Properties

Label 363.3.h.f.269.2
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $8$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-5,-8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.228765625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 5x^{5} + x^{4} + 15x^{3} - 18x^{2} - 27x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 269.2
Root \(-0.570223 + 1.63550i\) of defining polynomial
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.f.251.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04781 - 2.81107i) q^{3} +(-3.23607 + 2.35114i) q^{4} +(-9.46289 - 3.07468i) q^{5} +(-6.80418 + 5.89093i) q^{9} +(10.0000 + 6.63325i) q^{12} +(1.27219 + 29.8225i) q^{15} +(4.94427 - 15.2169i) q^{16} +(37.8516 - 12.2987i) q^{20} -29.8496i q^{23} +(59.8673 + 43.4961i) q^{25} +(23.6893 + 12.9544i) q^{27} +(11.4336 + 35.1891i) q^{31} +(8.16839 - 35.0611i) q^{36} +(-20.2254 + 14.6946i) q^{37} +(82.5000 - 34.8246i) q^{45} +(46.7871 - 64.3969i) q^{47} +(-47.9564 + 2.04576i) q^{48} +(-15.1418 + 46.6018i) q^{49} +(-75.7031 + 24.5974i) q^{53} +(29.2419 + 40.2481i) q^{59} +(-74.2338 - 93.5165i) q^{60} +(19.7771 + 60.8676i) q^{64} -35.0000 q^{67} +(-83.9093 + 31.2768i) q^{69} +(47.3145 + 15.3734i) q^{71} +(59.5409 - 213.867i) q^{75} +(-93.5742 + 128.794i) q^{80} +(11.5939 - 80.1660i) q^{81} +149.248i q^{89} +(70.1807 + 96.5954i) q^{92} +(86.9386 - 69.0122i) q^{93} +(29.3566 + 90.3504i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{3} - 8 q^{4} - 7 q^{9} + 80 q^{12} - 33 q^{15} - 32 q^{16} + 148 q^{25} + 10 q^{27} - 74 q^{31} - 28 q^{36} - 50 q^{37} + 660 q^{45} - 80 q^{48} + 98 q^{49} - 132 q^{60} - 128 q^{64} - 280 q^{67}+ \cdots - 190 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(3\) −1.04781 2.81107i −0.349270 0.937022i
\(4\) −3.23607 + 2.35114i −0.809017 + 0.587785i
\(5\) −9.46289 3.07468i −1.89258 0.614936i −0.977191 0.212362i \(-0.931884\pi\)
−0.915388 0.402574i \(-0.868116\pi\)
\(6\) 0 0
\(7\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(8\) 0 0
\(9\) −6.80418 + 5.89093i −0.756021 + 0.654548i
\(10\) 0 0
\(11\) 0 0
\(12\) 10.0000 + 6.63325i 0.833333 + 0.552771i
\(13\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(14\) 0 0
\(15\) 1.27219 + 29.8225i 0.0848129 + 1.98817i
\(16\) 4.94427 15.2169i 0.309017 0.951057i
\(17\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(18\) 0 0
\(19\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(20\) 37.8516 12.2987i 1.89258 0.614936i
\(21\) 0 0
\(22\) 0 0
\(23\) 29.8496i 1.29781i −0.760870 0.648905i \(-0.775227\pi\)
0.760870 0.648905i \(-0.224773\pi\)
\(24\) 0 0
\(25\) 59.8673 + 43.4961i 2.39469 + 1.73984i
\(26\) 0 0
\(27\) 23.6893 + 12.9544i 0.877381 + 0.479794i
\(28\) 0 0
\(29\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) 0 0
\(31\) 11.4336 + 35.1891i 0.368827 + 1.13513i 0.947550 + 0.319608i \(0.103551\pi\)
−0.578723 + 0.815524i \(0.696449\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 8.16839 35.0611i 0.226900 0.973918i
\(37\) −20.2254 + 14.6946i −0.546633 + 0.397152i −0.826543 0.562874i \(-0.809696\pi\)
0.279909 + 0.960026i \(0.409696\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 82.5000 34.8246i 1.83333 0.773879i
\(46\) 0 0
\(47\) 46.7871 64.3969i 0.995471 1.37015i 0.0674071 0.997726i \(-0.478527\pi\)
0.928063 0.372422i \(-0.121473\pi\)
\(48\) −47.9564 + 2.04576i −0.999091 + 0.0426201i
\(49\) −15.1418 + 46.6018i −0.309017 + 0.951057i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −75.7031 + 24.5974i −1.42836 + 0.464103i −0.918248 0.396005i \(-0.870396\pi\)
−0.510113 + 0.860108i \(0.670396\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 29.2419 + 40.2481i 0.495626 + 0.682171i 0.981413 0.191906i \(-0.0614669\pi\)
