Properties

Label 363.3.h.j.251.1
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 251.1
Root \(-2.91048 - 0.945671i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.j.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.91048 - 0.945671i) q^{2} +(-1.86408 - 2.35058i) q^{3} +(4.34051 + 3.15356i) q^{4} +(-6.31437 + 2.05166i) q^{5} +(3.20248 + 8.60410i) q^{6} +(-2.47800 - 1.80037i) q^{7} +(-2.45561 - 3.37986i) q^{8} +(-2.05042 + 8.76332i) q^{9} +20.3180 q^{10} +(-0.678356 - 16.0812i) q^{12} +(-5.01988 + 15.4496i) q^{13} +(5.50960 + 7.58331i) q^{14} +(16.5931 + 11.0180i) q^{15} +(-2.68094 - 8.25108i) q^{16} +(-0.766216 + 0.248959i) q^{17} +(14.2549 - 23.5664i) q^{18} +(16.7481 - 12.1682i) q^{19} +(-33.8776 - 11.0075i) q^{20} +(0.387274 + 9.18076i) q^{21} +27.3224i q^{23} +(-3.36716 + 12.0724i) q^{24} +(15.4365 - 11.2153i) q^{25} +(29.2204 - 40.2185i) q^{26} +(24.4210 - 11.5159i) q^{27} +(-5.07819 - 15.6291i) q^{28} +(2.22341 - 3.06025i) q^{29} +(-37.8744 - 47.7591i) q^{30} +(-6.42137 + 19.7630i) q^{31} +43.2608i q^{32} +2.46549 q^{34} +(19.3408 + 6.28420i) q^{35} +(-36.5355 + 31.5711i) q^{36} +(-31.1905 - 22.6613i) q^{37} +(-60.2520 + 19.5771i) q^{38} +(45.6729 - 16.9996i) q^{39} +(22.4400 + 16.3036i) q^{40} +(-7.86024 - 10.8187i) q^{41} +(7.55483 - 27.0866i) q^{42} -43.4125 q^{43} +(-5.03227 - 59.5416i) q^{45} +(25.8380 - 79.5212i) q^{46} +(-11.6912 - 16.0916i) q^{47} +(-14.3973 + 21.6824i) q^{48} +(-12.2427 - 37.6791i) q^{49} +(-55.5336 + 18.0440i) q^{50} +(2.01348 + 1.33697i) q^{51} +(-70.5100 + 51.2285i) q^{52} +(-16.8103 - 5.46201i) q^{53} +(-81.9669 + 10.4224i) q^{54} +12.7963i q^{56} +(-59.8221 - 16.6852i) q^{57} +(-9.36516 + 6.80419i) q^{58} +(25.5837 - 35.2129i) q^{59} +(37.2766 + 100.151i) q^{60} +(-3.29249 - 10.1333i) q^{61} +(37.3785 - 51.4471i) q^{62} +(20.8582 - 18.0240i) q^{63} +(30.1867 - 92.9052i) q^{64} -107.854i q^{65} +72.2963 q^{67} +(-4.11087 - 1.33570i) q^{68} +(64.2234 - 50.9311i) q^{69} +(-50.3481 - 36.5800i) q^{70} +(-2.44412 + 0.794142i) q^{71} +(34.6538 - 14.5892i) q^{72} +(-36.7931 - 26.7318i) q^{73} +(69.3492 + 95.4510i) q^{74} +(-55.1374 - 15.3786i) q^{75} +111.068 q^{76} +(-149.006 + 6.28555i) q^{78} +(30.3585 - 93.4339i) q^{79} +(33.8569 + 46.6000i) q^{80} +(-72.5916 - 35.9370i) q^{81} +(12.6461 + 38.9207i) q^{82} +(-30.3393 + 9.85783i) q^{83} +(-27.2711 + 41.0704i) q^{84} +(4.32739 - 3.14404i) q^{85} +(126.351 + 41.0540i) q^{86} +(-11.3380 + 0.478272i) q^{87} +18.5409i q^{89} +(-41.6605 + 178.053i) q^{90} +(40.2543 - 29.2464i) q^{91} +(-86.1629 + 118.593i) q^{92} +(58.4243 - 21.7458i) q^{93} +(18.8097 + 57.8902i) q^{94} +(-80.7886 + 111.196i) q^{95} +(101.688 - 80.6415i) q^{96} +(-19.5614 + 60.2037i) q^{97} +121.242i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.91048 0.945671i −1.45524 0.472835i −0.528626 0.848855i \(-0.677293\pi\)
−0.926612 + 0.376020i \(0.877293\pi\)
\(3\) −1.86408 2.35058i −0.621360 0.783526i
\(4\) 4.34051 + 3.15356i 1.08513 + 0.788390i
\(5\) −6.31437 + 2.05166i −1.26287 + 0.410333i −0.862518 0.506027i \(-0.831114\pi\)
−0.400357 + 0.916359i \(0.631114\pi\)
\(6\) 3.20248 + 8.60410i 0.533747 + 1.43402i
\(7\) −2.47800 1.80037i −0.354000 0.257196i 0.396545 0.918015i \(-0.370209\pi\)
−0.750545 + 0.660819i \(0.770209\pi\)
\(8\) −2.45561 3.37986i −0.306951 0.422482i
\(9\) −2.05042 + 8.76332i −0.227824 + 0.973702i
\(10\) 20.3180 2.03180
\(11\) 0 0
\(12\) −0.678356 16.0812i −0.0565297 1.34010i
\(13\) −5.01988 + 15.4496i −0.386144 + 1.18843i 0.549503 + 0.835492i \(0.314817\pi\)
−0.935647 + 0.352938i \(0.885183\pi\)
\(14\) 5.50960 + 7.58331i 0.393543 + 0.541665i
\(15\) 16.5931 + 11.0180i 1.10621 + 0.734530i
\(16\) −2.68094 8.25108i −0.167559 0.515693i
\(17\) −0.766216 + 0.248959i −0.0450715 + 0.0146446i −0.331466 0.943467i \(-0.607543\pi\)
0.286394 + 0.958112i \(0.407543\pi\)
\(18\) 14.2549 23.5664i 0.791940 1.30924i
\(19\) 16.7481 12.1682i 0.881479 0.640432i −0.0521636 0.998639i \(-0.516612\pi\)
0.933642 + 0.358207i \(0.116612\pi\)
\(20\) −33.8776 11.0075i −1.69388 0.550375i
\(21\) 0.387274 + 9.18076i 0.0184416 + 0.437179i
\(22\) 0 0
\(23\) 27.3224i 1.18793i 0.804491 + 0.593965i \(0.202438\pi\)
−0.804491 + 0.593965i \(0.797562\pi\)
\(24\) −3.36716 + 12.0724i −0.140299 + 0.503018i
\(25\) 15.4365 11.2153i 0.617462 0.448612i
\(26\) 29.2204 40.2185i 1.12386 1.54687i
\(27\) 24.4210 11.5159i 0.904481 0.426513i
\(28\) −5.07819 15.6291i −0.181364 0.558180i
\(29\) 2.22341 3.06025i 0.0766691 0.105526i −0.768960 0.639297i \(-0.779226\pi\)
0.845629 + 0.533771i \(0.179226\pi\)
\(30\) −37.8744 47.7591i −1.26248 1.59197i
\(31\) −6.42137 + 19.7630i −0.207141 + 0.637515i 0.792478 + 0.609901i \(0.208791\pi\)
−0.999619 + 0.0276136i \(0.991209\pi\)
\(32\) 43.2608i 1.35190i
\(33\) 0 0
\(34\) 2.46549 0.0725143
\(35\) 19.3408 + 6.28420i 0.552593 + 0.179548i
\(36\) −36.5355 + 31.5711i −1.01488 + 0.876975i
\(37\) −31.1905 22.6613i −0.842988 0.612466i 0.0802160 0.996778i \(-0.474439\pi\)
−0.923204 + 0.384311i \(0.874439\pi\)
\(38\) −60.2520 + 19.5771i −1.58558 + 0.515186i
\(39\) 45.6729 16.9996i 1.17110 0.435888i
\(40\) 22.4400 + 16.3036i 0.560999 + 0.407590i
\(41\) −7.86024 10.8187i −0.191713 0.263871i 0.702330 0.711852i \(-0.252143\pi\)
−0.894043 + 0.447981i \(0.852143\pi\)
\(42\) 7.55483 27.0866i 0.179877 0.644920i
\(43\) −43.4125 −1.00959 −0.504797 0.863238i \(-0.668433\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(44\) 0 0
\(45\) −5.03227 59.5416i −0.111828 1.32315i
\(46\) 25.8380 79.5212i 0.561695 1.72872i
\(47\) −11.6912 16.0916i −0.248749 0.342374i 0.666323 0.745663i \(-0.267867\pi\)
−0.915073 + 0.403289i \(0.867867\pi\)
\(48\) −14.3973 + 21.6824i −0.299944 + 0.451717i
\(49\) −12.2427 37.6791i −0.249851 0.768962i
\(50\) −55.5336 + 18.0440i −1.11067 + 0.360880i
\(51\) 2.01348 + 1.33697i 0.0394801 + 0.0262151i
\(52\) −70.5100 + 51.2285i −1.35596 + 0.985164i
\(53\) −16.8103 5.46201i −0.317176 0.103057i 0.146102 0.989269i \(-0.453327\pi\)
−0.463279 + 0.886213i \(0.653327\pi\)
\(54\) −81.9669 + 10.4224i −1.51791 + 0.193007i
\(55\) 0 0
\(56\) 12.7963i 0.228505i
\(57\) −59.8221 16.6852i −1.04951 0.292723i
\(58\) −9.36516 + 6.80419i −0.161468 + 0.117314i
\(59\) 25.5837 35.2129i 0.433621 0.596828i −0.535158 0.844752i \(-0.679748\pi\)
0.968780 + 0.247923i \(0.0797481\pi\)
\(60\) 37.2766 + 100.151i 0.621276 + 1.66918i
\(61\) −3.29249 10.1333i −0.0539753 0.166119i 0.920435 0.390896i \(-0.127835\pi\)
−0.974410 + 0.224777i \(0.927835\pi\)
\(62\) 37.3785 51.4471i 0.602879 0.829792i
\(63\) 20.8582 18.0240i 0.331082 0.286095i
\(64\) 30.1867 92.9052i 0.471667 1.45164i
\(65\) 107.854i 1.65929i
\(66\) 0 0
\(67\) 72.2963 1.07905 0.539525 0.841970i \(-0.318604\pi\)
0.539525 + 0.841970i \(0.318604\pi\)
\(68\) −4.11087 1.33570i −0.0604540 0.0196427i
\(69\) 64.2234 50.9311i 0.930774 0.738132i
\(70\) −50.3481 36.5800i −0.719258 0.522571i
\(71\) −2.44412 + 0.794142i −0.0344242 + 0.0111851i −0.326178 0.945308i \(-0.605761\pi\)
0.291754 + 0.956493i \(0.405761\pi\)
\(72\) 34.6538 14.5892i 0.481303 0.202627i
\(73\) −36.7931 26.7318i −0.504015 0.366188i 0.306533 0.951860i \(-0.400831\pi\)
−0.810549 + 0.585671i \(0.800831\pi\)
\(74\) 69.3492 + 95.4510i 0.937152 + 1.28988i
\(75\) −55.1374 15.3786i −0.735165 0.205047i
\(76\) 111.068 1.46143
\(77\) 0 0
