Properties

Label 363.3.h.d.269.1
Level $363$
Weight $3$
Character 363.269
Analytic conductor $9.891$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.228765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 5x^{5} + x^{4} + 15x^{3} - 18x^{2} - 27x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.1
Root \(-0.570223 - 1.63550i\) of defining polynomial
Character \(\chi\) \(=\) 363.269
Dual form 363.3.h.d.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.15430 + 1.02489i) q^{2} +(-2.42705 - 1.76336i) q^{3} +(5.66312 - 4.11450i) q^{4} +(6.30860 + 2.04979i) q^{5} +(9.46289 + 3.07468i) q^{6} +(-6.47214 + 4.70228i) q^{7} +(-5.84839 + 8.04962i) q^{8} +(2.78115 + 8.55951i) q^{9} -22.0000 q^{10} -21.0000 q^{12} +(-1.23607 - 3.80423i) q^{13} +(15.5957 - 21.4656i) q^{14} +(-11.6968 - 16.0992i) q^{15} +(1.54508 - 4.75528i) q^{16} +(12.6172 + 4.09957i) q^{17} +(-17.5452 - 24.1489i) q^{18} +(-4.85410 - 3.52671i) q^{19} +(44.1602 - 14.3485i) q^{20} +24.0000 q^{21} -6.63325i q^{23} +(28.3887 - 9.22404i) q^{24} +(15.3713 + 11.1679i) q^{25} +(7.79785 + 10.7328i) q^{26} +(8.34346 - 25.6785i) q^{27} +(-17.3050 + 53.2592i) q^{28} +(23.3936 + 32.1985i) q^{29} +(53.3951 + 38.7938i) q^{30} +(-8.03444 - 24.7275i) q^{31} -23.2164i q^{32} -44.0000 q^{34} +(-50.4688 + 16.3983i) q^{35} +(50.9681 + 37.0305i) q^{36} +(-24.2705 + 17.6336i) q^{37} +(18.9258 + 6.14936i) q^{38} +(-3.70820 + 11.4127i) q^{39} +(-53.3951 + 38.7938i) q^{40} +(7.79785 - 10.7328i) q^{41} +(-75.7031 + 24.5974i) q^{42} -42.0000 q^{43} +59.6992i q^{45} +(6.79837 + 20.9232i) q^{46} +(-50.6860 + 69.7634i) q^{47} +(-12.1353 + 8.81678i) q^{48} +(4.63525 - 14.2658i) q^{49} +(-59.9317 - 19.4730i) q^{50} +(-23.3936 - 32.1985i) q^{51} +(-22.6525 - 16.4580i) q^{52} +(-56.7774 + 18.4481i) q^{53} +89.5489i q^{54} -79.5990i q^{56} +(5.56231 + 17.1190i) q^{57} +(-106.790 - 77.5877i) q^{58} +(38.9893 + 53.6641i) q^{59} +(-132.480 - 43.0455i) q^{60} +(-3.70820 + 11.4127i) q^{61} +(50.6860 + 69.7634i) q^{62} +(-58.2492 - 42.3205i) q^{63} +(29.9746 + 92.2525i) q^{64} -26.5330i q^{65} +2.00000 q^{67} +(88.3203 - 28.6970i) q^{68} +(-11.6968 + 16.0992i) q^{69} +(142.387 - 103.450i) q^{70} +(56.7774 + 18.4481i) q^{71} +(-85.1660 - 27.6721i) q^{72} +(-59.8673 + 43.4961i) q^{73} +(58.4839 - 80.4962i) q^{74} +(-17.6140 - 54.2102i) q^{75} -42.0000 q^{76} -39.7995i q^{78} +(12.3607 + 38.0423i) q^{79} +(19.4946 - 26.8321i) q^{80} +(-65.5304 + 47.6106i) q^{81} +(-13.5967 + 41.8465i) q^{82} +(-37.8516 - 12.2987i) q^{83} +(135.915 - 98.7479i) q^{84} +(71.1935 + 51.7251i) q^{85} +(132.480 - 43.0455i) q^{86} -119.398i q^{87} +119.398i q^{89} +(-61.1854 - 188.309i) q^{90} +(25.8885 + 18.8091i) q^{91} +(-27.2925 - 37.5649i) q^{92} +(-24.1033 + 74.1824i) q^{93} +(88.3789 - 272.002i) q^{94} +(-23.3936 - 32.1985i) q^{95} +(-40.9387 + 56.3473i) q^{96} +(19.1591 + 58.9655i) q^{97} +49.7494i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 14 q^{4} - 16 q^{7} - 18 q^{9} - 176 q^{10} - 168 q^{12} + 8 q^{13} - 10 q^{16} - 12 q^{19} + 192 q^{21} + 38 q^{25} - 54 q^{27} + 112 q^{28} + 132 q^{30} + 52 q^{31} - 352 q^{34} + 126 q^{36}+ \cdots - 124 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.15430 + 1.02489i −1.57715 + 0.512447i −0.961320 0.275433i \(-0.911179\pi\)
−0.615829 + 0.787880i \(0.711179\pi\)
\(3\) −2.42705 1.76336i −0.809017 0.587785i
\(4\) 5.66312 4.11450i 1.41578 1.02862i
\(5\) 6.30860 + 2.04979i 1.26172 + 0.409957i 0.862107 0.506727i \(-0.169145\pi\)
0.399612 + 0.916684i \(0.369145\pi\)
\(6\) 9.46289 + 3.07468i 1.57715 + 0.512447i
\(7\) −6.47214 + 4.70228i −0.924591 + 0.671755i −0.944662 0.328044i \(-0.893611\pi\)
0.0200716 + 0.999799i \(0.493611\pi\)
\(8\) −5.84839 + 8.04962i −0.731049 + 1.00620i
\(9\) 2.78115 + 8.55951i 0.309017 + 0.951057i
\(10\) −22.0000 −2.20000
\(11\) 0 0
\(12\) −21.0000 −1.75000
\(13\) −1.23607 3.80423i −0.0950822 0.292633i 0.892193 0.451654i \(-0.149166\pi\)
−0.987275 + 0.159022i \(0.949166\pi\)
\(14\) 15.5957 21.4656i 1.11398 1.53326i
\(15\) −11.6968 16.0992i −0.779785 1.07328i
\(16\) 1.54508 4.75528i 0.0965678 0.297205i
\(17\) 12.6172 + 4.09957i 0.742188 + 0.241151i 0.655616 0.755094i \(-0.272409\pi\)
0.0865714 + 0.996246i \(0.472409\pi\)
\(18\) −17.5452 24.1489i −0.974732 1.34160i
\(19\) −4.85410 3.52671i −0.255479 0.185616i 0.452673 0.891677i \(-0.350471\pi\)
−0.708152 + 0.706060i \(0.750471\pi\)
\(20\) 44.1602 14.3485i 2.20801 0.717425i
\(21\) 24.0000 1.14286
\(22\) 0 0
\(23\) 6.63325i 0.288402i −0.989548 0.144201i \(-0.953939\pi\)
0.989548 0.144201i \(-0.0460612\pi\)
\(24\) 28.3887 9.22404i 1.18286 0.384335i
\(25\) 15.3713 + 11.1679i 0.614853 + 0.446717i
\(26\) 7.79785 + 10.7328i 0.299917 + 0.412801i
\(27\) 8.34346 25.6785i 0.309017 0.951057i
\(28\) −17.3050 + 53.2592i −0.618034 + 1.90211i
\(29\) 23.3936 + 32.1985i 0.806674 + 1.11029i 0.991828 + 0.127582i \(0.0407217\pi\)
−0.185154 + 0.982710i \(0.559278\pi\)
\(30\) 53.3951 + 38.7938i 1.77984 + 1.29313i
\(31\) −8.03444 24.7275i −0.259176 0.797660i −0.992978 0.118298i \(-0.962256\pi\)
0.733803 0.679363i \(-0.237744\pi\)
\(32\) 23.2164i 0.725512i
\(33\) 0 0
\(34\) −44.0000 −1.29412
\(35\) −50.4688 + 16.3983i −1.44196 + 0.468523i
\(36\) 50.9681 + 37.0305i 1.41578 + 1.02862i
\(37\) −24.2705 + 17.6336i −0.655960 + 0.476583i −0.865296 0.501261i \(-0.832870\pi\)
0.209336 + 0.977844i \(0.432870\pi\)
\(38\) 18.9258 + 6.14936i 0.498047 + 0.161825i
\(39\) −3.70820 + 11.4127i −0.0950822 + 0.292633i
\(40\) −53.3951 + 38.7938i −1.33488 + 0.969846i
\(41\) 7.79785 10.7328i 0.190192 0.261776i −0.703263 0.710930i \(-0.748274\pi\)
0.893455 + 0.449154i \(0.148274\pi\)
\(42\) −75.7031 + 24.5974i −1.80246 + 0.585653i
\(43\) −42.0000 −0.976744 −0.488372 0.872635i \(-0.662409\pi\)
−0.488372 + 0.872635i \(0.662409\pi\)
\(44\) 0 0
\(45\) 59.6992i 1.32665i
\(46\) 6.79837 + 20.9232i 0.147791 + 0.454853i
\(47\) −50.6860 + 69.7634i −1.07843 + 1.48433i −0.217185 + 0.976130i \(0.569688\pi\)
−0.861241 + 0.508196i \(0.830312\pi\)
\(48\) −12.1353 + 8.81678i −0.252818 + 0.183683i
\(49\) 4.63525 14.2658i 0.0945970 0.291140i
\(50\) −59.9317 19.4730i −1.19863 0.389460i
\(51\) −23.3936 32.1985i −0.458697 0.631343i
\(52\) −22.6525 16.4580i −0.435625 0.316500i
\(53\) −56.7774 + 18.4481i −1.07127 + 0.348077i −0.790982 0.611839i \(-0.790430\pi\)
−0.280288 + 0.959916i \(0.590430\pi\)
\(54\) 89.5489i 1.65831i
\(55\) 0 0
\(56\) 79.5990i 1.42141i
\(57\) 5.56231 + 17.1190i 0.0975843 + 0.300334i
\(58\) −106.790 77.5877i −1.84121 1.33772i
\(59\) 38.9893 + 53.6641i 0.660835 + 0.909561i 0.999509 0.0313426i \(-0.00997829\pi\)
−0.338674 + 0.940904i \(0.609978\pi\)
\(60\) −132.480 43.0455i −2.20801 0.717425i
\(61\) −3.70820 + 11.4127i −0.0607902 + 0.187093i −0.976840 0.213972i \(-0.931360\pi\)
0.916050 + 0.401065i \(0.131360\pi\)
\(62\) 50.6860 + 69.7634i 0.817517 + 1.12522i
\(63\) −58.2492 42.3205i −0.924591 0.671755i
\(64\) 29.9746 + 92.2525i 0.468354 + 1.44145i
\(65\) 26.5330i 0.408200i
\(66\) 0 0
\(67\) 2.00000 0.0298507 0.0149254 0.999889i \(-0.495249\pi\)
0.0149254 + 0.999889i \(0.495249\pi\)
\(68\) 88.3203 28.6970i 1.29883 0.422015i
\(69\) −11.6968 + 16.0992i −0.169519 + 0.233322i
