\)
\(710\) 393.024 127.701i 0.553554 0.179861i
\(711\) −565.175 + 59.5379i −0.794902 + 0.0837383i
\(712\) −220.420 + 160.145i −0.309579 + 0.224922i
\(713\) 578.939 + 188.109i 0.811976 + 0.263827i
\(714\) −560.833 + 215.360i −0.785481 + 0.301625i
\(715\) 0 0
\(716\) 0.811733i 0.00113370i
\(717\) 447.164 23.4881i 0.623660 0.0327588i
\(718\) −480.046 + 348.774i −0.668588 + 0.485757i
\(719\) 293.142 403.475i 0.407708 0.561162i −0.554950 0.831884i \(-0.687262\pi\)
0.962658 + 0.270722i \(0.0872624\pi\)
\(720\) −396.365 + 686.900i −0.550506 + 0.954028i
\(721\) −181.054 557.226i −0.251115 0.772852i
\(722\) 15.1326 20.8283i 0.0209593 0.0288480i
\(723\) 586.275 903.019i 0.810892 1.24899i
\(724\) −0.000345719 0.00106401i −4.77512e−7 1.46963e-6i
\(725\) 12.5809i 0.0173530i
\(726\) 0 0
\(727\) 427.838 0.588498 0.294249 0.955729i \(-0.404930\pi\)
0.294249 + 0.955729i \(0.404930\pi\)
\(728\) 412.457 + 134.015i 0.566561 + 0.184087i
\(729\) 693.480 + 224.780i 0.951276 + 0.308340i
\(730\) 107.832 + 78.3444i 0.147715 + 0.107321i
\(731\) −746.264 + 242.476i −1.02088 + 0.331705i
\(732\) −0.979638 1.20946i −0.00133830 0.00165227i
\(733\) 774.572 + 562.759i 1.05671 + 0.767748i 0.973478 0.228782i \(-0.0734742\pi\)
0.0832370 + 0.996530i \(0.473474\pi\)
\(734\) 99.9657 + 137.591i 0.136193 + 0.187454i
\(735\) 291.518 15.3125i 0.396623 0.0208333i
\(736\) −3.32495 −0.00451760
\(737\) 0 0
\(738\) −757.518 + 682.398i −1.02645 + 0.924659i
\(739\) 350.729 1079.43i 0.474599 1.46067i −0.371899 0.928273i \(-0.621293\pi\)
0.846498 0.532392i \(-0.178707\pi\)
\(740\) 2.13087 + 2.93289i 0.00287956 + 0.00396337i
\(741\) 525.397 + 140.713i 0.709038 + 0.189896i
\(742\) −149.292 459.473i −0.201202 0.619236i
\(743\) −824.458 + 267.883i −1.10963 + 0.360542i −0.805803 0.592184i \(-0.798266\pi\)
−0.303831 + 0.952726i \(0.598266\pi\)
\(744\) −305.024 + 1138.91i −0.409979 + 1.53079i
\(745\) 285.962 207.763i 0.383841 0.278877i
\(746\) 602.516 + 195.769i 0.807662 + 0.262425i
\(747\) −58.4393 64.8725i −0.0782321 0.0868441i
\(748\) 0 0
\(749\) 260.702i 0.348067i
\(750\) 34.4584 + 656.016i 0.0459445 + 0.874688i
\(751\) 936.412 680.343i 1.24689 0.905916i 0.248850 0.968542i \(-0.419947\pi\)
0.998037 + 0.0626258i \(0.0199475\pi\)
\(752\) 545.707 751.101i 0.725674 0.998805i
\(753\) −832.295 + 674.143i −1.10531 + 0.895276i
\(754\) 14.9083 + 45.8831i 0.0197723 + 0.0608529i
\(755\) 143.886 198.043i 0.190578 0.262308i
\(756\) 0.397766 + 2.50562i 0.000526145 + 0.00331431i
\(757\) −126.788 + 390.214i −0.167488 + 0.515474i −0.999211 0.0397163i \(-0.987355\pi\)
0.831723 + 0.555190i \(0.187355\pi\)
\(758\) 217.931i 0.287508i
\(759\) 0 0
\(760\) 816.931 1.07491
\(761\) −241.083 78.3326i −0.316798 0.102934i 0.146302 0.989240i \(-0.453263\pi\)
−0.463100 + 0.886306i \(0.653263\pi\)