\(78\) −149.006 + 6.28555i −1.91033 + 0.0805840i
\(79\) 30.3585 93.4339i 0.384285 1.18271i −0.552712 0.833372i \(-0.686407\pi\)
0.936998 0.349336i \(-0.113593\pi\)
\(80\) 33.8569 + 46.6000i 0.423211 + 0.582500i
\(81\) −72.5916 35.9370i −0.896192 0.443666i
\(82\) 12.6461 + 38.9207i 0.154221 + 0.474643i
\(83\) −30.3393 + 9.85783i −0.365534 + 0.118769i −0.486024 0.873945i \(-0.661553\pi\)
0.120491 + 0.992714i \(0.461553\pi\)
\(84\) −27.2711 + 41.0704i −0.324656 + 0.488934i
\(85\) 4.32739 3.14404i 0.0509105 0.0369887i
\(86\) 126.351 + 41.0540i 1.46920 + 0.477372i
\(87\) −11.3380 + 0.478272i −0.130321 + 0.00549738i
\(88\) 0 0
\(89\) 18.5409i 0.208325i 0.994560 + 0.104162i \(0.0332161\pi\)
−0.994560 + 0.104162i \(0.966784\pi\)
\(90\) −41.6605 + 178.053i −0.462894 + 1.97837i
\(91\) 40.2543 29.2464i 0.442354 0.321389i
\(92\) −86.1629 + 118.593i −0.936553 + 1.28905i
\(93\) 58.4243 21.7458i 0.628218 0.233826i
\(94\) 18.8097 + 57.8902i 0.200103 + 0.615853i
\(95\) −80.7886 + 111.196i −0.850407 + 1.17048i
\(96\) 101.688 80.6415i 1.05925 0.840016i
\(97\) −19.5614 + 60.2037i −0.201664 + 0.620657i 0.798170 + 0.602432i \(0.205801\pi\)
−0.999834 + 0.0182248i \(0.994199\pi\)
\(98\) 121.242i 1.23716i
\(99\) 0 0
\(100\) 102.371 1.02371
\(101\) 143.000 + 46.4634i 1.41584 + 0.460034i 0.914277 0.405089i \(-0.132759\pi\)
0.501561 + 0.865122i \(0.332759\pi\)
\(102\) −4.59586 5.79532i −0.0450575 0.0568168i
\(103\) 121.164 + 88.0311i 1.17635 + 0.854671i 0.991756 0.128144i \(-0.0409019\pi\)
0.184597 + 0.982814i \(0.440902\pi\)
\(104\) 64.5443 20.9717i 0.620618 0.201651i
\(105\) −21.2812 57.1762i −0.202678 0.544535i
\(106\) 43.7608 + 31.7941i 0.412838 + 0.299944i
\(107\) −12.1974 16.7883i −0.113995 0.156900i 0.748207 0.663465i \(-0.230915\pi\)
−0.862202 + 0.506565i \(0.830915\pi\)
\(108\) 142.315 + 27.0285i 1.31774 + 0.250264i
\(109\) 105.794 0.970583 0.485291 0.874352i \(-0.338714\pi\)
0.485291 + 0.874352i \(0.338714\pi\)
\(110\) 0 0
\(111\) 4.87462 + 115.558i 0.0439155 + 1.04106i
\(112\) −8.21165 + 25.2729i −0.0733183 + 0.225651i
\(113\) −78.0396 107.412i −0.690616 0.950552i 0.309384 0.950937i \(-0.399877\pi\)
−1.00000 0.000385488i \(0.999877\pi\)
\(114\) 158.332 + 105.134i 1.38888 + 0.922226i
\(115\) −56.0564 172.524i −0.487447 1.50021i
\(116\) 19.3014 6.27141i 0.166391 0.0540638i
\(117\) −125.097 75.6689i −1.06920 0.646743i
\(118\) −107.760 + 78.2925i −0.913224 + 0.663496i
\(119\) 2.34690 + 0.762555i 0.0197219 + 0.00640802i
\(120\) −3.50703 83.1381i −0.0292253 0.692817i
\(121\) 0 0
\(122\) 32.6062i 0.267264i
\(123\) −10.7781 + 38.6430i −0.0876265 + 0.314171i
\(124\) −90.1957 + 65.5310i −0.727385 + 0.528476i
\(125\) 23.1004 31.7950i 0.184803 0.254360i
\(126\) −77.7520 + 32.7334i −0.617079 + 0.259789i
\(127\) 45.3190 + 139.478i 0.356843 + 1.09825i 0.954933 + 0.296820i \(0.0959263\pi\)
−0.598091 + 0.801428i \(0.704074\pi\)
\(128\) −74.0031 + 101.857i −0.578150 + 0.795755i
\(129\) 80.9244 + 102.044i 0.627321 + 0.791042i
\(130\) −101.994 + 313.905i −0.784569 + 2.41465i
\(131\) 149.467i 1.14097i −0.821309 0.570484i \(-0.806756\pi\)
0.821309 0.570484i \(-0.193244\pi\)
\(132\) 0 0
\(133\) −63.4091 −0.476760
\(134\) −210.417 68.3685i −1.57027 0.510213i
\(135\) −130.577 + 122.819i −0.967234 + 0.909771i
\(136\) 2.72298 + 1.97836i 0.0200219 + 0.0145467i
\(137\) 144.757 47.0345i 1.05662 0.343318i 0.271359 0.962478i \(-0.412527\pi\)
0.785264 + 0.619161i \(0.212527\pi\)
\(138\) −235.085 + 87.4995i −1.70351 + 0.634055i
\(139\) 90.4769 + 65.7353i 0.650913 + 0.472916i 0.863582 0.504208i \(-0.168216\pi\)
−0.212669 + 0.977124i \(0.568216\pi\)
\(140\) 64.1311 + 88.2689i 0.458079 + 0.630492i
\(141\) −16.0311 + 57.4771i −0.113696 + 0.407639i
\(142\) 7.86454 0.0553841
\(143\) 0 0
\(144\) 77.8039 6.57574i 0.540305 0.0456649i
\(145\) −7.76079 + 23.8853i −0.0535227 + 0.164726i
\(146\) 81.8060 + 112.596i 0.560315 + 0.771207i
\(147\) −65.7463 + 99.0142i −0.447254 + 0.673566i
\(148\) −63.9190 196.723i −0.431885 1.32921i
\(149\) 246.985 80.2503i 1.65762 0.538592i 0.677247 0.735756i \(-0.263173\pi\)
0.980371 + 0.197164i \(0.0631730\pi\)
\(150\) 145.933 + 96.9007i 0.972886 + 0.646005i
\(151\) 71.2078 51.7355i 0.471575 0.342619i −0.326480 0.945204i \(-0.605863\pi\)
0.798055 + 0.602585i \(0.205863\pi\)
\(152\) −82.2536 26.7258i −0.541142 0.175828i
\(153\) −0.610640 7.22507i −0.00399111 0.0472227i
\(154\) 0 0
\(155\) 137.965i 0.890098i
\(156\) 251.853 + 70.2452i 1.61444 + 0.450290i
\(157\) 6.19326 4.49967i 0.0394475 0.0286603i −0.567887 0.823107i \(-0.692239\pi\)
0.607334 + 0.794446i \(0.292239\pi\)
\(158\) −176.715 + 243.228i −1.11845 + 1.53942i
\(159\) 18.4969 + 49.6956i 0.116333 + 0.312551i
\(160\) −88.7566 273.165i −0.554729 1.70728i
\(161\) 49.1905 67.7049i 0.305531 0.420527i
\(162\) 177.291 + 173.241i 1.09439 + 1.06939i
\(163\) 81.1315 249.697i 0.497739 1.53188i −0.314905 0.949123i \(-0.601973\pi\)
0.812644 0.582760i \(-0.198027\pi\)
\(164\) 71.7464i 0.437478i
\(165\) 0 0
\(166\) 97.6240 0.588096
\(167\) −152.175 49.4447i −0.911228 0.296076i −0.184364 0.982858i \(-0.559023\pi\)
−0.726863 + 0.686782i \(0.759023\pi\)
\(168\) 30.0787 23.8533i 0.179040 0.141984i
\(169\) −76.7667 55.7743i −0.454241 0.330025i
\(170\) −15.5680 + 5.05835i −0.0915765 + 0.0297550i
\(171\) 72.2932 + 171.719i 0.422767 + 1.00420i
\(172\) −188.432 136.904i −1.09554 0.795954i
\(173\) −97.2924 133.912i −0.562384 0.774055i 0.429243 0.903189i \(-0.358780\pi\)
−0.991627 + 0.129134i \(0.958780\pi\)
\(174\) 33.4512 + 9.32998i 0.192248 + 0.0536206i
\(175\) −58.4435 −0.333963
\(176\) 0 0
\(177\) −130.461 + 5.50325i −0.737065 + 0.0310918i
\(178\) 17.5336 53.9628i 0.0985032 0.303162i
\(179\) −34.4072 47.3575i −0.192219 0.264567i 0.702019 0.712158i \(-0.252282\pi\)
−0.894238 + 0.447591i \(0.852282\pi\)
\(180\) 165.926 274.310i 0.921809 1.52395i
\(181\) 87.9703 + 270.745i 0.486024 + 1.49583i 0.830492 + 0.557030i \(0.188059\pi\)
−0.344468 + 0.938798i \(0.611941\pi\)
\(182\) −144.817 + 47.0537i −0.795695 + 0.258537i
\(183\) −17.6815 + 26.6284i −0.0966203 + 0.145511i
\(184\) 92.3459 67.0932i 0.501880 0.364637i
\(185\) 243.442 + 79.0991i 1.31590 + 0.427563i
\(186\) −190.607 + 8.04041i −1.02477 + 0.0432280i
\(187\) 0 0
\(188\) 106.715i 0.567631i
\(189\) −81.2481 15.4306i −0.429884 0.0816435i
\(190\) 340.288 247.234i 1.79099 1.30123i
\(191\) 80.7867 111.193i 0.422967 0.582164i −0.543354 0.839504i \(-0.682846\pi\)
0.966321 + 0.257339i \(0.0828459\pi\)
\(192\) −274.651 + 102.226i −1.43047 + 0.532429i
\(193\) −92.1162 283.505i −0.477286 1.46894i −0.842850 0.538149i \(-0.819124\pi\)
0.365563 0.930786i \(-0.380876\pi\)
\(194\) 113.866 156.723i 0.586937 0.807849i
\(195\) −253.518 + 201.047i −1.30009 + 1.03101i
\(196\) 65.6840 202.155i 0.335122 1.03140i
\(197\) 58.1375i 0.295114i 0.989054 + 0.147557i \(0.0471410\pi\)
−0.989054 + 0.147557i \(0.952859\pi\)
\(198\) 0 0
\(199\) −125.049 −0.628385 −0.314193 0.949359i \(-0.601734\pi\)
−0.314193 + 0.949359i \(0.601734\pi\)
\(200\) −75.8123 24.6329i −0.379061 0.123165i
\(201\) −134.766 169.938i −0.670478 0.845463i
\(202\) −372.258 270.461i −1.84286 1.33892i
\(203\) −11.0192 + 3.58035i −0.0542818 + 0.0176372i
\(204\) 4.52332 + 12.1528i 0.0221731 + 0.0595724i
\(205\) 71.8288 + 52.1867i 0.350384 + 0.254569i
\(206\) −269.397 370.794i −1.30775 1.79997i