\(70\) 142.387 103.450i 2.03410 1.47786i
\(71\) 56.7774 + 18.4481i 0.799681 + 0.259832i 0.680221 0.733007i \(-0.261884\pi\)
0.119460 + 0.992839i \(0.461884\pi\)
\(72\) −85.1660 27.6721i −1.18286 0.384335i
\(73\) −59.8673 + 43.4961i −0.820099 + 0.595837i −0.916741 0.399482i \(-0.869190\pi\)
0.0966416 + 0.995319i \(0.469190\pi\)
\(74\) 58.4839 80.4962i 0.790323 1.08779i
\(75\) −17.6140 54.2102i −0.234853 0.722803i
\(76\) −42.0000 −0.552632
\(77\) 0 0
\(78\) 39.7995i 0.510250i
\(79\) 12.3607 + 38.0423i 0.156464 + 0.481548i 0.998306 0.0581764i \(-0.0185286\pi\)
−0.841842 + 0.539724i \(0.818529\pi\)
\(80\) 19.4946 26.8321i 0.243683 0.335401i
\(81\) −65.5304 + 47.6106i −0.809017 + 0.587785i
\(82\) −13.5967 + 41.8465i −0.165814 + 0.510323i
\(83\) −37.8516 12.2987i −0.456043 0.148177i 0.0719824 0.997406i \(-0.477067\pi\)
−0.528025 + 0.849229i \(0.677067\pi\)
\(84\) 135.915 98.7479i 1.61803 1.17557i
\(85\) 71.1935 + 51.7251i 0.837571 + 0.608531i
\(86\) 132.480 43.0455i 1.54047 0.500529i
\(87\) 119.398i 1.37240i
\(88\) 0 0
\(89\) 119.398i 1.34156i 0.741658 + 0.670778i \(0.234040\pi\)
−0.741658 + 0.670778i \(0.765960\pi\)
\(90\) −61.1854 188.309i −0.679837 2.09232i
\(91\) 25.8885 + 18.8091i 0.284489 + 0.206694i
\(92\) −27.2925 37.5649i −0.296657 0.408314i
\(93\) −24.1033 + 74.1824i −0.259176 + 0.797660i
\(94\) 88.3789 272.002i 0.940201 2.89364i
\(95\) −23.3936 32.1985i −0.246248 0.338931i
\(96\) −40.9387 + 56.3473i −0.426445 + 0.586951i
\(97\) 19.1591 + 58.9655i 0.197516 + 0.607892i 0.999938 + 0.0111348i \(0.00354438\pi\)
−0.802422 + 0.596757i \(0.796456\pi\)
\(98\) 49.7494i 0.507647i
\(99\) 0 0
\(100\) 133.000 1.33000
\(101\) −100.938 + 32.7966i −0.999381 + 0.324719i −0.762618 0.646849i \(-0.776087\pi\)
−0.236763 + 0.971567i \(0.576087\pi\)
\(102\) 106.790 + 77.5877i 1.04696 + 0.760663i
\(103\) −59.8673 + 43.4961i −0.581236 + 0.422292i −0.839169 0.543870i \(-0.816958\pi\)
0.257934 + 0.966163i \(0.416958\pi\)
\(104\) 37.8516 + 12.2987i 0.363957 + 0.118257i
\(105\) 151.406 + 49.1949i 1.44196 + 0.468523i
\(106\) 160.185 116.381i 1.51118 1.09794i
\(107\) −23.3936 + 32.1985i −0.218631 + 0.300920i −0.904218 0.427070i \(-0.859546\pi\)
0.685587 + 0.727991i \(0.259546\pi\)
\(108\) −58.4042 179.750i −0.540780 1.66435i
\(109\) 200.000 1.83486 0.917431 0.397894i \(-0.130259\pi\)
0.917431 + 0.397894i \(0.130259\pi\)
\(110\) 0 0
\(111\) 90.0000 0.810811
\(112\) 12.3607 + 38.0423i 0.110363 + 0.339663i
\(113\) 23.3936 32.1985i 0.207023 0.284942i −0.692862 0.721070i \(-0.743651\pi\)
0.899885 + 0.436128i \(0.143651\pi\)
\(114\) −35.0903 48.2977i −0.307810 0.423664i
\(115\) 13.5967 41.8465i 0.118233 0.363882i
\(116\) 264.961 + 86.0910i 2.28415 + 0.742164i
\(117\) 29.1246 21.1603i 0.248928 0.180857i
\(118\) −177.984 129.313i −1.50834 1.09587i
\(119\) −100.938 + 32.7966i −0.848214 + 0.275602i
\(120\) 198.000 1.65000
\(121\) 0 0
\(122\) 39.7995i 0.326225i
\(123\) −37.8516 + 12.2987i −0.307736 + 0.0999896i
\(124\) −147.241 106.977i −1.18743 0.862717i
\(125\) −23.3936 32.1985i −0.187148 0.257588i
\(126\) 227.109 + 73.7923i 1.80246 + 0.585653i
\(127\) −58.0952 + 178.799i −0.457442 + 1.40786i 0.410801 + 0.911725i \(0.365249\pi\)
−0.868244 + 0.496138i \(0.834751\pi\)
\(128\) −134.513 185.141i −1.05088 1.44642i
\(129\) 101.936 + 74.0609i 0.790203 + 0.574116i
\(130\) 27.1935 + 83.6930i 0.209181 + 0.643792i
\(131\) 39.7995i 0.303813i 0.988395 + 0.151906i \(0.0485413\pi\)
−0.988395 + 0.151906i \(0.951459\pi\)
\(132\) 0 0
\(133\) 48.0000 0.360902
\(134\) −6.30860 + 2.04979i −0.0470791 + 0.0152969i
\(135\) 105.271 144.893i 0.779785 1.07328i
\(136\) −106.790 + 77.5877i −0.785222 + 0.570497i
\(137\) −100.938 32.7966i −0.736770 0.239391i −0.0834913 0.996509i \(-0.526607\pi\)
−0.653279 + 0.757117i \(0.726607\pi\)
\(138\) 20.3951 62.7697i 0.147791 0.454853i
\(139\) −59.8673 + 43.4961i −0.430700 + 0.312922i −0.781929 0.623368i \(-0.785764\pi\)
0.351229 + 0.936290i \(0.385764\pi\)
\(140\) −218.340 + 300.519i −1.55957 + 2.14656i
\(141\) 246.035 79.9417i 1.74493 0.566962i
\(142\) −198.000 −1.39437
\(143\) 0 0
\(144\) 45.0000 0.312500
\(145\) 81.5805 + 251.079i 0.562624 + 1.73158i
\(146\) 144.260 198.557i 0.988084 1.35998i
\(147\) −36.4058 + 26.4503i −0.247658 + 0.179934i
\(148\) −64.8936 + 199.722i −0.438470 + 1.34947i
\(149\) −88.3203 28.6970i −0.592754 0.192597i −0.00274784 0.999996i \(-0.500875\pi\)
−0.590006 + 0.807399i \(0.700875\pi\)
\(150\) 111.119 + 152.943i 0.740796 + 1.01962i
\(151\) −129.443 94.0456i −0.857237 0.622819i 0.0698952 0.997554i \(-0.477734\pi\)
−0.927132 + 0.374736i \(0.877734\pi\)
\(152\) 56.7774 18.4481i 0.373535 0.121369i
\(153\) 119.398i 0.780382i
\(154\) 0 0
\(155\) 172.464i 1.11267i
\(156\) 25.9574 + 79.8887i 0.166394 + 0.512107i
\(157\) −147.241 106.977i −0.937841 0.681382i 0.0100587 0.999949i \(-0.496798\pi\)
−0.947900 + 0.318568i \(0.896798\pi\)
\(158\) −77.9785 107.328i −0.493535 0.679293i
\(159\) 170.332 + 55.3442i 1.07127 + 0.348077i
\(160\) 47.5886 146.463i 0.297429 0.915392i
\(161\) 31.1914 + 42.9313i 0.193735 + 0.266654i
\(162\) 157.907 217.340i 0.974732 1.34160i
\(163\) −89.6149 275.806i −0.549785 1.69206i −0.709333 0.704874i \(-0.751004\pi\)
0.159548 0.987190i \(-0.448996\pi\)
\(164\) 92.8655i 0.566253i
\(165\) 0 0
\(166\) 132.000 0.795181
\(167\) 227.109 73.7923i 1.35994 0.441870i 0.463915 0.885880i \(-0.346444\pi\)
0.896022 + 0.444010i \(0.146444\pi\)
\(168\) −140.361 + 193.191i −0.835484 + 1.14995i
\(169\) 123.780 89.9311i 0.732424 0.532137i
\(170\) −277.578 90.1906i −1.63281 0.530533i
\(171\) 16.6869 51.3571i 0.0975843 0.300334i
\(172\) −237.851 + 172.809i −1.38285 + 1.00470i
\(173\) 116.968 160.992i 0.676114 0.930592i −0.323765 0.946138i \(-0.604949\pi\)
0.999879 + 0.0155460i \(0.00494864\pi\)
\(174\) 122.371 + 376.618i 0.703280 + 2.16447i
\(175\) −152.000 −0.868571
\(176\) 0 0
\(177\) 198.997i 1.12428i
\(178\) −122.371 376.618i −0.687476 2.11583i
\(179\) −116.968 + 160.992i −0.653451 + 0.899399i −0.999243 0.0389129i \(-0.987611\pi\)
0.345791 + 0.938311i \(0.387611\pi\)
\(180\) 245.632 + 338.084i 1.36462 + 1.87824i
\(181\) 3.09017 9.51057i 0.0170728 0.0525446i −0.942157 0.335171i \(-0.891206\pi\)
0.959230 + 0.282627i \(0.0912058\pi\)
\(182\) −100.938 32.7966i −0.554602 0.180201i
\(183\) 29.1246 21.1603i 0.159151 0.115630i
\(184\) 53.3951 + 38.7938i 0.290191 + 0.210836i
\(185\) −189.258 + 61.4936i −1.02302 + 0.332398i
\(186\) 258.697i 1.39084i
\(187\) 0 0
\(188\) 603.626i 3.21078i
\(189\) 66.7477 + 205.428i 0.353162 + 1.08692i
\(190\) 106.790 + 77.5877i 0.562054 + 0.408356i
\(191\) −66.2817 91.2290i −0.347025 0.477639i 0.599452 0.800411i \(-0.295385\pi\)
−0.946477 + 0.322772i \(0.895385\pi\)
\(192\) 89.9239 276.757i 0.468354 1.44145i
\(193\) −92.0871 + 283.415i −0.477135 + 1.46847i 0.365921 + 0.930646i \(0.380754\pi\)
−0.843057 + 0.537825i \(0.819246\pi\)
\(194\) −120.867 166.359i −0.623024 0.857519i
\(195\) −46.7871 + 64.3969i −0.239934 + 0.330241i
\(196\) −32.4468 99.8609i −0.165545 0.509495i
\(197\) 132.665i 0.673426i 0.941607 + 0.336713i \(0.109315\pi\)
−0.941607 + 0.336713i \(0.890685\pi\)
\(198\) 0 0
