Properties

Label 363.3.h.f.251.1
Level $363$
Weight $3$
Character 363.251
Analytic conductor $9.891$
Analytic rank $0$
Dimension $8$
CM discriminant -11
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.228765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 5x^{5} + x^{4} + 15x^{3} - 18x^{2} - 27x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 251.1
Root \(1.37924 + 1.04771i\) of defining polynomial
Character \(\chi\) \(=\) 363.251
Dual form 363.3.h.f.269.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.99727 + 0.127860i) q^{3} +(-3.23607 - 2.35114i) q^{4} +(9.46289 - 3.07468i) q^{5} +(8.96730 - 0.766464i) q^{9} +(10.0000 + 6.63325i) q^{12} +(-27.9698 + 10.4256i) q^{15} +(4.94427 + 15.2169i) q^{16} +(-37.8516 - 12.2987i) q^{20} -29.8496i q^{23} +(59.8673 - 43.4961i) q^{25} +(-26.7795 + 3.44386i) q^{27} +(11.4336 - 35.1891i) q^{31} +(-30.8209 - 18.6031i) q^{36} +(-20.2254 - 14.6946i) q^{37} +(82.5000 - 34.8246i) q^{45} +(-46.7871 - 64.3969i) q^{47} +(-16.7650 - 44.9771i) q^{48} +(-15.1418 - 46.6018i) q^{49} +(75.7031 + 24.5974i) q^{53} +(-29.2419 + 40.2481i) q^{59} +(115.024 + 32.0229i) q^{60} +(19.7771 - 60.8676i) q^{64} -35.0000 q^{67} +(3.81658 + 89.4675i) q^{69} +(-47.3145 + 15.3734i) q^{71} +(-173.877 + 138.024i) q^{75} +(93.5742 + 128.794i) q^{80} +(79.8251 - 13.7462i) q^{81} +149.248i q^{89} +(-70.1807 + 96.5954i) q^{92} +(-29.7704 + 106.933i) q^{93} +(29.3566 - 90.3504i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{3} - 8 q^{4} - 7 q^{9} + 80 q^{12} - 33 q^{15} - 32 q^{16} + 148 q^{25} + 10 q^{27} - 74 q^{31} - 28 q^{36} - 50 q^{37} + 660 q^{45} - 80 q^{48} + 98 q^{49} - 132 q^{60} - 128 q^{64} - 280 q^{67}+ \cdots - 190 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(3\) −2.99727 + 0.127860i −0.999091 + 0.0426201i
\(4\) −3.23607 2.35114i −0.809017 0.587785i
\(5\) 9.46289 3.07468i 1.89258 0.614936i 0.915388 0.402574i \(-0.131884\pi\)
0.977191 0.212362i \(-0.0681157\pi\)
\(6\) 0 0
\(7\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(8\) 0 0
\(9\) 8.96730 0.766464i 0.996367 0.0851627i
\(10\) 0 0
\(11\) 0 0
\(12\) 10.0000 + 6.63325i 0.833333 + 0.552771i
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) −27.9698 + 10.4256i −1.86465 + 0.695039i
\(16\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(17\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) −37.8516 12.2987i −1.89258 0.614936i
\(21\) 0 0
\(22\) 0 0
\(23\) 29.8496i 1.29781i −0.760870 0.648905i \(-0.775227\pi\)
0.760870 0.648905i \(-0.224773\pi\)
\(24\) 0 0
\(25\) 59.8673 43.4961i 2.39469 1.73984i
\(26\) 0 0
\(27\) −26.7795 + 3.44386i −0.991832 + 0.127551i
\(28\) 0 0
\(29\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(30\) 0 0
\(31\) 11.4336 35.1891i 0.368827 1.13513i −0.578723 0.815524i \(-0.696449\pi\)
0.947550 0.319608i \(-0.103551\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −30.8209 18.6031i −0.856135 0.516752i
\(37\) −20.2254 14.6946i −0.546633 0.397152i 0.279909 0.960026i \(-0.409696\pi\)
−0.826543 + 0.562874i \(0.809696\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 82.5000 34.8246i 1.83333 0.773879i
\(46\) 0 0
\(47\) −46.7871 64.3969i −0.995471 1.37015i −0.928063 0.372422i \(-0.878527\pi\)
−0.0674071 0.997726i \(-0.521473\pi\)
\(48\) −16.7650 44.9771i −0.349270 0.937022i
\(49\) −15.1418 46.6018i −0.309017 0.951057i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 75.7031 + 24.5974i 1.42836 + 0.464103i 0.918248 0.396005i \(-0.129604\pi\)
0.510113 + 0.860108i \(0.329604\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −29.2419 + 40.2481i −0.495626 + 0.682171i −0.981413 0.191906i \(-0.938533\pi\)