\(207\) −239.435 56.0224i −1.15669 0.270640i
\(208\) 140.934 0.677566
\(209\) 0 0
\(210\) 7.86865 + 186.535i 0.0374698 + 0.888262i
\(211\) 14.9542 46.0242i 0.0708728 0.218124i −0.909346 0.416040i \(-0.863417\pi\)
0.980219 + 0.197916i \(0.0634175\pi\)
\(212\) −55.7406 76.7204i −0.262927 0.361889i
\(213\) 6.42272 + 4.26474i 0.0301536 + 0.0200223i
\(214\) 19.6241 + 60.3967i 0.0917013 + 0.282228i
\(215\) 274.123 89.0679i 1.27499 0.414269i
\(216\) −98.8904 54.2611i −0.457826 0.251209i
\(217\) 51.4928 37.4117i 0.237294 0.172404i
\(218\) −307.909 100.046i −1.41243 0.458926i
\(219\) 5.75021 + 136.315i 0.0262567 + 0.622444i
\(220\) 0 0
\(221\) 13.0875i 0.0592193i
\(222\) 95.0925 340.939i 0.428345 1.53576i
\(223\) −171.282 + 124.444i −0.768082 + 0.558044i −0.901378 0.433032i \(-0.857444\pi\)
0.133297 + 0.991076i \(0.457444\pi\)
\(224\) 77.8855 107.200i 0.347703 0.478573i
\(225\) 66.6319 + 158.271i 0.296142 + 0.703428i
\(226\) 125.556 + 386.421i 0.555556 + 1.70983i
\(227\) −71.3484 + 98.2027i −0.314310 + 0.432611i −0.936719 0.350081i \(-0.886154\pi\)
0.622409 + 0.782692i \(0.286154\pi\)
\(228\) −207.040 261.075i −0.908071 1.14506i
\(229\) 99.7951 307.138i 0.435786 1.34121i −0.456492 0.889727i \(-0.650894\pi\)
0.892279 0.451485i \(-0.149106\pi\)
\(230\) 555.137i 2.41364i
\(231\) 0 0
\(232\) −15.8030 −0.0681166
\(233\) 382.714 + 124.351i 1.64255 + 0.533697i 0.977106 0.212752i \(-0.0682427\pi\)
0.665443 + 0.746449i \(0.268243\pi\)
\(234\) 292.533 + 338.533i 1.25014 + 1.44672i
\(235\) 106.837 + 77.6218i 0.454626 + 0.330305i
\(236\) 222.092 72.1621i 0.941068 0.305771i
\(237\) −276.214 + 102.808i −1.16546 + 0.433790i
\(238\) −6.10948 4.43879i −0.0256701 0.0186504i
\(239\) 0.188940 + 0.260053i 0.000790543 + 0.00108809i 0.809412 0.587241i \(-0.199786\pi\)
−0.808622 + 0.588329i \(0.799786\pi\)
\(240\) 46.4250 166.449i 0.193437 0.693539i
\(241\) −290.799 −1.20664 −0.603318 0.797500i \(-0.706155\pi\)
−0.603318 + 0.797500i \(0.706155\pi\)
\(242\) 0 0
\(243\) 50.8438 + 237.621i 0.209234 + 0.977866i
\(244\) 17.6648 54.3665i 0.0723965 0.222814i
\(245\) 154.610 + 212.802i 0.631060 + 0.868580i
\(246\) 67.9128 102.277i 0.276068 0.415760i
\(247\) 103.920 + 319.834i 0.420730 + 1.29487i
\(248\) 82.5644 26.8268i 0.332921 0.108173i
\(249\) 79.7264 + 52.9390i 0.320186 + 0.212607i
\(250\) −97.3007 + 70.6931i −0.389203 + 0.282772i
\(251\) −107.109 34.8019i −0.426730 0.138653i 0.0877748 0.996140i \(-0.472024\pi\)
−0.514505 + 0.857487i \(0.672024\pi\)
\(252\) 147.375 12.4557i 0.584821 0.0494272i
\(253\) 0 0
\(254\) 448.803i 1.76694i
\(255\) −15.4569 4.31114i −0.0606153 0.0169064i
\(256\) −4.41230 + 3.20572i −0.0172355 + 0.0125224i
\(257\) 115.540 159.027i 0.449572 0.618783i −0.522733 0.852496i \(-0.675088\pi\)
0.972306 + 0.233713i \(0.0750877\pi\)
\(258\) −139.028 373.526i −0.538868 1.44777i
\(259\) 36.4915 + 112.309i 0.140894 + 0.433626i
\(260\) 340.123 468.139i 1.30816 1.80053i
\(261\) 22.2591 + 25.7592i 0.0852838 + 0.0986943i
\(262\) −141.346 + 435.020i −0.539490 + 1.66038i
\(263\) 378.327i 1.43850i −0.694749 0.719252i \(-0.744485\pi\)
0.694749 0.719252i \(-0.255515\pi\)
\(264\) 0 0
\(265\) 117.353 0.442842
\(266\) 184.551 + 59.9641i 0.693799 + 0.225429i
\(267\) 43.5818 34.5617i 0.163228 0.129444i
\(268\) 313.803 + 227.991i 1.17090 + 0.850712i
\(269\) −191.309 + 62.1601i −0.711186 + 0.231078i −0.642198 0.766539i \(-0.721977\pi\)
−0.0689882 + 0.997617i \(0.521977\pi\)
\(270\) 496.186 233.979i 1.83773 0.866590i
\(271\) 64.8950 + 47.1490i 0.239465 + 0.173981i 0.701045 0.713117i \(-0.252717\pi\)
−0.461580 + 0.887099i \(0.652717\pi\)
\(272\) 4.10836 + 5.65467i 0.0151043 + 0.0207892i
\(273\) −143.783 40.1031i −0.526678 0.146898i
\(274\) −465.792 −1.69997
\(275\) 0 0
\(276\) 439.376 18.5343i 1.59194 0.0671533i
\(277\) −67.6484 + 208.200i −0.244218 + 0.751626i 0.751546 + 0.659681i \(0.229308\pi\)
−0.995764 + 0.0919450i \(0.970692\pi\)
\(278\) −201.167 276.882i −0.723622 0.995980i
\(279\) −160.023 96.7949i −0.573558 0.346935i
\(280\) −26.2537 80.8006i −0.0937633 0.288574i
\(281\) −472.140 + 153.407i −1.68021 + 0.545934i −0.984953 0.172825i \(-0.944711\pi\)
−0.695260 + 0.718759i \(0.744711\pi\)
\(282\) 101.013 152.125i 0.358201 0.539452i
\(283\) −248.936 + 180.862i −0.879632 + 0.639090i −0.933154 0.359477i \(-0.882955\pi\)
0.0535221 + 0.998567i \(0.482955\pi\)
\(284\) −13.1131 4.26070i −0.0461728 0.0150025i
\(285\) 411.971 17.3783i 1.44551 0.0609764i
\(286\) 0 0
\(287\) 40.9601i 0.142718i
\(288\) −379.108 88.7028i −1.31635 0.307996i
\(289\) −233.281 + 169.488i −0.807200 + 0.586465i
\(290\) 45.1752 62.1783i 0.155777 0.214408i
\(291\) 177.977 66.2439i 0.611606 0.227642i
\(292\) −75.4004 232.059i −0.258221 0.794721i
\(293\) 199.670 274.822i 0.681466 0.937957i −0.318484 0.947928i \(-0.603174\pi\)
0.999950 + 0.00997075i \(0.00317384\pi\)
\(294\) 284.988 226.004i 0.969347 0.768721i
\(295\) −89.2997 + 274.836i −0.302711 + 0.931648i
\(296\) 161.067i 0.544145i
\(297\) 0 0
\(298\) −794.734 −2.66689
\(299\) −422.120 137.155i −1.41177 0.458712i
\(300\) −190.827 240.630i −0.636089 0.802099i
\(301\) 107.576 + 78.1587i 0.357396 + 0.259664i
\(302\) −256.173 + 83.2358i −0.848256 + 0.275615i
\(303\) −157.347 422.743i −0.519296 1.39519i
\(304\) −145.301 105.568i −0.477965 0.347262i
\(305\) 41.5801 + 57.2300i 0.136328 + 0.187639i
\(306\) −5.05528 + 21.6058i −0.0165205 + 0.0706073i
\(307\) 396.129 1.29032 0.645161 0.764047i \(-0.276790\pi\)
0.645161 + 0.764047i \(0.276790\pi\)
\(308\) 0 0
\(309\) −18.9362 448.903i −0.0612821 1.45276i
\(310\) −130.470 + 401.544i −0.420870 + 1.29530i
\(311\) 51.1584 + 70.4134i 0.164496 + 0.226410i 0.883306 0.468797i \(-0.155313\pi\)
−0.718809 + 0.695207i \(0.755313\pi\)
\(312\) −169.611 112.623i −0.543626 0.360972i
\(313\) −185.075 569.601i −0.591292 1.81981i −0.572378 0.819990i \(-0.693979\pi\)
−0.0189146 0.999821i \(-0.506021\pi\)
\(314\) −22.2805 + 7.23939i −0.0709572 + 0.0230554i
\(315\) −94.7271 + 156.604i −0.300721 + 0.497156i
\(316\) 426.421 309.813i 1.34943 0.980421i
\(317\) −2.33475 0.758605i −0.00736513 0.00239308i 0.305332 0.952246i \(-0.401233\pi\)
−0.312697 + 0.949853i \(0.601233\pi\)
\(318\) −6.83917 162.130i −0.0215068 0.509843i
\(319\) 0 0
\(320\) 648.571i 2.02678i
\(321\) −16.7253 + 59.9657i −0.0521036 + 0.186809i
\(322\) −207.194 + 150.535i −0.643460 + 0.467501i
\(323\) −9.80328 + 13.4931i −0.0303507 + 0.0417742i
\(324\) −201.755 384.907i −0.622699 1.18798i
\(325\) 95.7823 + 294.788i 0.294715 + 0.907039i
\(326\) −472.262 + 650.013i −1.44866 + 1.99391i
\(327\) −197.207 248.676i −0.603081 0.760476i
\(328\) −17.2640 + 53.1330i −0.0526340 + 0.161991i
\(329\) 60.9235i 0.185178i
\(330\) 0 0
\(331\) 368.074 1.11200 0.556002 0.831181i \(-0.312335\pi\)
0.556002 + 0.831181i \(0.312335\pi\)
\(332\) −162.775 52.8888i −0.490286 0.159304i
\(333\) 262.542 226.868i 0.788413 0.681284i
\(334\) 396.143 + 287.815i 1.18606 + 0.861721i
\(335\) −456.506 + 148.328i −1.36270 + 0.442769i
\(336\) 74.7130 27.8085i 0.222360 0.0827634i
\(337\) 478.841 + 347.898i 1.42089 + 1.03234i 0.991624 + 0.129162i \(0.0412286\pi\)
0.429269 + 0.903177i \(0.358771\pi\)
\(338\) 170.684 + 234.926i 0.504981 + 0.695047i
\(339\) −107.009 + 383.663i −0.315661 + 1.13175i
\(340\) 28.6980 0.0844059
\(341\) 0 0
