Properties

Label 363.3.h.j.245.3
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.3
Root \(0.974642 + 1.34148i\) of defining polynomial
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.j.323.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.974642 + 1.34148i) q^{2} +(2.52902 + 1.61371i) q^{3} +(0.386428 - 1.18930i) q^{4} +(0.410570 - 0.565101i) q^{5} +(0.300138 + 4.96542i) q^{6} +(-0.806259 + 2.48141i) q^{7} +(8.28007 - 2.69036i) q^{8} +(3.79191 + 8.16220i) q^{9} +1.15823 q^{10} +(2.89647 - 2.38419i) q^{12} +(13.8479 - 10.0611i) q^{13} +(-4.11458 + 1.33691i) q^{14} +(1.95025 - 0.766614i) q^{15} +(7.63243 + 5.54529i) q^{16} +(-9.47072 + 13.0353i) q^{17} +(-7.25367 + 13.0420i) q^{18} +(4.92151 + 15.1469i) q^{19} +(-0.513421 - 0.706663i) q^{20} +(-6.04332 + 4.97448i) q^{21} -23.1295i q^{23} +(25.2819 + 6.55762i) q^{24} +(7.57465 + 23.3124i) q^{25} +(26.9935 + 8.77071i) q^{26} +(-3.58157 + 26.7614i) q^{27} +(2.63959 + 1.91777i) q^{28} +(-5.10329 - 1.65816i) q^{29} +(2.92919 + 1.86904i) q^{30} +(3.28671 - 2.38793i) q^{31} -19.1813i q^{32} -26.7172 q^{34} +(1.07122 + 1.47441i) q^{35} +(11.1726 - 1.35562i) q^{36} +(19.6322 - 60.4217i) q^{37} +(-15.5225 + 21.3649i) q^{38} +(51.2573 - 3.09828i) q^{39} +(1.87922 - 5.78366i) q^{40} +(-64.1371 + 20.8394i) q^{41} +(-12.5632 - 3.25865i) q^{42} +22.6622 q^{43} +(6.16931 + 1.20834i) q^{45} +(31.0277 - 22.5429i) q^{46} +(-70.2078 + 22.8119i) q^{47} +(10.3541 + 26.3407i) q^{48} +(34.1345 + 24.8002i) q^{49} +(-23.8905 + 32.8825i) q^{50} +(-44.9868 + 17.6837i) q^{51} +(-6.61446 - 20.3572i) q^{52} +(-25.1873 - 34.6673i) q^{53} +(-39.3906 + 21.2782i) q^{54} +22.7154i q^{56} +(-11.9960 + 46.2486i) q^{57} +(-2.74949 - 8.46207i) q^{58} +(-27.3316 - 8.88056i) q^{59} +(-0.158106 - 2.61568i) q^{60} +(-37.4585 - 27.2152i) q^{61} +(6.40673 + 2.08167i) q^{62} +(-23.3110 + 2.82843i) q^{63} +(56.2610 - 40.8760i) q^{64} -11.9562i q^{65} -77.2821 q^{67} +(11.8432 + 16.3008i) q^{68} +(37.3241 - 58.4949i) q^{69} +(-0.933834 + 2.87405i) q^{70} +(24.2537 - 33.3824i) q^{71} +(53.3565 + 57.3820i) q^{72} +(17.5438 - 53.9942i) q^{73} +(100.189 - 32.5533i) q^{74} +(-18.4629 + 71.1808i) q^{75} +19.9160 q^{76} +(54.1137 + 65.7409i) q^{78} +(-41.1994 + 29.9331i) q^{79} +(6.26730 - 2.03637i) q^{80} +(-52.2429 + 61.9006i) q^{81} +(-90.4664 - 65.7277i) q^{82} +(34.8026 - 47.9017i) q^{83} +(3.58085 + 9.10961i) q^{84} +(3.47788 + 10.7038i) q^{85} +(22.0875 + 30.4009i) q^{86} +(-10.2306 - 12.4287i) q^{87} +38.1909i q^{89} +(4.39190 + 9.45370i) q^{90} +(13.8007 + 42.4742i) q^{91} +(-27.5079 - 8.93786i) q^{92} +(12.1656 - 0.735356i) q^{93} +(-99.0291 - 71.9489i) q^{94} +(10.5801 + 3.43769i) q^{95} +(30.9530 - 48.5099i) q^{96} +(-13.1808 + 9.57644i) q^{97} +69.9620i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.974642 + 1.34148i 0.487321 + 0.670740i 0.979891 0.199533i \(-0.0639425\pi\)
−0.492570 + 0.870273i \(0.663943\pi\)
\(3\) 2.52902 + 1.61371i 0.843007 + 0.537902i
\(4\) 0.386428 1.18930i 0.0966070 0.297326i
\(5\) 0.410570 0.565101i 0.0821140 0.113020i −0.765984 0.642860i \(-0.777748\pi\)
0.848098 + 0.529839i \(0.177748\pi\)
\(6\) 0.300138 + 4.96542i 0.0500229 + 0.827569i
\(7\) −0.806259 + 2.48141i −0.115180 + 0.354487i −0.991985 0.126360i \(-0.959671\pi\)
0.876805 + 0.480847i \(0.159671\pi\)
\(8\) 8.28007 2.69036i 1.03501 0.336295i
\(9\) 3.79191 + 8.16220i 0.421323 + 0.906911i
\(10\) 1.15823 0.115823
\(11\) 0 0
\(12\) 2.89647 2.38419i 0.241372 0.198683i
\(13\) 13.8479 10.0611i 1.06522 0.773930i 0.0901753 0.995926i \(-0.471257\pi\)
0.975048 + 0.221996i \(0.0712573\pi\)
\(14\) −4.11458 + 1.33691i −0.293898 + 0.0954933i
\(15\) 1.95025 0.766614i 0.130017 0.0511076i
\(16\) 7.63243 + 5.54529i 0.477027 + 0.346580i
\(17\) −9.47072 + 13.0353i −0.557101 + 0.766784i −0.990954 0.134200i \(-0.957154\pi\)
0.433853 + 0.900984i \(0.357154\pi\)
\(18\) −7.25367 + 13.0420i −0.402981 + 0.724555i
\(19\) 4.92151 + 15.1469i 0.259027 + 0.797203i 0.993009 + 0.118035i \(0.0376594\pi\)
−0.733983 + 0.679168i \(0.762341\pi\)
\(20\) −0.513421 0.706663i −0.0256710 0.0353331i
\(21\) −6.04332 + 4.97448i −0.287777 + 0.236880i
\(22\) 0 0
\(23\) 23.1295i 1.00563i −0.864395 0.502814i \(-0.832298\pi\)
0.864395 0.502814i \(-0.167702\pi\)
\(24\) 25.2819 + 6.55762i 1.05341 + 0.273234i
\(25\) 7.57465 + 23.3124i 0.302986 + 0.932495i
\(26\) 26.9935 + 8.77071i 1.03821 + 0.337335i
\(27\) −3.58157 + 26.7614i −0.132651 + 0.991163i
\(28\) 2.63959 + 1.91777i 0.0942710 + 0.0684919i
\(29\) −5.10329 1.65816i −0.175976 0.0571779i 0.219704 0.975567i \(-0.429491\pi\)
−0.395679 + 0.918389i \(0.629491\pi\)
\(30\) 2.92919 + 1.86904i 0.0976397 + 0.0623014i
\(31\) 3.28671 2.38793i 0.106023 0.0770301i −0.533511 0.845793i \(-0.679128\pi\)
0.639533 + 0.768763i \(0.279128\pi\)
\(32\) 19.1813i 0.599415i
\(33\) 0 0
\(34\) −26.7172 −0.785799
\(35\) 1.07122 + 1.47441i 0.0306064 + 0.0421260i
\(36\) 11.1726 1.35562i 0.310351 0.0376562i
\(37\) 19.6322 60.4217i 0.530600 1.63302i −0.222368 0.974963i \(-0.571379\pi\)
0.752968 0.658057i \(-0.228621\pi\)
\(38\) −15.5225 + 21.3649i −0.408486 + 0.562233i
\(39\) 51.2573 3.09828i 1.31429 0.0794430i
\(40\) 1.87922 5.78366i 0.0469806 0.144591i
\(41\) −64.1371 + 20.8394i −1.56432 + 0.508278i −0.957958 0.286910i \(-0.907372\pi\)
−0.606362 + 0.795188i \(0.707372\pi\)
\(42\) −12.5632 3.25865i −0.299124 0.0775869i
\(43\) 22.6622 0.527028 0.263514 0.964656i \(-0.415118\pi\)
0.263514 + 0.964656i \(0.415118\pi\)
\(44\) 0 0
\(45\) 6.16931 + 1.20834i 0.137096 + 0.0268521i
\(46\) 31.0277 22.5429i 0.674515 0.490064i
\(47\) −70.2078 + 22.8119i −1.49378 + 0.485360i −0.938198 0.346100i \(-0.887506\pi\)
−0.555585 + 0.831460i \(0.687506\pi\)
\(48\) 10.3541 + 26.3407i 0.215711 + 0.548764i
\(49\) 34.1345 + 24.8002i 0.696622 + 0.506126i
\(50\) −23.8905 + 32.8825i −0.477810 + 0.657649i
\(51\) −44.9868 + 17.6837i −0.882095 + 0.346739i
\(52\) −6.61446 20.3572i −0.127201 0.391485i
\(53\) −25.1873 34.6673i −0.475232 0.654100i 0.502348 0.864666i \(-0.332470\pi\)
−0.977580 + 0.210565i \(0.932470\pi\)
\(54\) −39.3906 + 21.2782i −0.729456 + 0.394040i
\(55\) 0 0
\(56\) 22.7154i 0.405632i
\(57\) −11.9960 + 46.2486i −0.210455 + 0.811379i
\(58\) −2.74949 8.46207i −0.0474051 0.145898i
\(59\) −27.3316 8.88056i −0.463247 0.150518i 0.0680891 0.997679i \(-0.478310\pi\)
−0.531336 + 0.847161i \(0.678310\pi\)
\(60\) −0.158106 2.61568i −0.00263510 0.0435946i
\(61\) −37.4585 27.2152i −0.614074 0.446151i 0.236772 0.971565i \(-0.423910\pi\)
−0.850847 + 0.525414i \(0.823910\pi\)
\(62\) 6.40673 + 2.08167i 0.103334 + 0.0335753i
\(63\) −23.3110 + 2.82843i −0.370016 + 0.0448957i
\(64\) 56.2610 40.8760i 0.879079 0.638688i
\(65\) 11.9562i 0.183942i
\(66\) 0 0
\(67\) −77.2821 −1.15346 −0.576732 0.816933i \(-0.695672\pi\)
−0.576732 + 0.816933i \(0.695672\pi\)
\(68\) 11.8432 + 16.3008i 0.174165 + 0.239717i
\(69\) 37.3241 58.4949i 0.540929 0.847752i
\(70\) −0.933834 + 2.87405i −0.0133405 + 0.0410578i
\(71\) 24.2537 33.3824i 0.341601 0.470174i −0.603307 0.797509i \(-0.706151\pi\)
0.944908 + 0.327335i \(0.106151\pi\)
\(72\) 53.3565 + 57.3820i 0.741062 + 0.796972i
\(73\) 17.5438 53.9942i 0.240326 0.739647i −0.756044 0.654521i \(-0.772871\pi\)
0.996370 0.0851266i \(-0.0271295\pi\)
\(74\) 100.189 32.5533i 1.35390 0.439910i
\(75\) −18.4629 + 71.1808i −0.246172 + 0.949077i
\(76\) 19.9160 0.262053