0.485787 + 0.874077i \(0.338533\pi\)
\(60\) 115.024 + 32.0229i 1.91707 + 0.533715i
\(61\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 19.7771 60.8676i 0.309017 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) −35.0000 −0.522388 −0.261194 0.965286i \(-0.584116\pi\)
−0.261194 + 0.965286i \(0.584116\pi\)
\(68\) 0 0
\(69\) 3.81658 + 89.4675i 0.0553127 + 1.29663i
\(70\) 0 0
\(71\) −47.3145 + 15.3734i −0.666401 + 0.216527i −0.622632 0.782515i \(-0.713937\pi\)
−0.0437690 + 0.999042i \(0.513937\pi\)
\(72\) 0 0
\(73\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(74\) 0 0
\(75\) −173.877 + 138.024i −2.31836 + 1.84033i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 93.5742 + 128.794i 1.16968 + 1.60992i
\(81\) 79.8251 13.7462i 0.985495 0.169707i
\(82\) 0 0
\(83\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 149.248i 1.67695i 0.544944 + 0.838473i \(0.316551\pi\)
−0.544944 + 0.838473i \(0.683449\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −70.1807 + 96.5954i −0.762833 + 1.04995i
\(93\) −29.7704 + 106.933i −0.320112 + 1.14982i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 29.3566 90.3504i 0.302646 0.931447i −0.677900 0.735154i \(-0.737110\pi\)
0.980545 0.196293i \(-0.0628903\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −296.000 −2.96000
\(101\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(102\) 0 0
\(103\) 153.713 + 111.679i 1.49236 + 1.08426i 0.973303 + 0.229526i \(0.0737174\pi\)
0.519059 + 0.854739i \(0.326283\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(108\) 94.7572 + 51.8177i 0.877381 + 0.479794i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 62.5000 + 41.4578i 0.563063 + 0.373494i
\(112\) 0 0
\(113\) −40.9387 56.3473i −0.362290 0.498649i 0.588495 0.808501i \(-0.299721\pi\)
−0.950785 + 0.309852i \(0.899721\pi\)
\(114\) 0 0
\(115\) −91.7780 282.464i −0.798070 2.45621i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −119.735 + 86.9922i −0.965601 + 0.701550i
\(125\) 286.571 394.431i 2.29257 3.15545i
\(126\) 0 0
\(127\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −242.822 + 114.927i −1.79868 + 0.851313i
\(136\) 0 0
\(137\) 66.2402 21.5228i 0.483505 0.157100i −0.0571141 0.998368i \(-0.518190\pi\)
0.540620 + 0.841267i \(0.318190\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) 148.468 + 187.033i 1.05296 + 1.32648i
\(142\) 0 0
\(143\) 0 0
\(144\) 56.0000 + 132.665i 0.388889 + 0.921285i
\(145\) 0 0
\(146\) 0 0
\(147\) 51.3427 + 137.742i 0.349270 + 0.937022i
\(148\) 30.9017 + 95.1057i 0.208795 + 0.642606i
\(149\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 368.145i 2.37513i
\(156\) 0 0
\(157\) 173.939 126.374i 1.10789 0.804929i 0.125560 0.992086i \(-0.459927\pi\)
0.982330 + 0.187157i \(0.0599274\pi\)
\(158\) 0 0
\(159\) −230.048 64.0459i −1.44684 0.402804i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −21.6312 + 66.5740i −0.132707 + 0.408429i −0.995226 0.0975945i \(-0.968885\pi\)
0.862520 + 0.506024i \(0.168885\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(168\) 0 0
\(169\) 136.724 + 99.3357i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 82.5000 124.373i 0.466102 0.702675i
\(178\) 0 0
\(179\) 204.694 + 281.737i 1.14354 + 1.57395i 0.759335 + 0.650700i \(0.225524\pi\)
0.384205 + 0.923248i \(0.374476\pi\)
\(180\) −348.853 81.2745i −1.93807 0.451525i
\(181\) 81.2715 + 250.128i 0.449014 + 1.38192i 0.878022 + 0.478621i \(0.158863\pi\)
−0.429008 + 0.903301i \(0.641137\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −236.572 76.8670i −1.27877 0.415497i
\(186\) 0 0
\(187\) 0 0