\(342\) −48.0182 568.149i −0.140404 1.66125i
\(343\) −83.8781 + 258.150i −0.244543 + 0.752625i
\(344\) 106.604 + 146.728i 0.309896 + 0.426536i
\(345\) −301.037 + 453.363i −0.872571 + 1.31409i
\(346\) 156.531 + 481.753i 0.452402 + 1.39235i
\(347\) 280.182 91.0367i 0.807442 0.262354i 0.123928 0.992291i \(-0.460451\pi\)
0.683514 + 0.729938i \(0.260451\pi\)
\(348\) −50.7208 33.6790i −0.145749 0.0967788i
\(349\) 333.322 242.172i 0.955076 0.693903i 0.00307413 0.999995i \(-0.499021\pi\)
0.952002 + 0.306092i \(0.0990215\pi\)
\(350\) 170.098 + 55.2683i 0.485995 + 0.157909i
\(351\) 55.3248 + 435.102i 0.157620 + 1.23961i
\(352\) 0 0
\(353\) 135.577i 0.384070i −0.981388 0.192035i \(-0.938491\pi\)
0.981388 0.192035i \(-0.0615086\pi\)
\(354\) 384.906 + 107.356i 1.08731 + 0.303264i
\(355\) 13.8038 10.0290i 0.0388838 0.0282507i
\(356\) −58.4698 + 80.4768i −0.164241 + 0.226058i
\(357\) −2.58237 6.93804i −0.00723352 0.0194343i
\(358\) 55.3568 + 170.371i 0.154628 + 0.475896i
\(359\) −163.860 + 225.534i −0.456435 + 0.628229i −0.973765 0.227557i \(-0.926926\pi\)
0.517330 + 0.855786i \(0.326926\pi\)
\(360\) −188.885 + 163.219i −0.524681 + 0.453387i
\(361\) 20.8784 64.2571i 0.0578349 0.177997i
\(362\) 871.187i 2.40659i
\(363\) 0 0
\(364\) 266.954 0.733391
\(365\) 287.170 + 93.3072i 0.786767 + 0.255636i
\(366\) 76.6434 60.7805i 0.209408 0.166067i
\(367\) 142.701 + 103.678i 0.388830 + 0.282502i 0.764976 0.644059i \(-0.222751\pi\)
−0.376146 + 0.926560i \(0.622751\pi\)
\(368\) 225.439 73.2497i 0.612607 0.199048i
\(369\) 110.924 46.6990i 0.300608 0.126555i
\(370\) −633.730 460.432i −1.71278 1.24441i
\(371\) 31.8224 + 43.7998i 0.0857746 + 0.118059i
\(372\) 322.168 + 89.8569i 0.866042 + 0.241551i
\(373\) −163.109 −0.437289 −0.218645 0.975805i \(-0.570164\pi\)
−0.218645 + 0.975805i \(0.570164\pi\)
\(374\) 0 0
\(375\) −117.797 + 4.96908i −0.314126 + 0.0132509i
\(376\) −25.6782 + 79.0293i −0.0682930 + 0.210184i
\(377\) 36.1185 + 49.7128i 0.0958049 + 0.131864i
\(378\) 221.878 + 121.744i 0.586979 + 0.322075i
\(379\) 16.4492 + 50.6253i 0.0434015 + 0.133576i 0.970409 0.241466i \(-0.0776283\pi\)
−0.927008 + 0.375042i \(0.877628\pi\)
\(380\) −701.327 + 227.875i −1.84560 + 0.599671i
\(381\) 243.375 366.523i 0.638778 0.962003i
\(382\) −340.280 + 247.228i −0.890785 + 0.647193i
\(383\) 85.2768 + 27.7081i 0.222655 + 0.0723449i 0.418220 0.908346i \(-0.362654\pi\)
−0.195565 + 0.980691i \(0.562654\pi\)
\(384\) 377.369 15.9187i 0.982733 0.0414549i
\(385\) 0 0
\(386\) 912.245i 2.36333i
\(387\) 89.0139 380.438i 0.230010 0.983044i
\(388\) −274.762 + 199.626i −0.708150 + 0.514501i
\(389\) 158.468 218.112i 0.407372 0.560699i −0.555203 0.831715i \(-0.687360\pi\)
0.962575 + 0.271016i \(0.0873595\pi\)
\(390\) 927.983 345.399i 2.37944 0.885639i
\(391\) −6.80215 20.9349i −0.0173968 0.0535419i
\(392\) −97.2868 + 133.904i −0.248181 + 0.341591i
\(393\) −351.333 + 278.618i −0.893978 + 0.708952i
\(394\) 54.9789 169.208i 0.139540 0.429461i
\(395\) 652.262i 1.65130i
\(396\) 0 0
\(397\) 211.490 0.532720 0.266360 0.963874i \(-0.414179\pi\)
0.266360 + 0.963874i \(0.414179\pi\)
\(398\) 363.951 + 118.255i 0.914450 + 0.297123i
\(399\) 118.200 + 149.048i 0.296239 + 0.373554i
\(400\) −133.923 97.3006i −0.334807 0.243252i
\(401\) 427.784 138.995i 1.06679 0.346622i 0.277555 0.960710i \(-0.410476\pi\)
0.789237 + 0.614088i \(0.210476\pi\)
\(402\) 231.528 + 622.045i 0.575940 + 1.54737i
\(403\) −273.095 198.415i −0.677655 0.492345i
\(404\) 474.165 + 652.633i 1.17368 + 1.61543i
\(405\) 532.101 + 77.9859i 1.31383 + 0.192558i
\(406\) 35.4569 0.0873323
\(407\) 0 0
\(408\) −0.425560 10.0884i −0.00104304 0.0247264i
\(409\) 47.6795 146.742i 0.116576 0.358783i −0.875697 0.482862i \(-0.839597\pi\)
0.992272 + 0.124078i \(0.0395974\pi\)
\(410\) −159.705 219.814i −0.389523 0.536133i
\(411\) −380.397 252.587i −0.925541 0.614568i
\(412\) 248.303 + 764.199i 0.602678 + 1.85485i
\(413\) −126.793 + 41.1974i −0.307004 + 0.0997516i
\(414\) 643.891 + 389.478i 1.55529 + 0.940769i
\(415\) 171.349 124.492i 0.412888 0.299981i
\(416\) −668.362 217.164i −1.60664 0.522028i
\(417\) −14.1402 335.209i −0.0339093 0.803858i
\(418\) 0 0
\(419\) 755.530i 1.80317i 0.432599 + 0.901587i \(0.357597\pi\)
−0.432599 + 0.901587i \(0.642403\pi\)
\(420\) 87.9374 315.285i 0.209375 0.750679i
\(421\) 353.452 256.798i 0.839553 0.609971i −0.0826929 0.996575i \(-0.526352\pi\)
0.922246 + 0.386604i \(0.126352\pi\)
\(422\) −87.0474 + 119.810i −0.206274 + 0.283911i
\(423\) 164.988 69.4594i 0.390042 0.164207i
\(424\) 22.8188 + 70.2292i 0.0538180 + 0.165635i
\(425\) −9.03558 + 12.4364i −0.0212602 + 0.0292621i
\(426\) −14.6601 18.4862i −0.0344134 0.0433949i
\(427\) −10.0848 + 31.0379i −0.0236179 + 0.0726883i
\(428\) 111.335i 0.260129i
\(429\) 0 0
\(430\) −882.057 −2.05129
\(431\) −9.25765 3.00799i −0.0214795 0.00697910i 0.298258 0.954485i \(-0.403595\pi\)
−0.319737 + 0.947506i \(0.603595\pi\)
\(432\) −160.489 170.626i −0.371503 0.394968i
\(433\) 47.9543 + 34.8408i 0.110749 + 0.0804638i 0.641781 0.766888i \(-0.278196\pi\)
−0.531032 + 0.847352i \(0.678196\pi\)
\(434\) −185.248 + 60.1907i −0.426838 + 0.138688i
\(435\) 70.6109 26.2817i 0.162324 0.0604177i
\(436\) 459.197 + 333.626i 1.05320 + 0.765198i
\(437\) 332.465 + 457.598i 0.760788 + 1.04714i
\(438\) 112.173 402.180i 0.256104 0.918218i
\(439\) −444.724 −1.01304 −0.506519 0.862229i \(-0.669068\pi\)
−0.506519 + 0.862229i \(0.669068\pi\)
\(440\) 0 0
\(441\) 355.297 30.0286i 0.805662 0.0680920i
\(442\) −12.3764 + 38.0908i −0.0280010 + 0.0861782i
\(443\) 314.672 + 433.108i 0.710320 + 0.977671i 0.999790 + 0.0204842i \(0.00652079\pi\)
−0.289470 + 0.957187i \(0.593479\pi\)
\(444\) −343.261 + 516.953i −0.773111 + 1.16431i
\(445\) −38.0397 117.074i −0.0854824 0.263088i
\(446\) 616.196 200.214i 1.38160 0.448910i
\(447\) −649.034 430.964i −1.45198 0.964126i
\(448\) −242.067 + 175.872i −0.540327 + 0.392571i
\(449\) 731.756 + 237.762i 1.62975 + 0.529537i 0.974213 0.225629i \(-0.0724438\pi\)
0.655534 + 0.755166i \(0.272444\pi\)
\(450\) −44.2578 523.657i −0.0983508 1.16368i
\(451\) 0 0
\(452\) 712.327i 1.57594i
\(453\) −254.345 70.9404i −0.561469 0.156601i
\(454\) 300.525 218.344i 0.661950 0.480935i
\(455\) −194.177 + 267.261i −0.426762 + 0.587387i
\(456\) 90.5062 + 243.162i 0.198478 + 0.533251i
\(457\) −52.4263 161.352i −0.114718 0.353067i 0.877170 0.480180i \(-0.159429\pi\)
−0.991888 + 0.127113i \(0.959429\pi\)
\(458\) −580.902 + 799.543i −1.26835 + 1.74573i
\(459\) −15.8448 + 14.9035i −0.0345203 + 0.0324694i
\(460\) 300.751 925.618i 0.653807 2.01221i
\(461\) 266.355i 0.577777i 0.957363 + 0.288888i \(0.0932857\pi\)
−0.957363 + 0.288888i \(0.906714\pi\)
\(462\) 0 0
\(463\) −704.848 −1.52235 −0.761175 0.648547i \(-0.775377\pi\)
−0.761175 + 0.648547i \(0.775377\pi\)
\(464\) −31.2112 10.1411i −0.0672656 0.0218559i
\(465\) −324.298 + 257.178i −0.697414 + 0.553071i
\(466\) −996.284 723.843i −2.13795 1.55331i
\(467\) −642.132 + 208.641i −1.37502 + 0.446770i −0.901028 0.433762i \(-0.857186\pi\)
−0.473988 + 0.880531i \(0.657186\pi\)
\(468\) −304.357 722.942i −0.650335 1.54475i
\(469\) −179.150 130.160i −0.381983 0.277527i
\(470\) −237.542 326.949i −0.505409 0.695636i
\(471\) −22.1216 6.17000i −0.0469672 0.0130998i
\(472\) −181.838 −0.385250
\(473\) 0 0
\(474\) 901.138 38.0129i 1.90113 0.0801960i