\(762\) 344.379 + 223.584i 0.451941 + 0.293417i
\(763\) 761.747 + 553.442i 0.998358 + 0.725349i
\(764\) 3.15546 1.02527i 0.00413018 0.00134198i
\(765\) 764.053 + 440.884i 0.998762 + 0.576319i
\(766\) −716.694 520.709i −0.935632 0.679776i
\(767\) −514.203 707.739i −0.670408 0.922737i
\(768\) −0.507781 9.66709i −0.000661173 0.0125874i
\(769\) 788.887 1.02586 0.512931 0.858430i \(-0.328560\pi\)
0.512931 + 0.858430i \(0.328560\pi\)
\(770\) 0 0
\(771\) −71.0793 185.102i −0.0921910 0.240081i
\(772\) 0.00791316 0.0243542i 1.02502e−5 3.15469e-5i
\(773\) 201.817 + 277.778i 0.261083 + 0.359350i 0.919354 0.393431i \(-0.128712\pi\)
−0.658271 + 0.752781i \(0.728712\pi\)
\(774\) 82.9698 + 787.608i 0.107196 + 1.01758i
\(775\) −77.2592 237.779i −0.0996893 0.306812i
\(776\) −287.165 + 93.3054i −0.370057 + 0.120239i
\(777\) −637.218 170.661i −0.820100 0.219641i
\(778\) −826.276 + 600.325i −1.06205 + 0.771625i
\(779\) 1003.05 + 325.910i 1.28761 + 0.418370i
\(780\) 0.963195 + 2.50832i 0.00123487 + 0.00321580i
\(781\) 0 0
\(782\) 442.887i 0.566351i
\(783\) 47.2799 47.3136i 0.0603831 0.0604261i
\(784\) −230.625 + 167.559i −0.294164 + 0.213723i
\(785\) 454.746 625.904i 0.579294 0.797330i
\(786\) 614.101 + 758.168i 0.781299 + 0.964590i
\(787\) 59.7777 + 183.977i 0.0759564 + 0.233770i 0.981825 0.189789i \(-0.0607805\pi\)
−0.905868 + 0.423559i \(0.860781\pi\)
\(788\) 2.12845 2.92956i 0.00270108 0.00371772i
\(789\) 214.933 + 139.543i 0.272412 + 0.176860i
\(790\) −214.480 + 660.103i −0.271494 + 0.835573i
\(791\) 258.969i 0.327394i
\(792\) 0 0
\(793\) 299.953 0.378251
\(794\) −24.8711 8.08110i −0.0313238 0.0101777i
\(795\) −386.291 + 594.991i −0.485901 + 0.748416i
\(796\) −1.45027 1.05368i −0.00182195 0.00132372i
\(797\) −505.892 + 164.374i −0.634745 + 0.206241i −0.608676 0.793419i \(-0.708299\pi\)
−0.0260694 + 0.999660i \(0.508299\pi\)
\(798\) 487.400 394.785i 0.610777 0.494717i
\(799\) −835.465 607.001i −1.04564 0.759701i
\(800\) 0.802686 + 1.10480i 0.00100336 + 0.00138100i
\(801\) 280.575 125.000i 0.350281 0.156055i
\(802\) 1101.52 1.37346
\(803\) 0 0
\(804\) −1.60399 + 0.615931i −0.00199501 + 0.000766083i
\(805\) −117.159 + 360.579i −0.145539 + 0.447924i
\(806\) 563.533 + 775.637i 0.699173 + 0.962328i
\(807\) 125.563 468.829i 0.155592 0.580952i
\(808\) −115.710 356.119i −0.143205 0.440741i
\(809\) −276.212 + 89.7467i −0.341424 + 0.110935i −0.474710 0.880142i \(-0.657447\pi\)
0.133286 + 0.991078i \(0.457447\pi\)
\(810\) 595.436 661.930i 0.735106 0.817198i
\(811\) 311.109 226.034i 0.383611 0.278710i −0.379221 0.925306i \(-0.623808\pi\)
0.762833 + 0.646596i \(0.223808\pi\)
\(812\) 0.221384 + 0.0719319i 0.000272640 + 8.85861e-5i
\(813\) 728.142 279.607i 0.895623 0.343919i
\(814\) 0 0
\(815\) 663.416i 0.814008i
\(816\) −860.239 + 45.1856i −1.05421 + 0.0553745i
