Properties

Label 363.3.h.d.245.2
Level $363$
Weight $3$
Character 363.245
Analytic conductor $9.891$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,3,Mod(245,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 8]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.245");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.228765625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 5x^{5} + x^{4} + 15x^{3} - 18x^{2} - 27x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 245.2
Root \(-1.73166 - 0.0369185i\) of defining polynomial
Character \(\chi\) \(=\) 363.245
Dual form 363.3.h.d.323.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94946 + 2.68321i) q^{2} +(0.927051 + 2.85317i) q^{3} +(-2.16312 + 6.65740i) q^{4} +(-3.89893 + 5.36641i) q^{5} +(-5.84839 + 8.04962i) q^{6} +(2.47214 - 7.60845i) q^{7} +(-9.46289 + 3.07468i) q^{8} +(-7.28115 + 5.29007i) q^{9} -22.0000 q^{10} -21.0000 q^{12} +(3.23607 - 2.35114i) q^{13} +(25.2344 - 8.19915i) q^{14} +(-18.9258 - 6.14936i) q^{15} +(-4.04508 - 2.93893i) q^{16} +(-7.79785 + 10.7328i) q^{17} +(-28.3887 - 9.22404i) q^{18} +(1.85410 + 5.70634i) q^{19} +(-27.2925 - 37.5649i) q^{20} +24.0000 q^{21} +6.63325i q^{23} +(-17.5452 - 24.1489i) q^{24} +(-5.87132 - 18.0701i) q^{25} +(12.6172 + 4.09957i) q^{26} +(-21.8435 - 15.8702i) q^{27} +(45.3050 + 32.9160i) q^{28} +(37.8516 + 12.2987i) q^{29} +(-20.3951 - 62.7697i) q^{30} +(21.0344 - 15.2824i) q^{31} +23.2164i q^{32} -44.0000 q^{34} +(31.1914 + 42.9313i) q^{35} +(-19.4681 - 59.9166i) q^{36} +(9.27051 - 28.5317i) q^{37} +(-11.6968 + 16.0992i) q^{38} +(9.70820 + 7.05342i) q^{39} +(20.3951 - 62.7697i) q^{40} +(12.6172 - 4.09957i) q^{41} +(46.7871 + 64.3969i) q^{42} -42.0000 q^{43} -59.6992i q^{45} +(-17.7984 + 12.9313i) q^{46} +(-82.0117 + 26.6472i) q^{47} +(4.63525 - 14.2658i) q^{48} +(-12.1353 - 8.81678i) q^{49} +(37.0398 - 50.9809i) q^{50} +(-37.8516 - 12.2987i) q^{51} +(8.65248 + 26.6296i) q^{52} +(35.0903 + 48.2977i) q^{53} -89.5489i q^{54} +79.5990i q^{56} +(-14.5623 + 10.5801i) q^{57} +(40.7902 + 125.539i) q^{58} +(63.0860 + 20.4979i) q^{59} +(81.8775 - 112.695i) q^{60} +(9.70820 + 7.05342i) q^{61} +(82.0117 + 26.6472i) q^{62} +(22.2492 + 68.4761i) q^{63} +(-78.4746 + 57.0152i) q^{64} +26.5330i q^{65} +2.00000 q^{67} +(-54.5850 - 75.1298i) q^{68} +(-18.9258 + 6.14936i) q^{69} +(-54.3870 + 167.386i) q^{70} +(-35.0903 + 48.2977i) q^{71} +(52.6355 - 72.4466i) q^{72} +(22.8673 - 70.3782i) q^{73} +(94.6289 - 30.7468i) q^{74} +(46.1140 - 33.5038i) q^{75} -42.0000 q^{76} +39.7995i q^{78} +(-32.3607 + 23.5114i) q^{79} +(31.5430 - 10.2489i) q^{80} +(25.0304 - 77.0356i) q^{81} +(35.5967 + 25.8626i) q^{82} +(23.3936 - 32.1985i) q^{83} +(-51.9149 + 159.777i) q^{84} +(-27.1935 - 83.6930i) q^{85} +(-81.8775 - 112.695i) q^{86} +119.398i q^{87} -119.398i q^{89} +(160.185 - 116.381i) q^{90} +(-9.88854 - 30.4338i) q^{91} +(-44.1602 - 14.3485i) q^{92} +(63.1033 + 45.8472i) q^{93} +(-231.379 - 168.107i) q^{94} +(-37.8516 - 12.2987i) q^{95} +(-66.2402 + 21.5228i) q^{96} +(-50.1591 + 36.4427i) q^{97} -49.7494i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 14 q^{4} - 16 q^{7} - 18 q^{9} - 176 q^{10} - 168 q^{12} + 8 q^{13} - 10 q^{16} - 12 q^{19} + 192 q^{21} + 38 q^{25} - 54 q^{27} + 112 q^{28} + 132 q^{30} + 52 q^{31} - 352 q^{34} + 126 q^{36}+ \cdots - 124 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.94946 + 2.68321i 0.974732 + 1.34160i 0.939620 + 0.342220i \(0.111179\pi\)
0.0351115 + 0.999383i \(0.488821\pi\)
\(3\) 0.927051 + 2.85317i 0.309017 + 0.951057i
\(4\) −2.16312 + 6.65740i −0.540780 + 1.66435i
\(5\) −3.89893 + 5.36641i −0.779785 + 1.07328i 0.215520 + 0.976499i \(0.430855\pi\)
−0.995306 + 0.0967830i \(0.969145\pi\)
\(6\) −5.84839 + 8.04962i −0.974732 + 1.34160i
\(7\) 2.47214 7.60845i 0.353162 1.08692i −0.603905 0.797056i \(-0.706389\pi\)
0.957067 0.289866i \(-0.0936106\pi\)
\(8\) −9.46289 + 3.07468i −1.18286 + 0.384335i
\(9\) −7.28115 + 5.29007i −0.809017 + 0.587785i
\(10\) −22.0000 −2.20000
\(11\) 0 0
\(12\) −21.0000 −1.75000
\(13\) 3.23607 2.35114i 0.248928 0.180857i −0.456323 0.889814i \(-0.650834\pi\)
0.705252 + 0.708957i \(0.250834\pi\)
\(14\) 25.2344 8.19915i 1.80246 0.585653i
\(15\) −18.9258 6.14936i −1.26172 0.409957i
\(16\) −4.04508 2.93893i −0.252818 0.183683i
\(17\) −7.79785 + 10.7328i −0.458697 + 0.631343i −0.974238 0.225523i \(-0.927591\pi\)
0.515541 + 0.856865i \(0.327591\pi\)
\(18\) −28.3887 9.22404i −1.57715 0.512447i
\(19\) 1.85410 + 5.70634i 0.0975843 + 0.300334i 0.987919 0.154974i \(-0.0495293\pi\)
−0.890334 + 0.455307i \(0.849529\pi\)
\(20\) −27.2925 37.5649i −1.36462 1.87824i
\(21\) 24.0000 1.14286
\(22\) 0 0
\(23\) 6.63325i 0.288402i 0.989548 + 0.144201i \(0.0460612\pi\)
−0.989548 + 0.144201i \(0.953939\pi\)
\(24\) −17.5452 24.1489i −0.731049 1.00620i