\(199\) −42.0000 −0.211055 −0.105528 0.994416i \(-0.533653\pi\)
−0.105528 + 0.994416i \(0.533653\pi\)
\(200\) −179.795 + 58.4189i −0.898975 + 0.292095i
\(201\) −4.85410 3.52671i −0.0241498 0.0175458i
\(202\) 284.774 206.900i 1.40977 1.02426i
\(203\) −302.813 98.3898i −1.49169 0.484679i
\(204\) −264.961 86.0910i −1.29883 0.422015i
\(205\) 71.1935 51.7251i 0.347285 0.252318i
\(206\) 144.260 198.557i 0.700293 0.963870i
\(207\) 56.7774 18.4481i 0.274287 0.0891212i
\(208\) −20.0000 −0.0961538
\(209\) 0 0
\(210\) −528.000 −2.51429
\(211\) −76.0182 233.960i −0.360276 1.10881i −0.952887 0.303326i \(-0.901903\pi\)
0.592611 0.805489i \(-0.298097\pi\)
\(212\) −245.632 + 338.084i −1.15864 + 1.59474i
\(213\) −105.271 144.893i −0.494230 0.680249i
\(214\) 40.7902 125.539i 0.190609 0.586633i
\(215\) −264.961 86.0910i −1.23238 0.400423i
\(216\) 157.907 + 217.340i 0.731049 + 1.00620i
\(217\) 168.276 + 122.259i 0.775463 + 0.563407i
\(218\) −630.860 + 204.979i −2.89385 + 0.940269i
\(219\) 222.000 1.01370
\(220\) 0 0
\(221\) 53.0660i 0.240118i
\(222\) −283.887 + 92.2404i −1.27877 + 0.415497i
\(223\) 244.323 + 177.511i 1.09562 + 0.796014i 0.980339 0.197319i \(-0.0632234\pi\)
0.115280 + 0.993333i \(0.463223\pi\)
\(224\) 109.170 + 150.260i 0.487366 + 0.670801i
\(225\) −52.8419 + 162.631i −0.234853 + 0.722803i
\(226\) −40.7902 + 125.539i −0.180488 + 0.555484i
\(227\) 116.968 + 160.992i 0.515277 + 0.709217i 0.984798 0.173704i \(-0.0555735\pi\)
−0.469521 + 0.882921i \(0.655574\pi\)
\(228\) 101.936 + 74.0609i 0.447088 + 0.324829i
\(229\) 46.3525 + 142.658i 0.202413 + 0.622963i 0.999810 + 0.0195075i \(0.00620982\pi\)
−0.797397 + 0.603455i \(0.793790\pi\)
\(230\) 145.931i 0.634485i
\(231\) 0 0
\(232\) −396.000 −1.70690
\(233\) 416.367 135.286i 1.78698 0.580626i 0.787616 0.616167i \(-0.211315\pi\)
0.999368 + 0.0355403i \(0.0113152\pi\)
\(234\) −70.1807 + 96.5954i −0.299917 + 0.412801i
\(235\) −462.758 + 336.213i −1.96918 + 1.43069i
\(236\) 441.602 + 143.485i 1.87119 + 0.607988i
\(237\) 37.0820 114.127i 0.156464 0.481548i
\(238\) 284.774 206.900i 1.19653 0.869329i
\(239\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(240\) −94.6289 + 30.7468i −0.394287 + 0.128112i
\(241\) −130.000 −0.539419 −0.269710 0.962942i \(-0.586928\pi\)
−0.269710 + 0.962942i \(0.586928\pi\)
\(242\) 0 0
\(243\) 243.000 1.00000
\(244\) 25.9574 + 79.8887i 0.106383 + 0.327413i
\(245\) 58.4839 80.4962i 0.238710 0.328556i
\(246\) 106.790 77.5877i 0.434107 0.315397i
\(247\) −7.41641 + 22.8254i −0.0300259 + 0.0924103i
\(248\) 246.035 + 79.9417i 0.992077 + 0.322346i
\(249\) 70.1807 + 96.5954i 0.281850 + 0.387933i
\(250\) 106.790 + 77.5877i 0.427161 + 0.310351i
\(251\) 277.578 90.1906i 1.10589 0.359325i 0.301523 0.953459i \(-0.402505\pi\)
0.804366 + 0.594134i \(0.202505\pi\)
\(252\) −504.000 −2.00000
\(253\) 0 0
\(254\) 623.525i 2.45482i
\(255\) −81.5805 251.079i −0.319923 0.984623i
\(256\) 300.145 + 218.068i 1.17244 + 0.851829i
\(257\) 288.521 + 397.114i 1.12265 + 1.54519i 0.801331 + 0.598221i \(0.204125\pi\)
0.321317 + 0.946972i \(0.395875\pi\)
\(258\) −397.441 129.137i −1.54047 0.500529i
\(259\) 74.1641 228.254i 0.286348 0.881288i
\(260\) −109.170 150.260i −0.419884 0.577921i
\(261\) −210.542 + 289.786i −0.806674 + 1.11029i
\(262\) −40.7902 125.539i −0.155688 0.479158i
\(263\) 225.530i 0.857530i 0.903416 + 0.428765i \(0.141051\pi\)
−0.903416 + 0.428765i \(0.858949\pi\)
\(264\) 0 0
\(265\) −396.000 −1.49434
\(266\) −151.406 + 49.1949i −0.569197 + 0.184943i
\(267\) 210.542 289.786i 0.788547 1.08534i
\(268\) 11.3262 8.22899i 0.0422621 0.0307052i
\(269\) −69.3945 22.5477i −0.257972 0.0838203i 0.177176 0.984179i \(-0.443304\pi\)
−0.435148 + 0.900359i \(0.643304\pi\)
\(270\) −183.556 + 564.928i −0.679837 + 2.09232i
\(271\) −362.440 + 263.328i −1.33742 + 0.971689i −0.337881 + 0.941189i \(0.609710\pi\)
−0.999535 + 0.0305004i \(0.990290\pi\)
\(272\) 38.9893 53.6641i 0.143343 0.197295i
\(273\) −29.6656 91.3014i −0.108665 0.334437i
\(274\) 352.000 1.28467
\(275\) 0 0
\(276\) 139.298i 0.504704i
\(277\) 80.3444 + 247.275i 0.290052 + 0.892688i 0.984839 + 0.173473i \(0.0554988\pi\)
−0.694787 + 0.719216i \(0.744501\pi\)
\(278\) 144.260 198.557i 0.518922 0.714235i
\(279\) 189.310 137.542i 0.678530 0.492981i
\(280\) 163.161 502.158i 0.582718 1.79342i
\(281\) −189.258 61.4936i −0.673516 0.218838i −0.0477613 0.998859i \(-0.515209\pi\)
−0.625754 + 0.780020i \(0.715209\pi\)
\(282\) −694.137 + 504.320i −2.46148 + 1.78837i
\(283\) −40.4508 29.3893i −0.142936 0.103849i 0.514019 0.857779i \(-0.328156\pi\)
−0.656955 + 0.753930i \(0.728156\pi\)
\(284\) 397.441 129.137i 1.39944 0.454706i
\(285\) 119.398i 0.418942i
\(286\) 0 0
\(287\) 106.132i 0.369798i
\(288\) 198.721 64.5683i 0.690003 0.224195i
\(289\) −91.4189 66.4197i −0.316328 0.229826i
\(290\) −514.658 708.366i −1.77468 2.44264i
\(291\) 57.4772 176.897i 0.197516 0.607892i
\(292\) −160.071 + 492.647i −0.548188 + 1.68715i
\(293\) −280.723 386.382i −0.958098 1.31871i −0.947835 0.318761i \(-0.896733\pi\)
−0.0102629 0.999947i \(-0.503267\pi\)
\(294\) 87.7258 120.744i 0.298387 0.410695i
\(295\) 135.967 + 418.465i 0.460907 + 1.41852i
\(296\) 298.496i 1.00843i
\(297\) 0 0
\(298\) 308.000 1.03356
\(299\) −25.2344 + 8.19915i −0.0843959 + 0.0274219i
\(300\) −322.798 234.526i −1.07599 0.781754i
\(301\) 271.830 197.496i 0.903089 0.656132i
\(302\) 504.688 + 163.983i 1.67115 + 0.542990i
\(303\) 302.813 + 98.3898i 0.999381 + 0.324719i
\(304\) −24.2705 + 17.6336i −0.0798372 + 0.0580051i
\(305\) −46.7871 + 64.3969i −0.153400 + 0.211138i
\(306\) −122.371 376.618i −0.399904 1.23078i
\(307\) −86.0000 −0.280130 −0.140065 0.990142i \(-0.544731\pi\)
−0.140065 + 0.990142i \(0.544731\pi\)
\(308\) 0 0
\(309\) 222.000 0.718447
\(310\) 176.758 + 544.004i 0.570186 + 1.75485i
\(311\) −11.6968 + 16.0992i −0.0376102 + 0.0517660i −0.827408 0.561601i \(-0.810185\pi\)
0.789798 + 0.613367i \(0.210185\pi\)
\(312\) −70.1807 96.5954i −0.224938 0.309601i
\(313\) 30.2837 93.2035i 0.0967529 0.297775i −0.890954 0.454094i \(-0.849963\pi\)
0.987707 + 0.156319i \(0.0499629\pi\)
\(314\) 574.082 + 186.531i 1.82829 + 0.594047i
\(315\) −280.723 386.382i −0.891183 1.22661i
\(316\) 226.525 + 164.580i 0.716851 + 0.520822i
\(317\) 296.504 96.3400i 0.935344 0.303912i 0.198598 0.980081i \(-0.436361\pi\)
0.736746 + 0.676169i \(0.236361\pi\)
\(318\) −594.000 −1.86792
\(319\) 0 0
\(320\) 643.425i 2.01070i
\(321\) 113.555 36.8962i 0.353753 0.114941i
\(322\) −142.387 103.450i −0.442196 0.321274i
\(323\) −46.7871 64.3969i −0.144852 0.199371i
\(324\) −175.213 + 539.249i −0.540780 + 1.66435i
\(325\) 23.4853 72.2803i 0.0722624 0.222401i
\(326\) 565.344 + 778.130i 1.73419 + 2.38690i
\(327\) −485.410 352.671i −1.48443 1.07851i
\(328\) 40.7902 + 125.539i 0.124360 + 0.382742i
\(329\) 689.858i 2.09683i
\(330\) 0 0
\(331\) −218.000 −0.658610 −0.329305 0.944224i \(-0.606814\pi\)
−0.329305 + 0.944224i \(0.606814\pi\)
\(332\) −264.961 + 86.0910i −0.798075 + 0.259310i
\(333\) −218.435 158.702i −0.655960 0.476583i
\(334\) −640.741 + 465.526i −1.91839 + 1.39379i
\(335\) 12.6172 + 4.09957i 0.0376633 + 0.0122375i
\(336\) 37.0820 114.127i 0.110363 0.339663i