−0.485787 + 0.874077i \(0.661467\pi\)
\(60\) −74.2338 93.5165i −1.23723 1.55861i
\(61\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 19.7771 + 60.8676i 0.309017 + 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) −35.0000 −0.522388 −0.261194 0.965286i \(-0.584116\pi\)
−0.261194 + 0.965286i \(0.584116\pi\)
\(68\) 0 0
\(69\) −83.9093 + 31.2768i −1.21608 + 0.453286i
\(70\) 0 0
\(71\) 47.3145 + 15.3734i 0.666401 + 0.216527i 0.622632 0.782515i \(-0.286063\pi\)
0.0437690 + 0.999042i \(0.486063\pi\)
\(72\) 0 0
\(73\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(74\) 0 0
\(75\) 59.5409 213.867i 0.793878 2.85155i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(80\) −93.5742 + 128.794i −1.16968 + 1.60992i
\(81\) 11.5939 80.1660i 0.143134 0.989703i
\(82\) 0 0
\(83\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 149.248i 1.67695i 0.544944 + 0.838473i \(0.316551\pi\)
−0.544944 + 0.838473i \(0.683449\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 70.1807 + 96.5954i 0.762833 + 1.04995i
\(93\) 86.9386 69.0122i 0.934823 0.742067i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 29.3566 + 90.3504i 0.302646 + 0.931447i 0.980545 + 0.196293i \(0.0628903\pi\)
−0.677900 + 0.735154i \(0.737110\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −296.000 −2.96000
\(101\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(102\) 0 0
\(103\) 153.713 111.679i 1.49236 1.08426i 0.519059 0.854739i \(-0.326283\pi\)
0.973303 0.229526i \(-0.0737174\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(108\) −107.118 + 13.7755i −0.991832 + 0.127551i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 62.5000 + 41.4578i 0.563063 + 0.373494i
\(112\) 0 0
\(113\) 40.9387 56.3473i 0.362290 0.498649i −0.588495 0.808501i \(-0.700279\pi\)
0.950785 + 0.309852i \(0.100279\pi\)
\(114\) 0 0
\(115\) −91.7780 + 282.464i −0.798070 + 2.45621i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −119.735 86.9922i −0.965601 0.701550i
\(125\) −286.571 394.431i −2.29257 3.15545i
\(126\) 0 0
\(127\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −184.339 195.423i −1.36547 1.44758i
\(136\) 0 0
\(137\) −66.2402 21.5228i −0.483505 0.157100i 0.0571141 0.998368i \(-0.481810\pi\)
−0.540620 + 0.841267i \(0.681810\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 0 0
\(141\) −230.048 64.0459i −1.63155 0.454226i
\(142\) 0 0
\(143\) 0 0
\(144\) 56.0000 + 132.665i 0.388889 + 0.921285i
\(145\) 0 0
\(146\) 0 0
\(147\) 146.866 6.26515i 0.999091 0.0426201i
\(148\) 30.9017 95.1057i 0.208795 0.642606i
\(149\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(150\) 0 0
\(151\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 368.145i 2.37513i
\(156\) 0 0
\(157\) 173.939 + 126.374i 1.10789 + 0.804929i 0.982330 0.187157i \(-0.0599274\pi\)
0.125560 + 0.992086i \(0.459927\pi\)
\(158\) 0 0
\(159\) 148.468 + 187.033i 0.933759 + 1.17631i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −21.6312 66.5740i −0.132707 0.408429i 0.862520 0.506024i \(-0.168885\pi\)
−0.995226 + 0.0975945i \(0.968885\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(168\) 0 0
\(169\) 136.724 99.3357i 0.809017 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 82.5000 124.373i 0.466102 0.702675i
\(178\) 0 0
\(179\) −204.694 + 281.737i −1.14354 + 1.57395i −0.384205 + 0.923248i \(0.625524\pi\)
−0.759335 + 0.650700i \(0.774476\pi\)
\(180\) −185.098 + 306.664i −1.02832 + 1.70369i
\(181\) 81.2715 250.128i 0.449014 1.38192i −0.429008 0.903301i \(-0.641137\pi\)
0.878022 0.478621i \(-0.158863\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 236.572 76.8670i 1.27877 0.415497i