\(25\) −5.87132 18.0701i −0.234853 0.722803i
\(26\) 12.6172 + 4.09957i 0.485277 + 0.157676i
\(27\) −21.8435 15.8702i −0.809017 0.587785i
\(28\) 45.3050 + 32.9160i 1.61803 + 1.17557i
\(29\) 37.8516 + 12.2987i 1.30523 + 0.424094i 0.877397 0.479765i \(-0.159278\pi\)
0.427830 + 0.903859i \(0.359278\pi\)
\(30\) −20.3951 62.7697i −0.679837 2.09232i
\(31\) 21.0344 15.2824i 0.678530 0.492981i −0.194339 0.980934i \(-0.562256\pi\)
0.872870 + 0.487953i \(0.162256\pi\)
\(32\) 23.2164i 0.725512i
\(33\) 0 0
\(34\) −44.0000 −1.29412
\(35\) 31.1914 + 42.9313i 0.891183 + 1.22661i
\(36\) −19.4681 59.9166i −0.540780 1.66435i
\(37\) 9.27051 28.5317i 0.250554 0.771127i −0.744119 0.668047i \(-0.767130\pi\)
0.994673 0.103080i \(-0.0328696\pi\)
\(38\) −11.6968 + 16.0992i −0.307810 + 0.423664i
\(39\) 9.70820 + 7.05342i 0.248928 + 0.180857i
\(40\) 20.3951 62.7697i 0.509878 1.56924i
\(41\) 12.6172 4.09957i 0.307736 0.0999896i −0.151078 0.988522i \(-0.548274\pi\)
0.458814 + 0.888532i \(0.348274\pi\)
\(42\) 46.7871 + 64.3969i 1.11398 + 1.53326i
\(43\) −42.0000 −0.976744 −0.488372 0.872635i \(-0.662409\pi\)
−0.488372 + 0.872635i \(0.662409\pi\)
\(44\) 0 0
\(45\) 59.6992i 1.32665i
\(46\) −17.7984 + 12.9313i −0.386921 + 0.281115i
\(47\) −82.0117 + 26.6472i −1.74493 + 0.566962i −0.995469 0.0950856i \(-0.969688\pi\)
−0.749461 + 0.662048i \(0.769688\pi\)
\(48\) 4.63525 14.2658i 0.0965678 0.297205i
\(49\) −12.1353 8.81678i −0.247658 0.179934i
\(50\) 37.0398 50.9809i 0.740796 1.01962i
\(51\) −37.8516 12.2987i −0.742188 0.241151i
\(52\) 8.65248 + 26.6296i 0.166394 + 0.512107i
\(53\) 35.0903 + 48.2977i 0.662082 + 0.911277i 0.999548 0.0300602i \(-0.00956989\pi\)
−0.337466 + 0.941338i \(0.609570\pi\)
\(54\) 89.5489i 1.65831i
\(55\) 0 0
\(56\) 79.5990i 1.42141i
\(57\) −14.5623 + 10.5801i −0.255479 + 0.185616i
\(58\) 40.7902 + 125.539i 0.703280 + 2.16447i
\(59\) 63.0860 + 20.4979i 1.06925 + 0.347421i 0.790197 0.612853i \(-0.209978\pi\)
0.279057 + 0.960275i \(0.409978\pi\)
\(60\) 81.8775 112.695i 1.36462 1.87824i
\(61\) 9.70820 + 7.05342i 0.159151 + 0.115630i 0.664510 0.747279i \(-0.268640\pi\)
−0.505360 + 0.862909i \(0.668640\pi\)
\(62\) 82.0117 + 26.6472i 1.32277 + 0.429794i
\(63\) 22.2492 + 68.4761i 0.353162 + 1.08692i
\(64\) −78.4746 + 57.0152i −1.22617 + 0.890862i
\(65\) 26.5330i 0.408200i
\(66\) 0 0
\(67\) 2.00000 0.0298507 0.0149254 0.999889i \(-0.495249\pi\)
0.0149254 + 0.999889i \(0.495249\pi\)
\(68\) −54.5850 75.1298i −0.802720 1.10485i
\(69\) −18.9258 + 6.14936i −0.274287 + 0.0891212i
\(70\) −54.3870 + 167.386i −0.776957 + 2.39123i
\(71\) −35.0903 + 48.2977i −0.494230 + 0.680249i −0.981161 0.193191i \(-0.938116\pi\)
0.486931 + 0.873440i \(0.338116\pi\)
\(72\) 52.6355 72.4466i 0.731049 1.00620i
\(73\) 22.8673 70.3782i 0.313250 0.964085i −0.663219 0.748426i \(-0.730810\pi\)
0.976469 0.215659i \(-0.0691900\pi\)
\(74\) 94.6289 30.7468i 1.27877 0.415497i
\(75\) 46.1140 33.5038i 0.614853 0.446717i
\(76\) −42.0000 −0.552632
\(77\) 0 0
\(78\) 39.7995i 0.510250i
\(79\) −32.3607 + 23.5114i −0.409629 + 0.297613i −0.773452 0.633855i \(-0.781471\pi\)
0.363823 + 0.931468i \(0.381471\pi\)
\(80\) 31.5430 10.2489i 0.394287 0.128112i
\(81\) 25.0304 77.0356i 0.309017 0.951057i
\(82\) 35.5967 + 25.8626i 0.434107 + 0.315397i
\(83\) 23.3936 32.1985i 0.281850 0.387933i −0.644495 0.764608i \(-0.722933\pi\)
0.926346 + 0.376675i \(0.122933\pi\)
\(84\) −51.9149 + 159.777i −0.618034 + 1.90211i
\(85\) −27.1935 83.6930i −0.319923 0.984623i
\(86\) −81.8775 112.695i −0.952063 1.31040i
\(87\) 119.398i 1.37240i
\(88\) 0 0
\(89\) 119.398i 1.34156i −0.741658 0.670778i \(-0.765960\pi\)
0.741658 0.670778i \(-0.234040\pi\)
\(90\) 160.185 116.381i 1.77984 1.29313i
\(91\) −9.88854 30.4338i −0.108665 0.334437i
\(92\) −44.1602 14.3485i −0.480002 0.155962i
\(93\) 63.1033 + 45.8472i 0.678530 + 0.492981i
\(94\) −231.379 168.107i −2.46148 1.78837i
\(95\) −37.8516 12.2987i −0.398438 0.129460i
\(96\) −66.2402 + 21.5228i −0.690003 + 0.224195i
\(97\) −50.1591 + 36.4427i −0.517104 + 0.375698i −0.815512 0.578741i \(-0.803544\pi\)
0.298408 + 0.954438i \(0.403544\pi\)
\(98\) 49.7494i 0.507647i
\(99\) 0 0
\(100\) 133.000 1.33000
\(101\) 62.3828 + 85.8626i 0.617652 + 0.850125i 0.997179 0.0750558i \(-0.0239135\pi\)
−0.379528 + 0.925180i \(0.623913\pi\)
\(102\) −40.7902 125.539i −0.399904 1.23078i
\(103\) 22.8673 70.3782i 0.222012 0.683283i −0.776569 0.630032i \(-0.783042\pi\)
0.998581 0.0532510i \(-0.0169584\pi\)
\(104\) −23.3936 + 32.1985i −0.224938 + 0.309601i
\(105\) −93.5742 + 128.794i −0.891183 + 1.22661i
\(106\) −61.1854 + 188.309i −0.577220 + 1.77650i
\(107\) −37.8516 + 12.2987i −0.353753 + 0.114941i −0.480502 0.876993i \(-0.659546\pi\)
0.126749 + 0.991935i \(0.459546\pi\)
\(108\) 152.904 111.091i 1.41578 1.02862i
\(109\) 200.000 1.83486 0.917431 0.397894i \(-0.130259\pi\)