\(188\) 318.396i 1.69360i
\(189\) 0 0
\(190\) 0 0
\(191\) −204.694 + 281.737i −1.07169 + 1.47506i −0.203345 + 0.979107i \(0.565181\pi\)
−0.868349 + 0.495954i \(0.834819\pi\)
\(192\) −51.4948 + 184.966i −0.268202 + 0.963363i
\(193\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −60.5673 + 186.407i −0.309017 + 0.951057i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.0100503 −0.00502513 0.999987i \(-0.501600\pi\)
−0.00502513 + 0.999987i \(0.501600\pi\)
\(200\) 0 0
\(201\) 104.905 4.47511i 0.521913 0.0222642i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −22.8787 267.671i −0.110525 1.29309i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(212\) −187.148 257.588i −0.882776 1.21504i
\(213\) 139.849 52.1279i 0.656567 0.244732i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 360.013 261.564i 1.61441 1.17293i 0.767864 0.640613i \(-0.221320\pi\)
0.846542 0.532322i \(-0.178680\pi\)
\(224\) 0 0
\(225\) 503.510 435.929i 2.23782 1.93746i
\(226\) 0 0
\(227\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(228\) 0 0
\(229\) 133.804 411.807i 0.584299 1.79829i −0.0177708 0.999842i \(-0.505657\pi\)
0.602069 0.798444i \(-0.294343\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(234\) 0 0
\(235\) −640.741 465.526i −2.72656 1.98096i
\(236\) 189.258 61.4936i 0.801940 0.260566i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) −296.935 374.066i −1.23723 1.55861i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −237.500 + 51.4077i −0.977366 + 0.211554i
\(244\) 0 0
\(245\) −286.571 394.431i −1.16968 1.60992i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 425.830 + 138.361i 1.69653 + 0.551237i 0.988002 0.154441i \(-0.0493575\pi\)
0.708533 + 0.705678i \(0.249358\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −207.108 + 150.473i −0.809017 + 0.587785i
\(257\) −280.723 + 386.382i −1.09231 + 1.50343i −0.247100 + 0.968990i \(0.579478\pi\)
−0.845206 + 0.534441i \(0.820522\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 792.000 2.98868
\(266\) 0 0
\(267\) −19.0829 447.338i −0.0714715 1.67542i
\(268\) 113.262 + 82.2899i 0.422621 + 0.307052i
\(269\) −378.516 + 122.987i −1.40712 + 0.457202i −0.911487 0.411329i \(-0.865065\pi\)
−0.495635 + 0.868531i \(0.665065\pi\)
\(270\) 0 0
\(271\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 198.000 298.496i 0.717391 1.08151i
\(277\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(278\) 0 0
\(279\) 75.5576 324.315i 0.270816 1.16242i
\(280\) 0 0
\(281\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(284\) 189.258 + 61.4936i 0.666401 + 0.216527i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −233.806 + 169.870i −0.809017 + 0.587785i
\(290\) 0 0
\(291\) −76.4376 + 274.558i −0.262672 + 0.943500i
\(292\) 0 0
\(293\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(294\) 0 0
\(295\) −152.963 + 470.773i −0.518520 + 1.59584i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 887.193 37.8466i 2.95731 0.126155i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −475.000 315.079i −1.53722 1.01967i
\(310\) 0 0
\(311\) 233.936 + 321.985i 0.752204 + 1.03532i 0.997823 + 0.0659539i \(0.0210090\pi\)
−0.245618 + 0.969367i \(0.578991\pi\)
\(312\) 0 0
\(313\) 81.8895 + 252.030i 0.261628 + 0.805208i 0.992451 + 0.122641i \(0.0391363\pi\)
−0.730823 + 0.682567i \(0.760864\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −596.162 193.705i −1.88064 0.611056i −0.986623 0.163020i \(-0.947877\pi\)
−0.894015 0.448037i \(-0.852123\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 636.792i 1.98997i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −290.639 143.196i −0.897033 0.441964i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 563.000 1.70091 0.850453 0.526051i \(-0.176328\pi\)