\(186\) 0 0
\(187\) 0 0
\(188\) 318.396i 1.69360i
\(189\) 0 0
\(190\) 0 0
\(191\) 204.694 + 281.737i 1.07169 + 1.47506i 0.868349 + 0.495954i \(0.165181\pi\)
0.203345 + 0.979107i \(0.434819\pi\)
\(192\) 150.380 119.372i 0.783230 0.621732i
\(193\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −60.5673 186.407i −0.309017 0.951057i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.0100503 −0.00502513 0.999987i \(-0.501600\pi\)
−0.00502513 + 0.999987i \(0.501600\pi\)
\(200\) 0 0
\(201\) 36.6734 + 98.3873i 0.182455 + 0.489489i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 175.842 + 203.102i 0.849479 + 0.981171i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(212\) 187.148 257.588i 0.882776 1.21504i
\(213\) −6.36097 149.113i −0.0298637 0.700059i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 360.013 + 261.564i 1.61441 + 1.17293i 0.846542 + 0.532322i \(0.178680\pi\)
0.767864 + 0.640613i \(0.221320\pi\)
\(224\) 0 0
\(225\) −663.580 + 56.7184i −2.94925 + 0.252082i
\(226\) 0 0
\(227\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(228\) 0 0
\(229\) 133.804 + 411.807i 0.584299 + 1.79829i 0.602069 + 0.798444i \(0.294343\pi\)
−0.0177708 + 0.999842i \(0.505657\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(234\) 0 0
\(235\) −640.741 + 465.526i −2.72656 + 1.98096i
\(236\) −189.258 61.4936i −0.801940 0.260566i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(240\) 460.096 + 128.092i 1.91707 + 0.533715i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −237.500 + 51.4077i −0.977366 + 0.211554i
\(244\) 0 0
\(245\) 286.571 394.431i 1.16968 1.60992i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −425.830 + 138.361i −1.69653 + 0.551237i −0.988002 0.154441i \(-0.950642\pi\)
−0.708533 + 0.705678i \(0.750642\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −207.108 150.473i −0.809017 0.587785i
\(257\) 280.723 + 386.382i 1.09231 + 1.50343i 0.845206 + 0.534441i \(0.179478\pi\)
0.247100 + 0.968990i \(0.420522\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 792.000 2.98868
\(266\) 0 0
\(267\) 419.546 156.384i 1.57133 0.585707i
\(268\) 113.262 82.2899i 0.422621 0.307052i
\(269\) 378.516 + 122.987i 1.40712 + 0.457202i 0.911487 0.411329i \(-0.134935\pi\)
0.495635 + 0.868531i \(0.334935\pi\)
\(270\) 0 0
\(271\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 198.000 298.496i 0.717391 1.08151i
\(277\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(278\) 0 0
\(279\) −285.093 172.078i −1.02184 0.616768i
\(280\) 0 0
\(281\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(282\) 0 0
\(283\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(284\) −189.258 + 61.4936i −0.666401 + 0.216527i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −233.806 169.870i −0.809017 0.587785i
\(290\) 0 0
\(291\) 223.221 177.193i 0.767081 0.608912i
\(292\) 0 0
\(293\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(294\) 0 0
\(295\) −152.963 470.773i −0.518520 1.59584i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 310.152 + 832.076i 1.03384 + 2.77359i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −475.000 315.079i −1.53722 1.01967i
\(310\) 0 0
\(311\) −233.936 + 321.985i −0.752204 + 1.03532i 0.245618 + 0.969367i \(0.421009\pi\)
−0.997823 + 0.0659539i \(0.978991\pi\)
\(312\) 0 0
\(313\) 81.8895 252.030i 0.261628 0.805208i −0.730823 0.682567i \(-0.760864\pi\)
0.992451 0.122641i \(-0.0391363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 596.162 193.705i 1.88064 0.611056i 0.894015 0.448037i \(-0.147877\pi\)