0.917431 + 0.397894i \(0.130259\pi\)
\(110\) 0 0
\(111\) 90.0000 0.810811
\(112\) −32.3607 + 23.5114i −0.288935 + 0.209923i
\(113\) 37.8516 12.2987i 0.334970 0.108838i −0.136703 0.990612i \(-0.543651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(114\) −56.7774 18.4481i −0.498047 0.161825i
\(115\) −35.5967 25.8626i −0.309537 0.224892i
\(116\) −163.755 + 225.389i −1.41168 + 1.94301i
\(117\) −11.1246 + 34.2380i −0.0950822 + 0.292633i
\(118\) 67.9837 + 209.232i 0.576133 + 1.77316i
\(119\) 62.3828 + 85.8626i 0.524225 + 0.721534i
\(120\) 198.000 1.65000
\(121\) 0 0
\(122\) 39.7995i 0.326225i
\(123\) 23.3936 + 32.1985i 0.190192 + 0.261776i
\(124\) 56.2411 + 173.092i 0.453557 + 1.39591i
\(125\) −37.8516 12.2987i −0.302813 0.0983898i
\(126\) −140.361 + 193.191i −1.11398 + 1.53326i
\(127\) 152.095 + 110.504i 1.19760 + 0.870107i 0.994047 0.108957i \(-0.0347509\pi\)
0.203553 + 0.979064i \(0.434751\pi\)
\(128\) −217.647 70.7176i −1.70036 0.552482i
\(129\) −38.9361 119.833i −0.301831 0.928939i
\(130\) −71.1935 + 51.7251i −0.547642 + 0.397885i
\(131\) 39.7995i 0.303813i −0.988395 0.151906i \(-0.951459\pi\)
0.988395 0.151906i \(-0.0485413\pi\)
\(132\) 0 0
\(133\) 48.0000 0.360902
\(134\) 3.89893 + 5.36641i 0.0290965 + 0.0400478i
\(135\) 170.332 55.3442i 1.26172 0.409957i
\(136\) 40.7902 125.539i 0.299928 0.923084i
\(137\) 62.3828 85.8626i 0.455349 0.626734i −0.518187 0.855267i \(-0.673393\pi\)
0.973536 + 0.228533i \(0.0733929\pi\)
\(138\) −53.3951 38.7938i −0.386921 0.281115i
\(139\) 22.8673 70.3782i 0.164513 0.506318i −0.834487 0.551027i \(-0.814236\pi\)
0.999000 + 0.0447092i \(0.0142361\pi\)
\(140\) −353.281 + 114.788i −2.52344 + 0.819915i
\(141\) −152.058 209.290i −1.07843 1.48433i
\(142\) −198.000 −1.39437
\(143\) 0 0
\(144\) 45.0000 0.312500
\(145\) −213.580 + 155.175i −1.47297 + 1.07017i
\(146\) 233.418 75.8421i 1.59875 0.519467i
\(147\) 13.9058 42.7975i 0.0945970 0.291140i
\(148\) 169.894 + 123.435i 1.14793 + 0.834020i
\(149\) 54.5850 75.1298i 0.366342 0.504227i −0.585560 0.810629i \(-0.699125\pi\)
0.951902 + 0.306402i \(0.0991253\pi\)
\(150\) 179.795 + 58.4189i 1.19863 + 0.389460i
\(151\) 49.4427 + 152.169i 0.327435 + 1.00774i 0.970329 + 0.241787i \(0.0777335\pi\)
−0.642894 + 0.765955i \(0.722266\pi\)
\(152\) −35.0903 48.2977i −0.230857 0.317748i
\(153\) 119.398i 0.780382i
\(154\) 0 0
\(155\) 172.464i 1.11267i
\(156\) −67.9574 + 49.3740i −0.435625 + 0.316500i
\(157\) 56.2411 + 173.092i 0.358224 + 1.10250i 0.954117 + 0.299435i \(0.0967982\pi\)
−0.595893 + 0.803064i \(0.703202\pi\)
\(158\) −126.172 40.9957i −0.798556 0.259467i
\(159\) −105.271 + 144.893i −0.662082 + 0.911277i
\(160\) −124.589 90.5189i −0.778679 0.565743i
\(161\) 50.4688 + 16.3983i 0.313471 + 0.101853i
\(162\) 255.498 83.0164i 1.57715 0.512447i
\(163\) 234.615 170.458i 1.43936 1.04575i 0.451179 0.892434i \(-0.351004\pi\)
0.988177 0.153319i \(-0.0489963\pi\)
\(164\) 92.8655i 0.566253i
\(165\) 0 0
\(166\) 132.000 0.795181
\(167\) −140.361 193.191i −0.840487 1.15683i −0.985879 0.167457i \(-0.946444\pi\)
0.145392 0.989374i \(-0.453556\pi\)
\(168\) −227.109 + 73.7923i −1.35184 + 0.439240i
\(169\) −47.2796 + 145.512i −0.279761 + 0.861016i
\(170\) 171.553 236.122i 1.00913 1.38895i
\(171\) −43.6869 31.7404i −0.255479 0.185616i
\(172\) 90.8510 279.611i 0.528203 1.62564i
\(173\) 189.258 61.4936i 1.09398 0.355454i 0.294195 0.955746i \(-0.404949\pi\)
0.799782 + 0.600291i \(0.204949\pi\)
\(174\) −320.371 + 232.763i −1.84121 + 1.33772i
\(175\) −152.000 −0.868571
\(176\) 0 0
\(177\) 198.997i 1.12428i
\(178\) 320.371 232.763i 1.79984 1.30766i
\(179\) −189.258 + 61.4936i −1.05731 + 0.343540i −0.785532 0.618821i \(-0.787611\pi\)
−0.271775 + 0.962361i \(0.587611\pi\)
\(180\) 397.441 + 129.137i 2.20801 + 0.717425i
\(181\) −8.09017 5.87785i −0.0446971 0.0324743i 0.565212 0.824945i \(-0.308794\pi\)
−0.609909 + 0.792471i \(0.708794\pi\)
\(182\) 62.3828 85.8626i 0.342763 0.471772i
\(183\) −11.1246 + 34.2380i −0.0607902 + 0.187093i
\(184\) −20.3951 62.7697i −0.110843 0.341140i
\(185\) 116.968 + 160.992i 0.632258 + 0.870229i
\(186\) 258.697i 1.39084i
\(187\) 0 0
\(188\) 603.626i 3.21078i
\(189\) −174.748 + 126.962i −0.924591 + 0.671755i
\(190\) −40.7902 125.539i −0.214685 0.660734i
\(191\) −107.246 34.8464i −0.561498 0.182442i 0.0144971 0.999895i \(-0.495385\pi\)
−0.575995 + 0.817453i \(0.695385\pi\)
\(192\) −235.424 171.046i −1.22617 0.890862i
\(193\) 241.087 + 175.160i 1.24916 + 0.907565i 0.998173 0.0604267i \(-0.0192461\pi\)
0.250983 + 0.967991i \(0.419246\pi\)
\(194\) −195.566 63.5434i −1.00807 0.327543i
\(195\) −75.7031 + 24.5974i −0.388221 + 0.126141i
\(196\) 84.9468 61.7175i 0.433402 0.314885i
\(197\) 132.665i 0.673426i −0.941607 0.336713i \(-0.890685\pi\)
0.941607 0.336713i \(-0.109315\pi\)
\(198\) 0 0