0.850453 + 0.526051i \(0.176328\pi\)
\(332\) 0 0
\(333\) −192.630 116.269i −0.578470 0.349157i
\(334\) 0 0
\(335\) −331.201 + 107.614i −0.988660 + 0.321235i
\(336\) 0 0
\(337\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(338\) 0 0
\(339\) 129.909 + 163.654i 0.383213 + 0.482755i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 311.200 + 834.887i 0.902029 + 2.41996i
\(346\) 0 0
\(347\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 328.346i 0.930158i 0.885269 + 0.465079i \(0.153974\pi\)
−0.885269 + 0.465079i \(0.846026\pi\)
\(354\) 0 0
\(355\) −400.463 + 290.954i −1.12807 + 0.819588i
\(356\) 350.903 482.977i 0.985684 1.35668i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(360\) 0 0
\(361\) −111.555 + 343.331i −0.309017 + 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −513.726 373.244i −1.39980 1.01701i −0.994709 0.102735i \(-0.967241\pi\)
−0.405089 0.914277i \(-0.632759\pi\)
\(368\) 454.219 147.585i 1.23429 0.401045i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 347.754 276.049i 0.934823 0.742067i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −808.500 + 1218.86i −2.15600 + 3.25029i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −41.0993 126.491i −0.108441 0.333748i 0.882081 0.471097i \(-0.156142\pi\)
−0.990523 + 0.137349i \(0.956142\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 123.018 + 39.9708i 0.321195 + 0.104363i 0.465177 0.885218i \(-0.345991\pi\)
−0.143982 + 0.989580i \(0.545991\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −307.426 + 223.358i −0.792336 + 0.575666i
\(389\) 321.661 442.729i 0.826893 1.13812i −0.161600 0.986856i \(-0.551666\pi\)
0.988493 0.151264i \(-0.0483345\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −790.000 −1.98992 −0.994962 0.100251i \(-0.968036\pi\)
−0.994962 + 0.100251i \(0.968036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 957.876 + 695.938i 2.39469 + 1.73984i
\(401\) 757.031 245.974i 1.88786 0.613403i 0.906169 0.422915i \(-0.138993\pi\)
0.981690 0.190487i \(-0.0610068\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 713.111 375.516i 1.76077 0.927199i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(410\) 0 0
\(411\) −195.788 + 72.9791i −0.476371 + 0.177565i
\(412\) −234.853 722.803i −0.570031 1.75438i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 795.990i 1.89974i 0.312649 + 0.949869i \(0.398784\pi\)
−0.312649 + 0.949869i \(0.601216\pi\)
\(420\) 0 0
\(421\) −600.291 + 436.137i −1.42587 + 1.03595i −0.435101 + 0.900382i \(0.643287\pi\)
−0.990767 + 0.135572i \(0.956713\pi\)
\(422\) 0 0
\(423\) −468.912 541.606i −1.10854 1.28039i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) −184.810 390.473i −0.427801 0.903873i
\(433\) 20.2254 + 14.6946i 0.0467100 + 0.0339368i 0.610895 0.791711i \(-0.290810\pi\)
−0.564185 + 0.825648i \(0.690810\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −171.500 406.287i −0.388889 0.921285i
\(442\) 0 0
\(443\) 450.326 + 619.821i 1.01654 + 1.39914i 0.914603 + 0.404352i \(0.132503\pi\)
0.101934 + 0.994791i \(0.467497\pi\)
\(444\) −104.781 281.107i −0.235993 0.633123i
\(445\) 458.890 + 1412.32i 1.03121 + 3.17375i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −615.088 199.854i −1.36991 0.445110i −0.470568 0.882364i \(-0.655951\pi\)
−0.899338 + 0.437254i \(0.855951\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 278.596i 0.616364i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −367.112 + 1129.86i −0.798070 + 2.45621i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 35.0000 0.0755940 0.0377970 0.999285i \(-0.487966\pi\)