\(475\) 122.063 375.670i 0.256974 0.790884i
\(476\) 7.78198 + 10.7110i 0.0163487 + 0.0225020i
\(477\) 82.3336 136.115i 0.172607 0.285356i
\(478\) −0.303980 0.935553i −0.000635941 0.00195722i
\(479\) −665.556 + 216.252i −1.38947 + 0.451466i −0.905771 0.423768i \(-0.860707\pi\)
−0.483700 + 0.875234i \(0.660707\pi\)
\(480\) −476.645 + 717.830i −0.993011 + 1.49548i
\(481\) 506.680 368.124i 1.05339 0.765331i
\(482\) 846.365 + 275.001i 1.75594 + 0.570541i
\(483\) −250.841 + 10.5813i −0.519339 + 0.0219074i
\(484\) 0 0
\(485\) 420.282i 0.866560i
\(486\) 76.7320 739.673i 0.157885 1.52196i
\(487\) 528.569 384.028i 1.08536 0.788558i 0.106747 0.994286i \(-0.465956\pi\)
0.978609 + 0.205729i \(0.0659564\pi\)
\(488\) −26.1639 + 36.0115i −0.0536145 + 0.0737941i
\(489\) −738.167 + 274.749i −1.50954 + 0.561859i
\(490\) −248.747 765.565i −0.507647 1.56238i
\(491\) 36.3470 50.0274i 0.0740265 0.101889i −0.770398 0.637563i \(-0.779943\pi\)
0.844425 + 0.535674i \(0.179943\pi\)
\(492\) −168.645 + 133.741i −0.342775 + 0.271831i
\(493\) −0.941732 + 2.89835i −0.00191021 + 0.00587901i
\(494\) 1029.14i 2.08329i
\(495\) 0 0
\(496\) 180.281 0.363470
\(497\) 7.48628 + 2.43244i 0.0150629 + 0.00489424i
\(498\) −181.979 229.473i −0.365419 0.460789i
\(499\) −266.970 193.965i −0.535010 0.388707i 0.287219 0.957865i \(-0.407269\pi\)
−0.822228 + 0.569158i \(0.807269\pi\)
\(500\) 200.535 65.1577i 0.401069 0.130315i
\(501\) 167.443 + 449.868i 0.334217 + 0.897940i
\(502\) 278.828 + 202.580i 0.555434 + 0.403547i
\(503\) 204.067 + 280.874i 0.405700 + 0.558398i 0.962163 0.272474i \(-0.0878420\pi\)
−0.556463 + 0.830872i \(0.687842\pi\)
\(504\) −112.138 26.2378i −0.222496 0.0520591i
\(505\) −998.280 −1.97679
\(506\) 0 0
\(507\) 11.9975 + 284.414i 0.0236637 + 0.560974i
\(508\) −243.144 + 748.320i −0.478630 + 1.47307i
\(509\) −503.258 692.675i −0.988719 1.36086i −0.931997 0.362465i \(-0.881935\pi\)
−0.0567219 0.998390i \(-0.518065\pi\)
\(510\) 40.9100 + 27.1646i 0.0802157 + 0.0532639i
\(511\) 43.0462 + 132.483i 0.0842391 + 0.259261i
\(512\) 494.832 160.781i 0.966468 0.314025i
\(513\) 268.878 490.028i 0.524129 0.955221i
\(514\) −486.664 + 353.582i −0.946817 + 0.687903i
\(515\) −945.687 307.272i −1.83629 0.596645i
\(516\) 29.4492 + 698.125i 0.0570720 + 1.35295i
\(517\) 0 0
\(518\) 361.382i 0.697649i
\(519\) −133.409 + 478.315i −0.257049 + 0.921609i
\(520\) −364.530 + 264.846i −0.701019 + 0.509320i
\(521\) −418.891 + 576.554i −0.804013 + 1.10663i 0.188207 + 0.982129i \(0.439732\pi\)
−0.992220 + 0.124499i \(0.960268\pi\)
\(522\) −40.4248 96.0213i −0.0774421 0.183949i
\(523\) −155.721 479.261i −0.297746 0.916369i −0.982285 0.187392i \(-0.939996\pi\)
0.684539 0.728976i \(-0.260004\pi\)
\(524\) 471.353 648.762i 0.899529 1.23809i
\(525\) 108.943 + 137.376i 0.207511 + 0.261668i
\(526\) −357.772 + 1101.11i −0.680176 + 2.09337i
\(527\) 16.7414i 0.0317673i
\(528\) 0 0
\(529\) −217.513 −0.411179
\(530\) −341.553 110.977i −0.644440 0.209391i
\(531\) 256.124 + 296.399i 0.482344 + 0.558190i
\(532\) −275.227 199.964i −0.517345 0.375873i
\(533\) 206.602 67.1290i 0.387621 0.125946i
\(534\) −159.528 + 59.3769i −0.298741 + 0.111193i
\(535\) 111.463 + 80.9826i 0.208342 + 0.151369i
\(536\) −177.532 244.351i −0.331216 0.455879i
\(537\) −47.1796 + 169.155i −0.0878577 + 0.315000i
\(538\) 615.583 1.14421
\(539\) 0 0
\(540\) −954.086 + 121.315i −1.76683 + 0.224658i
\(541\) 181.281 557.925i 0.335085 1.03128i −0.631596 0.775298i \(-0.717600\pi\)
0.966680 0.255987i \(-0.0824004\pi\)
\(542\) −144.288 198.595i −0.266214 0.366412i
\(543\) 472.423 711.471i 0.870024 1.31026i
\(544\) −10.7702 33.1471i −0.0197981 0.0609322i
\(545\) −668.020 + 217.053i −1.22572 + 0.398262i
\(546\) 380.553 + 252.690i 0.696983 + 0.462803i
\(547\) 557.289 404.894i 1.01881 0.740209i 0.0527711 0.998607i \(-0.483195\pi\)
0.966039 + 0.258398i \(0.0831946\pi\)
\(548\) 776.646 + 252.348i 1.41724 + 0.460489i
\(549\) 95.5519 8.07575i 0.174047 0.0147099i
\(550\) 0 0
\(551\) 78.3083i 0.142120i
\(552\) −329.848 91.9990i −0.597550 0.166665i
\(553\) −243.444 + 176.873i −0.440225 + 0.319842i
\(554\) 393.778 541.989i 0.710790 0.978319i
\(555\) −267.867 719.676i −0.482642 1.29671i
\(556\) 185.415 + 570.649i 0.333480 + 1.02635i
\(557\) 363.725 500.624i 0.653007 0.898787i −0.346218 0.938154i \(-0.612534\pi\)
0.999225 + 0.0393671i \(0.0125342\pi\)
\(558\) 374.206 + 433.048i 0.670619 + 0.776071i
\(559\) 217.925 670.706i 0.389849 1.19983i
\(560\) 176.430i 0.315053i
\(561\) 0 0
\(562\) 1519.22 2.70325
\(563\) −541.408 175.914i −0.961648 0.312458i −0.214208 0.976788i \(-0.568717\pi\)
−0.747440 + 0.664330i \(0.768717\pi\)
\(564\) −250.841 + 198.924i −0.444753 + 0.352703i
\(565\) 713.145 + 518.130i 1.26220 + 0.917045i
\(566\) 895.558 290.984i 1.58226 0.514107i
\(567\) 115.182 + 219.744i 0.203143 + 0.387555i
\(568\) 8.68589 + 6.31067i 0.0152921 + 0.0111103i
\(569\) −529.905 729.352i −0.931292 1.28181i −0.959354 0.282207i \(-0.908934\pi\)
0.0280618 0.999606i \(-0.491066\pi\)
\(570\) −1215.47 339.010i −2.13240 0.594754i
\(571\) 804.182 1.40837 0.704187 0.710014i \(-0.251312\pi\)
0.704187 + 0.710014i \(0.251312\pi\)
\(572\) 0 0
\(573\) −411.961 + 17.3779i −0.718955 + 0.0303279i
\(574\) 38.7348 119.213i 0.0674822 0.207689i
\(575\) 306.429 + 421.763i 0.532920 + 0.733501i
\(576\) 752.262 + 455.030i 1.30601 + 0.789983i
\(577\) −243.227 748.576i −0.421538 1.29736i −0.906271 0.422697i \(-0.861083\pi\)
0.484733 0.874662i \(-0.338917\pi\)
\(578\) 839.238 272.685i 1.45197 0.471773i
\(579\) −494.687 + 745.001i −0.854382 + 1.28670i
\(580\) −109.009 + 79.2000i −0.187947 + 0.136552i
\(581\) 92.9285 + 30.1943i 0.159946 + 0.0519695i
\(582\) −580.643 + 24.4934i −0.997669 + 0.0420849i
\(583\) 0 0
\(584\) 189.998i 0.325340i
\(585\) 945.155 + 221.145i 1.61565 + 0.378026i
\(586\) −841.024 + 611.040i −1.43519 + 1.04273i
\(587\) −107.287 + 147.667i −0.182771 + 0.251563i −0.890565 0.454856i \(-0.849691\pi\)
0.707794 + 0.706419i \(0.249691\pi\)
\(588\) −597.620 + 222.437i −1.01636 + 0.378294i
\(589\) 132.934 + 409.128i 0.225694 + 0.694615i
\(590\) 519.809 715.456i 0.881033 1.21264i
\(591\) 136.657 108.373i 0.231230 0.183372i
\(592\) −103.360 + 318.109i −0.174595 + 0.537347i
\(593\) 685.071i 1.15526i 0.816297 + 0.577632i \(0.196023\pi\)
−0.816297 + 0.577632i \(0.803977\pi\)
\(594\) 0 0
\(595\) −16.3837 −0.0275357
\(596\) 1325.11 + 430.556i 2.22335 + 0.722409i
\(597\) 233.101 + 293.936i 0.390453 + 0.492356i
\(598\) 1098.87 + 798.373i 1.83757 + 1.33507i
\(599\) 343.213 111.517i 0.572977 0.186171i −0.00817505 0.999967i \(-0.502602\pi\)
0.581152 + 0.813795i \(0.302602\pi\)
\(600\) 83.4186 + 224.120i 0.139031 + 0.373534i
\(601\) −339.372 246.568i −0.564679 0.410264i 0.268489 0.963283i \(-0.413476\pi\)
−0.833169 + 0.553019i \(0.813476\pi\)
\(602\) −239.186 329.211i −0.397318 0.546862i
\(603\) −148.238 + 633.556i −0.245834 + 1.05067i
\(604\) 472.229 0.781836
\(605\) 0 0
\(606\) 58.1783 + 1379.18i 0.0960039 + 2.27588i
\(607\) −311.403 + 958.400i −0.513020 + 1.57891i 0.273836 + 0.961776i \(0.411707\pi\)
−0.786856 + 0.617137i \(0.788293\pi\)
\(608\) 526.406 + 724.536i 0.865800 + 1.19167i
\(609\) 28.9565 + 19.2274i 0.0475477 + 0.0315721i
\(610\) −66.8970 205.888i −0.109667 0.337521i
\(611\) 307.297 99.8468i 0.502941 0.163415i