\(199\) −42.0000 −0.211055 −0.105528 0.994416i \(-0.533653\pi\)
−0.105528 + 0.994416i \(0.533653\pi\)
\(200\) 111.119 + 152.943i 0.555597 + 0.764714i
\(201\) 1.85410 + 5.70634i 0.00922439 + 0.0283897i
\(202\) −108.774 + 334.772i −0.538485 + 1.65729i
\(203\) 187.148 257.588i 0.921914 1.26891i
\(204\) 163.755 225.389i 0.802720 1.10485i
\(205\) −27.1935 + 83.6930i −0.132651 + 0.408258i
\(206\) 233.418 75.8421i 1.13310 0.368166i
\(207\) −35.0903 48.2977i −0.169519 0.233322i
\(208\) −20.0000 −0.0961538
\(209\) 0 0
\(210\) −528.000 −2.51429
\(211\) 199.018 144.595i 0.943214 0.685285i −0.00597807 0.999982i \(-0.501903\pi\)
0.949192 + 0.314697i \(0.101903\pi\)
\(212\) −397.441 + 129.137i −1.87472 + 0.609135i
\(213\) −170.332 55.3442i −0.799681 0.259832i
\(214\) −106.790 77.5877i −0.499020 0.362559i
\(215\) 163.755 225.389i 0.761651 1.04832i
\(216\) 255.498 + 83.0164i 1.18286 + 0.384335i
\(217\) −64.2755 197.820i −0.296201 0.911612i
\(218\) 389.893 + 536.641i 1.78850 + 2.46166i
\(219\) 222.000 1.01370
\(220\) 0 0
\(221\) 53.0660i 0.240118i
\(222\) 175.452 + 241.489i 0.790323 + 1.08779i
\(223\) −93.3231 287.219i −0.418489 1.28798i −0.909092 0.416595i \(-0.863223\pi\)
0.490603 0.871383i \(-0.336777\pi\)
\(224\) 176.641 + 57.3940i 0.788574 + 0.256223i
\(225\) 138.342 + 100.511i 0.614853 + 0.446717i
\(226\) 106.790 + 77.5877i 0.472523 + 0.343308i
\(227\) 189.258 + 61.4936i 0.833735 + 0.270897i 0.694618 0.719379i \(-0.255574\pi\)
0.139117 + 0.990276i \(0.455574\pi\)
\(228\) −38.9361 119.833i −0.170773 0.525584i
\(229\) −121.353 + 88.1678i −0.529924 + 0.385012i −0.820329 0.571892i \(-0.806210\pi\)
0.290405 + 0.956904i \(0.406210\pi\)
\(230\) 145.931i 0.634485i
\(231\) 0 0
\(232\) −396.000 −1.70690
\(233\) −257.329 354.183i −1.10442 1.52010i −0.829396 0.558661i \(-0.811315\pi\)
−0.275021 0.961438i \(-0.588685\pi\)
\(234\) −113.555 + 36.8962i −0.485277 + 0.157676i
\(235\) 176.758 544.004i 0.752161 2.31491i
\(236\) −272.925 + 375.649i −1.15646 + 1.59173i
\(237\) −97.0820 70.5342i −0.409629 0.297613i
\(238\) −108.774 + 334.772i −0.457034 + 1.40660i
\(239\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) 58.4839 + 80.4962i 0.243683 + 0.335401i
\(241\) −130.000 −0.539419 −0.269710 0.962942i \(-0.586928\pi\)
−0.269710 + 0.962942i \(0.586928\pi\)
\(242\) 0 0
\(243\) 243.000 1.00000
\(244\) −67.9574 + 49.3740i −0.278514 + 0.202352i
\(245\) 94.6289 30.7468i 0.386241 0.125497i
\(246\) −40.7902 + 125.539i −0.165814 + 0.510323i
\(247\) 19.4164 + 14.1068i 0.0786089 + 0.0571127i
\(248\) −152.058 + 209.290i −0.613138 + 0.843912i
\(249\) 113.555 + 36.8962i 0.456043 + 0.148177i
\(250\) −40.7902 125.539i −0.163161 0.502158i
\(251\) −171.553 236.122i −0.683477 0.940726i 0.316492 0.948595i \(-0.397495\pi\)
−0.999969 + 0.00786966i \(0.997495\pi\)
\(252\) −504.000 −2.00000
\(253\) 0 0
\(254\) 623.525i 2.45482i
\(255\) 213.580 155.175i 0.837571 0.608531i
\(256\) −114.645 352.842i −0.447833 1.37829i
\(257\) 466.836 + 151.684i 1.81648 + 0.590211i 0.999916 + 0.0129598i \(0.00412536\pi\)
0.816567 + 0.577251i \(0.195875\pi\)
\(258\) 245.632 338.084i 0.952063 1.31040i
\(259\) −194.164 141.068i −0.749668 0.544666i
\(260\) −176.641 57.3940i −0.679387 0.220746i
\(261\) −340.664 + 110.688i −1.30523 + 0.424094i
\(262\) 106.790 77.5877i 0.407596 0.296136i
\(263\) 225.530i 0.857530i −0.903416 0.428765i \(-0.858949\pi\)
0.903416 0.428765i \(-0.141051\pi\)
\(264\) 0 0
\(265\) −396.000 −1.49434
\(266\) 93.5742 + 128.794i 0.351783 + 0.484188i
\(267\) 340.664 110.688i 1.27590 0.414564i
\(268\) −4.32624 + 13.3148i −0.0161427 + 0.0496821i
\(269\) 42.8882 59.0305i 0.159436 0.219444i −0.721824 0.692077i \(-0.756696\pi\)
0.881260 + 0.472632i \(0.156696\pi\)
\(270\) 480.556 + 349.144i 1.77984 + 1.29313i
\(271\) 138.440 426.073i 0.510847 1.57223i −0.279866 0.960039i \(-0.590290\pi\)
0.790713 0.612187i \(-0.209710\pi\)
\(272\) 63.0860 20.4979i 0.231934 0.0753598i
\(273\) 77.6656 56.4274i 0.284489 0.206694i
\(274\) 352.000 1.28467
\(275\) 0 0
\(276\) 139.298i 0.504704i
\(277\) −210.344 + 152.824i −0.759366 + 0.551712i −0.898716 0.438531i \(-0.855499\pi\)
0.139350 + 0.990243i \(0.455499\pi\)
\(278\) 233.418 75.8421i 0.839633 0.272813i
\(279\) −72.3100 + 222.547i −0.259176 + 0.797660i
\(280\) −427.161 310.351i −1.52557 1.10840i
\(281\) 116.968 160.992i 0.416255 0.572927i −0.548475 0.836167i \(-0.684791\pi\)
0.964730 + 0.263241i \(0.0847913\pi\)
\(282\) 265.137 816.006i 0.940201 2.89364i
\(283\) 15.4508 + 47.5528i 0.0545966 + 0.168031i 0.974637 0.223793i \(-0.0718441\pi\)
−0.920040 + 0.391824i \(0.871844\pi\)
\(284\) −245.632 338.084i −0.864903 1.19044i
\(285\) 119.398i 0.418942i
\(286\) 0 0
\(287\) 106.132i 0.369798i
\(288\) −122.816 169.042i −0.426445 0.586951i
\(289\) 34.9189 + 107.469i 0.120827 + 0.371866i