\(77\) 0 0
\(78\) 54.1137 + 65.7409i 0.693766 + 0.842831i
\(79\) −41.1994 + 29.9331i −0.521512 + 0.378901i −0.817173 0.576392i \(-0.804460\pi\)
0.295661 + 0.955293i \(0.404460\pi\)
\(80\) 6.26730 2.03637i 0.0783412 0.0254546i
\(81\) −52.2429 + 61.9006i −0.644974 + 0.764205i
\(82\) −90.4664 65.7277i −1.10325 0.801557i
\(83\) 34.8026 47.9017i 0.419309 0.577129i −0.546149 0.837688i \(-0.683907\pi\)
0.965458 + 0.260559i \(0.0839068\pi\)
\(84\) 3.58085 + 9.10961i 0.0426292 + 0.108448i
\(85\) 3.47788 + 10.7038i 0.0409163 + 0.125927i
\(86\) 22.0875 + 30.4009i 0.256832 + 0.353499i
\(87\) −10.2306 12.4287i −0.117593 0.142859i
\(88\) 0 0
\(89\) 38.1909i 0.429112i 0.976712 + 0.214556i \(0.0688304\pi\)
−0.976712 + 0.214556i \(0.931170\pi\)
\(90\) 4.39190 + 9.45370i 0.0487989 + 0.105041i
\(91\) 13.8007 + 42.4742i 0.151656 + 0.466749i
\(92\) −27.5079 8.93786i −0.298999 0.0971507i
\(93\) 12.1656 0.735356i 0.130813 0.00790705i
\(94\) −99.0291 71.9489i −1.05350 0.765414i
\(95\) 10.5801 + 3.43769i 0.111370 + 0.0361862i
\(96\) 30.9530 48.5099i 0.322427 0.505312i
\(97\) −13.1808 + 9.57644i −0.135885 + 0.0987262i −0.653651 0.756796i \(-0.726764\pi\)
0.517766 + 0.855522i \(0.326764\pi\)
\(98\) 69.9620i 0.713898i
\(99\) 0 0
\(100\) 30.6525 0.306525
\(101\) −61.2440 84.2951i −0.606376 0.834605i 0.389897 0.920858i \(-0.372510\pi\)
−0.996273 + 0.0862537i \(0.972510\pi\)
\(102\) −67.5683 43.1137i −0.662435 0.422683i
\(103\) 16.8125 51.7437i 0.163229 0.502366i −0.835673 0.549227i \(-0.814922\pi\)
0.998901 + 0.0468618i \(0.0149220\pi\)
\(104\) 87.5936 120.562i 0.842246 1.15925i
\(105\) 0.329879 + 5.45746i 0.00314171 + 0.0519758i
\(106\) 21.9569 67.5764i 0.207141 0.637514i
\(107\) −27.0164 + 8.77818i −0.252490 + 0.0820390i −0.432527 0.901621i \(-0.642378\pi\)
0.180037 + 0.983660i \(0.442378\pi\)
\(108\) 30.4434 + 14.6009i 0.281883 + 0.135194i
\(109\) 41.2540 0.378477 0.189238 0.981931i \(-0.439398\pi\)
0.189238 + 0.981931i \(0.439398\pi\)
\(110\) 0 0
\(111\) 147.153 121.127i 1.32570 1.09124i
\(112\) −19.9139 + 14.4683i −0.177802 + 0.129181i
\(113\) 138.072 44.8625i 1.22188 0.397013i 0.374114 0.927383i \(-0.377947\pi\)
0.847766 + 0.530370i \(0.177947\pi\)
\(114\) −73.7333 + 28.9835i −0.646783 + 0.254241i
\(115\) −13.0705 9.49626i −0.113656 0.0825762i
\(116\) −3.94411 + 5.42860i −0.0340009 + 0.0467983i
\(117\) 134.630 + 74.8786i 1.15069 + 0.639988i
\(118\) −14.7254 45.3201i −0.124791 0.384069i
\(119\) −24.7101 34.0106i −0.207648 0.285803i
\(120\) 14.0857 11.5945i 0.117381 0.0966207i
\(121\) 0 0
\(122\) 76.7749i 0.629303i
\(123\) −195.833 50.7951i −1.59214 0.412968i
\(124\) −1.56990 4.83165i −0.0126605 0.0389650i
\(125\) 32.8917 + 10.6872i 0.263134 + 0.0854973i
\(126\) −26.5142 28.5146i −0.210430 0.226306i
\(127\) −147.873 107.436i −1.16436 0.845955i −0.174034 0.984740i \(-0.555680\pi\)
−0.990323 + 0.138785i \(0.955680\pi\)
\(128\) 36.6987 + 11.9241i 0.286709 + 0.0931574i
\(129\) 57.3132 + 36.5701i 0.444289 + 0.283489i
\(130\) 16.0391 11.6531i 0.123377 0.0896389i
\(131\) 84.5109i 0.645121i −0.946549 0.322561i \(-0.895456\pi\)
0.946549 0.322561i \(-0.104544\pi\)
\(132\) 0 0
\(133\) −41.5536 −0.312433
\(134\) −75.3223 103.672i −0.562107 0.773674i
\(135\) 13.6524 + 13.0114i 0.101129 + 0.0963806i
\(136\) −43.3485 + 133.413i −0.318739 + 0.980978i
\(137\) −120.127 + 165.341i −0.876841 + 1.20687i 0.100445 + 0.994943i \(0.467973\pi\)
−0.977286 + 0.211925i \(0.932027\pi\)
\(138\) 114.847 6.94202i 0.832227 0.0503045i
\(139\) 15.5254 47.7824i 0.111694 0.343758i −0.879549 0.475808i \(-0.842156\pi\)
0.991243 + 0.132050i \(0.0421558\pi\)
\(140\) 2.16747 0.704254i 0.0154819 0.00503039i
\(141\) −214.369 55.6029i −1.52035 0.394347i
\(142\) 68.4204 0.481834
\(143\) 0 0
\(144\) −16.3203 + 83.3246i −0.113335 + 0.578643i
\(145\) −3.03229 + 2.20308i −0.0209123 + 0.0151937i
\(146\) 89.5311 29.0904i 0.613227 0.199249i
\(147\) 46.3067 + 117.803i 0.315012 + 0.801382i
\(148\) −64.2733 46.6973i −0.434279 0.315522i
\(149\) 92.5187 127.341i 0.620931 0.854638i −0.376490 0.926421i \(-0.622869\pi\)
0.997420 + 0.0717830i \(0.0228689\pi\)
\(150\) −113.482 + 44.6082i −0.756548 + 0.297388i
\(151\) 52.9598 + 162.993i 0.350727 + 1.07943i 0.958446 + 0.285274i \(0.0920847\pi\)
−0.607719 + 0.794152i \(0.707915\pi\)
\(152\) 81.5009 + 112.176i 0.536190 + 0.738002i
\(153\) −142.309 27.8731i −0.930124 0.182177i
\(154\) 0 0
\(155\) 2.83774i 0.0183080i
\(156\) 16.1224 62.1577i 0.103349 0.398447i
\(157\) −20.1905 62.1401i −0.128602 0.395797i 0.865938 0.500151i \(-0.166722\pi\)
−0.994540 + 0.104355i \(0.966722\pi\)
\(158\) −80.3094 26.0941i −0.508287 0.165153i
\(159\) −7.75634 128.319i −0.0487820 0.807040i
\(160\) −10.8394 7.87526i −0.0677461 0.0492204i
\(161\) 57.3937 + 18.6483i 0.356483 + 0.115828i
\(162\) −133.956 9.75188i −0.826892 0.0601968i
\(163\) 12.4900 9.07449i 0.0766256 0.0556717i −0.548813 0.835945i \(-0.684920\pi\)
0.625439 + 0.780273i \(0.284920\pi\)
\(164\) 84.3314i 0.514216i
\(165\) 0 0
\(166\) 98.1792 0.591441
\(167\) 90.5798 + 124.672i 0.542394 + 0.746542i 0.988956 0.148211i \(-0.0473516\pi\)
−0.446561 + 0.894753i \(0.647352\pi\)
\(168\) −36.6559 + 57.4477i −0.218190 + 0.341951i
\(169\) 38.3149 117.921i 0.226715 0.697758i
\(170\) −10.9693 + 15.0979i −0.0645251 + 0.0888112i
\(171\) −104.970 + 97.6058i −0.613858 + 0.570794i
\(172\) 8.75731 26.9522i 0.0509146 0.156699i
\(173\) −23.8744 + 7.75725i −0.138002 + 0.0448396i −0.377204 0.926130i \(-0.623114\pi\)
0.239202 + 0.970970i \(0.423114\pi\)
\(174\) 6.70176 25.8376i 0.0385159 0.148492i
\(175\) −63.9548 −0.365456
\(176\) 0 0
\(177\) −54.7915 66.5642i −0.309556 0.376069i
\(178\) −51.2323 + 37.2225i −0.287822 + 0.209115i
\(179\) −58.7800 + 19.0988i −0.328380 + 0.106697i −0.468567 0.883428i \(-0.655230\pi\)
0.140187 + 0.990125i \(0.455230\pi\)
\(180\) 3.82108 6.87024i 0.0212282 0.0381680i
\(181\) 120.062 + 87.2301i 0.663325 + 0.481934i 0.867784 0.496941i \(-0.165544\pi\)
−0.204459 + 0.978875i \(0.565544\pi\)
\(182\) −43.5275 + 59.9104i −0.239162 + 0.329178i
\(183\) −50.8161 129.275i −0.277684 0.706420i
\(184\) −62.2265 191.513i −0.338187 1.04083i
\(185\) −26.0840 35.9015i −0.140995 0.194062i
\(186\) 12.8435 + 15.6032i 0.0690513 + 0.0838880i
\(187\) 0 0
\(188\) 92.3135i 0.491029i
\(189\) −63.5184 30.4640i −0.336076 0.161185i
\(190\) 5.70024 + 17.5435i 0.0300013 + 0.0923344i
\(191\) −53.4521 17.3676i −0.279854 0.0909301i 0.165727 0.986172i \(-0.447003\pi\)
−0.445581 + 0.895242i \(0.647003\pi\)
\(192\) 208.247 12.5876i 1.08462 0.0655606i
\(193\) 122.139 + 88.7392i 0.632844 + 0.459788i 0.857384 0.514676i \(-0.172088\pi\)
−0.224540 + 0.974465i \(0.572088\pi\)
\(194\) −25.6932 8.34822i −0.132439 0.0430321i
\(195\) 19.2939 30.2376i 0.0989429 0.155065i
\(196\) 42.6854 31.0128i 0.217783 0.158228i
\(197\) 22.3374i 0.113388i 0.998392 + 0.0566938i \(0.0180559\pi\)
−0.998392 + 0.0566938i \(0.981944\pi\)
\(198\) 0 0
\(199\) −150.930 −0.758444 −0.379222 0.925306i \(-0.623808\pi\)
−0.379222 + 0.925306i \(0.623808\pi\)
\(200\) 125.437 + 172.650i 0.627186 + 0.863248i
\(201\) −195.448 124.711i −0.972379 0.620450i
\(202\) 53.3892 164.315i 0.264303 0.813441i
\(203\) 8.22915 11.3265i 0.0405377 0.0557954i
\(204\) 3.64707 + 60.3364i 0.0178778 + 0.295767i
\(205\) −14.5564 + 44.8000i −0.0710068 + 0.218537i
\(206\) 85.7993 27.8779i 0.416501 0.135329i