0.986623 0.163020i \(-0.0521234\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 636.792i 1.98997i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 150.963 + 286.681i 0.465935 + 0.884819i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 563.000 1.70091 0.850453 0.526051i \(-0.176328\pi\)
0.850453 + 0.526051i \(0.176328\pi\)
\(332\) 0 0
\(333\) 51.0525 219.132i 0.153311 0.658053i
\(334\) 0 0
\(335\) 331.201 + 107.614i 0.988660 + 0.321235i
\(336\) 0 0
\(337\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(338\) 0 0
\(339\) −201.292 56.0401i −0.593782 0.165310i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 890.190 37.9745i 2.58026 0.110071i
\(346\) 0 0
\(347\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(348\) 0 0
\(349\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 328.346i 0.930158i 0.885269 + 0.465079i \(0.153974\pi\)
−0.885269 + 0.465079i \(0.846026\pi\)
\(354\) 0 0
\(355\) −400.463 290.954i −1.12807 0.819588i
\(356\) −350.903 482.977i −0.985684 1.35668i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(360\) 0 0
\(361\) −111.555 343.331i −0.309017 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −513.726 + 373.244i −1.39980 + 1.01701i −0.405089 + 0.914277i \(0.632759\pi\)
−0.994709 + 0.102735i \(0.967241\pi\)
\(368\) −454.219 147.585i −1.23429 0.401045i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −119.082 + 427.733i −0.320112 + 1.14982i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −808.500 + 1218.86i −2.15600 + 3.25029i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −41.0993 + 126.491i −0.108441 + 0.333748i −0.990523 0.137349i \(-0.956142\pi\)
0.882081 + 0.471097i \(0.156142\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −123.018 + 39.9708i −0.321195 + 0.104363i −0.465177 0.885218i \(-0.654009\pi\)
0.143982 + 0.989580i \(0.454009\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −307.426 223.358i −0.792336 0.575666i
\(389\) −321.661 442.729i −0.826893 1.13812i −0.988493 0.151264i \(-0.951666\pi\)
0.161600 0.986856i \(-0.448334\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −790.000 −1.98992 −0.994962 0.100251i \(-0.968036\pi\)
−0.994962 + 0.100251i \(0.968036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 957.876 695.938i 2.39469 1.73984i
\(401\) −757.031 245.974i −1.88786 0.613403i −0.981690 0.190487i \(-0.938993\pi\)
−0.906169 0.422915i \(-0.861007\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −356.196 + 722.955i −0.879497 + 1.78507i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(410\) 0 0
\(411\) 8.90535 + 208.758i 0.0216675 + 0.507926i
\(412\) −234.853 + 722.803i −0.570031 + 1.75438i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 795.990i 1.89974i 0.312649 + 0.949869i \(0.398784\pi\)
−0.312649 + 0.949869i \(0.601216\pi\)
\(420\) 0 0
\(421\) −600.291 436.137i −1.42587 1.03595i −0.990767 0.135572i \(-0.956713\pi\)
−0.435101 0.900382i \(-0.643287\pi\)
\(422\) 0 0
\(423\) 61.0098 + 713.788i 0.144231 + 1.68744i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 314.253 296.428i 0.727437 0.686175i
\(433\) 20.2254 14.6946i 0.0467100 0.0339368i −0.564185 0.825648i \(-0.690810\pi\)
0.610895 + 0.791711i \(0.290810\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −171.500 406.287i −0.388889 0.921285i
\(442\) 0 0
\(443\) −450.326 + 619.821i −1.01654 + 1.39914i −0.101934 + 0.994791i \(0.532503\pi\)
−0.914603 + 0.404352i \(0.867497\pi\)
\(444\) −299.727 + 12.7860i −0.675062 + 0.0287973i
\(445\) 458.890 1412.32i 1.03121 3.17375i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 615.088 199.854i 1.36991 0.445110i 0.470568 0.882364i \(-0.344049\pi\)