0.0377970 + 0.999285i \(0.487966\pi\)
\(464\) 0 0
\(465\) 47.0711 + 1103.43i 0.101228 + 2.37297i
\(466\) 0 0
\(467\) 123.018 39.9708i 0.263421 0.0855907i −0.174329 0.984687i \(-0.555776\pi\)
0.437750 + 0.899097i \(0.355776\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −505.184 + 401.017i −1.07258 + 0.851416i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 697.706 + 162.549i 1.46270 + 0.340774i
\(478\) 0 0
\(479\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 945.238i 1.94894i
\(486\) 0 0
\(487\) 707.890 514.312i 1.45357 1.05608i 0.468593 0.883414i \(-0.344761\pi\)
0.984980 0.172668i \(-0.0552387\pi\)
\(488\) 0 0
\(489\) 56.3224 202.306i 0.115179 0.413714i
\(490\) 0 0
\(491\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 592.000 1.19355
\(497\) 0 0
\(498\) 0 0
\(499\) 487.028 + 353.847i 0.976008 + 0.709112i 0.956813 0.290704i \(-0.0938895\pi\)
0.0191955 + 0.999816i \(0.493890\pi\)
\(500\) −1854.73 + 602.637i −3.70945 + 1.20527i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −422.500 280.255i −0.833333 0.552771i
\(508\) 0 0
\(509\) 87.7258 + 120.744i 0.172349 + 0.237219i 0.886450 0.462825i \(-0.153164\pi\)
−0.714100 + 0.700043i \(0.753164\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1797.95 + 584.189i 3.49116 + 1.13435i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −380.145 + 523.225i −0.729646 + 1.00427i 0.269502 + 0.963000i \(0.413141\pi\)
−0.999148 + 0.0412712i \(0.986859\pi\)
\(522\) 0 0
\(523\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −362.000 −0.684310
\(530\) 0 0
\(531\) −231.373 + 383.330i −0.435730 + 0.721902i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −649.546 818.270i −1.20958 1.52378i
\(538\) 0 0
\(539\) 0 0
\(540\) 1056.00 + 198.997i 1.95556 + 0.368514i
\(541\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(542\) 0 0
\(543\) −275.574 739.310i −0.507503 1.36153i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(548\) −264.961 86.0910i −0.483505 0.157100i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 718.900 + 200.143i 1.29532 + 0.360619i
\(556\) 0 0
\(557\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(564\) −40.7102 954.320i −0.0721812 1.69206i
\(565\) −560.649 407.335i −0.992299 0.720947i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 577.500 870.614i 1.00785 1.51940i
\(574\) 0 0
\(575\) −1298.34 1787.02i −2.25799 3.10785i
\(576\) 130.694 560.977i 0.226900 0.973918i
\(577\) −326.013 1003.36i −0.565014 1.73893i −0.667911 0.744241i \(-0.732811\pi\)
0.102897 0.994692i \(-0.467189\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 187.148 257.588i 0.318822 0.438821i −0.619285 0.785166i \(-0.712577\pi\)
0.938107 + 0.346345i \(0.112577\pi\)
\(588\) 157.703 566.457i 0.268202 0.963363i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 123.607 380.423i 0.208795 0.642606i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.99455 0.255720i 0.0100411 0.000428342i
\(598\) 0 0
\(599\) 1135.55 368.962i 1.89574 0.615963i 0.922591 0.385781i \(-0.126068\pi\)
0.973148 0.230182i \(-0.0739322\pi\)
\(600\) 0 0
\(601\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(602\) 0 0
\(603\) −313.856 + 26.8262i −0.520490 + 0.0444880i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1114.39i 1.80614i 0.429498 + 0.903068i \(0.358691\pi\)
−0.429498 + 0.903068i \(0.641309\pi\)
\(618\) 0 0
\(619\) 1000.75 727.090i 1.61673 1.17462i 0.784743 0.619821i \(-0.212795\pi\)
0.831984 0.554800i \(-0.187205\pi\)
\(620\) −865.562 + 1191.34i −1.39607 + 1.92152i