\(207\) 188.787 87.7047i 0.912015 0.423694i
\(208\) 161.485 0.776369
\(209\) 0 0
\(210\) −6.99955 + 5.76159i −0.0333312 + 0.0274362i
\(211\) 146.900 106.729i 0.696207 0.505824i −0.182488 0.983208i \(-0.558415\pi\)
0.878695 + 0.477384i \(0.158415\pi\)
\(212\) −50.9630 + 16.5589i −0.240392 + 0.0781079i
\(213\) 115.207 45.2864i 0.540880 0.212612i
\(214\) −38.1071 27.6864i −0.178071 0.129376i
\(215\) 9.30442 12.8064i 0.0432764 0.0595648i
\(216\) 42.3421 + 231.222i 0.196028 + 1.07047i
\(217\) 3.27551 + 10.0810i 0.0150945 + 0.0464561i
\(218\) 40.2078 + 55.3414i 0.184440 + 0.253859i
\(219\) 131.499 108.242i 0.600454 0.494256i
\(220\) 0 0
\(221\) 275.798i 1.24795i
\(222\) 305.911 + 79.3473i 1.37798 + 0.357420i
\(223\) 58.1059 + 178.831i 0.260564 + 0.801935i 0.992682 + 0.120757i \(0.0385321\pi\)
−0.732118 + 0.681178i \(0.761468\pi\)
\(224\) 47.5967 + 15.4651i 0.212485 + 0.0690406i
\(225\) −161.558 + 150.224i −0.718035 + 0.667663i
\(226\) 194.753 + 141.497i 0.861740 + 0.626091i
\(227\) −408.219 132.638i −1.79832 0.584310i −0.798478 0.602024i \(-0.794361\pi\)
−0.999843 + 0.0177135i \(0.994361\pi\)
\(228\) 50.3680 + 32.1386i 0.220912 + 0.140959i
\(229\) −109.845 + 79.8068i −0.479671 + 0.348501i −0.801198 0.598399i \(-0.795804\pi\)
0.321527 + 0.946900i \(0.395804\pi\)
\(230\) 26.7892i 0.116475i
\(231\) 0 0
\(232\) −46.7166 −0.201365
\(233\) 192.141 + 264.459i 0.824638 + 1.13502i 0.988897 + 0.148600i \(0.0474768\pi\)
−0.164259 + 0.986417i \(0.552523\pi\)
\(234\) 30.7685 + 253.584i 0.131489 + 1.08369i
\(235\) −15.9342 + 49.0404i −0.0678051 + 0.208683i
\(236\) −21.1233 + 29.0738i −0.0895057 + 0.123194i
\(237\) −152.498 + 9.21781i −0.643450 + 0.0388937i
\(238\) 21.5410 66.2963i 0.0905083 0.278556i
\(239\) −88.8791 + 28.8786i −0.371879 + 0.120831i −0.488993 0.872288i \(-0.662636\pi\)
0.117114 + 0.993118i \(0.462636\pi\)
\(240\) 19.1362 + 4.96355i 0.0797343 + 0.0206815i
\(241\) −206.766 −0.857952 −0.428976 0.903316i \(-0.641125\pi\)
−0.428976 + 0.903316i \(0.641125\pi\)
\(242\) 0 0
\(243\) −232.013 + 72.2432i −0.954785 + 0.297297i
\(244\) −46.8421 + 34.0328i −0.191976 + 0.139479i
\(245\) 28.0292 9.10724i 0.114405 0.0371724i
\(246\) −122.726 312.213i −0.498887 1.26916i
\(247\) 220.546 + 160.236i 0.892900 + 0.648730i
\(248\) 20.7898 28.6147i 0.0838297 0.115382i
\(249\) 165.316 64.9833i 0.663919 0.260977i
\(250\) 17.7210 + 54.5397i 0.0708841 + 0.218159i
\(251\) −1.64009 2.25739i −0.00653422 0.00899358i 0.805737 0.592273i \(-0.201769\pi\)
−0.812272 + 0.583279i \(0.801769\pi\)
\(252\) −5.64417 + 28.8168i −0.0223975 + 0.114353i
\(253\) 0 0
\(254\) 303.081i 1.19323i
\(255\) −8.47718 + 32.6825i −0.0332439 + 0.128167i
\(256\) −66.1871 203.703i −0.258543 0.795714i
\(257\) 380.619 + 123.671i 1.48101 + 0.481208i 0.934414 0.356190i \(-0.115924\pi\)
0.546593 + 0.837398i \(0.315924\pi\)
\(258\) 6.80178 + 112.527i 0.0263635 + 0.436152i
\(259\) 134.103 + 97.4312i 0.517770 + 0.376182i
\(260\) −14.2196 4.62022i −0.0546907 0.0177701i
\(261\) −5.81698 47.9416i −0.0222873 0.183684i
\(262\) 113.370 82.3678i 0.432708 0.314381i
\(263\) 379.212i 1.44187i 0.693003 + 0.720935i \(0.256287\pi\)
−0.693003 + 0.720935i \(0.743713\pi\)
\(264\) 0 0
\(265\) −29.9317 −0.112950
\(266\) −40.4999 55.7433i −0.152255 0.209561i
\(267\) −61.6289 + 96.5857i −0.230820 + 0.361744i
\(268\) −29.8639 + 91.9118i −0.111433 + 0.342954i
\(269\) 18.3393 25.2419i 0.0681760 0.0938362i −0.773567 0.633714i \(-0.781530\pi\)
0.841743 + 0.539878i \(0.181530\pi\)
\(270\) −4.14828 + 30.9959i −0.0153640 + 0.114799i
\(271\) −160.104 + 492.748i −0.590788 + 1.81826i −0.0161246 + 0.999870i \(0.505133\pi\)
−0.574664 + 0.818390i \(0.694867\pi\)
\(272\) −144.569 + 46.9734i −0.531505 + 0.172696i
\(273\) −33.6386 + 129.688i −0.123218 + 0.475049i
\(274\) −338.882 −1.23680
\(275\) 0 0
\(276\) −55.1450 66.9937i −0.199801 0.242731i
\(277\) 297.684 216.280i 1.07467 0.780795i 0.0979254 0.995194i \(-0.468779\pi\)
0.976746 + 0.214399i \(0.0687793\pi\)
\(278\) 79.2308 25.7436i 0.285003 0.0926031i
\(279\) 31.9537 + 17.7719i 0.114529 + 0.0636987i
\(280\) 12.8365 + 9.32625i 0.0458446 + 0.0333081i
\(281\) −188.322 + 259.203i −0.670184 + 0.922429i −0.999765 0.0216982i \(-0.993093\pi\)
0.329580 + 0.944127i \(0.393093\pi\)
\(282\) −134.343 341.764i −0.476392 1.21193i
\(283\) 49.6883 + 152.925i 0.175577 + 0.540371i 0.999659 0.0260993i \(-0.00830861\pi\)
−0.824082 + 0.566470i \(0.808309\pi\)
\(284\) −30.3294 41.7449i −0.106794 0.146989i
\(285\) 21.2100 + 25.7672i 0.0744209 + 0.0904113i
\(286\) 0 0
\(287\) 175.953i 0.613075i
\(288\) 156.561 72.7337i 0.543616 0.252547i
\(289\) 9.08071 + 27.9475i 0.0314211 + 0.0967043i
\(290\) −5.91079 1.92053i −0.0203820 0.00662252i
\(291\) −48.7882 + 2.94903i −0.167657 + 0.0101341i
\(292\) −57.4361 41.7298i −0.196699 0.142910i
\(293\) 276.702 + 89.9060i 0.944377 + 0.306847i 0.740429 0.672135i \(-0.234623\pi\)
0.203948 + 0.978982i \(0.434623\pi\)
\(294\) −112.898 + 176.935i −0.384007 + 0.601821i
\(295\) −16.2399 + 11.7990i −0.0550506 + 0.0399966i
\(296\) 553.114i 1.86863i
\(297\) 0 0
\(298\) 260.998 0.875832
\(299\) −232.707 320.294i −0.778286 1.07122i
\(300\) 77.5209 + 49.4642i 0.258403 + 0.164881i
\(301\) −18.2716 + 56.2343i −0.0607030 + 0.186825i
\(302\) −167.035 + 229.905i −0.553097 + 0.761273i
\(303\) −18.8599 312.014i −0.0622438 1.02975i
\(304\) −46.4306 + 142.899i −0.152732 + 0.470061i
\(305\) −30.7587 + 9.99411i −0.100848 + 0.0327676i
\(306\) −101.309 218.071i −0.331075 0.712650i
\(307\) 281.800 0.917915 0.458957 0.888458i \(-0.348223\pi\)
0.458957 + 0.888458i \(0.348223\pi\)
\(308\) 0 0
\(309\) 126.018 103.730i 0.407826 0.335697i
\(310\) 3.80676 2.76578i 0.0122799 0.00892186i
\(311\) −450.565 + 146.398i −1.44876 + 0.470732i −0.924618 0.380897i \(-0.875615\pi\)
−0.524146 + 0.851628i \(0.675615\pi\)
\(312\) 416.078 163.554i 1.33358 0.524212i
\(313\) 24.2496 + 17.6184i 0.0774748 + 0.0562887i 0.625848 0.779945i \(-0.284753\pi\)
−0.548374 + 0.836233i \(0.684753\pi\)
\(314\) 63.6811 87.6495i 0.202806 0.279139i
\(315\) −7.97246 + 14.3344i −0.0253094 + 0.0455059i
\(316\) 19.6790 + 60.5656i 0.0622752 + 0.191663i
\(317\) −93.6204 128.857i −0.295333 0.406490i 0.635405 0.772179i \(-0.280833\pi\)
−0.930737 + 0.365689i \(0.880833\pi\)
\(318\) 164.578 135.470i 0.517541 0.426007i
\(319\) 0 0
\(320\) 48.5757i 0.151799i
\(321\) −82.4906 21.3964i −0.256980 0.0666555i
\(322\) 30.9219 + 95.1679i 0.0960308 + 0.295552i
\(323\) −244.054 79.2981i −0.755586 0.245505i
\(324\) 53.4304 + 86.0527i 0.164909 + 0.265595i
\(325\) 339.441 + 246.618i 1.04443 + 0.758825i
\(326\) 24.3465 + 7.91065i 0.0746825 + 0.0242658i
\(327\) 104.332 + 66.5718i 0.319059 + 0.203583i
\(328\) −474.994 + 345.103i −1.44815 + 1.05214i
\(329\) 192.607i 0.585431i
\(330\) 0 0
\(331\) 332.709 1.00516 0.502582 0.864530i \(-0.332384\pi\)
0.502582 + 0.864530i \(0.332384\pi\)
\(332\) −43.5209 59.9014i −0.131087 0.180426i
\(333\) 567.617 68.8716i 1.70456 0.206822i
\(334\) −78.9626 + 243.022i −0.236415 + 0.727611i
\(335\) −31.7297 + 43.6722i −0.0947155 + 0.130365i
\(336\) −73.7101 + 4.45545i −0.219375 + 0.0132603i
\(337\) −17.1212 + 52.6936i −0.0508047 + 0.156361i −0.973240 0.229791i \(-0.926196\pi\)
0.922435 + 0.386152i \(0.126196\pi\)
\(338\) 195.532 63.5322i 0.578497 0.187965i
\(339\) 421.583 + 109.350i 1.24361 + 0.322567i
\(340\) 14.0740 0.0413942
\(341\) 0 0