\(337\) 224.907 163.404i 0.667379 0.484879i −0.201768 0.979433i \(-0.564669\pi\)
0.869147 + 0.494554i \(0.164669\pi\)
\(338\) −298.268 + 410.530i −0.882449 + 1.21459i
\(339\) −113.555 + 36.8962i −0.334970 + 0.108838i
\(340\) 616.000 1.81176
\(341\) 0 0
\(342\) 179.098i 0.523678i
\(343\) −84.0526 258.687i −0.245051 0.754191i
\(344\) 245.632 338.084i 0.714048 0.982802i
\(345\) −106.790 + 77.5877i −0.309537 + 0.224892i
\(346\) −203.951 + 627.697i −0.589454 + 1.81415i
\(347\) 315.430 + 102.489i 0.909019 + 0.295358i 0.725955 0.687743i \(-0.241398\pi\)
0.183065 + 0.983101i \(0.441398\pi\)
\(348\) −491.265 676.168i −1.41168 1.94301i
\(349\) 262.122 + 190.442i 0.751064 + 0.545680i 0.896157 0.443738i \(-0.146348\pi\)
−0.145092 + 0.989418i \(0.546348\pi\)
\(350\) 479.453 155.784i 1.36987 0.445097i
\(351\) −108.000 −0.307692
\(352\) 0 0
\(353\) 397.995i 1.12746i −0.825958 0.563732i \(-0.809365\pi\)
0.825958 0.563732i \(-0.190635\pi\)
\(354\) 203.951 + 627.697i 0.576133 + 1.77316i
\(355\) 320.371 + 232.763i 0.902453 + 0.655670i
\(356\) 491.265 + 676.168i 1.37996 + 1.89935i
\(357\) 302.813 + 98.3898i 0.848214 + 0.275602i
\(358\) 203.951 627.697i 0.569696 1.75334i
\(359\) 179.351 + 246.855i 0.499584 + 0.687618i 0.982120 0.188258i \(-0.0602841\pi\)
−0.482536 + 0.875876i \(0.660284\pi\)
\(360\) −480.556 349.144i −1.33488 0.969846i
\(361\) −100.431 309.093i −0.278201 0.856214i
\(362\) 33.1662i 0.0916195i
\(363\) 0 0
\(364\) 224.000 0.615385
\(365\) −466.836 + 151.684i −1.27900 + 0.415573i
\(366\) −70.1807 + 96.5954i −0.191750 + 0.263922i
\(367\) 224.907 163.404i 0.612825 0.445243i −0.237583 0.971367i \(-0.576355\pi\)
0.850408 + 0.526124i \(0.176355\pi\)
\(368\) −31.5430 10.2489i −0.0857146 0.0278504i
\(369\) 113.555 + 36.8962i 0.307736 + 0.0999896i
\(370\) 533.951 387.938i 1.44311 1.04848i
\(371\) 280.723 386.382i 0.756665 1.04146i
\(372\) 168.723 + 519.277i 0.453557 + 1.39591i
\(373\) 68.0000 0.182306 0.0911528 0.995837i \(-0.470945\pi\)
0.0911528 + 0.995837i \(0.470945\pi\)
\(374\) 0 0
\(375\) 119.398i 0.318396i
\(376\) −265.137 816.006i −0.705150 2.17023i
\(377\) 93.5742 128.794i 0.248208 0.341628i
\(378\) −421.084 579.572i −1.11398 1.53326i
\(379\) 207.041 637.208i 0.546283 1.68129i −0.171636 0.985161i \(-0.554905\pi\)
0.717919 0.696127i \(-0.245095\pi\)
\(380\) −264.961 86.0910i −0.697266 0.226555i
\(381\) 456.286 331.511i 1.19760 0.870107i
\(382\) 302.572 + 219.832i 0.792074 + 0.575476i
\(383\) −31.5430 + 10.2489i −0.0823576 + 0.0267596i −0.349906 0.936785i \(-0.613786\pi\)
0.267548 + 0.963544i \(0.413786\pi\)
\(384\) 686.541i 1.78787i
\(385\) 0 0
\(386\) 988.354i 2.56050i
\(387\) −116.808 359.499i −0.301831 0.928939i
\(388\) 351.113 + 255.099i 0.904931 + 0.657471i
\(389\) −245.632 338.084i −0.631446 0.869110i 0.366678 0.930348i \(-0.380495\pi\)
−0.998123 + 0.0612377i \(0.980495\pi\)
\(390\) 81.5805 251.079i 0.209181 0.643792i
\(391\) 27.1935 83.6930i 0.0695486 0.214049i
\(392\) 87.7258 + 120.744i 0.223790 + 0.308021i
\(393\) 70.1807 96.5954i 0.178577 0.245790i
\(394\) −135.967 418.465i −0.345095 1.06209i
\(395\) 265.330i 0.671721i
\(396\) 0 0
\(397\) −86.0000 −0.216625 −0.108312 0.994117i \(-0.534545\pi\)
−0.108312 + 0.994117i \(0.534545\pi\)
\(398\) 132.480 43.0455i 0.332866 0.108155i
\(399\) −116.498 84.6411i −0.291976 0.212133i
\(400\) 76.8566 55.8396i 0.192142 0.139599i
\(401\) 239.727 + 77.8919i 0.597822 + 0.194244i 0.592269 0.805740i \(-0.298232\pi\)
0.00555318 + 0.999985i \(0.498232\pi\)
\(402\) 18.9258 + 6.14936i 0.0470791 + 0.0152969i
\(403\) −84.1378 + 61.1297i −0.208779 + 0.151687i
\(404\) −436.680 + 601.038i −1.08089 + 1.48772i
\(405\) −510.996 + 166.033i −1.26172 + 0.409957i
\(406\) 1056.00 2.60099
\(407\) 0 0
\(408\) 396.000 0.970588
\(409\) −157.599 485.039i −0.385327 1.18591i −0.936243 0.351353i \(-0.885722\pi\)
0.550916 0.834561i \(-0.314278\pi\)
\(410\) −171.553 + 236.122i −0.418421 + 0.575908i
\(411\) 187.148 + 257.588i 0.455349 + 0.626734i
\(412\) −160.071 + 492.647i −0.388521 + 1.19575i
\(413\) −504.688 163.983i −1.22200 0.397053i
\(414\) −160.185 + 116.381i −0.386921 + 0.281115i
\(415\) −213.580 155.175i −0.514652 0.373916i
\(416\) −88.3203 + 28.6970i −0.212308 + 0.0689832i
\(417\) 222.000 0.532374
\(418\) 0 0
\(419\) 530.660i 1.26649i 0.773951 + 0.633246i \(0.218278\pi\)
−0.773951 + 0.633246i \(0.781722\pi\)
\(420\) 1059.84 344.364i 2.52344 0.819915i
\(421\) 137.533 + 99.9235i 0.326681 + 0.237348i 0.739021 0.673682i \(-0.235288\pi\)
−0.412340 + 0.911030i \(0.635288\pi\)
\(422\) 479.568 + 660.069i 1.13642 + 1.56414i
\(423\) −738.106 239.825i −1.74493 0.566962i
\(424\) 183.556 564.928i 0.432915 1.33238i
\(425\) 148.159 + 203.924i 0.348610 + 0.479820i
\(426\) 480.556 + 349.144i 1.12807 + 0.819588i
\(427\) −29.6656 91.3014i −0.0694745 0.213821i
\(428\) 278.596i 0.650926i
\(429\) 0 0
\(430\) 924.000 2.14884
\(431\) −264.961 + 86.0910i −0.614759 + 0.199747i −0.599812 0.800141i \(-0.704758\pi\)
−0.0149469 + 0.999888i \(0.504758\pi\)
\(432\) −109.217 79.3510i −0.252818 0.183683i
\(433\) 438.487 318.580i 1.01267 0.735750i 0.0479046 0.998852i \(-0.484746\pi\)
0.964768 + 0.263102i \(0.0847457\pi\)
\(434\) −656.094 213.178i −1.51174 0.491193i
\(435\) 244.741 753.237i 0.562624 1.73158i
\(436\) 1132.62 822.899i 2.59776 1.88738i
\(437\) −23.3936 + 32.1985i −0.0535322 + 0.0736807i
\(438\) −700.254 + 227.526i −1.59875 + 0.519467i
\(439\) −328.000 −0.747153 −0.373576 0.927599i \(-0.621869\pi\)
−0.373576 + 0.927599i \(0.621869\pi\)
\(440\) 0 0
\(441\) 135.000 0.306122
\(442\) 54.3870 + 167.386i 0.123047 + 0.378701i
\(443\) −77.9785 + 107.328i −0.176024 + 0.242276i −0.887908 0.460021i \(-0.847842\pi\)
0.711884 + 0.702297i \(0.247842\pi\)
\(444\) 509.681 370.305i 1.14793 0.834020i
\(445\) −244.741 + 753.237i −0.549981 + 1.69267i
\(446\) −952.598 309.518i −2.13587 0.693986i
\(447\) 163.755 + 225.389i 0.366342 + 0.504227i
\(448\) −627.797 456.121i −1.40133 1.01813i
\(449\) −428.984 + 139.386i −0.955422 + 0.310435i −0.744917 0.667157i \(-0.767511\pi\)
−0.210505 + 0.977593i \(0.567511\pi\)
\(450\) 567.143i 1.26032i
\(451\) 0 0
\(452\) 278.596i 0.616364i
\(453\) 148.328 + 456.507i 0.327435 + 1.00774i
\(454\) −533.951 387.938i −1.17610 0.854490i
\(455\) 124.766 + 171.725i 0.274210 + 0.377418i
\(456\) −170.332 55.3442i −0.373535 0.121369i
\(457\) −105.684 + 325.261i −0.231256 + 0.711732i 0.766340 + 0.642435i \(0.222076\pi\)
−0.997596 + 0.0692969i \(0.977924\pi\)
\(458\) −292.419 402.481i −0.638470 0.878779i
\(459\) 210.542 289.786i 0.458697 0.631343i
\(460\) −95.1772 292.925i −0.206907 0.636794i
\(461\) 79.5990i 0.172666i −0.996266 0.0863330i \(-0.972485\pi\)
0.996266 0.0863330i \(-0.0275149\pi\)
\(462\) 0 0
\(463\) −86.0000 −0.185745 −0.0928726 0.995678i \(-0.529605\pi\)
−0.0928726 + 0.995678i \(0.529605\pi\)
\(464\) 189.258 61.4936i 0.407883 0.132529i
\(465\) −304.116 + 418.580i −0.654013 + 0.900172i
\(466\) −1174.69 + 853.464i −2.52080 + 1.83147i
\(467\) 567.774 + 184.481i 1.21579 + 0.395034i 0.845547 0.533901i \(-0.179275\pi\)
0.370242 + 0.928935i \(0.379275\pi\)
\(468\) 77.8723 239.666i 0.166394 0.512107i
\(469\) −12.9443 + 9.40456i −0.0275997 + 0.0200524i