\(290\) −832.735 270.572i −2.87150 0.933006i
\(291\) −150.477 109.328i −0.517104 0.375698i
\(292\) 419.071 + 304.473i 1.43517 + 1.04271i
\(293\) −454.219 147.585i −1.55024 0.503702i −0.596057 0.802942i \(-0.703267\pi\)
−0.954178 + 0.299240i \(0.903267\pi\)
\(294\) 141.943 46.1202i 0.482801 0.156871i
\(295\) −355.967 + 258.626i −1.20667 + 0.876697i
\(296\) 298.496i 1.00843i
\(297\) 0 0
\(298\) 308.000 1.03356
\(299\) 15.5957 + 21.4656i 0.0521595 + 0.0717915i
\(300\) 123.298 + 379.472i 0.410993 + 1.26491i
\(301\) −103.830 + 319.555i −0.344949 + 1.06164i
\(302\) −311.914 + 429.313i −1.03283 + 1.42157i
\(303\) −187.148 + 257.588i −0.617652 + 0.850125i
\(304\) 9.27051 28.5317i 0.0304951 0.0938543i
\(305\) −75.7031 + 24.5974i −0.248207 + 0.0806474i
\(306\) 320.371 232.763i 1.04696 0.760663i
\(307\) −86.0000 −0.280130 −0.140065 0.990142i \(-0.544731\pi\)
−0.140065 + 0.990142i \(0.544731\pi\)
\(308\) 0 0
\(309\) 222.000 0.718447
\(310\) −462.758 + 336.213i −1.49277 + 1.08456i
\(311\) −18.9258 + 6.14936i −0.0608546 + 0.0197729i −0.339286 0.940683i \(-0.610185\pi\)
0.278431 + 0.960456i \(0.410185\pi\)
\(312\) −113.555 36.8962i −0.363957 0.118257i
\(313\) −79.2837 57.6030i −0.253302 0.184035i 0.453887 0.891059i \(-0.350037\pi\)
−0.707189 + 0.707024i \(0.750037\pi\)
\(314\) −354.802 + 488.343i −1.12994 + 1.55523i
\(315\) −454.219 147.585i −1.44196 0.468523i
\(316\) −86.5248 266.296i −0.273813 0.842708i
\(317\) −183.250 252.221i −0.578074 0.795651i 0.415408 0.909635i \(-0.363639\pi\)
−0.993483 + 0.113984i \(0.963639\pi\)
\(318\) −594.000 −1.86792
\(319\) 0 0
\(320\) 643.425i 2.01070i
\(321\) −70.1807 96.5954i −0.218631 0.300920i
\(322\) 54.3870 + 167.386i 0.168904 + 0.519832i
\(323\) −75.7031 24.5974i −0.234375 0.0761531i
\(324\) 458.713 + 333.274i 1.41578 + 1.02862i
\(325\) −61.4853 44.6717i −0.189186 0.137451i
\(326\) 914.746 + 297.219i 2.80597 + 0.911715i
\(327\) 185.410 + 570.634i 0.567004 + 1.74506i
\(328\) −106.790 + 77.5877i −0.325580 + 0.236548i
\(329\) 689.858i 2.09683i
\(330\) 0 0
\(331\) −218.000 −0.658610 −0.329305 0.944224i \(-0.606814\pi\)
−0.329305 + 0.944224i \(0.606814\pi\)
\(332\) 163.755 + 225.389i 0.493238 + 0.678883i
\(333\) 83.4346 + 256.785i 0.250554 + 0.771127i
\(334\) 244.741 753.237i 0.732759 2.25520i
\(335\) −7.79785 + 10.7328i −0.0232772 + 0.0320383i
\(336\) −97.0820 70.5342i −0.288935 0.209923i
\(337\) −85.9067 + 264.394i −0.254916 + 0.784551i 0.738930 + 0.673782i \(0.235331\pi\)
−0.993846 + 0.110769i \(0.964669\pi\)
\(338\) −482.608 + 156.809i −1.42783 + 0.463931i
\(339\) 70.1807 + 96.5954i 0.207023 + 0.284942i
\(340\) 616.000 1.81176
\(341\) 0 0
\(342\) 179.098i 0.523678i
\(343\) 220.053 159.878i 0.641553 0.466115i
\(344\) 397.441 129.137i 1.15535 0.375397i
\(345\) 40.7902 125.539i 0.118233 0.363882i
\(346\) 533.951 + 387.938i 1.54321 + 1.12121i
\(347\) −194.946 + 268.321i −0.561805 + 0.773258i −0.991555 0.129690i \(-0.958602\pi\)
0.429750 + 0.902948i \(0.358602\pi\)
\(348\) −794.883 258.273i −2.28415 0.742164i
\(349\) −100.122 308.142i −0.286881 0.882929i −0.985829 0.167756i \(-0.946348\pi\)
0.698947 0.715173i \(-0.253652\pi\)
\(350\) −296.318 407.847i −0.846624 1.16528i
\(351\) −108.000 −0.307692
\(352\) 0 0
\(353\) 397.995i 1.12746i 0.825958 + 0.563732i \(0.190635\pi\)
−0.825958 + 0.563732i \(0.809365\pi\)
\(354\) −533.951 + 387.938i −1.50834 + 1.09587i
\(355\) −122.371 376.618i −0.344706 1.06090i
\(356\) 794.883 + 258.273i 2.23282 + 0.725486i
\(357\) −187.148 + 257.588i −0.524225 + 0.721534i
\(358\) −533.951 387.938i −1.49148 1.08363i
\(359\) 290.195 + 94.2902i 0.808344 + 0.262647i 0.683896 0.729579i \(-0.260284\pi\)
0.124448 + 0.992226i \(0.460284\pi\)
\(360\) 183.556 + 564.928i 0.509878 + 1.56924i
\(361\) 262.931 191.030i 0.728339 0.529170i
\(362\) 33.1662i 0.0916195i
\(363\) 0 0
\(364\) 224.000 0.615385
\(365\) 288.521 + 397.114i 0.790467 + 1.08798i
\(366\) −113.555 + 36.8962i −0.310259 + 0.100809i
\(367\) −85.9067 + 264.394i −0.234078 + 0.720419i 0.763164 + 0.646205i \(0.223645\pi\)
−0.997242 + 0.0742141i \(0.976355\pi\)
\(368\) 19.4946 26.8321i 0.0529745 0.0729132i
\(369\) −70.1807 + 96.5954i −0.190192 + 0.261776i
\(370\) −203.951 + 627.697i −0.551220 + 1.69648i
\(371\) 454.219 147.585i 1.22431 0.397802i
\(372\) −441.723 + 320.931i −1.18743 + 0.862717i
\(373\) 68.0000 0.182306 0.0911528 0.995837i \(-0.470945\pi\)
0.0911528 + 0.995837i \(0.470945\pi\)
\(374\) 0 0
\(375\) 119.398i 0.318396i
\(376\) 694.137 504.320i 1.84611 1.34128i
\(377\) 151.406 49.1949i 0.401608 0.130490i
\(378\) −681.328 221.377i −1.80246 0.585653i
\(379\) −542.041 393.816i −1.43019 1.03909i −0.989982 0.141196i \(-0.954905\pi\)
−0.440207 0.897896i \(-0.645095\pi\)
\(380\) 163.755 225.389i 0.430934 0.593130i
\(381\) −174.286 + 536.396i −0.457442 + 1.40786i
\(382\) −115.572 355.695i −0.302545 0.931139i