\(817\) 662.776 481.535i 0.811232 0.589394i
\(818\) 728.223 1002.31i 0.890248 1.22532i
\(819\) −423.480 244.362i −0.517069 0.298367i
\(820\) 1.60997 + 4.95499i 0.00196338 + 0.00604267i
\(821\) −365.440 + 502.985i −0.445116 + 0.612650i −0.971339 0.237697i \(-0.923608\pi\)
0.526223 + 0.850346i \(0.323608\pi\)
\(822\) −173.092 + 266.607i −0.210574 + 0.324340i
\(823\) −88.4972 + 272.366i −0.107530 + 0.330943i −0.990316 0.138832i \(-0.955665\pi\)
0.882786 + 0.469776i \(0.155665\pi\)
\(824\) 836.604i 1.01530i
\(825\) 0 0
\(826\) −1008.81 −1.22132
\(827\) 397.074 + 129.017i 0.480138 + 0.156006i 0.539079 0.842255i \(-0.318772\pi\)
−0.0589412 + 0.998261i \(0.518772\pi\)
\(828\) 1.82952 + 0.388423i 0.00220957 + 0.000469110i
\(829\) −300.030 217.984i −0.361918 0.262949i 0.391934 0.919993i \(-0.371806\pi\)
−0.753852 + 0.657045i \(0.771806\pi\)
\(830\) −101.417 + 32.9525i −0.122189 + 0.0397018i
\(831\) 163.884 + 202.331i 0.197213 + 0.243479i
\(832\) 500.976 + 363.980i 0.602134 + 0.437476i
\(833\) 186.379 + 256.528i 0.223744 + 0.307957i
\(834\) −519.588 + 27.2922i −0.623007 + 0.0327245i
\(835\) 589.197 0.705625
\(836\) 0 0
\(837\) 603.038 1184.57i 0.720475 1.41526i
\(838\) 272.717 839.338i 0.325438 1.00160i
\(839\) −508.937 700.492i −0.606599 0.834912i 0.389693 0.920945i \(-0.372581\pi\)
−0.996292 + 0.0860324i \(0.972581\pi\)
\(840\) −709.342 189.977i −0.844454 0.226163i
\(841\) 257.987 + 794.002i 0.306762 + 0.944116i
\(842\) 1094.54 355.638i 1.29993 0.422373i
\(843\) 376.194 1404.64i 0.446256 1.66624i
\(844\) −2.92094 + 2.12219i −0.00346083 + 0.00251444i
\(845\) 389.027 + 126.402i 0.460386 + 0.149589i
\(846\) −774.410 + 697.615i −0.915379 + 0.824604i
\(847\) 0 0
\(848\) 692.739i 0.816910i
\(849\) 67.9923 + 1294.43i 0.0800852 + 1.52466i
\(850\) 147.161 106.918i 0.173130 0.125786i
\(851\) −285.851 + 393.440i −0.335900 + 0.462327i
\(852\) 1.47301 1.19311i 0.00172888 0.00140036i
\(853\) 416.202 + 1280.94i 0.487927 + 1.50169i 0.827696 + 0.561177i \(0.189651\pi\)
−0.339768 + 0.940509i \(0.610349\pi\)
\(854\) 203.313 279.837i 0.238072 0.327678i
\(855\) −900.912 191.271i −1.05370 0.223709i
\(856\) −115.033 + 354.034i −0.134384 + 0.413591i
\(857\) 770.599i 0.899182i 0.893235 + 0.449591i \(0.148430\pi\)
−0.893235 + 0.449591i \(0.851570\pi\)
\(858\) 0 0
\(859\) −549.532 −0.639735 −0.319867 0.947462i \(-0.603638\pi\)
−0.319867 + 0.947462i \(0.603638\pi\)
\(860\) 3.84890 + 1.25058i 0.00447546 + 0.00145417i
\(861\) −795.157 516.247i −0.923527 0.599590i
\(862\) −1072.55 779.250i −1.24425 0.904002i
\(863\) −1042.29 + 338.660i −1.20775 + 0.392422i −0.842607 0.538530i \(-0.818980\pi\)
−0.365143 + 0.930951i \(0.618980\pi\)
\(864\) −1.13322 + 7.17141i −0.00131160 + 0.00830024i
\(865\) −1458.93 1059.98i −1.68663 1.22541i
\(866\) 250.664 + 345.010i 0.289451 + 0.398395i