0.899338 + 0.437254i \(0.144049\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 278.596i 0.616364i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −367.112 1129.86i −0.798070 2.45621i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 35.0000 0.0755940 0.0377970 0.999285i \(-0.487966\pi\)
0.0377970 + 0.999285i \(0.487966\pi\)
\(464\) 0 0
\(465\) −1034.88 + 385.747i −2.22555 + 0.829563i
\(466\) 0 0
\(467\) −123.018 39.9708i −0.263421 0.0855907i 0.174329 0.984687i \(-0.444224\pi\)
−0.437750 + 0.899097i \(0.644224\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 172.990 621.369i 0.367283 1.31925i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 370.196 613.328i 0.776093 1.28580i
\(478\) 0 0
\(479\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 945.238i 1.94894i
\(486\) 0 0
\(487\) 707.890 + 514.312i 1.45357 + 1.05608i 0.984980 + 0.172668i \(0.0552387\pi\)
0.468593 + 0.883414i \(0.344761\pi\)
\(488\) 0 0
\(489\) −164.478 + 130.564i −0.336357 + 0.267001i
\(490\) 0 0
\(491\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 592.000 1.19355
\(497\) 0 0
\(498\) 0 0
\(499\) 487.028 353.847i 0.976008 0.709112i 0.0191955 0.999816i \(-0.493890\pi\)
0.956813 + 0.290704i \(0.0938895\pi\)
\(500\) 1854.73 + 602.637i 3.70945 + 1.20527i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −422.500 280.255i −0.833333 0.552771i
\(508\) 0 0
\(509\) −87.7258 + 120.744i −0.172349 + 0.237219i −0.886450 0.462825i \(-0.846836\pi\)
0.714100 + 0.700043i \(0.246836\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1797.95 + 584.189i −3.49116 + 1.13435i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 380.145 + 523.225i 0.729646 + 1.00427i 0.999148 + 0.0412712i \(0.0131408\pi\)
−0.269502 + 0.963000i \(0.586859\pi\)
\(522\) 0 0
\(523\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −362.000 −0.684310
\(530\) 0 0
\(531\) −436.066 101.593i −0.821217 0.191324i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1006.46 + 280.201i 1.87423 + 0.521789i
\(538\) 0 0
\(539\) 0 0
\(540\) 1056.00 + 198.997i 1.95556 + 0.368514i
\(541\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(542\) 0 0
\(543\) −788.283 + 33.6272i −1.45172 + 0.0619286i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(548\) 264.961 86.0910i 0.483505 0.157100i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −463.961 584.478i −0.835966 1.05311i
\(556\) 0 0
\(557\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(564\) 895.032 333.619i 1.58694 0.591523i
\(565\) −560.649 + 407.335i −0.992299 + 0.720947i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 577.500 870.614i 1.00785 1.51940i
\(574\) 0 0
\(575\) 1298.34 1787.02i 2.25799 3.10785i
\(576\) −493.134 297.649i −0.856135 0.516752i
\(577\) −326.013 + 1003.36i −0.565014 + 1.73893i 0.102897 + 0.994692i \(0.467189\pi\)
−0.667911 + 0.744241i \(0.732811\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −187.148 257.588i −0.318822 0.438821i 0.619285 0.785166i \(-0.287423\pi\)
−0.938107 + 0.346345i \(0.887423\pi\)
\(588\) −460.539 + 365.578i −0.783230 + 0.621732i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 123.607 + 380.423i 0.208795 + 0.642606i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.09562 + 5.62213i 0.00351025 + 0.00941731i
\(598\) 0 0
\(599\) −1135.55 368.962i −1.89574 0.615963i −0.973148 0.230182i \(-0.926068\pi\)
−0.922591 0.385781i \(-0.873932\pi\)
\(600\) 0 0
\(601\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(602\) 0 0
\(603\) 238.146 206.183i 0.394936 0.341928i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1114.39i 1.80614i 0.429498 + 0.903068i \(0.358691\pi\)
−0.429498 + 0.903068i \(0.641309\pi\)
\(618\) 0 0