\(383\) 19.4946 + 26.8321i 0.0508998 + 0.0700576i 0.833708 0.552205i \(-0.186214\pi\)
−0.782808 + 0.622263i \(0.786214\pi\)
\(384\) 686.541i 1.78787i
\(385\) 0 0
\(386\) 988.354i 2.56050i
\(387\) 305.808 222.183i 0.790203 0.574116i
\(388\) −134.113 412.759i −0.345653 1.06381i
\(389\) −397.441 129.137i −1.02170 0.331971i −0.250197 0.968195i \(-0.580495\pi\)
−0.771504 + 0.636224i \(0.780495\pi\)
\(390\) −213.580 155.175i −0.547642 0.397885i
\(391\) −71.1935 51.7251i −0.182081 0.132289i
\(392\) 141.943 + 46.1202i 0.362100 + 0.117654i
\(393\) 113.555 36.8962i 0.288943 0.0938834i
\(394\) 355.967 258.626i 0.903471 0.656410i
\(395\) 265.330i 0.671721i
\(396\) 0 0
\(397\) −86.0000 −0.216625 −0.108312 0.994117i \(-0.534545\pi\)
−0.108312 + 0.994117i \(0.534545\pi\)
\(398\) −81.8775 112.695i −0.205722 0.283152i
\(399\) 44.4984 + 136.952i 0.111525 + 0.343238i
\(400\) −29.3566 + 90.3504i −0.0733915 + 0.225876i
\(401\) −148.159 + 203.924i −0.369474 + 0.508538i −0.952758 0.303731i \(-0.901768\pi\)
0.583284 + 0.812269i \(0.301768\pi\)
\(402\) −11.6968 + 16.0992i −0.0290965 + 0.0400478i
\(403\) 32.1378 98.9099i 0.0797463 0.245434i
\(404\) −706.563 + 229.576i −1.74892 + 0.568258i
\(405\) 315.813 + 434.679i 0.779785 + 1.07328i
\(406\) 1056.00 2.60099
\(407\) 0 0
\(408\) 396.000 0.970588
\(409\) 412.599 299.770i 1.00880 0.732935i 0.0448419 0.998994i \(-0.485722\pi\)
0.963957 + 0.266059i \(0.0857216\pi\)
\(410\) −277.578 + 90.1906i −0.677020 + 0.219977i
\(411\) 302.813 + 98.3898i 0.736770 + 0.239391i
\(412\) 419.071 + 304.473i 1.01716 + 0.739012i
\(413\) 311.914 429.313i 0.755240 1.03950i
\(414\) 61.1854 188.309i 0.147791 0.454853i
\(415\) 81.5805 + 251.079i 0.196579 + 0.605009i
\(416\) 54.5850 + 75.1298i 0.131214 + 0.180600i
\(417\) 222.000 0.532374
\(418\) 0 0
\(419\) 530.660i 1.26649i −0.773951 0.633246i \(-0.781722\pi\)
0.773951 0.633246i \(-0.218278\pi\)
\(420\) −655.020 901.557i −1.55957 2.14656i
\(421\) −52.5329 161.680i −0.124781 0.384037i 0.869080 0.494672i \(-0.164712\pi\)
−0.993861 + 0.110635i \(0.964712\pi\)
\(422\) 775.957 + 252.124i 1.83876 + 0.597450i
\(423\) 456.174 627.870i 1.07843 1.48433i
\(424\) −480.556 349.144i −1.13339 0.823454i
\(425\) 239.727 + 77.8919i 0.564063 + 0.183275i
\(426\) −183.556 564.928i −0.430883 1.32612i
\(427\) 77.6656 56.4274i 0.181887 0.132148i
\(428\) 278.596i 0.650926i
\(429\) 0 0
\(430\) 924.000 2.14884
\(431\) 163.755 + 225.389i 0.379942 + 0.522945i 0.955569 0.294767i \(-0.0952421\pi\)
−0.575627 + 0.817712i \(0.695242\pi\)
\(432\) 41.7173 + 128.393i 0.0965678 + 0.297205i
\(433\) −167.487 + 515.473i −0.386806 + 1.19047i 0.548355 + 0.836246i \(0.315254\pi\)
−0.935161 + 0.354222i \(0.884746\pi\)
\(434\) 405.488 558.107i 0.934305 1.28596i
\(435\) −640.741 465.526i −1.47297 1.07017i
\(436\) −432.624 + 1331.48i −0.992256 + 3.05385i
\(437\) −37.8516 + 12.2987i −0.0866169 + 0.0281435i
\(438\) 432.781 + 595.672i 0.988084 + 1.35998i
\(439\) −328.000 −0.747153 −0.373576 0.927599i \(-0.621869\pi\)
−0.373576 + 0.927599i \(0.621869\pi\)
\(440\) 0 0
\(441\) 135.000 0.306122
\(442\) −142.387 + 103.450i −0.322143 + 0.234050i
\(443\) −126.172 + 40.9957i −0.284812 + 0.0925412i −0.447939 0.894064i \(-0.647842\pi\)
0.163127 + 0.986605i \(0.447842\pi\)
\(444\) −194.681 + 599.166i −0.438470 + 1.34947i
\(445\) 640.741 + 465.526i 1.43987 + 1.04613i
\(446\) 588.738 810.328i 1.32004 1.81688i
\(447\) 264.961 + 86.0910i 0.592754 + 0.192597i
\(448\) 239.797 + 738.020i 0.535262 + 1.64737i
\(449\) 265.127 + 364.916i 0.590483 + 0.812730i 0.994796 0.101890i \(-0.0324891\pi\)
−0.404312 + 0.914621i \(0.632489\pi\)
\(450\) 567.143i 1.26032i
\(451\) 0 0
\(452\) 278.596i 0.616364i
\(453\) −388.328 + 282.137i −0.857237 + 0.622819i
\(454\) 203.951 + 627.697i 0.449232 + 1.38259i
\(455\) 201.875 + 65.5932i 0.443681 + 0.144161i
\(456\) 105.271 144.893i 0.230857 0.317748i
\(457\) 276.684 + 201.023i 0.605435 + 0.439874i 0.847804 0.530310i \(-0.177924\pi\)
−0.242369 + 0.970184i \(0.577924\pi\)
\(458\) −473.145 153.734i −1.03307 0.335664i
\(459\) 340.664 110.688i 0.742188 0.241151i
\(460\) 249.177 181.038i 0.541690 0.393561i
\(461\) 79.5990i 0.172666i 0.996266 + 0.0863330i \(0.0275149\pi\)
−0.996266 + 0.0863330i \(0.972485\pi\)
\(462\) 0 0
\(463\) −86.0000 −0.185745 −0.0928726 0.995678i \(-0.529605\pi\)
−0.0928726 + 0.995678i \(0.529605\pi\)
\(464\) −116.968 160.992i −0.252086 0.346966i
\(465\) −492.070 + 159.883i −1.05822 + 0.343835i
\(466\) 448.693 1380.93i 0.962860 2.96338i
\(467\) −350.903 + 482.977i −0.751399 + 1.03421i 0.246482 + 0.969147i \(0.420725\pi\)
−0.997881 + 0.0650647i \(0.979275\pi\)
\(468\) −203.872 148.122i −0.435625 0.316500i
\(469\) 4.94427 15.2169i 0.0105422 0.0324454i
\(470\) 1804.26 586.239i 3.83885 1.24732i
\(471\) −441.723 + 320.931i −0.937841 + 0.681382i