\(470\) 1115.09 1534.79i 2.37254 3.26552i
\(471\) 168.723 + 519.277i 0.358224 + 1.10250i
\(472\) −660.000 −1.39831
\(473\) 0 0
\(474\) 397.995i 0.839652i
\(475\) −35.2279 108.420i −0.0741641 0.228254i
\(476\) −436.680 + 601.038i −0.917394 + 1.26269i
\(477\) −315.813 434.679i −0.662082 0.911277i
\(478\) 0 0
\(479\) 214.492 + 69.6928i 0.447792 + 0.145496i 0.524228 0.851578i \(-0.324354\pi\)
−0.0764360 + 0.997074i \(0.524354\pi\)
\(480\) −373.766 + 271.557i −0.778679 + 0.565743i
\(481\) 97.0820 + 70.5342i 0.201834 + 0.146641i
\(482\) 410.059 133.236i 0.850744 0.276424i
\(483\) 159.198i 0.329602i
\(484\) 0 0
\(485\) 411.261i 0.847962i
\(486\) −766.494 + 249.049i −1.57715 + 0.512447i
\(487\) −360.822 262.152i −0.740907 0.538300i 0.152088 0.988367i \(-0.451400\pi\)
−0.892995 + 0.450067i \(0.851400\pi\)
\(488\) −70.1807 96.5954i −0.143813 0.197941i
\(489\) −268.845 + 827.419i −0.549785 + 1.69206i
\(490\) −101.976 + 313.849i −0.208113 + 0.640507i
\(491\) 413.286 + 568.840i 0.841723 + 1.15853i 0.985626 + 0.168941i \(0.0540347\pi\)
−0.143903 + 0.989592i \(0.545965\pi\)
\(492\) −163.755 + 225.389i −0.332835 + 0.458108i
\(493\) 163.161 + 502.158i 0.330955 + 1.01858i
\(494\) 79.5990i 0.161132i
\(495\) 0 0
\(496\) −130.000 −0.262097
\(497\) −454.219 + 147.585i −0.913921 + 0.296951i
\(498\) −320.371 232.763i −0.643315 0.467396i
\(499\) 46.9230 34.0915i 0.0940340 0.0683197i −0.539775 0.841809i \(-0.681491\pi\)
0.633809 + 0.773490i \(0.281491\pi\)
\(500\) −264.961 86.0910i −0.529922 0.172182i
\(501\) −681.328 221.377i −1.35994 0.441870i
\(502\) −783.128 + 568.976i −1.56002 + 1.13342i
\(503\) −296.318 + 407.847i −0.589102 + 0.810830i −0.994656 0.103241i \(-0.967079\pi\)
0.405554 + 0.914071i \(0.367079\pi\)
\(504\) 681.328 221.377i 1.35184 0.439240i
\(505\) −704.000 −1.39406
\(506\) 0 0
\(507\) −459.000 −0.905325
\(508\) 406.666 + 1251.59i 0.800524 + 2.46376i
\(509\) −432.781 + 595.672i −0.850257 + 1.17028i 0.133549 + 0.991042i \(0.457363\pi\)
−0.983806 + 0.179236i \(0.942637\pi\)
\(510\) 514.658 + 708.366i 1.00913 + 1.38895i
\(511\) 182.938 563.025i 0.358000 1.10181i
\(512\) −299.658 97.3649i −0.585270 0.190166i
\(513\) −131.061 + 95.2212i −0.255479 + 0.185616i
\(514\) −1317.08 956.914i −2.56241 1.86170i
\(515\) −466.836 + 151.684i −0.906478 + 0.294532i
\(516\) 882.000 1.70930
\(517\) 0 0
\(518\) 795.990i 1.53666i
\(519\) −567.774 + 184.481i −1.09398 + 0.355454i
\(520\) 213.580 + 155.175i 0.410732 + 0.298414i
\(521\) 163.755 + 225.389i 0.314309 + 0.432609i 0.936719 0.350082i \(-0.113846\pi\)
−0.622410 + 0.782691i \(0.713846\pi\)
\(522\) 367.112 1129.86i 0.703280 2.16447i
\(523\) 43.8804 135.050i 0.0839014 0.258222i −0.900301 0.435267i \(-0.856654\pi\)
0.984203 + 0.177045i \(0.0566539\pi\)
\(524\) 163.755 + 225.389i 0.312509 + 0.430132i
\(525\) 368.912 + 268.030i 0.702689 + 0.510533i
\(526\) −231.145 711.390i −0.439439 1.35245i
\(527\) 344.929i 0.654514i
\(528\) 0 0
\(529\) 485.000 0.916824
\(530\) 1249.10 405.858i 2.35680 0.765769i
\(531\) −350.903 + 482.977i −0.660835 + 0.909561i
\(532\) 271.830 197.496i 0.510958 0.371233i
\(533\) −50.4688 16.3983i −0.0946881 0.0307660i
\(534\) −367.112 + 1129.86i −0.687476 + 2.11583i
\(535\) −213.580 + 155.175i −0.399216 + 0.290047i
\(536\) −11.6968 + 16.0992i −0.0218223 + 0.0300359i
\(537\) 567.774 184.481i 1.05731 0.343540i
\(538\) 242.000 0.449814
\(539\) 0 0
\(540\) 1253.68i 2.32164i
\(541\) −123.607 380.423i −0.228478 0.703184i −0.997920 0.0644668i \(-0.979465\pi\)
0.769441 0.638717i \(-0.220535\pi\)
\(542\) 873.359 1202.08i 1.61136 2.21785i
\(543\) −24.2705 + 17.6336i −0.0446971 + 0.0324743i
\(544\) 95.1772 292.925i 0.174958 0.538466i
\(545\) 1261.72 + 409.957i 2.31508 + 0.752215i
\(546\) 187.148 + 257.588i 0.342763 + 0.471772i
\(547\) 137.533 + 99.9235i 0.251431 + 0.182675i 0.706361 0.707852i \(-0.250336\pi\)
−0.454930 + 0.890527i \(0.650336\pi\)
\(548\) −706.563 + 229.576i −1.28935 + 0.418935i
\(549\) −108.000 −0.196721
\(550\) 0 0
\(551\) 238.797i 0.433388i
\(552\) −61.1854 188.309i −0.110843 0.341140i
\(553\) −258.885 188.091i −0.468147 0.340129i
\(554\) −506.860 697.634i −0.914910 1.25927i
\(555\) 567.774 + 184.481i 1.02302 + 0.332398i
\(556\) −160.071 + 492.647i −0.287897 + 0.886056i
\(557\) −499.063 686.901i −0.895983 1.23321i −0.971732 0.236088i \(-0.924135\pi\)
0.0757486 0.997127i \(-0.475865\pi\)
\(558\) −456.174 + 627.870i −0.817517 + 1.12522i
\(559\) 51.9149 + 159.777i 0.0928709 + 0.285827i
\(560\) 265.330i 0.473804i
\(561\) 0 0
\(562\) 660.000 1.17438
\(563\) 668.711 217.277i 1.18776 0.385928i 0.352518 0.935805i \(-0.385325\pi\)
0.835246 + 0.549877i \(0.185325\pi\)
\(564\) 1064.41 1465.03i 1.88725 2.59757i
\(565\) 213.580 155.175i 0.378019 0.274647i
\(566\) 157.715 + 51.2447i 0.278648 + 0.0905383i
\(567\) 200.243 616.285i 0.353162 1.08692i
\(568\) −480.556 + 349.144i −0.846049 + 0.614691i
\(569\) −70.1807 + 96.5954i −0.123340 + 0.169763i −0.866222 0.499659i \(-0.833459\pi\)
0.742882 + 0.669423i \(0.233459\pi\)
\(570\) −122.371 376.618i −0.214685 0.660734i
\(571\) 706.000 1.23643 0.618214 0.786010i \(-0.287857\pi\)
0.618214 + 0.786010i \(0.287857\pi\)
\(572\) 0 0
\(573\) 338.296i 0.590394i
\(574\) −108.774 334.772i −0.189502 0.583226i
\(575\) 74.0796 101.962i 0.128834 0.177325i
\(576\) −706.272 + 513.137i −1.22617 + 0.890862i
\(577\) −228.055 + 701.880i −0.395242 + 1.21643i 0.533531 + 0.845780i \(0.320865\pi\)
−0.928773 + 0.370649i \(0.879135\pi\)
\(578\) 356.436 + 115.813i 0.616671 + 0.200368i
\(579\) 723.261 525.480i 1.24916 0.907565i
\(580\) 1495.06 + 1086.23i 2.57770 + 1.87281i
\(581\) 302.813 98.3898i 0.521192 0.169346i
\(582\) 616.892i 1.05995i
\(583\) 0 0
\(584\) 736.291i 1.26077i
\(585\) 227.109 73.7923i 0.388221 0.126141i
\(586\) 1281.48 + 931.052i 2.18683 + 1.58883i
\(587\) −553.648 762.030i −0.943181 1.29818i −0.954490 0.298242i \(-0.903600\pi\)
0.0113088 0.999936i \(-0.496400\pi\)
\(588\) −97.3404 + 299.583i −0.165545 + 0.509495i
\(589\) −48.2067 + 148.365i −0.0818449 + 0.251893i
\(590\) −857.764 1180.61i −1.45384 2.00103i
\(591\) 233.936 321.985i 0.395830 0.544813i
\(592\) 46.3525 + 142.658i 0.0782982 + 0.240977i
\(593\) 543.926i 0.917245i 0.888631 + 0.458623i \(0.151657\pi\)
−0.888631 + 0.458623i \(0.848343\pi\)
\(594\) 0 0
\(595\) −704.000 −1.18319
\(596\) −618.242 + 200.879i −1.03732 + 0.337045i
\(597\) 101.936 + 74.0609i 0.170747 + 0.124055i
\(598\) 71.1935 51.7251i 0.119053 0.0864968i
\(599\) 44.1602 + 14.3485i 0.0737231 + 0.0239541i 0.345646 0.938365i \(-0.387660\pi\)
−0.271923 + 0.962319i \(0.587660\pi\)
\(600\) 539.385 + 175.257i 0.898975 + 0.292095i
\(601\) 438.487 318.580i 0.729596 0.530083i −0.159840 0.987143i \(-0.551098\pi\)
0.889436 + 0.457060i \(0.151098\pi\)
\(602\) −655.020 + 901.557i −1.08807 + 1.49760i
\(603\) 5.56231 + 17.1190i 0.00922439 + 0.0283897i
\(604\) −1120.00 −1.85430
\(605\) 0 0
\(606\) −1056.00 −1.74257
\(607\) 216.312 + 665.740i 0.356362 + 1.09677i 0.955215 + 0.295911i \(0.0956233\pi\)
−0.598853 + 0.800859i \(0.704377\pi\)
\(608\) −81.8775 + 112.695i −0.134667 + 0.185353i
\(609\) 561.445 + 772.763i 0.921914 + 1.26891i
\(610\) 81.5805 251.079i 0.133739 0.411605i