\(867\) 4.78282 + 91.0550i 0.00551652 + 0.105023i
\(868\) 4.62587 0.00532935
\(869\) 0 0
\(870\) −29.2843 76.2613i −0.0336602 0.0876567i
\(871\) 102.323 314.918i 0.117478 0.361559i
\(872\) 790.254 + 1087.69i 0.906254 + 1.24735i
\(873\) 338.531 35.6623i 0.387779 0.0408503i
\(874\) −142.889 439.766i −0.163488 0.503165i
\(875\) −580.944 + 188.760i −0.663936 + 0.215726i
\(876\) 0.590580 + 0.158170i 0.000674178 + 0.000180560i
\(877\) −1167.54 + 848.264i −1.33128 + 0.967234i −0.331566 + 0.943432i \(0.607577\pi\)
−0.999717 + 0.0238017i \(0.992423\pi\)
\(878\) −197.883 64.2961i −0.225379 0.0732302i
\(879\) −5.94670 15.4862i −0.00676531 0.0176180i
\(880\) 0 0
\(881\) 162.080i 0.183973i 0.995760 + 0.0919866i \(0.0293217\pi\)
−0.995760 + 0.0919866i \(0.970678\pi\)
\(882\) 292.336 130.239i 0.331447 0.147664i
\(883\) 70.4786 51.2057i 0.0798172 0.0579906i −0.547161 0.837027i \(-0.684291\pi\)
0.626978 + 0.779037i \(0.284291\pi\)
\(884\) −1.71547 + 2.36115i −0.00194058 + 0.00267098i
\(885\) 932.346 + 1151.07i 1.05350 + 1.30065i
\(886\) −171.411 527.550i −0.193467 0.595429i
\(887\) 479.767 660.342i 0.540887 0.744467i −0.447853 0.894107i \(-0.647811\pi\)
0.988741 + 0.149640i \(0.0478114\pi\)
\(888\) −790.041 512.926i −0.889686 0.577619i
\(889\) −117.980 + 363.106i −0.132711 + 0.408443i
\(890\) 375.137i 0.421503i
\(891\) 0 0
\(892\) −0.752410 −0.000843509
\(893\) 1025.42 + 333.178i 1.14828 + 0.373099i
\(894\) 211.015 325.019i 0.236035 0.363556i
\(895\) −214.298 155.697i −0.239440 0.173963i
\(896\) 684.860 222.525i 0.764353 0.248353i
\(897\) −280.088 + 226.866i −0.312250 + 0.252916i
\(898\) 807.272 + 586.517i 0.898967 + 0.653137i
\(899\) −71.6867 98.6683i −0.0797405 0.109753i
\(900\) −0.312606 0.701676i −0.000347340 0.000779640i
\(901\) −770.548 −0.855214
\(902\) 0 0
\(903\) −687.470 + 263.989i −0.761318 + 0.292346i
\(904\) −114.268 + 351.681i −0.126403 + 0.389027i
\(905\) 0.214589 + 0.295357i 0.000237115 + 0.000326361i
\(906\) 69.4287 259.234i 0.0766321 0.286131i
\(907\) 172.604 + 531.221i 0.190302 + 0.585691i 0.999999 0.00115761i \(-0.000368480\pi\)
−0.809697 + 0.586848i \(0.800368\pi\)
\(908\) −3.58847 + 1.16596i −0.00395206 + 0.00128410i
\(909\) 44.2255 + 419.820i 0.0486530 + 0.461848i
\(910\) −483.088 + 350.984i −0.530865 + 0.385696i
\(911\) −1547.41 502.785i −1.69859 0.551904i −0.710217 0.703982i \(-0.751403\pi\)
−0.988368 + 0.152078i \(0.951403\pi\)
\(912\) 839.600 322.407i 0.920614 0.353516i
\(913\) 0 0
\(914\) 1625.64i 1.77860i
\(915\) −507.201 + 26.6416i −0.554318 + 0.0291165i
\(916\) −1.41544 + 1.02838i −0.00154524 + 0.00112268i
\(917\) −533.259 + 733.969i −0.581526 + 0.800402i
\(918\) 955.238 + 150.946i 1.04056 + 0.164430i
\(919\) −17.7957 54.7694i −0.0193642 0.0595967i 0.940908 0.338664i \(-0.109975\pi\)
−0.960272 + 0.279067i \(0.909975\pi\)