\(342\) −233.244 45.6840i −0.682000 0.133579i
\(343\) −192.491 + 139.853i −0.561197 + 0.407733i
\(344\) 187.645 60.9694i 0.545478 0.177237i
\(345\) −17.7314 45.1082i −0.0513953 0.130748i
\(346\) −33.6751 24.4664i −0.0973270 0.0707122i
\(347\) −81.4326 + 112.082i −0.234676 + 0.323004i −0.910071 0.414452i \(-0.863973\pi\)
0.675395 + 0.737456i \(0.263973\pi\)
\(348\) −18.7349 + 7.36441i −0.0538359 + 0.0211621i
\(349\) −69.9974 215.430i −0.200566 0.617277i −0.999866 0.0163462i \(-0.994797\pi\)
0.799301 0.600931i \(-0.205203\pi\)
\(350\) −62.3330 85.7940i −0.178094 0.245126i
\(351\) 219.652 + 406.624i 0.625788 + 1.15847i
\(352\) 0 0
\(353\) 258.939i 0.733538i −0.930312 0.366769i \(-0.880464\pi\)
0.930312 0.366769i \(-0.119536\pi\)
\(354\) 35.8925 138.378i 0.101391 0.390898i
\(355\) −8.90657 27.4116i −0.0250889 0.0772157i
\(356\) 45.4206 + 14.7580i 0.127586 + 0.0414552i
\(357\) −7.60940 125.888i −0.0213149 0.352629i
\(358\) −82.9101 60.2377i −0.231592 0.168262i
\(359\) 246.358 + 80.0466i 0.686234 + 0.222971i 0.631323 0.775520i \(-0.282512\pi\)
0.0549113 + 0.998491i \(0.482512\pi\)
\(360\) 54.3332 6.59249i 0.150925 0.0183125i
\(361\) 86.8492 63.0996i 0.240580 0.174791i
\(362\) 246.079i 0.679775i
\(363\) 0 0
\(364\) 55.8476 0.153428
\(365\) −23.3093 32.0824i −0.0638610 0.0878971i
\(366\) 123.892 194.165i 0.338503 0.530507i
\(367\) −61.4255 + 189.048i −0.167372 + 0.515118i −0.999203 0.0399105i \(-0.987293\pi\)
0.831831 + 0.555029i \(0.187293\pi\)
\(368\) 128.259 176.534i 0.348531 0.479712i
\(369\) −413.297 444.479i −1.12005 1.20455i
\(370\) 22.7386 69.9823i 0.0614557 0.189141i
\(371\) 106.331 34.5492i 0.286607 0.0931244i
\(372\) 3.82656 14.7527i 0.0102864 0.0396578i
\(373\) −670.467 −1.79750 −0.898750 0.438462i \(-0.855523\pi\)
−0.898750 + 0.438462i \(0.855523\pi\)
\(374\) 0 0
\(375\) 65.9379 + 80.1056i 0.175834 + 0.213615i
\(376\) −519.953 + 377.768i −1.38285 + 1.00470i
\(377\) −87.3527 + 28.3826i −0.231705 + 0.0752855i
\(378\) −21.0409 114.900i −0.0556636 0.303968i
\(379\) −317.451 230.642i −0.837601 0.608553i 0.0840983 0.996457i \(-0.473199\pi\)
−0.921700 + 0.387905i \(0.873199\pi\)
\(380\) 8.17691 11.2546i 0.0215182 0.0296173i
\(381\) −200.604 510.333i −0.526521 1.33946i
\(382\) −28.7983 88.6321i −0.0753883 0.232021i
\(383\) 292.542 + 402.649i 0.763817 + 1.05130i 0.996887 + 0.0788436i \(0.0251228\pi\)
−0.233070 + 0.972460i \(0.574877\pi\)
\(384\) 73.5699 + 89.3774i 0.191588 + 0.232754i
\(385\) 0 0
\(386\) 250.336i 0.648538i
\(387\) 85.9330 + 184.973i 0.222049 + 0.477967i
\(388\) 6.29584 + 19.3766i 0.0162264 + 0.0499397i
\(389\) −392.101 127.401i −1.00797 0.327510i −0.241926 0.970295i \(-0.577779\pi\)
−0.766047 + 0.642785i \(0.777779\pi\)
\(390\) 59.3677 3.58852i 0.152225 0.00920133i
\(391\) 301.500 + 219.053i 0.771100 + 0.560237i
\(392\) 349.357 + 113.513i 0.891217 + 0.289574i
\(393\) 136.376 213.730i 0.347012 0.543842i
\(394\) −29.9651 + 21.7709i −0.0760535 + 0.0552561i
\(395\) 35.5715i 0.0900544i
\(396\) 0 0
\(397\) 171.230 0.431310 0.215655 0.976470i \(-0.430811\pi\)
0.215655 + 0.976470i \(0.430811\pi\)
\(398\) −147.103 202.470i −0.369605 0.508718i
\(399\) −105.090 67.0553i −0.263383 0.168058i
\(400\) −71.4608 + 219.934i −0.178652 + 0.549835i
\(401\) 426.743 587.361i 1.06420 1.46474i 0.188382 0.982096i \(-0.439676\pi\)
0.875816 0.482646i \(-0.160324\pi\)
\(402\) −23.1953 383.738i −0.0576996 0.954571i
\(403\) 21.4888 66.1357i 0.0533221 0.164108i
\(404\) −123.919 + 40.2636i −0.306729 + 0.0996624i
\(405\) 13.5307 + 54.9370i 0.0334092 + 0.135647i
\(406\) 23.2147 0.0571790
\(407\) 0 0
\(408\) −324.919 + 267.453i −0.796369 + 0.655521i
\(409\) 243.830 177.153i 0.596161 0.433137i −0.248353 0.968670i \(-0.579889\pi\)
0.844514 + 0.535533i \(0.179889\pi\)
\(410\) −74.2855 + 24.1368i −0.181184 + 0.0588703i
\(411\) −570.616 + 224.301i −1.38836 + 0.545744i
\(412\) −55.0420 39.9904i −0.133597 0.0970640i
\(413\) 44.0727 60.6608i 0.106713 0.146878i
\(414\) 301.654 + 167.773i 0.728633 + 0.405250i
\(415\) −12.7804 39.3340i −0.0307961 0.0947808i
\(416\) −192.985 265.621i −0.463905 0.638511i
\(417\) 116.371 95.7892i 0.279067 0.229710i
\(418\) 0 0
\(419\) 573.195i 1.36801i 0.729478 + 0.684004i \(0.239763\pi\)
−0.729478 + 0.684004i \(0.760237\pi\)
\(420\) 6.61804 + 1.71659i 0.0157572 + 0.00408711i
\(421\) −172.827 531.908i −0.410516 1.26344i −0.916200 0.400721i \(-0.868760\pi\)
0.505684 0.862719i \(-0.331240\pi\)
\(422\) 286.349 + 93.0404i 0.678552 + 0.220475i
\(423\) −452.417 486.549i −1.06954 1.15023i
\(424\) −301.820 219.285i −0.711839 0.517182i
\(425\) −375.622 122.047i −0.883816 0.287169i
\(426\) 173.037 + 110.410i 0.406190 + 0.259179i
\(427\) 97.7334 71.0075i 0.228884 0.166294i
\(428\) 35.5229i 0.0829973i
\(429\) 0 0
\(430\) 26.2480 0.0610420
\(431\) −117.467 161.680i −0.272546 0.375127i 0.650701 0.759334i \(-0.274475\pi\)
−0.923247 + 0.384207i \(0.874475\pi\)
\(432\) −175.736 + 184.394i −0.406796 + 0.426837i
\(433\) −31.9791 + 98.4214i −0.0738547 + 0.227301i −0.981169 0.193152i \(-0.938129\pi\)
0.907314 + 0.420453i \(0.138129\pi\)
\(434\) −10.3310 + 14.2194i −0.0238041 + 0.0327635i
\(435\) −11.2238 + 0.678432i −0.0258020 + 0.00155961i
\(436\) 15.9417 49.0635i 0.0365635 0.112531i
\(437\) 350.338 113.832i 0.801690 0.260485i
\(438\) 273.369 + 70.9065i 0.624131 + 0.161887i
\(439\) 662.550 1.50923 0.754613 0.656171i \(-0.227825\pi\)
0.754613 + 0.656171i \(0.227825\pi\)
\(440\) 0 0
\(441\) −72.9890 + 372.652i −0.165508 + 0.845016i
\(442\) −369.977 + 268.804i −0.837051 + 0.608153i
\(443\) 200.511 65.1499i 0.452620 0.147065i −0.0738308 0.997271i \(-0.523522\pi\)
0.526451 + 0.850206i \(0.323522\pi\)
\(444\) −87.1929 221.817i −0.196380 0.499587i
\(445\) 21.5817 + 15.6801i 0.0484983 + 0.0352361i
\(446\) −183.266 + 252.244i −0.410911 + 0.565570i
\(447\) 439.473 172.750i 0.983161 0.386466i
\(448\) 56.0693 + 172.563i 0.125155 + 0.385186i
\(449\) −140.640 193.574i −0.313229 0.431123i 0.623156 0.782098i \(-0.285850\pi\)
−0.936385 + 0.350975i \(0.885850\pi\)
\(450\) −358.984 70.3118i −0.797742 0.156248i
\(451\) 0 0
\(452\) 181.546i 0.401651i
\(453\) −129.087 + 497.675i −0.284960 + 1.09862i
\(454\) −219.936 676.892i −0.484440 1.49095i
\(455\) 29.6684 + 9.63983i 0.0652052 + 0.0211864i
\(456\) 25.0979 + 415.215i 0.0550393 + 0.910559i
\(457\) 21.5908 + 15.6866i 0.0472446 + 0.0343252i 0.611157 0.791509i \(-0.290704\pi\)
−0.563912 + 0.825835i \(0.690704\pi\)
\(458\) −214.118 69.5713i −0.467507 0.151902i
\(459\) −314.923 300.137i −0.686108 0.653892i
\(460\) −16.3447 + 11.8751i −0.0355320 + 0.0258155i
\(461\) 393.125i 0.852766i −0.904543 0.426383i \(-0.859788\pi\)
0.904543 0.426383i \(-0.140212\pi\)
\(462\) 0 0
\(463\) 106.954 0.231002 0.115501 0.993307i \(-0.463153\pi\)
0.115501 + 0.993307i \(0.463153\pi\)
\(464\) −29.7556 40.9550i −0.0641283 0.0882651i
\(465\) 4.57927 7.17670i 0.00984790 0.0154338i
\(466\) −167.498 + 515.506i −0.359438 + 1.10624i
\(467\) 248.580 342.141i 0.532291 0.732636i −0.455186 0.890396i \(-0.650427\pi\)
0.987477 + 0.157760i \(0.0504274\pi\)
\(468\) 141.078 131.181i 0.301449 0.280302i
\(469\) 62.3094 191.769i 0.132856 0.408888i
\(470\) −81.3168 + 26.4214i −0.173014 + 0.0562158i
\(471\) 49.2135 189.735i 0.104487 0.402835i
\(472\) −250.199 −0.530083
\(473\) 0 0
\(474\) −160.996 195.588i −0.339654 0.412634i
\(475\) −315.831 + 229.464i −0.664906 + 0.483083i