\(472\) −660.000 −1.39831
\(473\) 0 0
\(474\) 397.995i 0.839652i
\(475\) 92.2279 67.0075i 0.194164 0.141068i
\(476\) −706.563 + 229.576i −1.48438 + 0.482303i
\(477\) −510.996 166.033i −1.07127 0.348077i
\(478\) 0 0
\(479\) −132.563 + 182.458i −0.276751 + 0.380914i −0.924654 0.380808i \(-0.875646\pi\)
0.647904 + 0.761722i \(0.275646\pi\)
\(480\) 142.766 439.388i 0.297429 0.915392i
\(481\) −37.0820 114.127i −0.0770936 0.237270i
\(482\) −253.430 348.817i −0.525789 0.723686i
\(483\) 159.198i 0.329602i
\(484\) 0 0
\(485\) 411.261i 0.847962i
\(486\) 473.720 + 652.019i 0.974732 + 1.34160i
\(487\) 137.822 + 424.171i 0.283001 + 0.870988i 0.986991 + 0.160778i \(0.0514002\pi\)
−0.703989 + 0.710210i \(0.748600\pi\)
\(488\) −113.555 36.8962i −0.232694 0.0756069i
\(489\) 703.845 + 511.373i 1.43936 + 1.04575i
\(490\) 266.976 + 193.969i 0.544848 + 0.395855i
\(491\) 668.711 + 217.277i 1.36194 + 0.442520i 0.896689 0.442660i \(-0.145965\pi\)
0.465248 + 0.885181i \(0.345965\pi\)
\(492\) −264.961 + 86.0910i −0.538539 + 0.174982i
\(493\) −427.161 + 310.351i −0.866452 + 0.629514i
\(494\) 79.5990i 0.161132i
\(495\) 0 0
\(496\) −130.000 −0.262097
\(497\) 280.723 + 386.382i 0.564834 + 0.777428i
\(498\) 122.371 + 376.618i 0.245724 + 0.756262i
\(499\) −17.9230 + 55.1613i −0.0359178 + 0.110544i −0.967408 0.253223i \(-0.918509\pi\)
0.931490 + 0.363767i \(0.118509\pi\)
\(500\) 163.755 225.389i 0.327510 0.450779i
\(501\) 421.084 579.572i 0.840487 1.15683i
\(502\) 299.128 920.623i 0.595873 1.83391i
\(503\) −479.453 + 155.784i −0.953187 + 0.309709i −0.744010 0.668168i \(-0.767079\pi\)
−0.209177 + 0.977878i \(0.567079\pi\)
\(504\) −421.084 579.572i −0.835484 1.14995i
\(505\) −704.000 −1.39406
\(506\) 0 0
\(507\) −459.000 −0.905325
\(508\) −1064.67 + 773.525i −2.09580 + 1.52269i
\(509\) −700.254 + 227.526i −1.37574 + 0.447007i −0.901268 0.433262i \(-0.857363\pi\)
−0.474477 + 0.880268i \(0.657363\pi\)
\(510\) 832.735 + 270.572i 1.63281 + 0.530533i
\(511\) −478.938 347.969i −0.937256 0.680957i
\(512\) 185.199 254.905i 0.361717 0.497860i
\(513\) 50.0608 154.071i 0.0975843 0.300334i
\(514\) 503.080 + 1548.32i 0.978754 + 3.01230i
\(515\) 288.521 + 397.114i 0.560234 + 0.771096i
\(516\) 882.000 1.70930
\(517\) 0 0
\(518\) 795.990i 1.53666i
\(519\) 350.903 + 482.977i 0.676114 + 0.930592i
\(520\) −81.5805 251.079i −0.156886 0.482844i
\(521\) 264.961 + 86.0910i 0.508562 + 0.165242i 0.552048 0.833812i \(-0.313846\pi\)
−0.0434860 + 0.999054i \(0.513846\pi\)
\(522\) −961.112 698.289i −1.84121 1.33772i
\(523\) −114.880 83.4655i −0.219657 0.159590i 0.472515 0.881322i \(-0.343346\pi\)
−0.692172 + 0.721733i \(0.743346\pi\)
\(524\) 264.961 + 86.0910i 0.505651 + 0.164296i
\(525\) −140.912 433.682i −0.268403 0.826061i
\(526\) 605.145 439.663i 1.15047 0.835862i
\(527\) 344.929i 0.654514i
\(528\) 0 0
\(529\) 485.000 0.916824
\(530\) −771.987 1062.55i −1.45658 2.00481i
\(531\) −567.774 + 184.481i −1.06925 + 0.347421i
\(532\) −103.830 + 319.555i −0.195169 + 0.600667i
\(533\) 31.1914 42.9313i 0.0585205 0.0805465i
\(534\) 961.112 + 698.289i 1.79984 + 1.30766i
\(535\) 81.5805 251.079i 0.152487 0.469306i
\(536\) −18.9258 + 6.14936i −0.0353093 + 0.0114727i
\(537\) −350.903 482.977i −0.653451 0.899399i
\(538\) 242.000 0.449814
\(539\) 0 0
\(540\) 1253.68i 2.32164i
\(541\) 323.607 235.114i 0.598164 0.434592i −0.247063 0.969000i \(-0.579465\pi\)
0.845227 + 0.534408i \(0.179465\pi\)
\(542\) 1413.13 459.152i 2.60724 0.847144i
\(543\) 9.27051 28.5317i 0.0170728 0.0525446i
\(544\) −249.177 181.038i −0.458046 0.332790i
\(545\) −779.785 + 1073.28i −1.43080 + 1.96933i
\(546\) 302.813 + 98.3898i 0.554602 + 0.180201i
\(547\) −52.5329 161.680i −0.0960382 0.295575i 0.891485 0.453051i \(-0.149664\pi\)
−0.987523 + 0.157476i \(0.949664\pi\)
\(548\) 436.680 + 601.038i 0.796861 + 1.09678i
\(549\) −108.000 −0.196721
\(550\) 0 0
\(551\) 238.797i 0.433388i
\(552\) 160.185 116.381i 0.290191 0.210836i
\(553\) 98.8854 + 304.338i 0.178816 + 0.550340i
\(554\) −820.117 266.472i −1.48036 0.480997i
\(555\) −350.903 + 482.977i −0.632258 + 0.870229i
\(556\) 419.071 + 304.473i 0.753724 + 0.547613i
\(557\) −807.500 262.373i −1.44973 0.471046i −0.524815 0.851217i \(-0.675865\pi\)
−0.924916 + 0.380170i \(0.875865\pi\)
\(558\) −738.106 + 239.825i −1.32277 + 0.429794i
\(559\) −135.915 + 98.7479i −0.243139 + 0.176651i
\(560\) 265.330i 0.473804i
\(561\) 0 0
\(562\) 660.000 1.17438
\(563\) −413.286 568.840i −0.734078 1.01037i −0.998938 0.0460852i \(-0.985325\pi\)
0.264859 0.964287i \(-0.414675\pi\)
\(564\) 1722.25 559.592i 3.05363 0.992184i
\(565\) −81.5805 + 251.079i −0.144390 + 0.444387i
\(566\) −97.4732 + 134.160i −0.172214 + 0.237032i
\(567\) −524.243 380.885i −0.924591 0.671755i
\(568\) 183.556 564.928i 0.323162 0.994591i
\(569\) −113.555 + 36.8962i −0.199569 + 0.0648439i −0.407096 0.913385i \(-0.633459\pi\)