\(920\) −318.205 + 437.972i −0.345875 + 0.476057i
\(921\) 358.182 551.695i 0.388905 0.599017i
\(922\) −489.307 + 1505.93i −0.530701 + 1.63333i
\(923\) 365.315i 0.395791i
\(924\) 0 0
\(925\) 199.739 0.215934
\(926\) −1030.02 334.675i −1.11234 0.361420i
\(927\) −195.877 + 922.607i −0.211303 + 0.995261i
\(928\) 0.538935 + 0.391560i 0.000580749 + 0.000421939i
\(929\) 20.4483 6.64405i 0.0220111 0.00715183i −0.297991 0.954569i \(-0.596316\pi\)
0.320002 + 0.947417i \(0.396316\pi\)
\(930\) −1021.79 1261.50i −1.09870 1.35645i
\(931\) −267.830 194.590i −0.287679 0.209011i
\(932\) −0.607824 0.836598i −0.000652172 0.000897637i
\(933\) 425.864 22.3692i 0.456445 0.0239756i
\(934\) −556.899 −0.596251
\(935\) 0 0
\(936\) −467.264 518.702i −0.499214 0.554169i
\(937\) 70.7518 217.752i 0.0755089 0.232393i −0.906177 0.422898i \(-0.861013\pi\)
0.981686 + 0.190506i \(0.0610128\pi\)
\(938\) −224.442 308.918i −0.239277 0.329337i
\(939\) −273.228 73.1764i −0.290977 0.0779301i
\(940\) 1.64587 + 5.06548i 0.00175093 + 0.00538881i
\(941\) −820.918 + 266.732i −0.872389 + 0.283456i −0.710794 0.703401i \(-0.751664\pi\)
−0.161596 + 0.986857i \(0.551664\pi\)
\(942\) 219.426 819.298i 0.232936 0.869743i
\(943\) −565.427 + 410.807i −0.599604 + 0.435638i
\(944\) −1375.73 447.001i −1.45734 0.473518i
\(945\) 737.782 + 375.588i 0.780722 + 0.397448i
\(946\) 0 0
\(947\) 1155.70i 1.22038i 0.792253 + 0.610192i \(0.208908\pi\)
−0.792253 + 0.610192i \(0.791092\pi\)
\(948\) 0.167001 + 3.17936i 0.000176162 + 0.00335375i
\(949\) −95.3238 + 69.2568i −0.100447 + 0.0729787i
\(950\) −111.629 + 153.644i −0.117504 + 0.161730i
\(951\) 1168.44 946.413i 1.22864 0.995176i
\(952\) −246.487 758.610i −0.258915 0.796859i
\(953\) −1056.31 + 1453.89i −1.10841 + 1.52559i −0.284670 + 0.958626i \(0.591884\pi\)
−0.823739 + 0.566969i \(0.808116\pi\)
\(954\) −161.515 + 760.757i −0.169303 + 0.797439i
\(955\) 334.570 1029.70i 0.350335 1.07822i
\(956\) 2.50855i 0.00262401i
\(957\) 0 0
\(958\) 942.426 0.983743
\(959\) −281.105 91.3366i −0.293123 0.0952415i
\(960\) −879.447 570.971i −0.916091 0.594762i
\(961\) −1183.33 859.740i −1.23135 0.894630i
\(962\) −728.453 + 236.689i −0.757228 + 0.246038i
\(963\) 209.750 363.496i 0.217808 0.377462i
\(964\) −4.87964 3.54526i −0.00506186 0.00367766i
\(965\) −4.91173 6.76042i −0.00508988 0.00700562i
\(966\) 21.8027 + 415.078i 0.0225701 + 0.429687i
\(967\) 1767.36 1.82767 0.913835 0.406085i \(-0.133106\pi\)
0.913835 + 0.406085i \(0.133106\pi\)
\(968\) 0 0
\(969\) −358.619 933.904i −0.370092 0.963781i
\(970\) 128.470 395.391i 0.132444 0.407620i
\(971\) −299.023 411.570i −0.307954 0.423862i 0.626788 0.779190i \(-0.284369\pi\)
−0.934742 + 0.355328i \(0.884369\pi\)
\(972\) 1.46131 3.81361i 0.00150341 0.00392346i
\(973\) −149.505 460.128i −0.153653 0.472896i