\(476\) −49.9976 + 16.2452i −0.105037 + 0.0341286i
\(477\) 187.454 337.039i 0.392985 0.706580i
\(478\) −125.365 91.0832i −0.262270 0.190551i
\(479\) 317.236 436.638i 0.662289 0.911562i −0.337266 0.941409i \(-0.609502\pi\)
0.999554 + 0.0298475i \(0.00950216\pi\)
\(480\) −14.7046 37.4083i −0.0306347 0.0779339i
\(481\) −336.043 1034.24i −0.698635 2.15018i
\(482\) −201.523 277.373i −0.418098 0.575462i
\(483\) 115.057 + 139.779i 0.238213 + 0.289397i
\(484\) 0 0
\(485\) 11.3803i 0.0234645i
\(486\) −323.042 240.829i −0.664696 0.495533i
\(487\) 188.700 + 580.759i 0.387474 + 1.19252i 0.934669 + 0.355518i \(0.115696\pi\)
−0.547195 + 0.837005i \(0.684304\pi\)
\(488\) −383.378 124.567i −0.785610 0.255260i
\(489\) 46.2310 2.79446i 0.0945418 0.00571464i
\(490\) 39.5356 + 28.7243i 0.0806849 + 0.0586210i
\(491\) 54.0905 + 17.5751i 0.110164 + 0.0357944i 0.363580 0.931563i \(-0.381554\pi\)
−0.253416 + 0.967357i \(0.581554\pi\)
\(492\) −136.086 + 213.276i −0.276598 + 0.433488i
\(493\) 69.9465 50.8191i 0.141879 0.103081i
\(494\) 452.031i 0.915043i
\(495\) 0 0
\(496\) 38.3274 0.0772729
\(497\) 63.2806 + 87.0983i 0.127325 + 0.175248i
\(498\) 248.297 + 158.432i 0.498589 + 0.318137i
\(499\) 144.891 445.930i 0.290363 0.893646i −0.694376 0.719612i \(-0.744320\pi\)
0.984740 0.174034i \(-0.0556804\pi\)
\(500\) 25.4205 34.9884i 0.0508411 0.0699767i
\(501\) 27.8937 + 461.469i 0.0556761 + 0.921095i
\(502\) 1.42974 4.40029i 0.00284809 0.00876552i
\(503\) −435.748 + 141.583i −0.866297 + 0.281477i −0.708256 0.705955i \(-0.750518\pi\)
−0.158041 + 0.987433i \(0.550518\pi\)
\(504\) −185.407 + 86.1346i −0.367872 + 0.170902i
\(505\) −72.7802 −0.144119
\(506\) 0 0
\(507\) 287.189 236.396i 0.566448 0.466265i
\(508\) −184.917 + 134.350i −0.364009 + 0.264468i
\(509\) 261.397 84.9330i 0.513550 0.166862i −0.0407663 0.999169i \(-0.512980\pi\)
0.554316 + 0.832306i \(0.312980\pi\)
\(510\) −52.1051 + 20.4818i −0.102167 + 0.0401603i
\(511\) 119.837 + 87.0667i 0.234515 + 0.170385i
\(512\) 299.479 412.197i 0.584920 0.805073i
\(513\) −422.978 + 77.4570i −0.824518 + 0.150988i
\(514\) 205.065 + 631.127i 0.398960 + 1.22787i
\(515\) −22.3377 30.7452i −0.0433741 0.0596994i
\(516\) 65.6404 54.0310i 0.127210 0.104711i
\(517\) 0 0
\(518\) 274.856i 0.530610i
\(519\) −72.8967 18.9079i −0.140456 0.0364315i
\(520\) −32.1666 98.9985i −0.0618588 0.190382i
\(521\) −236.239 76.7587i −0.453434 0.147330i 0.0733915 0.997303i \(-0.476618\pi\)
−0.526825 + 0.849974i \(0.676618\pi\)
\(522\) 58.6433 54.5293i 0.112343 0.104462i
\(523\) 113.737 + 82.6347i 0.217470 + 0.158001i 0.691187 0.722676i \(-0.257088\pi\)
−0.473717 + 0.880677i \(0.657088\pi\)
\(524\) −100.509 32.6574i −0.191811 0.0623232i
\(525\) −161.743 103.204i −0.308082 0.196579i
\(526\) −508.705 + 369.596i −0.967119 + 0.702653i
\(527\) 65.4587i 0.124210i
\(528\) 0 0
\(529\) −5.97152 −0.0112883
\(530\) −29.1727 40.1527i −0.0550428 0.0757599i
\(531\) −31.1538 256.760i −0.0586701 0.483540i
\(532\) −16.0575 + 49.4198i −0.0301832 + 0.0928943i
\(533\) −678.497 + 933.871i −1.27298 + 1.75210i
\(534\) −189.634 + 11.4625i −0.355120 + 0.0214654i
\(535\) −6.13159 + 18.8711i −0.0114609 + 0.0352731i
\(536\) −639.901 + 207.916i −1.19384 + 0.387904i
\(537\) −179.476 46.5524i −0.334219 0.0866898i
\(538\) 51.7358 0.0961633
\(539\) 0 0
\(540\) 20.7501 11.2089i 0.0384262 0.0207572i
\(541\) 486.149 353.208i 0.898612 0.652880i −0.0394969 0.999220i \(-0.512576\pi\)
0.938109 + 0.346340i \(0.112576\pi\)
\(542\) −817.055 + 265.477i −1.50748 + 0.489811i
\(543\) 162.875 + 414.351i 0.299955 + 0.763078i
\(544\) 250.034 + 181.661i 0.459622 + 0.333935i
\(545\) 16.9376 23.3127i 0.0310782 0.0427755i
\(546\) −206.760 + 81.2743i −0.378681 + 0.148854i
\(547\) 191.860 + 590.485i 0.350750 + 1.07950i 0.958433 + 0.285318i \(0.0920992\pi\)
−0.607683 + 0.794180i \(0.707901\pi\)
\(548\) 150.220 + 206.760i 0.274124 + 0.377299i
\(549\) 80.0967 408.941i 0.145896 0.744884i
\(550\) 0 0
\(551\) 85.4594i 0.155099i
\(552\) 151.674 584.757i 0.274772 1.05934i
\(553\) −41.0590 126.367i −0.0742478 0.228511i
\(554\) 580.271 + 188.541i 1.04742 + 0.340327i
\(555\) −8.03247 132.888i −0.0144729 0.239437i
\(556\) −50.8282 36.9289i −0.0914177 0.0664188i
\(557\) 513.595 + 166.877i 0.922074 + 0.299600i 0.731317 0.682037i \(-0.238906\pi\)
0.190757 + 0.981637i \(0.438906\pi\)
\(558\) 7.30269 + 60.1865i 0.0130873 + 0.107861i
\(559\) 313.824 228.006i 0.561402 0.407883i
\(560\) 17.1936i 0.0307028i
\(561\) 0 0
\(562\) −531.261 −0.945305
\(563\) 163.796 + 225.446i 0.290934 + 0.400437i 0.929317 0.369282i \(-0.120396\pi\)
−0.638383 + 0.769719i \(0.720396\pi\)
\(564\) −148.967 + 233.463i −0.264126 + 0.413941i
\(565\) 31.3366 96.4441i 0.0554630 0.170698i
\(566\) −156.717 + 215.703i −0.276886 + 0.381101i
\(567\) −111.479 179.544i −0.196613 0.316656i
\(568\) 111.012 341.659i 0.195443 0.601513i
\(569\) 1017.22 330.514i 1.78773 0.580869i 0.788321 0.615264i \(-0.210950\pi\)
0.999408 + 0.0343952i \(0.0109505\pi\)
\(570\) −13.8941 + 53.5665i −0.0243756 + 0.0939764i
\(571\) −470.660 −0.824274 −0.412137 0.911122i \(-0.635217\pi\)
−0.412137 + 0.911122i \(0.635217\pi\)
\(572\) 0 0
\(573\) −107.155 130.179i −0.187007 0.227189i
\(574\) 236.037 171.491i 0.411214 0.298764i
\(575\) 539.203 175.198i 0.937744 0.304691i
\(576\) 546.975 + 304.216i 0.949609 + 0.528152i
\(577\) −185.383 134.689i −0.321288 0.233429i 0.415437 0.909622i \(-0.363629\pi\)
−0.736725 + 0.676193i \(0.763629\pi\)
\(578\) −28.6406 + 39.4204i −0.0495512 + 0.0682014i
\(579\) 165.693 + 421.520i 0.286171 + 0.728013i
\(580\) 1.44837 + 4.45764i 0.00249720 + 0.00768558i
\(581\) 90.8039 + 124.981i 0.156289 + 0.215113i
\(582\) −51.5071 62.5741i −0.0885001 0.107516i
\(583\) 0 0
\(584\) 494.275i 0.846361i
\(585\) 97.5892 45.3370i 0.166819 0.0774991i
\(586\) 149.079 + 458.817i 0.254400 + 0.782964i
\(587\) −0.704580 0.228932i −0.00120031 0.000390003i 0.308417 0.951251i \(-0.400201\pi\)
−0.309617 + 0.950861i \(0.600201\pi\)
\(588\) 157.998 9.55027i 0.268704 0.0162420i
\(589\) 52.3452 + 38.0310i 0.0888714 + 0.0645688i
\(590\) −31.6562 10.2857i −0.0536546 0.0174334i
\(591\) −36.0459 + 56.4917i −0.0609914 + 0.0955866i
\(592\) 484.897 352.299i 0.819083 0.595099i
\(593\) 498.413i 0.840494i −0.907410 0.420247i \(-0.861943\pi\)
0.907410 0.420247i \(-0.138057\pi\)
\(594\) 0 0
\(595\) −29.3647 −0.0493524
\(596\) −115.695 159.241i −0.194120 0.267183i
\(597\) −381.706 243.557i −0.639374 0.407968i
\(598\) 202.862 624.344i 0.339234 1.04405i
\(599\) 112.504 154.848i 0.187819 0.258511i −0.704715 0.709490i \(-0.748925\pi\)
0.892534 + 0.450979i \(0.148925\pi\)
\(600\) 38.6280 + 639.054i 0.0643800 + 1.06509i
\(601\) −256.922 + 790.726i −0.427491 + 1.31568i 0.473097 + 0.881010i \(0.343136\pi\)
−0.900588 + 0.434673i \(0.856864\pi\)
\(602\) −93.2454 + 30.2973i −0.154893 + 0.0503277i
\(603\) −293.046 630.791i −0.485981 1.04609i
\(604\) 214.314 0.354824
\(605\) 0 0
\(606\) 400.178 329.402i 0.660361 0.543567i
\(607\) 638.876 464.171i 1.05251 0.764697i 0.0798256 0.996809i \(-0.474564\pi\)
0.972689 + 0.232112i \(0.0745636\pi\)
\(608\) 290.536 94.4010i 0.477856 0.155265i
\(609\) 39.0893 15.3654i 0.0641860 0.0252306i
\(610\) −43.3856 31.5215i −0.0711239 0.0516746i
\(611\) −742.718 + 1022.26i −1.21558 + 1.67310i
\(612\) −88.1417 + 158.477i −0.144022 + 0.258950i