\(612\) 20.1342 33.2861i 0.0328990 0.0543891i
\(613\) −446.778 + 324.603i −0.728838 + 0.529532i −0.889196 0.457527i \(-0.848735\pi\)
0.160358 + 0.987059i \(0.448735\pi\)
\(614\) −1152.92 374.608i −1.87773 0.610110i
\(615\) −11.2258 266.119i −0.0182533 0.432714i
\(616\) 0 0
\(617\) 675.556i 1.09490i −0.836837 0.547452i \(-0.815598\pi\)
0.836837 0.547452i \(-0.184402\pi\)
\(618\) −369.401 + 1324.43i −0.597736 + 2.14309i
\(619\) 217.722 158.184i 0.351732 0.255548i −0.397863 0.917445i \(-0.630248\pi\)
0.749595 + 0.661896i \(0.230248\pi\)
\(620\) 435.082 598.838i 0.701744 0.965868i
\(621\) 314.641 + 667.240i 0.506668 + 1.07446i
\(622\) −82.3072 253.316i −0.132327 0.407260i
\(623\) 33.3805 45.9443i 0.0535802 0.0737469i
\(624\) −262.712 331.276i −0.421012 0.530891i
\(625\) −228.038 + 701.828i −0.364860 + 1.12292i
\(626\) 1832.83i 2.92784i
\(627\) 0 0
\(628\) 41.0719 0.0654011
\(629\) 29.5404 + 9.59826i 0.0469641 + 0.0152596i
\(630\) 423.797 366.212i 0.672694 0.581288i
\(631\) −75.5208 54.8691i −0.119684 0.0869558i 0.526333 0.850279i \(-0.323567\pi\)
−0.646017 + 0.763323i \(0.723567\pi\)
\(632\) −390.342 + 126.830i −0.617630 + 0.200680i
\(633\) −136.059 + 50.6418i −0.214943 + 0.0800028i
\(634\) 6.07783 + 4.41580i 0.00958649 + 0.00696499i
\(635\) −572.322 787.734i −0.901295 1.24053i
\(636\) −76.4322 + 274.035i −0.120176 + 0.430873i
\(637\) 643.584 1.01034
\(638\) 0 0
\(639\) −1.94785 23.0469i −0.00304828 0.0360672i
\(640\) 258.308 794.990i 0.403606 1.24217i
\(641\) 8.68174 + 11.9494i 0.0135441 + 0.0186418i 0.815735 0.578425i \(-0.196333\pi\)
−0.802191 + 0.597067i \(0.796333\pi\)
\(642\) 105.386 158.712i 0.164153 0.247215i
\(643\) −134.744 414.698i −0.209555 0.644943i −0.999496 0.0317599i \(-0.989889\pi\)
0.789941 0.613183i \(-0.210111\pi\)
\(644\) 427.023 138.748i 0.663079 0.215448i
\(645\) −720.348 478.317i −1.11682 0.741577i
\(646\) 41.2922 30.0005i 0.0639198 0.0464405i
\(647\) −298.985 97.1462i −0.462110 0.150149i 0.0687036 0.997637i \(-0.478114\pi\)
−0.530814 + 0.847488i \(0.678114\pi\)
\(648\) 56.7948 + 333.596i 0.0876462 + 0.514809i
\(649\) 0 0
\(650\) 948.550i 1.45931i
\(651\) −183.926 51.2994i −0.282528 0.0788010i
\(652\) 1139.59 827.958i 1.74783 1.26987i
\(653\) −112.807 + 155.266i −0.172752 + 0.237773i −0.886610 0.462517i \(-0.846946\pi\)
0.713858 + 0.700291i \(0.246946\pi\)
\(654\) 338.802 + 910.258i 0.518046 + 1.39183i
\(655\) 306.656 + 943.789i 0.468177 + 1.44090i
\(656\) −68.1931 + 93.8598i −0.103953 + 0.143079i
\(657\) 309.700 267.618i 0.471386 0.407334i
\(658\) 57.6135 177.316i 0.0875586 0.269478i
\(659\) 127.678i 0.193745i −0.995297 0.0968724i \(-0.969116\pi\)
0.995297 0.0968724i \(-0.0308839\pi\)
\(660\) 0 0
\(661\) 580.599 0.878364 0.439182 0.898398i \(-0.355268\pi\)
0.439182 + 0.898398i \(0.355268\pi\)
\(662\) −1071.27 348.076i −1.61823 0.525795i
\(663\) −30.7631 + 24.3961i −0.0463998 + 0.0367965i
\(664\) 107.820 + 78.3355i 0.162379 + 0.117975i
\(665\) 400.388 130.094i 0.602088 0.195630i
\(666\) −978.663 + 412.015i −1.46946 + 0.618641i
\(667\) 83.6135 + 60.7488i 0.125358 + 0.0910776i
\(668\) −504.590 694.508i −0.755374 1.03968i
\(669\) 611.798 + 170.639i 0.914497 + 0.255066i
\(670\) 1468.92 2.19241
\(671\) 0 0
\(672\) −397.167 + 16.7538i −0.591023 + 0.0249313i
\(673\) 168.866 519.715i 0.250915 0.772236i −0.743692 0.668522i \(-0.766927\pi\)
0.994607 0.103714i \(-0.0330728\pi\)
\(674\) −1064.66 1465.37i −1.57961 2.17415i
\(675\) 247.822 451.654i 0.367144 0.669117i
\(676\) −157.319 484.177i −0.232720 0.716238i
\(677\) 27.7389 9.01292i 0.0409733 0.0133130i −0.288459 0.957492i \(-0.593143\pi\)
0.329432 + 0.944179i \(0.393143\pi\)
\(678\) 674.266 1015.45i 0.994492 1.49771i
\(679\) 156.862 113.967i 0.231019 0.167845i
\(680\) −21.2528 6.90545i −0.0312541 0.0101551i
\(681\) 363.832 15.3476i 0.534261 0.0225369i
\(682\) 0 0
\(683\) 82.4506i 0.120718i −0.998177 0.0603592i \(-0.980775\pi\)
0.998177 0.0603592i \(-0.0192246\pi\)
\(684\) −227.737 + 973.328i −0.332949 + 1.42299i
\(685\) −817.553 + 593.987i −1.19351 + 0.867134i
\(686\) 488.251 672.019i 0.711735 0.979620i
\(687\) −907.976 + 337.953i −1.32165 + 0.491926i
\(688\) 116.386 + 358.200i 0.169166 + 0.520640i
\(689\) 168.772 232.294i 0.244952 0.337147i
\(690\) 1304.89 1034.82i 1.89115 1.49974i
\(691\) 299.041 920.352i 0.432765 1.33191i −0.462595 0.886570i \(-0.653082\pi\)
0.895360 0.445344i \(-0.146918\pi\)
\(692\) 888.061i 1.28333i
\(693\) 0 0
\(694\) −901.554 −1.29907
\(695\) −706.172 229.449i −1.01607 0.330143i
\(696\) 29.4581 + 37.1463i 0.0423249 + 0.0533711i
\(697\) 8.71606 + 6.33259i 0.0125051 + 0.00908549i
\(698\) −1199.14 + 389.624i −1.71796 + 0.558201i
\(699\) −421.112 1131.40i −0.602449 1.61860i
\(700\) −253.674 184.305i −0.362392 0.263293i
\(701\) 184.624 + 254.112i 0.263372 + 0.362500i 0.920138 0.391594i \(-0.128076\pi\)
−0.656766 + 0.754094i \(0.728076\pi\)
\(702\) 250.442 1318.67i 0.356755 1.87845i
\(703\) −798.129 −1.13532
\(704\) 0 0
\(705\) −16.6971 395.822i −0.0236838 0.561450i
\(706\) −128.211 + 394.592i −0.181602 + 0.558912i
\(707\) −270.702 372.589i −0.382888 0.527000i
\(708\) −583.619 387.528i −0.824321 0.547356i
\(709\) 101.157 + 311.330i 0.142676 + 0.439111i 0.996705 0.0811142i \(-0.0258478\pi\)
−0.854029 + 0.520226i \(0.825848\pi\)
\(710\) −49.6596 + 16.1354i −0.0699432 + 0.0227259i
\(711\) 756.544 + 457.620i 1.06406 + 0.643629i
\(712\) 62.6656 45.5292i 0.0880134 0.0639455i
\(713\) −539.971 175.447i −0.757323 0.246069i
\(714\) 0.954820 + 22.6351i 0.00133728 + 0.0317018i
\(715\) 0 0
\(716\) 314.061i 0.438632i
\(717\) 0.259076 0.928877i 0.000361334 0.00129550i
\(718\) 690.192 501.454i 0.961270 0.698404i
\(719\) −650.211 + 894.939i −0.904327 + 1.24470i 0.0647402 + 0.997902i \(0.479378\pi\)
−0.969067 + 0.246797i \(0.920622\pi\)
\(720\) −477.792 + 201.149i −0.663600 + 0.279374i
\(721\) −141.757 436.282i −0.196611 0.605107i
\(722\) −121.532 + 167.275i −0.168327 + 0.231682i
\(723\) 542.073 + 683.546i 0.749755 + 0.945431i
\(724\) −471.975 + 1452.59i −0.651899 + 2.00634i
\(725\) 72.1759i 0.0995530i
\(726\) 0 0
\(727\) 577.040 0.793727 0.396864 0.917878i \(-0.370099\pi\)
0.396864 + 0.917878i \(0.370099\pi\)
\(728\) −197.698 64.2359i −0.271563 0.0882361i
\(729\) 463.770 562.457i 0.636173 0.771546i
\(730\) −747.563 543.136i −1.02406 0.744023i
\(731\) 33.2634 10.8079i 0.0455040 0.0147851i
\(732\) −160.721 + 59.8211i −0.219564 + 0.0817229i
\(733\) 501.026 + 364.016i 0.683527 + 0.496612i 0.874526 0.484979i \(-0.161173\pi\)
−0.190999 + 0.981590i \(0.561173\pi\)
\(734\) −317.281 436.700i −0.432263 0.594959i
\(735\) 212.003 760.102i 0.288439 1.03415i
\(736\) −1181.99 −1.60596
\(737\) 0 0
\(738\) −367.005 + 31.0181i −0.497297 + 0.0420299i
\(739\) 345.884 1064.52i 0.468044 1.44049i −0.387070 0.922050i \(-0.626513\pi\)
0.855114 0.518440i \(-0.173487\pi\)
\(740\) 807.217 + 1111.04i 1.09083 + 1.50140i
\(741\) 558.079 840.469i 0.753142 1.13424i
\(742\) −51.1981 157.572i −0.0690002 0.212361i
\(743\) 1092.36 354.930i 1.47020 0.477698i 0.539034 0.842284i \(-0.318790\pi\)
0.931170 + 0.364586i \(0.118790\pi\)
\(744\) −216.965 144.067i −0.291620 0.193638i
\(745\) −1394.91 + 1013.46i −1.87236 + 1.36035i
\(746\) 474.724 + 154.247i 0.636360 + 0.206766i
\(747\) −24.1791 286.086i −0.0323682 0.382979i
\(748\) 0 0
\(749\) 63.5613i 0.0848616i