\(619\) 1000.75 + 727.090i 1.61673 + 1.17462i 0.831984 + 0.554800i \(0.187205\pi\)
0.784743 + 0.619821i \(0.212795\pi\)
\(620\) 865.562 + 1191.34i 1.39607 + 1.92152i
\(621\) 386.685 707.117i 0.622681 1.13867i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 927.360 + 2854.12i 1.48378 + 4.56659i
\(626\) 0 0
\(627\) 0 0
\(628\) −860.000 −1.36943
\(629\) 0 0
\(630\) 0 0
\(631\) −981.338 + 712.984i −1.55521 + 1.12993i −0.615407 + 0.788209i \(0.711008\pi\)
−0.939803 + 0.341717i \(0.888992\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −920.192 256.183i −1.44684 0.402804i
\(637\) 0 0
\(638\) 0 0
\(639\) −412.500 + 174.123i −0.645540 + 0.272493i
\(640\) 0 0
\(641\) −614.081 + 845.210i −0.958005 + 1.31858i −0.0101258 + 0.999949i \(0.503223\pi\)
−0.947879 + 0.318631i \(0.896777\pi\)
\(642\) 0 0
\(643\) 122.062 375.667i 0.189832 0.584242i −0.810166 0.586200i \(-0.800623\pi\)
0.999998 + 0.00195828i \(0.000623341\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1107.16 359.738i 1.71122 0.556009i 0.720683 0.693265i \(-0.243828\pi\)
0.990536 + 0.137256i \(0.0438283\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 226.525 + 164.580i 0.347431 + 0.252423i
\(653\) −99.4226 136.843i −0.152255 0.209561i 0.726075 0.687615i \(-0.241342\pi\)
−0.878330 + 0.478054i \(0.841342\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1153.00 1.74433 0.872163 0.489215i \(-0.162717\pi\)
0.872163 + 0.489215i \(0.162717\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 358.050 1286.09i 0.535202 1.92241i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(674\) 0 0
\(675\) 854.746 + 1805.94i 1.26629 + 2.67546i
\(676\) −208.895 + 642.914i −0.309017 + 0.951057i
\(677\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1114.39i 1.63160i −0.578331 0.815802i \(-0.696296\pi\)
0.578331 0.815802i \(-0.303704\pi\)
\(684\) 0 0
\(685\) 560.649 + 407.335i 0.818465 + 0.594650i
\(686\) 0 0
\(687\) 1017.42 807.629i 1.48096 1.17559i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −337.756 1039.50i −0.488792 1.50435i −0.826412 0.563066i \(-0.809622\pi\)
0.337620 0.941283i \(-0.390378\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1980.00 + 1313.38i 2.80851 + 1.86296i
\(706\) 0 0
\(707\) 0 0
\(708\) 25.4439 + 596.450i 0.0359377 + 0.842444i
\(709\) 326.631 1005.27i 0.460692 1.41787i −0.403628 0.914923i \(-0.632251\pi\)
0.864320 0.502942i \(-0.167749\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1050.38 341.290i 1.47319 0.478667i
\(714\) 0 0
\(715\) 0 0
\(716\) 1392.98i 1.94551i
\(717\) 0 0
\(718\) 0 0
\(719\) 497.113 + 684.217i 0.691395 + 0.951624i 1.00000 0.000433404i \(0.000137957\pi\)
−0.308605 + 0.951190i \(0.599862\pi\)
\(720\) −122.020 1427.58i −0.169472 1.98275i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 325.086 + 1000.51i 0.449014 + 1.38192i
\(725\) 0 0
\(726\) 0 0
\(727\) −1355.00 −1.86382 −0.931912 0.362685i \(-0.881860\pi\)
−0.931912 + 0.362685i \(0.881860\pi\)
\(728\) 0 0
\(729\) 393.365 + 613.763i 0.539596 + 0.841924i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(734\) 0 0
\(735\) −1409.04 392.281i −1.91707 0.533715i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(740\) −584.839 + 804.962i −0.790323 + 1.08779i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −787.174 571.915i −1.04817 0.761538i −0.0763041 0.997085i \(-0.524312\pi\)
−0.971863 + 0.235547i \(0.924312\pi\)
\(752\) −748.594 1030.35i −0.995471 1.37015i
\(753\) 835.130 + 1052.06i 1.10907 + 1.39716i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.6312 + 66.5740i 0.0285749 + 0.0879445i 0.964327 0.264714i \(-0.0852776\pi\)