\(613\) 85.6583 + 263.629i 0.139736 + 0.430064i 0.996297 0.0859829i \(-0.0274030\pi\)
−0.856560 + 0.516047i \(0.827403\pi\)
\(614\) 274.654 + 378.029i 0.447319 + 0.615682i
\(615\) −109.107 + 89.8104i −0.177411 + 0.146033i
\(616\) 0 0
\(617\) 928.547i 1.50494i −0.658628 0.752469i \(-0.728863\pi\)
0.658628 0.752469i \(-0.271137\pi\)
\(618\) 261.975 + 67.9510i 0.423908 + 0.109953i
\(619\) 295.319 + 908.900i 0.477091 + 1.46834i 0.843117 + 0.537731i \(0.180718\pi\)
−0.366025 + 0.930605i \(0.619282\pi\)
\(620\) −3.37493 1.09658i −0.00544343 0.00176868i
\(621\) 618.976 + 82.8397i 0.996741 + 0.133397i
\(622\) −635.529 461.739i −1.02175 0.742346i
\(623\) −94.7674 30.7918i −0.152115 0.0494250i
\(624\) 408.399 + 260.589i 0.654485 + 0.417610i
\(625\) −476.224 + 345.997i −0.761958 + 0.553595i
\(626\) 49.7019i 0.0793961i
\(627\) 0 0
\(628\) −81.7055 −0.130104
\(629\) 601.686 + 828.149i 0.956575 + 1.31661i
\(630\) −26.9995 + 3.27598i −0.0428564 + 0.00519996i
\(631\) −1.62527 + 5.00208i −0.00257571 + 0.00792722i −0.952336 0.305051i \(-0.901327\pi\)
0.949760 + 0.312978i \(0.101327\pi\)
\(632\) −260.603 + 358.690i −0.412347 + 0.567547i
\(633\) 543.741 32.8668i 0.858991 0.0519222i
\(634\) 81.6132 251.180i 0.128728 0.396183i
\(635\) −121.425 + 39.4533i −0.191220 + 0.0621311i
\(636\) −155.608 40.3615i −0.244666 0.0634615i
\(637\) 722.207 1.13376
\(638\) 0 0
\(639\) 364.441 + 71.3807i 0.570330 + 0.111707i
\(640\) 21.8058 15.8428i 0.0340715 0.0247544i
\(641\) 462.217 150.183i 0.721087 0.234296i 0.0745928 0.997214i \(-0.476234\pi\)
0.646495 + 0.762919i \(0.276234\pi\)
\(642\) −51.6959 131.513i −0.0805233 0.204849i
\(643\) 597.765 + 434.302i 0.929650 + 0.675430i 0.945907 0.324437i \(-0.105175\pi\)
−0.0162570 + 0.999868i \(0.505175\pi\)
\(644\) 44.3570 61.0522i 0.0688774 0.0948016i
\(645\) 44.1969 17.3732i 0.0685223 0.0269351i
\(646\) −131.489 404.681i −0.203543 0.626441i
\(647\) 676.121 + 930.601i 1.04501 + 1.43833i 0.893057 + 0.449945i \(0.148556\pi\)
0.151953 + 0.988388i \(0.451444\pi\)
\(648\) −266.040 + 653.093i −0.410556 + 1.00786i
\(649\) 0 0
\(650\) 695.717i 1.07033i
\(651\) −7.98389 + 30.7807i −0.0122640 + 0.0472822i
\(652\) −5.96585 18.3610i −0.00915007 0.0281610i
\(653\) 575.439 + 186.971i 0.881224 + 0.286327i 0.714465 0.699671i \(-0.246670\pi\)
0.166758 + 0.985998i \(0.446670\pi\)
\(654\) 12.3819 + 204.843i 0.0189325 + 0.313216i
\(655\) −47.7572 34.6976i −0.0729117 0.0529735i
\(656\) −605.083 196.603i −0.922382 0.299700i
\(657\) 507.236 61.5452i 0.772049 0.0936761i
\(658\) 258.378 187.723i 0.392672 0.285293i
\(659\) 956.314i 1.45116i 0.688138 + 0.725580i \(0.258428\pi\)
−0.688138 + 0.725580i \(0.741572\pi\)
\(660\) 0 0
\(661\) 57.8747 0.0875563 0.0437781 0.999041i \(-0.486061\pi\)
0.0437781 + 0.999041i \(0.486061\pi\)
\(662\) 324.272 + 446.323i 0.489837 + 0.674203i
\(663\) −445.056 + 697.498i −0.671276 + 1.05203i
\(664\) 159.295 490.261i 0.239903 0.738345i
\(665\) −17.0607 + 23.4820i −0.0256551 + 0.0353113i
\(666\) 645.614 + 694.322i 0.969390 + 1.04253i
\(667\) −38.3523 + 118.036i −0.0574997 + 0.176966i
\(668\) 183.276 59.5499i 0.274365 0.0891466i
\(669\) −141.630 + 546.034i −0.211705 + 0.816195i
\(670\) −89.5104 −0.133598
\(671\) 0 0
\(672\) 95.4169 + 115.919i 0.141989 + 0.172498i
\(673\) 688.997 500.586i 1.02377 0.743813i 0.0567178 0.998390i \(-0.481936\pi\)
0.967052 + 0.254578i \(0.0819365\pi\)
\(674\) −87.3744 + 28.3897i −0.129636 + 0.0421212i
\(675\) −651.001 + 119.213i −0.964446 + 0.176612i
\(676\) −125.438 91.1361i −0.185559 0.134817i
\(677\) 158.543 218.215i 0.234184 0.322327i −0.675710 0.737168i \(-0.736163\pi\)
0.909894 + 0.414841i \(0.136163\pi\)
\(678\) 264.202 + 672.122i 0.389678 + 0.991331i
\(679\) −13.1359 40.4282i −0.0193460 0.0595408i
\(680\) 57.5942 + 79.2717i 0.0846974 + 0.116576i
\(681\) −818.355 994.191i −1.20170 1.45990i
\(682\) 0 0
\(683\) 254.016i 0.371913i 0.982558 + 0.185956i \(0.0595383\pi\)
−0.982558 + 0.185956i \(0.940462\pi\)
\(684\) 75.5196 + 162.558i 0.110409 + 0.237658i
\(685\) 44.1137 + 135.768i 0.0643996 + 0.198201i
\(686\) −375.219 121.916i −0.546966 0.177720i
\(687\) −406.584 + 24.5762i −0.591826 + 0.0357733i
\(688\) 172.968 + 125.668i 0.251407 + 0.182658i
\(689\) −697.582 226.658i −1.01246 0.328967i
\(690\) 43.2299 67.7506i 0.0626521 0.0981892i
\(691\) 306.290 222.532i 0.443256 0.322044i −0.343672 0.939090i \(-0.611671\pi\)
0.786927 + 0.617046i \(0.211671\pi\)
\(692\) 31.3914i 0.0453634i
\(693\) 0 0
\(694\) −229.724 −0.331014
\(695\) −20.6276 28.3915i −0.0296800 0.0408510i
\(696\) −118.147 75.3869i −0.169752 0.108315i
\(697\) 335.776 1033.41i 0.481745 1.48266i
\(698\) 220.772 303.867i 0.316293 0.435339i
\(699\) 59.1691 + 978.882i 0.0846482 + 1.40040i
\(700\) −24.7139 + 76.0616i −0.0353056 + 0.108659i
\(701\) 304.289 98.8694i 0.434078 0.141040i −0.0838238 0.996481i \(-0.526713\pi\)
0.517902 + 0.855440i \(0.326713\pi\)
\(702\) −331.396 + 690.970i −0.472073 + 0.984288i
\(703\) 1011.82 1.43929
\(704\) 0 0
\(705\) −119.435 + 98.3111i −0.169411 + 0.139448i
\(706\) 347.361 252.373i 0.492013 0.357468i
\(707\) 258.549 84.0077i 0.365699 0.118823i
\(708\) −100.338 + 39.4414i −0.141720 + 0.0557082i
\(709\) 184.876 + 134.320i 0.260755 + 0.189450i 0.710480 0.703717i \(-0.248478\pi\)
−0.449725 + 0.893167i \(0.648478\pi\)
\(710\) 28.0914 38.6645i 0.0395653 0.0544570i
\(711\) −400.545 222.774i −0.563354 0.313325i
\(712\) 102.747 + 316.223i 0.144308 + 0.444134i
\(713\) −55.2316 76.0198i −0.0774636 0.106620i
\(714\) 161.460 132.904i 0.226135 0.186140i
\(715\) 0 0
\(716\) 77.2875i 0.107943i
\(717\) −271.379 70.3902i −0.378492 0.0981732i
\(718\) 132.730 + 408.501i 0.184861 + 0.568943i
\(719\) 765.742 + 248.805i 1.06501 + 0.346043i 0.788542 0.614981i \(-0.210836\pi\)
0.276467 + 0.961023i \(0.410836\pi\)
\(720\) 40.3862 + 43.4332i 0.0560920 + 0.0603239i
\(721\) 114.842 + 83.4376i 0.159282 + 0.115725i
\(722\) 169.294 + 55.0069i 0.234479 + 0.0761868i
\(723\) −522.917 333.660i −0.723260 0.461494i
\(724\) 150.138 109.082i 0.207373 0.150665i
\(725\) 131.530i 0.181420i
\(726\) 0 0
\(727\) −1002.31 −1.37869 −0.689345 0.724434i \(-0.742101\pi\)
−0.689345 + 0.724434i \(0.742101\pi\)
\(728\) 228.541 + 314.560i 0.313930 + 0.432088i
\(729\) −703.345 191.696i −0.964808 0.262957i
\(730\) 20.3198 62.5378i 0.0278353 0.0856682i
\(731\) −214.627 + 295.409i −0.293608 + 0.404117i
\(732\) −173.384 + 10.4803i −0.236863 + 0.0143173i
\(733\) 223.915 689.141i 0.305478 0.940165i −0.674020 0.738713i \(-0.735434\pi\)
0.979498 0.201452i \(-0.0645660\pi\)
\(734\) −313.472 + 101.853i −0.427074 + 0.138765i
\(735\) 85.5829 + 22.1985i 0.116439 + 0.0302020i
\(736\) −443.653 −0.602789
\(737\) 0 0
\(738\) 193.442 987.637i 0.262117 1.33826i
\(739\) −696.026 + 505.693i −0.941849 + 0.684293i −0.948865 0.315682i \(-0.897767\pi\)
0.00701624 + 0.999975i \(0.497767\pi\)
\(740\) −52.7774 + 17.1484i −0.0713208 + 0.0231735i
\(741\) 299.192 + 761.138i 0.403768 + 1.02718i
\(742\) 149.982 + 108.968i 0.202132 + 0.146858i
\(743\) 229.421 315.771i 0.308776 0.424994i −0.626223 0.779644i \(-0.715400\pi\)
0.934999 + 0.354650i \(0.115400\pi\)
\(744\) 98.7534 38.8185i 0.132733 0.0521755i
\(745\) −33.9752 104.565i −0.0456043 0.140355i
\(746\) −653.465 899.418i −0.875959 1.20565i
\(747\) 522.951 + 102.427i 0.700069 + 0.137118i
\(748\) 0 0
\(749\) 74.1164i 0.0989538i
\(750\) −43.1942 + 166.529i −0.0575922 + 0.222038i