\(621\) 102.798 + 799.357i 0.165536 + 1.28721i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 927.360 2854.12i 1.48378 4.56659i
\(626\) 0 0
\(627\) 0 0
\(628\) −860.000 −1.36943
\(629\) 0 0
\(630\) 0 0
\(631\) −981.338 712.984i −1.55521 1.12993i −0.939803 0.341717i \(-0.888992\pi\)
−0.615407 0.788209i \(-0.711008\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 593.870 + 748.132i 0.933759 + 1.17631i
\(637\) 0 0
\(638\) 0 0
\(639\) −412.500 + 174.123i −0.645540 + 0.272493i
\(640\) 0 0
\(641\) 614.081 + 845.210i 0.958005 + 1.31858i 0.947879 + 0.318631i \(0.103223\pi\)
0.0101258 + 0.999949i \(0.496777\pi\)
\(642\) 0 0
\(643\) 122.062 + 375.667i 0.189832 + 0.584242i 0.999998 0.00195828i \(-0.000623341\pi\)
−0.810166 + 0.586200i \(0.800623\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1107.16 359.738i −1.71122 0.556009i −0.720683 0.693265i \(-0.756172\pi\)
−0.990536 + 0.137256i \(0.956172\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 226.525 164.580i 0.347431 0.252423i
\(653\) 99.4226 136.843i 0.152255 0.209561i −0.726075 0.687615i \(-0.758658\pi\)
0.878330 + 0.478054i \(0.158658\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1153.00 1.74433 0.872163 0.489215i \(-0.162717\pi\)
0.872163 + 0.489215i \(0.162717\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1045.61 + 830.012i −1.56295 + 1.24068i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(674\) 0 0
\(675\) −1453.42 + 1370.98i −2.15321 + 2.03108i
\(676\) −208.895 642.914i −0.309017 0.951057i
\(677\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1114.39i 1.63160i −0.578331 0.815802i \(-0.696296\pi\)
0.578331 0.815802i \(-0.303704\pi\)
\(684\) 0 0
\(685\) 560.649 407.335i 0.818465 0.594650i
\(686\) 0 0
\(687\) −348.395 + 1251.41i −0.507125 + 1.82155i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −337.756 + 1039.50i −0.488792 + 1.50435i 0.337620 + 0.941283i \(0.390378\pi\)
−0.826412 + 0.563066i \(0.809622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1980.00 + 1313.38i 2.80851 + 1.86296i
\(706\) 0 0
\(707\) 0 0
\(708\) −559.395 + 208.512i −0.790106 + 0.294508i
\(709\) 326.631 + 1005.27i 0.460692 + 1.41787i 0.864320 + 0.502942i \(0.167749\pi\)
−0.403628 + 0.914923i \(0.632251\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1050.38 341.290i −1.47319 0.478667i
\(714\) 0 0
\(715\) 0 0
\(716\) 1392.98i 1.94551i
\(717\) 0 0
\(718\) 0 0
\(719\) −497.113 + 684.217i −0.691395 + 0.951624i 0.308605 + 0.951190i \(0.400138\pi\)
−1.00000 0.000433404i \(0.999862\pi\)
\(720\) 937.824 + 1083.21i 1.30253 + 1.50446i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 325.086 1000.51i 0.449014 1.38192i
\(725\) 0 0
\(726\) 0 0
\(727\) −1355.00 −1.86382 −0.931912 0.362685i \(-0.881860\pi\)
−0.931912 + 0.362685i \(0.881860\pi\)
\(728\) 0 0
\(729\) 705.280 184.450i 0.967462 0.253017i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(734\) 0 0
\(735\) 909.364 + 1145.58i 1.23723 + 1.55861i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(740\) 584.839 + 804.962i 0.790323 + 1.08779i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −787.174 + 571.915i −1.04817 + 0.761538i −0.971863 0.235547i \(-0.924312\pi\)
−0.0763041 + 0.997085i \(0.524312\pi\)
\(752\) 748.594 1030.35i 0.995471 1.37015i
\(753\) −1294.02 360.258i −1.71849 0.478430i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.6312 66.5740i 0.0285749 0.0879445i −0.935752 0.352659i \(-0.885278\pi\)
0.964327 + 0.264714i \(0.0852776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1324.80 430.455i 1.73404 0.563423i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 601.521 477.490i 0.783230 0.621732i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 792.000 1193.98i 1.02724 1.54862i