−0.935752 + 0.352659i \(0.885278\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1324.80 430.455i −1.73404 0.563423i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −205.979 + 739.863i −0.268202 + 0.963363i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 792.000 1193.98i 1.02724 1.54862i
\(772\) 0 0
\(773\) 421.084 579.572i 0.544740 0.749770i −0.444547 0.895756i \(-0.646635\pi\)
0.989287 + 0.145985i \(0.0466352\pi\)
\(774\) 0 0
\(775\) −846.089 + 2603.99i −1.09173 + 3.35999i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 634.269 + 460.824i 0.809017 + 0.587785i
\(785\) −1257.40 1730.67i −1.60179 2.20467i
\(786\) 0 0
\(787\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −829.866 2226.36i −1.04386 2.80046i
\(796\) 6.47214 4.70228i 0.00813082 0.00590739i
\(797\) 160.869 + 52.2696i 0.201843 + 0.0655829i 0.408194 0.912895i \(-0.366159\pi\)
−0.206351 + 0.978478i \(0.566159\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −879.210 1015.51i −1.09764 1.26780i
\(802\) 0 0
\(803\) 0 0
\(804\) −350.000 232.164i −0.435323 0.288761i
\(805\) 0 0
\(806\) 0 0
\(807\) −50.8877 1192.90i −0.0630579 1.47819i
\(808\) 0 0
\(809\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(810\) 0 0
\(811\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 696.491i 0.854590i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(822\) 0 0
\(823\) 233.308 + 718.048i 0.283485 + 0.872476i 0.986849 + 0.161646i \(0.0516803\pi\)
−0.703364 + 0.710830i \(0.748320\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(828\) −1046.56 243.823i −1.26396 0.294473i
\(829\) 660.967 480.221i 0.797306 0.579277i −0.112816 0.993616i \(-0.535987\pi\)
0.910123 + 0.414339i \(0.135987\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −185.000 + 981.721i −0.221027 + 1.17290i
\(838\) 0 0
\(839\) 964.984 1328.19i 1.15016 1.58306i 0.407780 0.913080i \(-0.366303\pi\)
0.742380 0.669979i \(-0.233697\pi\)
\(840\) 0 0
\(841\) 259.883 799.839i 0.309017 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1599.23 + 519.621i −1.89258 + 0.614936i
\(846\) 0 0
\(847\) 0 0
\(848\) 1273.58i 1.50187i
\(849\) 0 0
\(850\) 0 0
\(851\) 438.629 + 603.721i 0.515428 + 0.709426i
\(852\) 371.169 + 467.583i 0.435644 + 0.548806i
\(853\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −757.000 −0.881257 −0.440629 0.897689i \(-0.645244\pi\)
−0.440629 + 0.897689i \(0.645244\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1589.77 + 516.546i 1.84214 + 0.598547i 0.998055 + 0.0623360i \(0.0198550\pi\)
0.844084 + 0.536211i \(0.180145\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −232.531 + 835.235i −0.268202 + 0.963363i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −731.996 441.823i −0.838483 0.506097i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 945.238i 1.07291i −0.843927 0.536457i \(-0.819762\pi\)
0.843927 0.536457i \(-0.180238\pi\)
\(882\) 0 0
\(883\) 1108.35 + 805.266i 1.25521 + 0.911966i 0.998512 0.0545251i \(-0.0173645\pi\)
0.256701 + 0.966491i \(0.417364\pi\)
\(884\) 0 0
\(885\) −1163.10 + 923.271i −1.31423 + 1.04324i
\(886\) 0 0
\(887\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1780.00 −1.99552
\(893\) 0 0
\(894\) 0 0
\(895\) 2803.24 2036.68i 3.13212 2.27562i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 2014.04 1743.72i 2.23782 1.93746i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1538.13 + 2117.05i −1.69959 + 2.33928i
\(906\) 0 0
\(907\) −540.780 + 1664.35i −0.596229 + 1.83500i −0.0477182 + 0.998861i \(0.515195\pi\)
−0.548511 + 0.836143i \(0.684805\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −378.516 + 122.987i −0.415495 + 0.135002i −0.509302 0.860588i \(-0.670096\pi\)