\(751\) −266.909 821.461i −0.355405 1.09382i −0.955774 0.294101i \(-0.904980\pi\)
0.600370 0.799722i \(-0.295020\pi\)
\(752\) −662.355 215.212i −0.880791 0.286186i
\(753\) −0.505060 8.35561i −0.000670730 0.0110964i
\(754\) −123.212 89.5190i −0.163412 0.118725i
\(755\) 113.851 + 36.9926i 0.150797 + 0.0489968i
\(756\) −60.7761 + 63.7704i −0.0803917 + 0.0843524i
\(757\) 683.966 496.931i 0.903522 0.656447i −0.0358461 0.999357i \(-0.511413\pi\)
0.939368 + 0.342910i \(0.111413\pi\)
\(758\) 650.647i 0.858373i
\(759\) 0 0
\(760\) 96.8528 0.127438
\(761\) −103.379 142.289i −0.135847 0.186977i 0.735674 0.677336i \(-0.236866\pi\)
−0.871521 + 0.490359i \(0.836866\pi\)
\(762\) 489.083 766.498i 0.641842 1.00590i
\(763\) −33.2614 + 102.368i −0.0435929 + 0.134165i
\(764\) −41.3108 + 56.8594i −0.0540717 + 0.0744233i
\(765\) −74.1789 + 68.9751i −0.0969659 + 0.0901635i
\(766\) −255.022 + 784.878i −0.332927 + 1.02464i
\(767\) −467.833 + 152.008i −0.609951 + 0.198185i
\(768\) 161.328 621.976i 0.210062 0.809864i
\(769\) −1341.04 −1.74388 −0.871941 0.489611i \(-0.837139\pi\)
−0.871941 + 0.489611i \(0.837139\pi\)
\(770\) 0 0
\(771\) 763.025 + 926.972i 0.989657 + 1.20230i
\(772\) 152.736 110.969i 0.197844 0.143742i
\(773\) −746.230 + 242.465i −0.965368 + 0.313667i −0.748945 0.662632i \(-0.769439\pi\)
−0.216424 + 0.976300i \(0.569439\pi\)
\(774\) −164.384 + 295.560i −0.212383 + 0.381861i
\(775\) 80.5641 + 58.5332i 0.103954 + 0.0755268i
\(776\) −83.3742 + 114.755i −0.107441 + 0.147880i
\(777\) 181.923 + 462.808i 0.234135 + 0.595634i
\(778\) −211.252 650.167i −0.271532 0.835690i
\(779\) −631.303 868.914i −0.810402 1.11542i
\(780\) −28.5060 34.6309i −0.0365461 0.0443986i
\(781\) 0 0
\(782\) 617.954i 0.790222i
\(783\) 62.6525 130.632i 0.0800159 0.166836i
\(784\) 123.005 + 378.571i 0.156894 + 0.482871i
\(785\) −43.4051 14.1032i −0.0552931 0.0179658i
\(786\) 419.632 25.3649i 0.533883 0.0322708i
\(787\) −1171.82 851.375i −1.48897 1.08180i −0.974526 0.224273i \(-0.927999\pi\)
−0.514442 0.857525i \(-0.672001\pi\)
\(788\) 26.5659 + 8.63178i 0.0337130 + 0.0109540i
\(789\) −611.936 + 959.035i −0.775585 + 1.21551i
\(790\) −47.7184 + 34.6695i −0.0604031 + 0.0438854i
\(791\) 378.785i 0.478869i
\(792\) 0 0
\(793\) −792.536 −0.999415
\(794\) 166.888 + 229.702i 0.210186 + 0.289297i
\(795\) −75.6979 48.3009i −0.0952175 0.0607559i
\(796\) −58.3237 + 179.502i −0.0732709 + 0.225505i
\(797\) 203.605 280.238i 0.255464 0.351616i −0.661951 0.749547i \(-0.730272\pi\)
0.917416 + 0.397931i \(0.130272\pi\)
\(798\) −12.4718 206.331i −0.0156288 0.258560i
\(799\) 367.558 1131.23i 0.460022 1.41580i
\(800\) 447.162 145.292i 0.558952 0.181615i
\(801\) −311.722 + 144.816i −0.389166 + 0.180795i
\(802\) 1203.85 1.50107
\(803\) 0 0
\(804\) −223.845 + 184.255i −0.278414 + 0.229173i
\(805\) 34.1023 24.7768i 0.0423631 0.0307786i
\(806\) 109.664 35.6318i 0.136059 0.0442082i
\(807\) 87.1137 34.2431i 0.107948 0.0424326i
\(808\) −733.888 533.201i −0.908277 0.659902i
\(809\) 307.526 423.274i 0.380131 0.523206i −0.575488 0.817810i \(-0.695188\pi\)
0.955619 + 0.294604i \(0.0951878\pi\)
\(810\) −60.5093 + 71.6951i −0.0747028 + 0.0885125i
\(811\) 319.359 + 982.886i 0.393784 + 1.21194i 0.929904 + 0.367802i \(0.119889\pi\)
−0.536120 + 0.844142i \(0.680111\pi\)
\(812\) −10.2906 14.1638i −0.0126732 0.0174431i
\(813\) −1200.06 + 987.811i −1.47608 + 1.21502i
\(814\) 0 0
\(815\) 10.7838i 0.0132317i
\(816\) −441.420 114.495i −0.540956 0.140313i
\(817\) 111.532 + 343.261i 0.136514 + 0.420148i
\(818\) 475.294 + 154.432i 0.581044 + 0.188793i
\(819\) −294.352 + 273.702i −0.359404 + 0.334191i
\(820\) 47.6558 + 34.6239i 0.0581168 + 0.0422243i
\(821\) 92.9928 + 30.2152i 0.113268 + 0.0368029i 0.365102 0.930967i \(-0.381034\pi\)
−0.251835 + 0.967770i \(0.581034\pi\)
\(822\) −857.041 546.856i −1.04263 0.665275i
\(823\) −583.839 + 424.184i −0.709404 + 0.515412i −0.882981 0.469408i \(-0.844467\pi\)
0.173578 + 0.984820i \(0.444467\pi\)
\(824\) 473.673i 0.574846i
\(825\) 0 0
\(826\) 124.330 0.150521
\(827\) −722.545 994.498i −0.873694 1.20254i −0.978128 0.208005i \(-0.933303\pi\)
0.104433 0.994532i \(-0.466697\pi\)
\(828\) −31.3548 258.417i −0.0378682 0.312097i
\(829\) −59.7651 + 183.938i −0.0720930 + 0.221879i −0.980610 0.195968i \(-0.937215\pi\)
0.908517 + 0.417847i \(0.137215\pi\)
\(830\) 40.3095 55.4812i 0.0485656 0.0668448i
\(831\) 1101.86 66.6027i 1.32595 0.0801477i
\(832\) 367.840 1132.09i 0.442115 1.36069i
\(833\) −646.556 + 210.079i −0.776178 + 0.252195i
\(834\) 241.919 + 62.7490i 0.290071 + 0.0752386i
\(835\) 107.642 0.128912
\(836\) 0 0
\(837\) 52.1329 + 96.5094i 0.0622854 + 0.115304i
\(838\) −768.930 + 558.660i −0.917577 + 0.666659i
\(839\) −554.741 + 180.246i −0.661193 + 0.214835i −0.620343 0.784331i \(-0.713007\pi\)
−0.0408501 + 0.999165i \(0.513007\pi\)
\(840\) 17.4139 + 44.3006i 0.0207309 + 0.0527388i
\(841\) −657.089 477.403i −0.781319 0.567661i
\(842\) 545.099 750.264i 0.647386 0.891050i
\(843\) −894.547 + 351.633i −1.06115 + 0.417121i
\(844\) −70.1668 215.951i −0.0831360 0.255866i
\(845\) −50.9064 70.0667i −0.0602443 0.0829192i
\(846\) 211.752 1081.12i 0.250297 1.27792i
\(847\) 0 0
\(848\) 404.267i 0.476730i
\(849\) −121.113 + 466.933i −0.142654 + 0.549980i
\(850\) −202.373 622.841i −0.238086 0.732754i
\(851\) −1397.52 454.082i −1.64221 0.533587i
\(852\) −9.33984 154.516i −0.0109623 0.181357i
\(853\) −348.868 253.468i −0.408990 0.297148i 0.364203 0.931320i \(-0.381341\pi\)
−0.773193 + 0.634171i \(0.781341\pi\)
\(854\) 190.510 + 61.9005i 0.223080 + 0.0724830i
\(855\) 12.0597 + 99.3925i 0.0141050 + 0.116249i
\(856\) −200.082 + 145.368i −0.233740 + 0.169822i
\(857\) 580.461i 0.677317i 0.940909 + 0.338659i \(0.109973\pi\)
−0.940909 + 0.338659i \(0.890027\pi\)
\(858\) 0 0
\(859\) −812.241 −0.945566 −0.472783 0.881179i \(-0.656751\pi\)
−0.472783 + 0.881179i \(0.656751\pi\)
\(860\) −11.6352 16.0145i −0.0135294 0.0186216i
\(861\) 283.936 444.988i 0.329774 0.516827i
\(862\) 102.402 315.160i 0.118795 0.365614i
\(863\) −369.257 + 508.239i −0.427876 + 0.588921i −0.967464 0.253008i \(-0.918580\pi\)
0.539588 + 0.841929i \(0.318580\pi\)
\(864\) 513.318 + 68.6991i 0.594118 + 0.0795129i
\(865\) −5.41846 + 16.6763i −0.00626412 + 0.0192790i
\(866\) −163.198 + 53.0264i −0.188451 + 0.0612314i
\(867\) −22.1338 + 85.3335i −0.0255292 + 0.0984239i
\(868\) 13.2551 0.0152708
\(869\) 0 0
\(870\) −11.8493 14.3953i −0.0136199 0.0165464i
\(871\) −1070.19 + 777.542i −1.22870 + 0.892700i
\(872\) 341.586 110.988i 0.391727 0.127280i
\(873\) −128.145 71.2716i −0.146787 0.0816399i
\(874\) 494.158 + 359.026i 0.565398 + 0.410785i
\(875\) −53.0385 + 73.0012i −0.0606154 + 0.0834299i
\(876\) −77.9176 198.220i −0.0889470 0.226279i
\(877\) −371.068 1142.03i −0.423111 1.30220i −0.904791 0.425855i \(-0.859973\pi\)
0.481680 0.876347i \(-0.340027\pi\)
\(878\) 645.749 + 888.797i 0.735477 + 1.01230i
\(879\) 554.704 + 673.891i 0.631063 + 0.766656i
\(880\) 0 0
\(881\) 131.219i 0.148943i 0.997223 + 0.0744714i \(0.0237269\pi\)
−0.997223 + 0.0744714i \(0.976273\pi\)
\(882\) −571.043 + 265.289i −0.647441 + 0.300781i
\(883\) −39.2451 120.784i −0.0444452 0.136788i 0.926371 0.376611i \(-0.122911\pi\)
−0.970817 + 0.239823i \(0.922911\pi\)
\(884\) 328.007 + 106.576i 0.371048 + 0.120561i
\(885\) −60.1113 + 3.63346i −0.0679223 + 0.00410561i