\(611\) 328.047 + 106.589i 0.536902 + 0.174450i
\(612\) 491.265 + 676.168i 0.802720 + 1.10485i
\(613\) 618.089 + 449.068i 1.00830 + 0.732574i 0.963852 0.266438i \(-0.0858466\pi\)
0.0444496 + 0.999012i \(0.485847\pi\)
\(614\) 271.270 88.1408i 0.441807 0.143552i
\(615\) −264.000 −0.429268
\(616\) 0 0
\(617\) 39.7995i 0.0645049i −0.999480 0.0322524i \(-0.989732\pi\)
0.999480 0.0322524i \(-0.0102680\pi\)
\(618\) −700.254 + 227.526i −1.13310 + 0.368166i
\(619\) 600.291 + 436.137i 0.969775 + 0.704583i 0.955400 0.295314i \(-0.0954243\pi\)
0.0143746 + 0.999897i \(0.495424\pi\)
\(620\) −709.605 976.687i −1.14452 1.57530i
\(621\) −170.332 55.3442i −0.274287 0.0891212i
\(622\) 20.3951 62.7697i 0.0327896 0.100916i
\(623\) −561.445 772.763i −0.901196 1.24039i
\(624\) 48.5410 + 35.2671i 0.0777901 + 0.0565178i
\(625\) −228.364 702.831i −0.365382 1.12453i
\(626\) 325.029i 0.519216i
\(627\) 0 0
\(628\) −1274.00 −2.02866
\(629\) −378.516 + 122.987i −0.601774 + 0.195528i
\(630\) 1281.48 + 931.052i 2.03410 + 1.47786i
\(631\) 331.697 240.992i 0.525669 0.381921i −0.293066 0.956092i \(-0.594676\pi\)
0.818735 + 0.574171i \(0.194676\pi\)
\(632\) −378.516 122.987i −0.598917 0.194600i
\(633\) −228.055 + 701.880i −0.360276 + 1.10881i
\(634\) −836.524 + 607.770i −1.31944 + 0.958628i
\(635\) −732.998 + 1008.89i −1.15433 + 1.58880i
\(636\) 1192.32 387.410i 1.87472 0.609135i
\(637\) −60.0000 −0.0941915
\(638\) 0 0
\(639\) 537.293i 0.840834i
\(640\) −469.088 1443.70i −0.732950 2.25579i
\(641\) 444.478 611.771i 0.693413 0.954401i −0.306584 0.951844i \(-0.599186\pi\)
0.999997 0.00255720i \(-0.000813982\pi\)
\(642\) −320.371 + 232.763i −0.499020 + 0.362559i
\(643\) 275.025 846.440i 0.427722 1.31639i −0.472642 0.881255i \(-0.656700\pi\)
0.900364 0.435138i \(-0.143300\pi\)
\(644\) 353.281 + 114.788i 0.548573 + 0.178242i
\(645\) 491.265 + 676.168i 0.761651 + 1.04832i
\(646\) 213.580 + 155.175i 0.330620 + 0.240209i
\(647\) 460.527 149.634i 0.711789 0.231274i 0.0693294 0.997594i \(-0.477914\pi\)
0.642460 + 0.766320i \(0.277914\pi\)
\(648\) 805.940i 1.24373i
\(649\) 0 0
\(650\) 252.063i 0.387790i
\(651\) −192.827 593.459i −0.296201 0.911612i
\(652\) −1642.30 1193.20i −2.51887 1.83007i
\(653\) 230.037 + 316.618i 0.352277 + 0.484867i 0.947977 0.318340i \(-0.103125\pi\)
−0.595700 + 0.803207i \(0.703125\pi\)
\(654\) 1892.58 + 614.936i 2.89385 + 0.940269i
\(655\) −81.5805 + 251.079i −0.124550 + 0.383327i
\(656\) −38.9893 53.6641i −0.0594349 0.0818051i
\(657\) −538.805 391.465i −0.820099 0.595837i
\(658\) 707.031 + 2176.02i 1.07452 + 3.30702i
\(659\) 384.728i 0.583806i −0.956448 0.291903i \(-0.905711\pi\)
0.956448 0.291903i \(-0.0942885\pi\)
\(660\) 0 0
\(661\) −746.000 −1.12859 −0.564297 0.825572i \(-0.690853\pi\)
−0.564297 + 0.825572i \(0.690853\pi\)
\(662\) 687.637 223.427i 1.03873 0.337503i
\(663\) −93.5742 + 128.794i −0.141138 + 0.194259i
\(664\) 320.371 232.763i 0.482486 0.350547i
\(665\) 302.813 + 98.3898i 0.455357 + 0.147955i
\(666\) 851.660 + 276.721i 1.27877 + 0.415497i
\(667\) 213.580 155.175i 0.320211 0.232647i
\(668\) 982.529 1352.34i 1.47085 2.02445i
\(669\) −279.969 861.657i −0.418489 1.28798i
\(670\) −44.0000 −0.0656716
\(671\) 0 0
\(672\) 557.193i 0.829156i
\(673\) 195.917 + 602.970i 0.291110 + 0.895943i 0.984501 + 0.175382i \(0.0561159\pi\)
−0.693391 + 0.720562i \(0.743884\pi\)
\(674\) −541.951 + 745.931i −0.804081 + 1.10672i
\(675\) 415.026 301.534i 0.614853 0.446717i
\(676\) 330.957 1018.58i 0.489582 1.50678i
\(677\) 757.031 + 245.974i 1.11821 + 0.363330i 0.809086 0.587690i \(-0.199963\pi\)
0.309129 + 0.951020i \(0.399963\pi\)
\(678\) 320.371 232.763i 0.472523 0.343308i
\(679\) −401.272 291.541i −0.590976 0.429369i
\(680\) −832.735 + 270.572i −1.22461 + 0.397900i
\(681\) 596.992i 0.876641i
\(682\) 0 0
\(683\) 451.061i 0.660411i 0.943909 + 0.330206i \(0.107118\pi\)
−0.943909 + 0.330206i \(0.892882\pi\)
\(684\) −116.808 359.499i −0.170773 0.525584i
\(685\) −569.548 413.801i −0.831457 0.604089i
\(686\) 530.254 + 729.832i 0.772965 + 1.06390i
\(687\) 139.058 427.975i 0.202413 0.622963i
\(688\) −64.8936 + 199.722i −0.0943220 + 0.290293i
\(689\) 140.361 + 193.191i 0.203717 + 0.280393i
\(690\) 257.329 354.183i 0.372941 0.513309i
\(691\) 141.530 + 435.584i 0.204819 + 0.630367i 0.999721 + 0.0236296i \(0.00752222\pi\)
−0.794902 + 0.606738i \(0.792478\pi\)
\(692\) 1392.98i 2.01298i
\(693\) 0 0
\(694\) −1100.00 −1.58501
\(695\) −466.836 + 151.684i −0.671707 + 0.218251i
\(696\) 961.112 + 698.289i 1.38091 + 1.00329i
\(697\) 142.387 103.450i 0.204285 0.148422i
\(698\) −1021.99 332.065i −1.46417 0.475738i
\(699\) −1249.10 405.858i −1.78698 0.580626i
\(700\) −860.794 + 625.404i −1.22971 + 0.893434i
\(701\) 296.318 407.847i 0.422708 0.581808i −0.543552 0.839375i \(-0.682921\pi\)
0.966260 + 0.257568i \(0.0829210\pi\)
\(702\) 340.664 110.688i 0.485277 0.157676i
\(703\) 180.000 0.256046
\(704\) 0 0
\(705\) 1716.00 2.43404
\(706\) 407.902 + 1255.39i 0.577765 + 1.77818i
\(707\) 499.063 686.901i 0.705888 0.971571i
\(708\) −818.775 1126.95i −1.15646 1.59173i
\(709\) −173.668 + 534.494i −0.244947 + 0.753870i 0.750698 + 0.660646i \(0.229717\pi\)
−0.995645 + 0.0932243i \(0.970283\pi\)
\(710\) −1249.10 405.858i −1.75930 0.571631i
\(711\) −291.246 + 211.603i −0.409629 + 0.297613i
\(712\) −961.112 698.289i −1.34988 0.980743i
\(713\) −164.023 + 53.2945i −0.230047 + 0.0747468i
\(714\) −1056.00 −1.47899
\(715\) 0 0
\(716\) 1392.98i 1.94551i
\(717\) 0 0
\(718\) −818.725 594.839i −1.14029 0.828466i
\(719\) 198.845 + 273.687i 0.276558 + 0.380650i 0.924590 0.380964i \(-0.124408\pi\)
−0.648032 + 0.761613i \(0.724408\pi\)
\(720\) 283.887 + 92.2404i 0.394287 + 0.128112i
\(721\) 182.938 563.025i 0.253728 0.780895i
\(722\) 633.576 + 872.042i 0.877528 + 1.20781i
\(723\) 315.517 + 229.236i 0.436399 + 0.317063i
\(724\) −21.6312 66.5740i −0.0298773 0.0919530i
\(725\) 756.190i 1.04302i
\(726\) 0 0
\(727\) −42.0000 −0.0577717 −0.0288858 0.999583i \(-0.509196\pi\)
−0.0288858 + 0.999583i \(0.509196\pi\)
\(728\) −302.813 + 98.3898i −0.415951 + 0.135151i
\(729\) −589.773 428.495i −0.809017 0.587785i
\(730\) 1317.08 956.914i 1.80422 1.31084i
\(731\) −529.922 172.182i −0.724927 0.235543i
\(732\) 77.8723 239.666i 0.106383 0.327413i
\(733\) −504.827 + 366.778i −0.688713 + 0.500379i −0.876237 0.481881i \(-0.839954\pi\)
0.187524 + 0.982260i \(0.439954\pi\)
\(734\) −541.951 + 745.931i −0.738353 + 1.01626i
\(735\) −283.887 + 92.2404i −0.386241 + 0.125497i
\(736\) −154.000 −0.209239
\(737\) 0 0
\(738\) −396.000 −0.536585
\(739\) −211.986 652.425i −0.286855 0.882848i −0.985837 0.167709i \(-0.946363\pi\)
0.698982 0.715139i \(-0.253637\pi\)
\(740\) −818.775 + 1126.95i −1.10645 + 1.52290i
\(741\) 58.2492 42.3205i 0.0786089 0.0571127i
\(742\) −489.483 + 1506.47i −0.659680 + 2.03029i
\(743\) −820.117 266.472i −1.10379 0.358644i −0.300231 0.953866i \(-0.597064\pi\)
−0.803561 + 0.595223i \(0.797064\pi\)
\(744\) −456.174 627.870i −0.613138 0.843912i
\(745\) −498.354 362.076i −0.668932 0.486008i
\(746\) −214.492 + 69.6928i −0.287523 + 0.0934219i
\(747\) 358.195i 0.479512i
\(748\) 0 0
\(749\) 318.396i 0.425095i
\(750\) −122.371 376.618i −0.163161 0.502158i