0.0938071 + 0.995590i \(0.470096\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1401.22 1018.04i −1.52971 1.11140i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1850.00 −2.00000
\(926\) 0 0
\(927\) −387.999 + 1665.40i −0.418553 + 1.79655i
\(928\) 0 0
\(929\) 1514.06 + 491.949i 1.62978 + 0.529547i 0.974220 0.225599i \(-0.0724340\pi\)
0.655557 + 0.755146i \(0.272434\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1150.24 + 320.229i 1.23284 + 0.343225i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(938\) 0 0
\(939\) −794.278 + 33.8830i −0.845876 + 0.0360841i
\(940\) 978.966 3012.95i 1.04145 3.20526i
\(941\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 757.031 245.974i 0.801940 0.260566i
\(945\) 0 0
\(946\) 0 0
\(947\) 1323.33i 1.39740i 0.715417 + 0.698698i \(0.246237\pi\)
−0.715417 + 0.698698i \(0.753763\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1169.18 1472.89i −1.22942 1.54878i
\(952\) 0 0
\(953\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(954\) 0 0
\(955\) −1070.74 3295.41i −1.12120 3.45069i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −1790.06 + 667.238i −1.86465 + 0.695039i
\(961\) −330.079 + 239.816i −0.343474 + 0.249549i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1140.44 + 1569.68i −1.17450 + 1.61656i −0.552671 + 0.833399i \(0.686391\pi\)
−0.621825 + 0.783156i \(0.713609\pi\)
\(972\) 647.699 724.755i 0.666357 0.745632i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1447.82 + 470.426i −1.48191 + 0.481501i −0.934682 0.355485i \(-0.884316\pi\)
−0.547225 + 0.836986i \(0.684316\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1950.18i 1.98997i
\(981\) 0 0
\(982\) 0 0
\(983\) 1093.65 + 1505.28i 1.11256 + 1.53131i 0.817586 + 0.575806i \(0.195312\pi\)
0.294976 + 0.955505i \(0.404688\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1582.00 1.59637 0.798184 0.602414i \(-0.205794\pi\)
0.798184 + 0.602414i \(0.205794\pi\)
\(992\) 0 0
\(993\) −589.918 1582.63i −0.594076 1.59379i
\(994\) 0 0
\(995\) 18.9258 + 6.14936i 0.0190209 + 0.00618026i
\(996\) 0 0
\(997\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(998\) 0 0
\(999\) −669.487 + 86.0966i −0.670157 + 0.0861828i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.f.269.2 8
3.2 odd 2 inner 363.3.h.f.269.1 8
11.2 odd 10 inner 363.3.h.f.251.1 8
11.3 even 5 363.3.b.c.122.2 yes 2
11.4 even 5 inner 363.3.h.f.245.1 8
11.5 even 5 inner 363.3.h.f.323.2 8
11.6 odd 10 inner 363.3.h.f.323.2 8
11.7 odd 10 inner 363.3.h.f.245.1 8
11.8 odd 10 363.3.b.c.122.2 yes 2
11.9 even 5 inner 363.3.h.f.251.1 8
11.10 odd 2 CM 363.3.h.f.269.2 8
33.2 even 10 inner 363.3.h.f.251.2 8
33.5 odd 10 inner 363.3.h.f.323.1 8
33.8 even 10 363.3.b.c.122.1 2
33.14 odd 10 363.3.b.c.122.1 2
33.17 even 10 inner 363.3.h.f.323.1 8
33.20 odd 10 inner 363.3.h.f.251.2 8
33.26 odd 10 inner 363.3.h.f.245.2 8
33.29 even 10 inner 363.3.h.f.245.2 8
33.32 even 2 inner 363.3.h.f.269.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.c.122.1 2 33.8 even 10
363.3.b.c.122.1 2 33.14 odd 10
363.3.b.c.122.2 yes 2 11.3 even 5
363.3.b.c.122.2 yes 2 11.8 odd 10
363.3.h.f.245.1 8 11.4 even 5 inner
363.3.h.f.245.1 8 11.7 odd 10 inner
363.3.h.f.245.2 8 33.26 odd 10 inner
363.3.h.f.245.2 8 33.29 even 10 inner
363.3.h.f.251.1 8 11.2 odd 10 inner
363.3.h.f.251.1 8 11.9 even 5 inner
363.3.h.f.251.2 8 33.2 even 10 inner
363.3.h.f.251.2 8 33.20 odd 10 inner
363.3.h.f.269.1 8 3.2 odd 2 inner
363.3.h.f.269.1 8 33.32 even 2 inner
363.3.h.f.269.2 8 1.1 even 1 trivial
363.3.h.f.269.2 8 11.10 odd 2 CM
363.3.h.f.323.1 8 33.5 odd 10 inner
363.3.h.f.323.1 8 33.17 even 10 inner
363.3.h.f.323.2 8 11.5 even 5 inner
363.3.h.f.323.2 8 11.6 odd 10 inner