\(886\) 282.823 + 205.483i 0.319214 + 0.231922i
\(887\) 1136.31 + 369.209i 1.28107 + 0.416245i 0.868957 0.494888i \(-0.164791\pi\)
0.412113 + 0.911133i \(0.364791\pi\)
\(888\) 892.563 1398.84i 1.00514 1.57527i
\(889\) 385.818 280.313i 0.433991 0.315313i
\(890\) 44.2339i 0.0497010i
\(891\) 0 0
\(892\) 235.138 0.263608
\(893\) −691.057 951.158i −0.773860 1.06513i
\(894\) 660.070 + 421.174i 0.738333 + 0.471112i
\(895\) −13.3406 + 41.0580i −0.0149057 + 0.0458749i
\(896\) −59.1774 + 81.4507i −0.0660462 + 0.0909048i
\(897\) −71.6614 1185.55i −0.0798901 1.32169i
\(898\) 122.602 377.331i 0.136528 0.420190i
\(899\) −20.7326 + 6.73643i −0.0230618 + 0.00749325i
\(900\) 116.232 + 250.192i 0.129146 + 0.277991i
\(901\) 690.442 0.766306
\(902\) 0 0
\(903\) −136.955 + 112.733i −0.151667 + 0.124842i
\(904\) 1022.55 742.929i 1.13114 0.821824i
\(905\) 98.5876 32.0331i 0.108937 0.0353956i
\(906\) −793.435 + 311.888i −0.875756 + 0.344247i
\(907\) −424.397 308.342i −0.467913 0.339958i 0.328715 0.944429i \(-0.393385\pi\)
−0.796627 + 0.604471i \(0.793385\pi\)
\(908\) −315.494 + 434.241i −0.347461 + 0.478239i
\(909\) 455.802 819.524i 0.501432 0.901567i
\(910\) 15.9844 + 49.1949i 0.0175653 + 0.0540603i
\(911\) −103.220 142.070i −0.113304 0.155950i 0.748598 0.663024i \(-0.230727\pi\)
−0.861903 + 0.507074i \(0.830727\pi\)
\(912\) −348.020 + 286.468i −0.381601 + 0.314110i
\(913\) 0 0
\(914\) 44.2524i 0.0484162i
\(915\) −93.9170 24.3602i −0.102642 0.0266231i
\(916\) 52.4674 + 161.478i 0.0572788 + 0.176286i
\(917\) 209.706 + 68.1377i 0.228687 + 0.0743050i
\(918\) 95.6894 714.989i 0.104237 0.778855i
\(919\) −1055.86 767.124i −1.14892 0.834738i −0.160581 0.987023i \(-0.551337\pi\)
−0.988337 + 0.152285i \(0.951337\pi\)
\(920\) −133.773 43.4654i −0.145405 0.0472450i
\(921\) 712.678 + 454.742i 0.773809 + 0.493748i
\(922\) 527.369 383.156i 0.571984 0.415571i
\(923\) 706.294i 0.765216i
\(924\) 0 0
\(925\) 1557.28 1.68355
\(926\) 104.242 + 143.476i 0.112572 + 0.154942i
\(927\) 486.093 58.9799i 0.524373 0.0636245i
\(928\) −31.8056 + 97.8877i −0.0342733 + 0.105482i
\(929\) 916.652 1261.66i 0.986708 1.35809i 0.0535724 0.998564i \(-0.482939\pi\)
0.933136 0.359524i \(-0.117061\pi\)
\(930\) 14.0905 0.851711i 0.0151511 0.000915818i
\(931\) −207.651 + 639.084i −0.223041 + 0.686449i
\(932\) 388.770 126.319i 0.417136 0.135536i
\(933\) −1375.73 356.837i −1.47453 0.382462i
\(934\) 701.251 0.750804
\(935\) 0 0
\(936\) 1316.20 + 257.795i 1.40620 + 0.275422i
\(937\) −581.968 + 422.824i −0.621097 + 0.451253i −0.853305 0.521413i \(-0.825405\pi\)
0.232208 + 0.972666i \(0.425405\pi\)
\(938\) 317.983 103.319i 0.339001 0.110148i
\(939\) 32.8969 + 83.6890i 0.0350340 + 0.0891256i
\(940\) 52.1664 + 37.9011i 0.0554962 + 0.0403204i
\(941\) −689.641 + 949.209i −0.732881 + 1.00872i 0.266116 + 0.963941i \(0.414260\pi\)
−0.998997 + 0.0447831i \(0.985740\pi\)
\(942\) 302.491 118.905i 0.321116 0.126226i
\(943\) 482.004 + 1483.46i 0.511139 + 1.57312i
\(944\) −159.361 219.342i −0.168815 0.232353i
\(945\) −43.2940 + 23.3867i −0.0458137 + 0.0247478i
\(946\) 0 0
\(947\) 266.119i 0.281013i −0.990080 0.140506i \(-0.955127\pi\)
0.990080 0.140506i \(-0.0448730\pi\)
\(948\) −47.9666 + 184.928i −0.0505976 + 0.195072i
\(949\) −300.296 924.216i −0.316434 0.973884i
\(950\) −615.643 200.035i −0.648046 0.210563i
\(951\) −28.8301 476.959i −0.0303155 0.501534i
\(952\) −296.102 215.131i −0.311032 0.225978i
\(953\) 121.881 + 39.6016i 0.127892 + 0.0415547i 0.372264 0.928127i \(-0.378582\pi\)
−0.244372 + 0.969682i \(0.578582\pi\)
\(954\) 634.831 77.0269i 0.665441 0.0807410i
\(955\) −31.7603 + 23.0752i −0.0332569 + 0.0241625i
\(956\) 116.864i 0.122242i
\(957\) 0 0
\(958\) 894.933 0.934168
\(959\) −313.425 431.393i −0.326825 0.449836i
\(960\) 78.3868 122.849i 0.0816529 0.127968i
\(961\) −291.865 + 898.268i −0.303710 + 0.934723i
\(962\) 1059.88 1458.80i 1.10175 1.51643i
\(963\) −174.093 187.228i −0.180782 0.194421i
\(964\) −79.9003 + 245.908i −0.0828841 + 0.255091i
\(965\) 100.293 32.5872i 0.103931 0.0337692i
\(966\) −75.3708 + 290.581i −0.0780236 + 0.300808i
\(967\) −1324.17 −1.36936 −0.684682 0.728842i \(-0.740059\pi\)
−0.684682 + 0.728842i \(0.740059\pi\)
\(968\) 0 0
\(969\) −489.255 594.379i −0.504907 0.613394i
\(970\) −15.2664 + 11.0917i −0.0157386 + 0.0114348i
\(971\) −556.252 + 180.737i −0.572865 + 0.186135i −0.581102 0.813831i \(-0.697378\pi\)
0.00823681 + 0.999966i \(0.497378\pi\)
\(972\) −3.73711 + 303.850i −0.00384477 + 0.312603i
\(973\) 106.050 + 77.0500i 0.108993 + 0.0791881i
\(974\) −595.161 + 819.169i −0.611048 + 0.841036i
\(975\) 460.484 + 1171.46i 0.472292 + 1.20150i
\(976\) −134.984 415.437i −0.138303 0.425652i
\(977\) 406.363 + 559.311i 0.415930 + 0.572478i 0.964652 0.263526i \(-0.0848856\pi\)
−0.548722 + 0.836005i \(0.684886\pi\)
\(978\) 48.8073 + 59.2943i 0.0499052 + 0.0606281i
\(979\) 0 0
\(980\) 36.8545i 0.0376066i
\(981\) 156.431 + 336.723i 0.159461 + 0.343245i
\(982\) 29.1423 + 89.6907i 0.0296764 + 0.0913347i
\(983\) 623.407 + 202.557i 0.634188 + 0.206060i 0.608430 0.793608i \(-0.291800\pi\)
0.0257588 + 0.999668i \(0.491800\pi\)
\(984\) −1758.17 + 106.273i −1.78675 + 0.108001i
\(985\) 12.6229 + 9.17105i 0.0128151 + 0.00931071i
\(986\) 136.346 + 44.3013i 0.138281 + 0.0449304i
\(987\) 310.811 487.107i 0.314904 0.493523i
\(988\) 275.795 200.377i 0.279144 0.202810i
\(989\) 524.164i 0.529994i
\(990\) 0 0
\(991\) 95.0559 0.0959192 0.0479596 0.998849i \(-0.484728\pi\)
0.0479596 + 0.998849i \(0.484728\pi\)
\(992\) −45.8036 63.0433i −0.0461730 0.0635517i
\(993\) 841.429 + 536.895i 0.847361 + 0.540680i
\(994\) −55.1646 + 169.779i −0.0554976 + 0.170804i
\(995\) −61.9675 + 85.2909i −0.0622789 + 0.0857195i
\(996\) −13.4021 221.722i −0.0134559 0.222612i
\(997\) 241.467 743.158i 0.242193 0.745394i −0.753892 0.656998i \(-0.771826\pi\)
0.996085 0.0883960i \(-0.0281741\pi\)
\(998\) 739.422 240.253i 0.740904 0.240734i
\(999\) 1546.66 + 741.790i 1.54820 + 0.742532i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.245.3 16
3.2 odd 2 inner 363.3.h.j.245.2 16
11.2 odd 10 363.3.b.m.122.5 8
11.3 even 5 363.3.h.n.269.3 16
11.4 even 5 inner 363.3.h.j.323.2 16
11.5 even 5 363.3.h.n.251.2 16
11.6 odd 10 363.3.h.o.251.3 16
11.7 odd 10 33.3.h.b.26.3 yes 16
11.8 odd 10 363.3.h.o.269.2 16
11.9 even 5 363.3.b.l.122.4 8
11.10 odd 2 33.3.h.b.14.2 16
33.2 even 10 363.3.b.m.122.4 8
33.5 odd 10 363.3.h.n.251.3 16
33.8 even 10 363.3.h.o.269.3 16
33.14 odd 10 363.3.h.n.269.2 16
33.17 even 10 363.3.h.o.251.2 16
33.20 odd 10 363.3.b.l.122.5 8
33.26 odd 10 inner 363.3.h.j.323.3 16
33.29 even 10 33.3.h.b.26.2 yes 16
33.32 even 2 33.3.h.b.14.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.2 16 11.10 odd 2
33.3.h.b.14.3 yes 16 33.32 even 2
33.3.h.b.26.2 yes 16 33.29 even 10
33.3.h.b.26.3 yes 16 11.7 odd 10
363.3.b.l.122.4 8 11.9 even 5
363.3.b.l.122.5 8 33.20 odd 10
363.3.b.m.122.4 8 33.2 even 10
363.3.b.m.122.5 8 11.2 odd 10
363.3.h.j.245.2 16 3.2 odd 2 inner
363.3.h.j.245.3 16 1.1 even 1 trivial
363.3.h.j.323.2 16 11.4 even 5 inner
363.3.h.j.323.3 16 33.26 odd 10 inner
363.3.h.n.251.2 16 11.5 even 5
363.3.h.n.251.3 16 33.5 odd 10
363.3.h.n.269.2 16 33.14 odd 10
363.3.h.n.269.3 16 11.3 even 5
363.3.h.o.251.2 16 33.17 even 10
363.3.h.o.251.3 16 11.6 odd 10
363.3.h.o.269.2 16 11.8 odd 10
363.3.h.o.269.3 16 33.8 even 10