\(772\) 0 0
\(773\) −421.084 579.572i −0.544740 0.749770i 0.444547 0.895756i \(-0.353365\pi\)
−0.989287 + 0.145985i \(0.953365\pi\)
\(774\) 0 0
\(775\) −846.089 2603.99i −1.09173 3.35999i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 634.269 460.824i 0.809017 0.587785i
\(785\) 1257.40 1730.67i 1.60179 2.20467i
\(786\) 0 0
\(787\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −2373.84 + 101.265i −2.98596 + 0.127378i
\(796\) 6.47214 + 4.70228i 0.00813082 + 0.00590739i
\(797\) −160.869 + 52.2696i −0.201843 + 0.0655829i −0.408194 0.912895i \(-0.633841\pi\)
0.206351 + 0.978478i \(0.433841\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 114.393 + 1338.35i 0.142813 + 1.67085i
\(802\) 0 0
\(803\) 0 0
\(804\) −350.000 232.164i −0.435323 0.288761i
\(805\) 0 0
\(806\) 0 0
\(807\) 1118.79 417.023i 1.38636 0.516758i
\(808\) 0 0
\(809\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(810\) 0 0
\(811\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 696.491i 0.854590i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(822\) 0 0
\(823\) 233.308 718.048i 0.283485 0.872476i −0.703364 0.710830i \(-0.748320\pi\)
0.986849 0.161646i \(-0.0516803\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(828\) −555.294 + 919.991i −0.670645 + 1.11110i
\(829\) 660.967 + 480.221i 0.797306 + 0.579277i 0.910123 0.414339i \(-0.135987\pi\)
−0.112816 + 0.993616i \(0.535987\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −185.000 + 981.721i −0.221027 + 1.17290i
\(838\) 0 0
\(839\) −964.984 1328.19i −1.15016 1.58306i −0.742380 0.669979i \(-0.766303\pi\)
−0.407780 0.913080i \(-0.633697\pi\)
\(840\) 0 0
\(841\) 259.883 + 799.839i 0.309017 + 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1599.23 + 519.621i 1.89258 + 0.614936i
\(846\) 0 0
\(847\) 0 0
\(848\) 1273.58i 1.50187i
\(849\) 0 0
\(850\) 0 0
\(851\) −438.629 + 603.721i −0.515428 + 0.709426i
\(852\) −575.120 160.115i −0.675024 0.187928i
\(853\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −757.000 −0.881257 −0.440629 0.897689i \(-0.645244\pi\)
−0.440629 + 0.897689i \(0.645244\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1589.77 + 516.546i −1.84214 + 0.598547i −0.844084 + 0.536211i \(0.819855\pi\)
−0.998055 + 0.0623360i \(0.980145\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 679.061 539.041i 0.783230 0.621732i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 193.999 832.700i 0.222221 0.953837i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 945.238i 1.07291i −0.843927 0.536457i \(-0.819762\pi\)
0.843927 0.536457i \(-0.180238\pi\)
\(882\) 0 0
\(883\) 1108.35 805.266i 1.25521 0.911966i 0.256701 0.966491i \(-0.417364\pi\)
0.998512 + 0.0545251i \(0.0173645\pi\)
\(884\) 0 0
\(885\) 398.280 1430.59i 0.450034 1.61649i
\(886\) 0 0
\(887\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1780.00 −1.99552
\(893\) 0 0
\(894\) 0 0
\(895\) 2803.24 + 2036.68i 3.13212 + 2.27562i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −2654.32 + 226.873i −2.94925 + 0.252082i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1538.13 + 2117.05i 1.69959 + 2.33928i
\(906\) 0 0
\(907\) −540.780 1664.35i −0.596229 1.83500i −0.548511 0.836143i \(-0.684805\pi\)
−0.0477182 0.998861i \(-0.515195\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 378.516 + 122.987i 0.415495 + 0.135002i 0.509302 0.860588i \(-0.329904\pi\)
−0.0938071 + 0.995590i \(0.529904\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1401.22 + 1018.04i −1.52971 + 1.11140i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1850.00 −2.00000