\(974\) 484.530 157.433i 0.497464 0.161636i
\(975\) 142.999 + 38.2982i 0.146665 + 0.0392802i
\(976\) 401.255 291.529i 0.411122 0.298698i
\(977\) −1345.28 437.107i −1.37695 0.447397i −0.475281 0.879834i \(-0.657654\pi\)
−0.901664 + 0.432437i \(0.857654\pi\)
\(978\) −260.726 678.972i −0.266590 0.694246i
\(979\) 0 0
\(980\) 1.63539i 0.00166877i
\(981\) −616.827 1384.53i −0.628773 1.41135i
\(982\) −199.636 + 145.044i −0.203295 + 0.147703i
\(983\) 0.659524 0.907756i 0.000670929 0.000923455i −0.808681 0.588247i \(-0.799818\pi\)
0.809352 + 0.587323i \(0.199818\pi\)
\(984\) −852.036 1051.92i −0.865891 1.06903i
\(985\) −365.154 1123.83i −0.370715 1.14094i
\(986\) 52.1561 71.7867i 0.0528966 0.0728060i
\(987\) −812.888 527.759i −0.823595 0.534710i
\(988\) 0.941609 2.89797i 0.000953045 0.00293317i
\(989\) 542.891i 0.548929i
\(990\) 0 0
\(991\) −1431.64 −1.44464 −0.722320 0.691559i \(-0.756924\pi\)
−0.722320 + 0.691559i \(0.756924\pi\)
\(992\) 12.5904 + 4.09087i 0.0126919 + 0.00412386i
\(993\) 1067.55 1644.31i 1.07508 1.65590i
\(994\) 340.816 + 247.617i 0.342873 + 0.249112i
\(995\) −556.348 + 180.768i −0.559144 + 0.181677i
\(996\) −0.380101 + 0.307874i −0.000381627 + 0.000309111i
\(997\) −943.609 685.572i −0.946448 0.687635i 0.00351594 0.999994i \(-0.498881\pi\)
−0.949964 + 0.312359i \(0.898881\pi\)
\(998\) 76.9591 + 105.925i 0.0771133 + 0.106137i
\(999\) 751.165 + 750.630i 0.751917 + 0.751382i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.251.2 16
3.2 odd 2 inner 363.3.h.j.251.3 16
11.2 odd 10 363.3.h.o.245.2 16
11.3 even 5 363.3.h.n.323.2 16
11.4 even 5 363.3.b.l.122.3 8
11.5 even 5 inner 363.3.h.j.269.3 16
11.6 odd 10 33.3.h.b.5.2 16
11.7 odd 10 363.3.b.m.122.6 8
11.8 odd 10 363.3.h.o.323.3 16
11.9 even 5 363.3.h.n.245.3 16
11.10 odd 2 33.3.h.b.20.3 yes 16
33.2 even 10 363.3.h.o.245.3 16
33.5 odd 10 inner 363.3.h.j.269.2 16
33.8 even 10 363.3.h.o.323.2 16
33.14 odd 10 363.3.h.n.323.3 16
33.17 even 10 33.3.h.b.5.3 yes 16
33.20 odd 10 363.3.h.n.245.2 16
33.26 odd 10 363.3.b.l.122.6 8
33.29 even 10 363.3.b.m.122.3 8
33.32 even 2 33.3.h.b.20.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.2 16 11.6 odd 10
33.3.h.b.5.3 yes 16 33.17 even 10
33.3.h.b.20.2 yes 16 33.32 even 2
33.3.h.b.20.3 yes 16 11.10 odd 2
363.3.b.l.122.3 8 11.4 even 5
363.3.b.l.122.6 8 33.26 odd 10
363.3.b.m.122.3 8 33.29 even 10
363.3.b.m.122.6 8 11.7 odd 10
363.3.h.j.251.2 16 1.1 even 1 trivial
363.3.h.j.251.3 16 3.2 odd 2 inner
363.3.h.j.269.2 16 33.5 odd 10 inner
363.3.h.j.269.3 16 11.5 even 5 inner
363.3.h.n.245.2 16 33.20 odd 10
363.3.h.n.245.3 16 11.9 even 5
363.3.h.n.323.2 16 11.3 even 5
363.3.h.n.323.3 16 33.14 odd 10
363.3.h.o.245.2 16 11.2 odd 10
363.3.h.o.245.3 16 33.2 even 10
363.3.h.o.323.2 16 33.8 even 10
363.3.h.o.323.3 16 11.8 odd 10