\(750\) 347.546 + 96.9352i 0.463394 + 0.129247i
\(751\) 221.394 160.852i 0.294799 0.214184i −0.430548 0.902568i \(-0.641680\pi\)
0.725346 + 0.688384i \(0.241680\pi\)
\(752\) −101.430 + 139.606i −0.134880 + 0.185646i
\(753\) 117.856 + 316.642i 0.156515 + 0.420508i
\(754\) −58.1099 178.844i −0.0770689 0.237194i
\(755\) −343.489 + 472.772i −0.454952 + 0.626188i
\(756\) −303.996 323.197i −0.402111 0.427510i
\(757\) −172.433 + 530.695i −0.227785 + 0.701051i 0.770212 + 0.637788i \(0.220150\pi\)
−0.997997 + 0.0632624i \(0.979850\pi\)
\(758\) 162.899i 0.214906i
\(759\) 0 0
\(760\) 574.212 0.755543
\(761\) 401.113 + 130.329i 0.527086 + 0.171261i 0.560459 0.828182i \(-0.310625\pi\)
−0.0333725 + 0.999443i \(0.510625\pi\)
\(762\) −1054.95 + 836.604i −1.38444 + 1.09791i
\(763\) −262.156 190.468i −0.343586 0.249630i
\(764\) 701.310 227.870i 0.917945 0.298259i
\(765\) 18.6792 + 44.3689i 0.0244173 + 0.0579986i
\(766\) −221.993 161.287i −0.289808 0.210558i
\(767\) 415.598 + 572.021i 0.541848 + 0.745790i
\(768\) 15.7602 + 4.39573i 0.0205211 + 0.00572360i
\(769\) 108.997 0.141738 0.0708692 0.997486i \(-0.477423\pi\)
0.0708692 + 0.997486i \(0.477423\pi\)
\(770\) 0 0
\(771\) −589.181 + 24.8536i −0.764178 + 0.0322355i
\(772\) 494.218 1521.05i 0.640179 1.97027i
\(773\) 606.367 + 834.592i 0.784433 + 1.07968i 0.994779 + 0.102053i \(0.0325410\pi\)
−0.210346 + 0.977627i \(0.567459\pi\)
\(774\) −618.842 + 1023.08i −0.799537 + 1.32181i
\(775\) 122.524 + 377.089i 0.158095 + 0.486567i
\(776\) 251.515 81.7222i 0.324117 0.105312i
\(777\) 195.968 295.129i 0.252212 0.379832i
\(778\) −667.478 + 484.951i −0.857941 + 0.623331i
\(779\) −263.288 85.5475i −0.337982 0.109817i
\(780\) −1734.41 + 73.1631i −2.22360 + 0.0937988i
\(781\) 0 0
\(782\) 67.3630i 0.0861420i
\(783\) 19.0563 100.339i 0.0243376 0.128147i
\(784\) −278.072 + 202.031i −0.354683 + 0.257692i
\(785\) −29.8748 + 41.1191i −0.0380570 + 0.0523810i
\(786\) 1286.03 478.665i 1.63617 0.608989i
\(787\) −64.0985 197.275i −0.0814467 0.250667i 0.902039 0.431655i \(-0.142070\pi\)
−0.983485 + 0.180988i \(0.942070\pi\)
\(788\) −183.340 + 252.346i −0.232665 + 0.320236i
\(789\) −889.286 + 705.231i −1.12710 + 0.893829i
\(790\) 616.825 1898.39i 0.780791 2.40303i
\(791\) 406.668i 0.514119i
\(792\) 0 0
\(793\) 173.082 0.218263
\(794\) −615.536 200.000i −0.775234 0.251889i
\(795\) −218.755 275.847i −0.275164 0.346978i
\(796\) −542.774 394.349i −0.681877 0.495413i
\(797\) 211.514 68.7252i 0.265388 0.0862298i −0.173300 0.984869i \(-0.555443\pi\)
0.438689 + 0.898639i \(0.355443\pi\)
\(798\) −203.067 545.578i −0.254469 0.683682i
\(799\) 12.9641 + 9.41900i 0.0162255 + 0.0117885i
\(800\) 485.183 + 667.797i 0.606479 + 0.834746i
\(801\) −162.480 38.0166i −0.202846 0.0474614i
\(802\) −1376.50 −1.71633
\(803\) 0 0
\(804\) −49.0426 1162.61i −0.0609983 1.44603i
\(805\) −171.699 + 528.436i −0.213291 + 0.656443i
\(806\) 607.201 + 835.740i 0.753351 + 1.03690i
\(807\) 502.727 + 333.815i 0.622958 + 0.413649i
\(808\) −194.112 597.415i −0.240237 0.739375i
\(809\) −715.778 + 232.570i −0.884769 + 0.287479i −0.715936 0.698166i \(-0.754000\pi\)
−0.168833 + 0.985645i \(0.554000\pi\)
\(810\) −1474.92 730.168i −1.82088 0.901442i
\(811\) 187.891 136.511i 0.231678 0.168324i −0.465890 0.884843i \(-0.654266\pi\)
0.697568 + 0.716519i \(0.254266\pi\)
\(812\) −59.1197 19.2092i −0.0728076 0.0236566i
\(813\) −10.1421 240.430i −0.0124749 0.295732i
\(814\) 0 0
\(815\) 1743.13i 2.13881i
\(816\) 5.63343 20.1978i 0.00690372 0.0247522i
\(817\) −727.077 + 528.252i −0.889935 + 0.646576i
\(818\) −277.540 + 382.001i −0.339291 + 0.466994i
\(819\) 173.758 + 412.728i 0.212158 + 0.503942i
\(820\) 147.199 + 453.033i 0.179511 + 0.552480i
\(821\) 285.054 392.343i 0.347204 0.477885i −0.599324 0.800506i \(-0.704564\pi\)
0.946528 + 0.322621i \(0.104564\pi\)
\(822\) 868.273 + 1094.88i 1.05629 + 1.33197i
\(823\) 48.4819 149.212i 0.0589088 0.181302i −0.917272 0.398261i \(-0.869614\pi\)
0.976181 + 0.216959i \(0.0696137\pi\)
\(824\) 625.689i 0.759331i
\(825\) 0 0
\(826\) 407.986 0.493930
\(827\) 150.007 + 48.7401i 0.181386 + 0.0589360i 0.398302 0.917254i \(-0.369600\pi\)
−0.216916 + 0.976190i \(0.569600\pi\)
\(828\) −862.598 998.238i −1.04179 1.20560i
\(829\) −1057.08 768.011i −1.27512 0.926431i −0.275728 0.961236i \(-0.588919\pi\)
−0.999394 + 0.0348051i \(0.988919\pi\)
\(830\) −616.434 + 200.292i −0.742692 + 0.241315i
\(831\) 615.493 229.089i 0.740665 0.275679i
\(832\) 1283.81 + 932.745i 1.54304 + 1.12109i
\(833\) 18.7611 + 25.8224i 0.0225223 + 0.0309993i
\(834\) −275.842 + 988.989i −0.330746 + 1.18584i
\(835\) 1062.33 1.27226
\(836\) 0 0
\(837\) 70.7709 + 556.579i 0.0845530 + 0.664969i
\(838\) 714.482 2198.95i 0.852604 2.62405i
\(839\) −754.318 1038.23i −0.899068 1.23746i −0.970764 0.240035i \(-0.922841\pi\)
0.0716959 0.997427i \(-0.477159\pi\)
\(840\) −140.989 + 212.330i −0.167844 + 0.252774i
\(841\) 255.462 + 786.230i 0.303759 + 0.934875i
\(842\) −1271.56 + 413.154i −1.51016 + 0.490682i
\(843\) 1240.70 + 823.837i 1.47177 + 0.977268i
\(844\) 210.049 152.609i 0.248873 0.180817i
\(845\) 599.164 + 194.680i 0.709069 + 0.230391i
\(846\) −545.878 + 46.1359i −0.645246 + 0.0545342i
\(847\) 0 0
\(848\) 153.347i 0.180834i
\(849\) 889.167 + 248.001i 1.04731 + 0.292109i
\(850\) 38.0586 27.6512i 0.0447748 0.0325308i
\(851\) 619.160 852.200i 0.727567 1.00141i
\(852\) 14.4287 + 38.7656i 0.0169351 + 0.0454995i
\(853\) −153.468 472.325i −0.179915 0.553723i 0.819908 0.572495i \(-0.194024\pi\)
−0.999824 + 0.0187721i \(0.994024\pi\)
\(854\) 58.7033 80.7982i 0.0687392 0.0946114i
\(855\) −808.796 935.975i −0.945960 1.09471i
\(856\) −26.7900 + 82.4511i −0.0312967 + 0.0963214i
\(857\) 479.970i 0.560059i −0.959991 0.280029i \(-0.909656\pi\)
0.959991 0.280029i \(-0.0903442\pi\)
\(858\) 0 0
\(859\) 658.810 0.766950 0.383475 0.923551i \(-0.374727\pi\)
0.383475 + 0.923551i \(0.374727\pi\)
\(860\) 1470.71 + 477.864i 1.71013 + 0.555655i
\(861\) 96.2798 76.3528i 0.111823 0.0886793i
\(862\) 24.0996 + 17.5094i 0.0279578 + 0.0203125i
\(863\) 512.443 166.503i 0.593793 0.192935i 0.00332255 0.999994i \(-0.498942\pi\)
0.590470 + 0.807060i \(0.298942\pi\)
\(864\) 498.185 + 1056.47i 0.576603 + 1.22277i
\(865\) 889.082 + 645.956i 1.02784 + 0.746770i
\(866\) −106.622 146.752i −0.123120 0.169460i
\(867\) 833.249 + 232.405i 0.961072 + 0.268056i
\(868\) 341.485 0.393416
\(869\) 0 0
\(870\) −230.365 + 9.71754i −0.264787 + 0.0111696i
\(871\) −362.918 + 1116.95i −0.416669 + 1.28237i
\(872\) −259.788 357.567i −0.297922 0.410054i
\(873\) −487.475 294.865i −0.558391 0.337761i
\(874\) −534.893 1646.23i −0.612005 1.88356i
\(875\) −114.486 + 37.1986i −0.130841 + 0.0425127i
\(876\) −404.919 + 609.810i −0.462237 + 0.696130i
\(877\) 68.5357 49.7941i 0.0781479 0.0567777i −0.548025 0.836462i \(-0.684620\pi\)
0.626173 + 0.779684i \(0.284620\pi\)
\(878\) 1294.36 + 420.562i 1.47421 + 0.479001i
\(879\) −1018.19 + 42.9505i −1.15835 + 0.0488629i
\(880\) 0 0
\(881\) 364.734i 0.414000i 0.978341 + 0.207000i \(0.0663701\pi\)
−0.978341 + 0.207000i \(0.933630\pi\)
\(882\) −1062.48 248.596i −1.20463 0.281855i
\(883\) −180.241 + 130.953i −0.204123 + 0.148304i −0.685151 0.728401i \(-0.740264\pi\)
0.481027 + 0.876706i \(0.340264\pi\)
\(884\) 41.2721 56.8062i 0.0466879 0.0642604i