\(926\) 0 0
\(927\) 1463.99 + 883.646i 1.57928 + 0.953231i
\(928\) 0 0
\(929\) −1514.06 + 491.949i −1.62978 + 0.529547i −0.974220 0.225599i \(-0.927566\pi\)
−0.655557 + 0.755146i \(0.727566\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −742.338 935.165i −0.795646 1.00232i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(938\) 0 0
\(939\) −277.670 744.933i −0.295708 0.793325i
\(940\) 978.966 + 3012.95i 1.04145 + 3.20526i
\(941\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −757.031 245.974i −0.801940 0.260566i
\(945\) 0 0
\(946\) 0 0
\(947\) 1323.33i 1.39740i 0.715417 + 0.698698i \(0.246237\pi\)
−0.715417 + 0.698698i \(0.753763\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1811.63 + 504.361i 1.90497 + 0.530348i
\(952\) 0 0
\(953\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(954\) 0 0
\(955\) −1070.74 + 3295.41i −1.12120 + 3.45069i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 81.4204 + 1908.64i 0.0848129 + 1.98817i
\(961\) −330.079 239.816i −0.343474 0.249549i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1140.44 + 1569.68i 1.17450 + 1.61656i 0.621825 + 0.783156i \(0.286391\pi\)
0.552671 + 0.833399i \(0.313609\pi\)
\(972\) 889.433 + 392.037i 0.915054 + 0.403330i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1447.82 + 470.426i 1.48191 + 0.481501i 0.934682 0.355485i \(-0.115684\pi\)
0.547225 + 0.836986i \(0.315684\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1950.18i 1.98997i
\(981\) 0 0
\(982\) 0 0
\(983\) −1093.65 + 1505.28i −1.11256 + 1.53131i −0.294976 + 0.955505i \(0.595312\pi\)
−0.817586 + 0.575806i \(0.804688\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1582.00 1.59637 0.798184 0.602414i \(-0.205794\pi\)
0.798184 + 0.602414i \(0.205794\pi\)
\(992\) 0 0
\(993\) −1687.47 + 71.9853i −1.69936 + 0.0724928i
\(994\) 0 0
\(995\) −18.9258 + 6.14936i −0.0190209 + 0.00618026i
\(996\) 0 0
\(997\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(998\) 0 0
\(999\) 592.232 + 323.861i 0.592825 + 0.324185i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.f.251.1 8
3.2 odd 2 inner 363.3.h.f.251.2 8
11.2 odd 10 inner 363.3.h.f.245.1 8
11.3 even 5 inner 363.3.h.f.323.2 8
11.4 even 5 363.3.b.c.122.2 yes 2
11.5 even 5 inner 363.3.h.f.269.2 8
11.6 odd 10 inner 363.3.h.f.269.2 8
11.7 odd 10 363.3.b.c.122.2 yes 2
11.8 odd 10 inner 363.3.h.f.323.2 8
11.9 even 5 inner 363.3.h.f.245.1 8
11.10 odd 2 CM 363.3.h.f.251.1 8
33.2 even 10 inner 363.3.h.f.245.2 8
33.5 odd 10 inner 363.3.h.f.269.1 8
33.8 even 10 inner 363.3.h.f.323.1 8
33.14 odd 10 inner 363.3.h.f.323.1 8
33.17 even 10 inner 363.3.h.f.269.1 8
33.20 odd 10 inner 363.3.h.f.245.2 8
33.26 odd 10 363.3.b.c.122.1 2
33.29 even 10 363.3.b.c.122.1 2
33.32 even 2 inner 363.3.h.f.251.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.c.122.1 2 33.26 odd 10
363.3.b.c.122.1 2 33.29 even 10
363.3.b.c.122.2 yes 2 11.4 even 5
363.3.b.c.122.2 yes 2 11.7 odd 10
363.3.h.f.245.1 8 11.2 odd 10 inner
363.3.h.f.245.1 8 11.9 even 5 inner
363.3.h.f.245.2 8 33.2 even 10 inner
363.3.h.f.245.2 8 33.20 odd 10 inner
363.3.h.f.251.1 8 1.1 even 1 trivial
363.3.h.f.251.1 8 11.10 odd 2 CM
363.3.h.f.251.2 8 3.2 odd 2 inner
363.3.h.f.251.2 8 33.32 even 2 inner
363.3.h.f.269.1 8 33.5 odd 10 inner
363.3.h.f.269.1 8 33.17 even 10 inner
363.3.h.f.269.2 8 11.5 even 5 inner
363.3.h.f.269.2 8 11.6 odd 10 inner
363.3.h.f.323.1 8 33.8 even 10 inner
363.3.h.f.323.1 8 33.14 odd 10 inner
363.3.h.f.323.2 8 11.3 even 5 inner
363.3.h.f.323.2 8 11.8 odd 10 inner