\(751\) −76.0476 55.2518i −0.101262 0.0735710i 0.536002 0.844217i \(-0.319934\pi\)
−0.637264 + 0.770646i \(0.719934\pi\)
\(752\) 253.430 + 348.817i 0.337008 + 0.463852i
\(753\) −832.735 270.572i −1.10589 0.359325i
\(754\) −163.161 + 502.158i −0.216394 + 0.665992i
\(755\) −623.828 858.626i −0.826263 1.13725i
\(756\) 1223.23 + 888.731i 1.61803 + 1.17557i
\(757\) 345.481 + 1063.28i 0.456382 + 1.40460i 0.869505 + 0.493924i \(0.164438\pi\)
−0.413124 + 0.910675i \(0.635562\pi\)
\(758\) 2222.14i 2.93158i
\(759\) 0 0
\(760\) 396.000 0.521053
\(761\) 1097.70 356.663i 1.44244 0.468677i 0.519782 0.854299i \(-0.326013\pi\)
0.922657 + 0.385623i \(0.126013\pi\)
\(762\) −1099.50 + 1513.33i −1.44291 + 1.98599i
\(763\) −1294.43 + 940.456i −1.69650 + 1.23258i
\(764\) −750.723 243.925i −0.982622 0.319273i
\(765\) −244.741 + 753.237i −0.319923 + 0.984623i
\(766\) 88.9919 64.6564i 0.116177 0.0844078i
\(767\) 155.957 214.656i 0.203334 0.279865i
\(768\) −343.936 1058.53i −0.447833 1.37829i
\(769\) −1274.00 −1.65670 −0.828349 0.560213i \(-0.810719\pi\)
−0.828349 + 0.560213i \(0.810719\pi\)
\(770\) 0 0
\(771\) 1472.58i 1.90996i
\(772\) 644.609 + 1983.90i 0.834986 + 2.56982i
\(773\) 549.749 756.664i 0.711188 0.978867i −0.288582 0.957455i \(-0.593184\pi\)
0.999771 0.0214117i \(-0.00681609\pi\)
\(774\) 736.897 + 1014.25i 0.952063 + 1.31040i
\(775\) 152.654 469.822i 0.196973 0.606222i
\(776\) −586.699 190.630i −0.756056 0.245657i
\(777\) −582.492 + 423.205i −0.749668 + 0.544666i
\(778\) 1121.30 + 814.670i 1.44126 + 1.04713i
\(779\) −75.7031 + 24.5974i −0.0971799 + 0.0315757i
\(780\) 557.193i 0.714350i
\(781\) 0 0
\(782\) 291.863i 0.373226i
\(783\) 1021.99 332.065i 1.30523 0.424094i
\(784\) −60.6763 44.0839i −0.0773932 0.0562295i
\(785\) −709.605 976.687i −0.903955 1.24419i
\(786\) −122.371 + 376.618i −0.155688 + 0.479158i
\(787\) −92.0871 + 283.415i −0.117010 + 0.360121i −0.992361 0.123368i \(-0.960630\pi\)
0.875351 + 0.483488i \(0.160630\pi\)
\(788\) 545.850 + 751.298i 0.692703 + 0.953423i
\(789\) 397.690 547.374i 0.504044 0.693757i
\(790\) −271.935 836.930i −0.344221 1.05940i
\(791\) 318.396i 0.402523i
\(792\) 0 0
\(793\) 48.0000 0.0605296
\(794\) 271.270 88.1408i 0.341649 0.111009i
\(795\) 961.112 + 698.289i 1.20895 + 0.878351i
\(796\) −237.851 + 172.809i −0.298808 + 0.217097i
\(797\) −498.379 161.933i −0.625319 0.203178i −0.0208184 0.999783i \(-0.506627\pi\)
−0.604500 + 0.796605i \(0.706627\pi\)
\(798\) 454.219 + 147.585i 0.569197 + 0.184943i
\(799\) −925.515 + 672.426i −1.15834 + 0.841585i
\(800\) 259.279 356.866i 0.324098 0.446083i
\(801\) −1021.99 + 332.065i −1.27590 + 0.414564i
\(802\) −836.000 −1.04239
\(803\) 0 0
\(804\) −42.0000 −0.0522388
\(805\) 108.774 + 334.772i 0.135123 + 0.415866i
\(806\) 202.744 279.053i 0.251544 0.346220i
\(807\) 128.665 + 177.092i 0.159436 + 0.219444i
\(808\) 326.322 1004.32i 0.403864 1.24296i
\(809\) −870.586 282.871i −1.07613 0.349655i −0.283256 0.959044i \(-0.591414\pi\)
−0.792871 + 0.609390i \(0.791414\pi\)
\(810\) 1441.67 1047.43i 1.77984 1.29313i
\(811\) −147.241 106.977i −0.181555 0.131907i 0.493296 0.869862i \(-0.335792\pi\)
−0.674851 + 0.737954i \(0.735792\pi\)
\(812\) −2119.69 + 688.728i −2.61045 + 0.848188i
\(813\) 1344.00 1.65314
\(814\) 0 0
\(815\) 1923.64i 2.36030i
\(816\) −189.258 + 61.4936i −0.231934 + 0.0753598i
\(817\) 203.872 + 148.122i 0.249538 + 0.181300i
\(818\) 994.226 + 1368.43i 1.21544 + 1.67290i
\(819\) −88.9969 + 273.904i −0.108665 + 0.334437i
\(820\) 190.354 585.851i 0.232140 0.714452i
\(821\) 483.467 + 665.435i 0.588876 + 0.810518i 0.994633 0.103463i \(-0.0329923\pi\)
−0.405758 + 0.913981i \(0.632992\pi\)
\(822\) −854.322 620.701i −1.03932 0.755111i
\(823\) −76.0182 233.960i −0.0923672 0.284277i 0.894191 0.447685i \(-0.147751\pi\)
−0.986559 + 0.163408i \(0.947751\pi\)
\(824\) 736.291i 0.893557i
\(825\) 0 0
\(826\) 1760.00 2.13075
\(827\) −517.305 + 168.083i −0.625520 + 0.203244i −0.604589 0.796537i \(-0.706663\pi\)
−0.0209303 + 0.999781i \(0.506663\pi\)
\(828\) 245.632 338.084i 0.296657 0.408314i
\(829\) −202.254 + 146.946i −0.243974 + 0.177257i −0.703052 0.711139i \(-0.748180\pi\)
0.459078 + 0.888396i \(0.348180\pi\)
\(830\) 832.735 + 270.572i 1.00329 + 0.325990i
\(831\) 241.033 741.824i 0.290052 0.892688i
\(832\) 313.899 228.061i 0.377282 0.274111i
\(833\) 116.968 160.992i 0.140418 0.193268i
\(834\) −700.254 + 227.526i −0.839633 + 0.272813i
\(835\) 1584.00 1.89701
\(836\) 0 0
\(837\) −702.000 −0.838710
\(838\) −543.870 1673.86i −0.649009 1.99745i
\(839\) −276.824 + 381.015i −0.329945 + 0.454130i −0.941471 0.337094i \(-0.890556\pi\)
0.611526 + 0.791224i \(0.290556\pi\)
\(840\) −1281.48 + 931.052i −1.52557 + 1.10840i
\(841\) −229.600 + 706.635i −0.273008 + 0.840232i
\(842\) −536.231 174.232i −0.636853 0.206926i
\(843\) 350.903 + 482.977i 0.416255 + 0.572927i
\(844\) −1393.13 1012.17i −1.65062 1.19925i
\(845\) 965.215 313.617i 1.14227 0.371145i
\(846\) 2574.00 3.04255
\(847\) 0 0
\(848\) 298.496i 0.352000i
\(849\) 46.3525 + 142.658i 0.0545966 + 0.168031i
\(850\) −676.338 491.388i −0.795692 0.578104i
\(851\) 116.968 + 160.992i 0.137447 + 0.189180i
\(852\) −1192.32 387.410i −1.39944 0.454706i
\(853\) −17.3050 + 53.2592i −0.0202872 + 0.0624375i −0.960688 0.277632i \(-0.910451\pi\)
0.940400 + 0.340069i \(0.110451\pi\)
\(854\) 187.148 + 257.588i 0.219143 + 0.301625i
\(855\) 210.542 289.786i 0.246248 0.338931i
\(856\) −122.371 376.618i −0.142956 0.439975i
\(857\) 252.063i 0.294123i −0.989127 0.147062i \(-0.953018\pi\)
0.989127 0.147062i \(-0.0469815\pi\)
\(858\) 0 0
\(859\) 1278.00 1.48778 0.743888 0.668304i \(-0.232979\pi\)
0.743888 + 0.668304i \(0.232979\pi\)
\(860\) −1854.73 + 602.637i −2.15666 + 0.700741i
\(861\) 187.148 257.588i 0.217362 0.299173i
\(862\) 747.532 543.114i 0.867206 0.630062i
\(863\) 1078.77 + 350.514i 1.25002 + 0.406157i 0.857929 0.513768i \(-0.171751\pi\)
0.392094 + 0.919925i \(0.371751\pi\)
\(864\) −596.162 193.705i −0.690003 0.224195i
\(865\) 1067.90 775.877i 1.23457 0.896967i
\(866\) −1056.61 + 1454.30i −1.22010 + 1.67933i
\(867\) 104.757 + 322.408i 0.120827 + 0.371866i
\(868\) 1456.00 1.67742
\(869\) 0 0
\(870\) 2626.77i 3.01927i
\(871\) −2.47214 7.60845i −0.00283827 0.00873531i
\(872\) −1169.68 + 1609.92i −1.34137 + 1.84624i
\(873\) −451.431 + 327.984i −0.517104 + 0.375698i
\(874\) 40.7902 125.539i 0.0466708 0.143638i
\(875\) 302.813 + 98.3898i 0.346072 + 0.112445i
\(876\) 1257.21 913.418i 1.43517 1.04271i
\(877\) 368.912 + 268.030i 0.420652 + 0.305622i 0.777900 0.628388i \(-0.216285\pi\)
−0.357248 + 0.934010i \(0.616285\pi\)
\(878\) 1034.61 336.165i 1.17837 0.382876i
\(879\) 1432.78i 1.63001i
\(880\) 0 0
\(881\) 610.259i 0.692689i 0.938107 + 0.346344i \(0.112577\pi\)
−0.938107 + 0.346344i \(0.887423\pi\)
\(882\) −425.830 + 138.361i −0.482801 + 0.156871i
\(883\) 885.065 + 643.037i 1.00234 + 0.728241i 0.962588 0.270968i \(-0.0873439\pi\)
0.0397499 + 0.999210i \(0.487344\pi\)
\(884\) −218.340 300.519i −0.246991 0.339954i
\(885\) 407.902 1255.39i 0.460907 1.41852i
\(886\) 135.967 418.465i 0.153462 0.472308i
\(887\) −85.7764 118.061i −0.0967039 0.133102i 0.757923 0.652344i \(-0.226214\pi\)