\(885\) 812.485 302.411i 0.918063 0.341707i
\(886\) −506.266 1558.13i −0.571406 1.75861i
\(887\) −801.425 + 1103.07i −0.903523 + 1.24359i 0.0658073 + 0.997832i \(0.479038\pi\)
−0.969331 + 0.245761i \(0.920962\pi\)
\(888\) 378.600 300.241i 0.426351 0.338110i
\(889\) 138.811 427.217i 0.156143 0.480559i
\(890\) 376.714i 0.423274i
\(891\) 0 0
\(892\) −1135.89 −1.27342
\(893\) −391.611 127.242i −0.438534 0.142488i
\(894\) 1481.45 + 1868.08i 1.65710 + 2.08958i
\(895\) 314.422 + 228.441i 0.351309 + 0.255241i
\(896\) 366.760 119.167i 0.409330 0.132999i
\(897\) 464.471 + 1247.89i 0.517805 + 1.39118i
\(898\) −1904.91 1384.00i −2.12129 1.54120i
\(899\) 46.2024 + 63.5921i 0.0513931 + 0.0707365i
\(900\) −209.903 + 897.106i −0.233225 + 0.996784i
\(901\) 14.2402 0.0158049
\(902\) 0 0
\(903\) −16.8126 398.560i −0.0186186 0.441373i
\(904\) −171.404 + 527.526i −0.189606 + 0.583546i
\(905\) −1110.95 1529.10i −1.22757 1.68961i
\(906\) 673.179 + 446.997i 0.743024 + 0.493374i
\(907\) 203.099 + 625.073i 0.223924 + 0.689166i 0.998399 + 0.0565619i \(0.0180138\pi\)
−0.774476 + 0.632604i \(0.781986\pi\)
\(908\) −619.376 + 201.248i −0.682132 + 0.221638i
\(909\) −700.383 + 1157.88i −0.770498 + 1.27380i
\(910\) 817.887 594.230i 0.898777 0.653000i
\(911\) 331.388 + 107.674i 0.363763 + 0.118194i 0.485195 0.874406i \(-0.338749\pi\)
−0.121432 + 0.992600i \(0.538749\pi\)
\(912\) 22.7085 + 538.329i 0.0248996 + 0.590273i
\(913\) 0 0
\(914\) 519.188i 0.568039i
\(915\) 57.0151 204.418i 0.0623116 0.223408i
\(916\) 1401.74 1018.42i 1.53028 1.11182i
\(917\) −269.096 + 370.379i −0.293453 + 0.403903i
\(918\) 60.2096 28.3922i 0.0655879 0.0309283i
\(919\) −197.588 608.115i −0.215004 0.661714i −0.999153 0.0411417i \(-0.986901\pi\)
0.784150 0.620572i \(-0.213099\pi\)
\(920\) −445.453 + 613.114i −0.484188 + 0.666428i
\(921\) −738.416 931.131i −0.801754 1.01100i
\(922\) 251.884 775.220i 0.273193 0.840803i
\(923\) 41.7471i 0.0452298i
\(924\) 0 0
\(925\) −735.627 −0.795272
\(926\) 2051.44 + 666.554i 2.21538 + 0.719821i
\(927\) −1019.88 + 881.301i −1.10020 + 0.950703i
\(928\) 132.389 + 96.1863i 0.142661 + 0.103649i
\(929\) −299.056 + 97.1692i −0.321912 + 0.104595i −0.465515 0.885040i \(-0.654131\pi\)
0.143604 + 0.989635i \(0.454131\pi\)
\(930\) 1187.07 441.831i 1.27641 0.475087i
\(931\) −663.529 482.082i −0.712706 0.517811i
\(932\) 1269.02 + 1746.66i 1.36161 + 1.87410i
\(933\) 70.1490 251.508i 0.0751865 0.269569i
\(934\) 2066.22 2.21222
\(935\) 0 0
\(936\) 51.4389 + 608.623i 0.0549561 + 0.650238i
\(937\) −469.735 + 1445.70i −0.501318 + 1.54290i 0.305556 + 0.952174i \(0.401158\pi\)
−0.806874 + 0.590724i \(0.798842\pi\)
\(938\) 398.324 + 548.245i 0.424652 + 0.584483i
\(939\) −993.897 + 1496.81i −1.05846 + 1.59405i
\(940\) 218.942 + 673.835i 0.232917 + 0.716846i
\(941\) 1067.37 346.811i 1.13430 0.368556i 0.319090 0.947724i \(-0.396623\pi\)
0.815208 + 0.579169i \(0.196623\pi\)
\(942\) 58.5494 + 38.8773i 0.0621544 + 0.0412711i
\(943\) 295.593 214.761i 0.313460 0.227742i
\(944\) −359.133 116.689i −0.380437 0.123611i
\(945\) 544.689 69.2591i 0.576390 0.0732900i
\(946\) 0 0
\(947\) 865.333i 0.913762i −0.889528 0.456881i \(-0.848967\pi\)
0.889528 0.456881i \(-0.151033\pi\)
\(948\) −1523.12 424.819i −1.60667 0.448122i
\(949\) 597.691 434.248i 0.629812 0.457585i
\(950\) −710.520 + 977.947i −0.747916 + 1.02942i
\(951\) 2.56899 + 6.90210i 0.00270136 + 0.00725773i
\(952\) −3.18575 9.80474i −0.00334638 0.0102991i
\(953\) −298.122 + 410.330i −0.312825 + 0.430567i −0.936260 0.351309i \(-0.885737\pi\)
0.623435 + 0.781875i \(0.285737\pi\)
\(954\) −368.350 + 318.299i −0.386111 + 0.333647i
\(955\) −281.986 + 867.863i −0.295273 + 0.908757i
\(956\) 1.72460i 0.00180397i
\(957\) 0 0
\(958\) 2141.59 2.23548
\(959\) −443.388 144.066i −0.462345 0.150225i
\(960\) 1524.52 1208.99i 1.58804 1.25936i
\(961\) 428.125 + 311.051i 0.445500 + 0.323674i
\(962\) −1822.80 + 592.265i −1.89481 + 0.615660i
\(963\) 172.131 72.4668i 0.178745 0.0752511i
\(964\) −1262.22 917.054i −1.30935 0.951301i
\(965\) 1163.31 + 1601.16i 1.20550 + 1.65924i
\(966\) 740.071 + 206.416i 0.766120 + 0.213681i
\(967\) 569.116 0.588537 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(968\) 0 0
\(969\) 49.9906 2.10876i 0.0515899 0.00217623i
\(970\) −397.448 + 1223.22i −0.409740 + 1.26105i
\(971\) 736.695 + 1013.97i 0.758697 + 1.04426i 0.997321 + 0.0731450i \(0.0233036\pi\)
−0.238624 + 0.971112i \(0.576696\pi\)
\(972\) −528.666 + 1191.74i −0.543895 + 1.22607i
\(973\) −105.854 325.784i −0.108791 0.334825i
\(974\) −1901.55 + 617.851i −1.95231 + 0.634344i
\(975\) 514.375 774.651i 0.527564 0.794514i
\(976\) −74.7833 + 54.3333i −0.0766223 + 0.0556693i
\(977\) −1085.77 352.788i −1.11133 0.361093i −0.304878 0.952391i \(-0.598616\pi\)
−0.806453 + 0.591298i \(0.798616\pi\)
\(978\) 2408.24 101.587i 2.46241 0.103873i
\(979\) 0 0
\(980\) 1411.24i 1.44004i
\(981\) −216.921 + 927.102i −0.221122 + 0.945059i
\(982\) −153.097 + 111.231i −0.155903 + 0.113270i
\(983\) 391.031 538.208i 0.397793 0.547515i −0.562395 0.826869i \(-0.690120\pi\)
0.960188 + 0.279353i \(0.0901200\pi\)
\(984\) 157.075 58.4639i 0.159629 0.0594145i
\(985\) −119.279 367.102i −0.121095 0.372692i
\(986\) 5.48178 7.54502i 0.00555961 0.00765215i
\(987\) 143.205 113.566i 0.145091 0.115062i
\(988\) −557.549 + 1715.96i −0.564321 + 1.73680i
\(989\) 1186.13i 1.19933i
\(990\) 0 0
\(991\) −1471.97 −1.48534 −0.742670 0.669658i \(-0.766441\pi\)
−0.742670 + 0.669658i \(0.766441\pi\)
\(992\) −854.961 277.794i −0.861856 0.280034i
\(993\) −686.118 865.185i −0.690955 0.871284i
\(994\) −19.4883 14.1591i −0.0196060 0.0142446i
\(995\) 789.604 256.558i 0.793572 0.257847i
\(996\) 179.106 + 481.204i 0.179826 + 0.483137i
\(997\) 502.232 + 364.893i 0.503743 + 0.365991i 0.810445 0.585815i \(-0.199225\pi\)
−0.306702 + 0.951806i \(0.599225\pi\)
\(998\) 593.582 + 816.996i 0.594772 + 0.818633i
\(999\) −1022.67 194.225i −1.02369 0.194419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.251.1 16
3.2 odd 2 inner 363.3.h.j.251.4 16
11.2 odd 10 363.3.h.o.245.1 16
11.3 even 5 363.3.h.n.323.1 16
11.4 even 5 363.3.b.l.122.2 8
11.5 even 5 inner 363.3.h.j.269.4 16
11.6 odd 10 33.3.h.b.5.1 16
11.7 odd 10 363.3.b.m.122.7 8
11.8 odd 10 363.3.h.o.323.4 16
11.9 even 5 363.3.h.n.245.4 16
11.10 odd 2 33.3.h.b.20.4 yes 16
33.2 even 10 363.3.h.o.245.4 16
33.5 odd 10 inner 363.3.h.j.269.1 16
33.8 even 10 363.3.h.o.323.1 16
33.14 odd 10 363.3.h.n.323.4 16
33.17 even 10 33.3.h.b.5.4 yes 16
33.20 odd 10 363.3.h.n.245.1 16
33.26 odd 10 363.3.b.l.122.7 8
33.29 even 10 363.3.b.m.122.2 8
33.32 even 2 33.3.h.b.20.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.5.1 16 11.6 odd 10
33.3.h.b.5.4 yes 16 33.17 even 10
33.3.h.b.20.1 yes 16 33.32 even 2
33.3.h.b.20.4 yes 16 11.10 odd 2
363.3.b.l.122.2 8 11.4 even 5
363.3.b.l.122.7 8 33.26 odd 10
363.3.b.m.122.2 8 33.29 even 10
363.3.b.m.122.7 8 11.7 odd 10
363.3.h.j.251.1 16 1.1 even 1 trivial
363.3.h.j.251.4 16 3.2 odd 2 inner
363.3.h.j.269.1 16 33.5 odd 10 inner
363.3.h.j.269.4 16 11.5 even 5 inner
363.3.h.n.245.1 16 33.20 odd 10
363.3.h.n.245.4 16 11.9 even 5
363.3.h.n.323.1 16 11.3 even 5
363.3.h.n.323.4 16 33.14 odd 10
363.3.h.o.245.1 16 11.2 odd 10
363.3.h.o.245.4 16 33.2 even 10
363.3.h.o.323.1 16 33.8 even 10
363.3.h.o.323.4 16 11.8 odd 10