−0.854627 + 0.519242i \(0.826214\pi\)
\(888\) −526.355 + 724.466i −0.592742 + 0.815840i
\(889\) −464.762 1430.39i −0.522791 1.60899i
\(890\) 2626.77i 2.95142i
\(891\) 0 0
\(892\) 2114.00 2.36996
\(893\) 492.070 159.883i 0.551031 0.179041i
\(894\) −747.532 543.114i −0.836165 0.607510i
\(895\) −1067.90 + 775.877i −1.19319 + 0.866901i
\(896\) 1741.17 + 565.741i 1.94327 + 0.631408i
\(897\) 75.7031 + 24.5974i 0.0843959 + 0.0274219i
\(898\) 1210.29 879.327i 1.34776 0.979206i
\(899\) 608.232 837.160i 0.676566 0.931213i
\(900\) 369.893 + 1138.41i 0.410993 + 1.26491i
\(901\) −792.000 −0.879023
\(902\) 0 0
\(903\) −1008.00 −1.11628
\(904\) 122.371 + 376.618i 0.135366 + 0.416613i
\(905\) 38.9893 53.6641i 0.0430821 0.0592974i
\(906\) −935.742 1287.94i −1.03283 1.42157i
\(907\) 57.4772 176.897i 0.0633706 0.195035i −0.914358 0.404906i \(-0.867304\pi\)
0.977729 + 0.209871i \(0.0673044\pi\)
\(908\) 1324.80 + 430.455i 1.45904 + 0.474070i
\(909\) −561.445 772.763i −0.617652 0.850125i
\(910\) −569.548 413.801i −0.625877 0.454726i
\(911\) 813.809 264.423i 0.893314 0.290255i 0.173839 0.984774i \(-0.444383\pi\)
0.719475 + 0.694519i \(0.244383\pi\)
\(912\) 90.0000 0.0986842
\(913\) 0 0
\(914\) 1134.29i 1.24101i
\(915\) 227.109 73.7923i 0.248207 0.0806474i
\(916\) 849.468 + 617.175i 0.927367 + 0.673771i
\(917\) −187.148 257.588i −0.204088 0.280903i
\(918\) −367.112 + 1129.86i −0.399904 + 1.23078i
\(919\) 132.259 407.052i 0.143917 0.442929i −0.852954 0.521987i \(-0.825191\pi\)
0.996870 + 0.0790573i \(0.0251910\pi\)
\(920\) 257.329 + 354.183i 0.279706 + 0.384982i
\(921\) 208.726 + 151.649i 0.226630 + 0.164656i
\(922\) 81.5805 + 251.079i 0.0884821 + 0.272320i
\(923\) 238.797i 0.258718i
\(924\) 0 0
\(925\) −570.000 −0.616216
\(926\) 271.270 88.1408i 0.292948 0.0951845i
\(927\) −538.805 391.465i −0.581236 0.422292i
\(928\) 747.532 543.114i 0.805530 0.585252i
\(929\) −605.625 196.780i −0.651911 0.211819i −0.0356543 0.999364i \(-0.511352\pi\)
−0.616256 + 0.787546i \(0.711352\pi\)
\(930\) 530.273 1632.01i 0.570186 1.75485i
\(931\) −72.8115 + 52.9007i −0.0782079 + 0.0568213i
\(932\) 1801.30 2479.28i 1.93273 2.66017i
\(933\) 56.7774 18.4481i 0.0608546 0.0197729i
\(934\) −1980.00 −2.11991
\(935\) 0 0
\(936\) 358.195i 0.382687i
\(937\) −89.6149 275.806i −0.0956403 0.294350i 0.891780 0.452470i \(-0.149457\pi\)
−0.987420 + 0.158119i \(0.949457\pi\)
\(938\) 31.1914 42.9313i 0.0332531 0.0457690i
\(939\) −237.851 + 172.809i −0.253302 + 0.184035i
\(940\) −1237.30 + 3808.03i −1.31628 + 4.05110i
\(941\) 832.735 + 270.572i 0.884946 + 0.287537i 0.716010 0.698090i \(-0.245967\pi\)
0.168937 + 0.985627i \(0.445967\pi\)
\(942\) −1064.41 1465.03i −1.12994 1.55523i
\(943\) −71.1935 51.7251i −0.0754968 0.0548516i
\(944\) 315.430 102.489i 0.334142 0.108569i
\(945\) 1432.78i 1.51617i
\(946\) 0 0
\(947\) 79.5990i 0.0840538i 0.999116 + 0.0420269i \(0.0133815\pi\)
−0.999116 + 0.0420269i \(0.986618\pi\)
\(948\) −259.574 798.887i −0.273813 0.842708i
\(949\) 239.469 + 173.984i 0.252338 + 0.183334i
\(950\) 222.239 + 305.885i 0.233936 + 0.321985i
\(951\) −889.512 289.020i −0.935344 0.303912i
\(952\) 326.322 1004.32i 0.342775 1.05495i
\(953\) 460.073 + 633.237i 0.482763 + 0.664466i 0.979033 0.203702i \(-0.0652973\pi\)
−0.496270 + 0.868168i \(0.665297\pi\)
\(954\) 1441.67 + 1047.43i 1.51118 + 1.09794i
\(955\) −231.145 711.390i −0.242036 0.744911i
\(956\) 0 0
\(957\) 0 0
\(958\) −748.000 −0.780793
\(959\) 807.500 262.373i 0.842023 0.273590i
\(960\) 1134.59 1561.63i 1.18186 1.62669i
\(961\) 230.570 167.519i 0.239927 0.174317i
\(962\) −378.516 122.987i −0.393467 0.127845i
\(963\) −340.664 110.688i −0.353753 0.114941i
\(964\) −736.205 + 534.885i −0.763699 + 0.554860i
\(965\) −1161.88 + 1599.19i −1.20402 + 1.65719i
\(966\) 163.161 + 502.158i 0.168904 + 0.519832i
\(967\) −460.000 −0.475698 −0.237849 0.971302i \(-0.576442\pi\)
−0.237849 + 0.971302i \(0.576442\pi\)
\(968\) 0 0
\(969\) 238.797i 0.246437i
\(970\) −421.499 1297.24i −0.434535 1.33736i
\(971\) 686.211 944.488i 0.706705 0.972697i −0.293156 0.956065i \(-0.594706\pi\)
0.999862 0.0166321i \(-0.00529440\pi\)
\(972\) 1376.14 999.823i 1.41578 1.02862i
\(973\) 182.938 563.025i 0.188014 0.578649i
\(974\) 1406.82 + 457.102i 1.44437 + 0.469304i
\(975\) −184.456 + 134.015i −0.189186 + 0.137451i
\(976\) 48.5410 + 35.2671i 0.0497347 + 0.0361343i
\(977\) 1249.10 405.858i 1.27851 0.415412i 0.410453 0.911882i \(-0.365370\pi\)
0.868054 + 0.496469i \(0.165370\pi\)
\(978\) 2885.46i 2.95037i
\(979\) 0 0
\(980\) 696.491i 0.710705i
\(981\) 556.231 + 1711.90i 0.567004 + 1.74506i
\(982\) −1886.63 1370.72i −1.92121 1.39584i
\(983\) 245.632 + 338.084i 0.249880 + 0.343931i 0.915469 0.402388i \(-0.131820\pi\)
−0.665589 + 0.746318i \(0.731820\pi\)
\(984\) 122.371 376.618i 0.124360 0.382742i
\(985\) −271.935 + 836.930i −0.276076 + 0.849675i
\(986\) −1029.32 1416.73i −1.04393 1.43685i
\(987\) −1216.46 + 1674.32i −1.23249 + 1.69637i
\(988\) 51.9149 + 159.777i 0.0525454 + 0.161718i
\(989\) 278.596i 0.281695i
\(990\) 0 0
\(991\) 838.000 0.845610 0.422805 0.906221i \(-0.361045\pi\)
0.422805 + 0.906221i \(0.361045\pi\)
\(992\) −574.082 + 186.531i −0.578712 + 0.188035i
\(993\) 529.097 + 384.412i 0.532827 + 0.387121i
\(994\) 1281.48 931.052i 1.28922 0.936672i
\(995\) −264.961 86.0910i −0.266292 0.0865237i
\(996\) 794.883 + 258.273i 0.798075 + 0.259310i
\(997\) −42.0689 + 30.5648i −0.0421955 + 0.0306568i −0.608683 0.793413i \(-0.708302\pi\)
0.566488 + 0.824070i \(0.308302\pi\)
\(998\) −113.069 + 155.626i −0.113295 + 0.155938i
\(999\) 250.304 + 770.356i 0.250554 + 0.771127i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.d.269.1 8
3.2 odd 2 inner 363.3.h.d.269.2 8
11.2 odd 10 363.3.h.e.251.1 8
11.3 even 5 363.3.b.d.122.2 2
11.4 even 5 inner 363.3.h.d.245.1 8
11.5 even 5 inner 363.3.h.d.323.2 8
11.6 odd 10 363.3.h.e.323.1 8
11.7 odd 10 363.3.h.e.245.2 8
11.8 odd 10 33.3.b.a.23.1 2
11.9 even 5 inner 363.3.h.d.251.2 8
11.10 odd 2 363.3.h.e.269.2 8
33.2 even 10 363.3.h.e.251.2 8
33.5 odd 10 inner 363.3.h.d.323.1 8
33.8 even 10 33.3.b.a.23.2 yes 2
33.14 odd 10 363.3.b.d.122.1 2
33.17 even 10 363.3.h.e.323.2 8
33.20 odd 10 inner 363.3.h.d.251.1 8
33.26 odd 10 inner 363.3.h.d.245.2 8
33.29 even 10 363.3.h.e.245.1 8
33.32 even 2 363.3.h.e.269.1 8
44.19 even 10 528.3.i.a.353.2 2
132.107 odd 10 528.3.i.a.353.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.b.a.23.1 2 11.8 odd 10
33.3.b.a.23.2 yes 2 33.8 even 10
363.3.b.d.122.1 2 33.14 odd 10
363.3.b.d.122.2 2 11.3 even 5
363.3.h.d.245.1 8 11.4 even 5 inner
363.3.h.d.245.2 8 33.26 odd 10 inner
363.3.h.d.251.1 8 33.20 odd 10 inner
363.3.h.d.251.2 8 11.9 even 5 inner
363.3.h.d.269.1 8 1.1 even 1 trivial
363.3.h.d.269.2 8 3.2 odd 2 inner
363.3.h.d.323.1 8 33.5 odd 10 inner
363.3.h.d.323.2 8 11.5 even 5 inner
363.3.h.e.245.1 8 33.29 even 10
363.3.h.e.245.2 8 11.7 odd 10
363.3.h.e.251.1 8 11.2 odd 10
363.3.h.e.251.2 8 33.2 even 10
363.3.h.e.269.1 8 33.32 even 2
363.3.h.e.269.2 8 11.10 odd 2
363.3.h.e.323.1 8 11.6 odd 10
363.3.h.e.323.2 8 33.17 even 10
528.3.i.a.353.1 2 132.107 odd 10
528.3.i.a.353.2 2 44.19 even 10