0.207527 + 0.978229i \(0.433459\pi\)
\(570\) 320.371 232.763i 0.562054 0.408356i
\(571\) 706.000 1.23643 0.618214 0.786010i \(-0.287857\pi\)
0.618214 + 0.786010i \(0.287857\pi\)
\(572\) 0 0
\(573\) 338.296i 0.590394i
\(574\) 284.774 206.900i 0.496122 0.360454i
\(575\) 119.863 38.9460i 0.208458 0.0677321i
\(576\) 269.772 830.272i 0.468354 1.44145i
\(577\) 597.055 + 433.786i 1.03476 + 0.751795i 0.969255 0.246058i \(-0.0791353\pi\)
0.0655014 + 0.997852i \(0.479135\pi\)
\(578\) −220.289 + 303.202i −0.381123 + 0.524571i
\(579\) −276.261 + 850.245i −0.477135 + 1.46847i
\(580\) −571.063 1757.55i −0.984592 3.03026i
\(581\) −187.148 257.588i −0.322114 0.443352i
\(582\) 616.892i 1.05995i
\(583\) 0 0
\(584\) 736.291i 1.26077i
\(585\) −140.361 193.191i −0.239934 0.330241i
\(586\) −489.483 1506.47i −0.835295 2.57077i
\(587\) −895.821 291.070i −1.52610 0.495860i −0.578599 0.815612i \(-0.696400\pi\)
−0.947501 + 0.319753i \(0.896400\pi\)
\(588\) 254.840 + 185.152i 0.433402 + 0.314885i
\(589\) 126.207 + 91.6945i 0.214273 + 0.155678i
\(590\) −1387.89 450.953i −2.35236 0.764327i
\(591\) 378.516 122.987i 0.640467 0.208100i
\(592\) −121.353 + 88.1678i −0.204987 + 0.148932i
\(593\) 543.926i 0.917245i −0.888631 0.458623i \(-0.848343\pi\)
0.888631 0.458623i \(-0.151657\pi\)
\(594\) 0 0
\(595\) −704.000 −1.18319
\(596\) 382.095 + 525.908i 0.641099 + 0.882397i
\(597\) −38.9361 119.833i −0.0652197 0.200725i
\(598\) −27.1935 + 83.6930i −0.0454741 + 0.139955i
\(599\) −27.2925 + 37.5649i −0.0455634 + 0.0627127i −0.831191 0.555987i \(-0.812340\pi\)
0.785627 + 0.618700i \(0.212340\pi\)
\(600\) −333.358 + 458.828i −0.555597 + 0.764714i
\(601\) −167.487 + 515.473i −0.278681 + 0.857692i 0.709541 + 0.704664i \(0.248902\pi\)
−0.988222 + 0.153027i \(0.951098\pi\)
\(602\) −1059.84 + 344.364i −1.76054 + 0.572034i
\(603\) −14.5623 + 10.5801i −0.0241498 + 0.0175458i
\(604\) −1120.00 −1.85430
\(605\) 0 0
\(606\) −1056.00 −1.74257
\(607\) −566.312 + 411.450i −0.932969 + 0.677841i −0.946718 0.322064i \(-0.895623\pi\)
0.0137493 + 0.999905i \(0.495623\pi\)
\(608\) −132.480 + 43.0455i −0.217896 + 0.0707986i
\(609\) 908.438 + 295.169i 1.49169 + 0.484679i
\(610\) −213.580 155.175i −0.350132 0.254386i
\(611\) −202.744 + 279.053i −0.331824 + 0.456716i
\(612\) 794.883 + 258.273i 1.29883 + 0.422015i
\(613\) −236.089 726.607i −0.385137 1.18533i −0.936381 0.350986i \(-0.885847\pi\)
0.551244 0.834344i \(-0.314153\pi\)
\(614\) −167.654 230.756i −0.273052 0.375824i
\(615\) −264.000 −0.429268
\(616\) 0 0
\(617\) 39.7995i 0.0645049i 0.999480 + 0.0322524i \(0.0102680\pi\)
−0.999480 + 0.0322524i \(0.989732\pi\)
\(618\) 432.781 + 595.672i 0.700293 + 0.963870i
\(619\) −229.291 705.684i −0.370421 1.14004i −0.946516 0.322656i \(-0.895424\pi\)
0.576095 0.817383i \(-0.304576\pi\)
\(620\) −1148.16 373.061i −1.85188 0.601712i
\(621\) 105.271 144.893i 0.169519 0.233322i
\(622\) −53.3951 38.7938i −0.0858442 0.0623695i
\(623\) −908.438 295.169i −1.45817 0.473787i
\(624\) −18.5410 57.0634i −0.0297132 0.0914477i
\(625\) 597.864 434.373i 0.956582 0.694997i
\(626\) 325.029i 0.519216i
\(627\) 0 0
\(628\) −1274.00 −2.02866
\(629\) 233.936 + 321.985i 0.371917 + 0.511899i
\(630\) −489.483 1506.47i −0.776957 2.39123i
\(631\) −126.697 + 389.933i −0.200788 + 0.617961i 0.799073 + 0.601235i \(0.205324\pi\)
−0.999860 + 0.0167260i \(0.994676\pi\)
\(632\) 233.936 321.985i 0.370151 0.509469i
\(633\) 597.055 + 433.786i 0.943214 + 0.685285i
\(634\) 319.524 983.392i 0.503980 1.55109i
\(635\) −1186.02 + 385.360i −1.86774 + 0.606866i
\(636\) −736.897 1014.25i −1.15864 1.59474i
\(637\) −60.0000 −0.0941915
\(638\) 0 0
\(639\) 537.293i 0.840834i
\(640\) 1228.09 892.258i 1.91889 1.39415i
\(641\) 719.180 233.676i 1.12197 0.364549i 0.311448 0.950263i \(-0.399186\pi\)
0.810517 + 0.585715i \(0.199186\pi\)
\(642\) 122.371 376.618i 0.190609 0.586633i
\(643\) −720.025 523.129i −1.11979 0.813575i −0.135613 0.990762i \(-0.543300\pi\)
−0.984177 + 0.177187i \(0.943300\pi\)
\(644\) −218.340 + 300.519i −0.339037 + 0.466644i
\(645\) 794.883 + 258.273i 1.23238 + 0.400423i
\(646\) −81.5805 251.079i −0.126286 0.388667i
\(647\) −284.622 391.748i −0.439910 0.605484i 0.530282 0.847821i \(-0.322086\pi\)
−0.970192 + 0.242337i \(0.922086\pi\)
\(648\) 805.940i 1.24373i
\(649\) 0 0
\(650\) 252.063i 0.387790i
\(651\) 504.827 366.778i 0.775463 0.563407i
\(652\) 627.304 + 1930.64i 0.962123 + 2.96111i
\(653\) 372.207 + 120.937i 0.569996 + 0.185203i 0.579814 0.814749i \(-0.303125\pi\)
−0.00981822 + 0.999952i \(0.503125\pi\)
\(654\) −1169.68 + 1609.92i −1.78850 + 2.46166i
\(655\) 213.580 + 155.175i 0.326077 + 0.236909i
\(656\) −63.0860 20.4979i −0.0961676 0.0312468i
\(657\) 205.805 + 633.404i 0.313250 + 0.964085i
\(658\) −1851.03 + 1344.85i −2.81312 + 2.04385i
\(659\) 384.728i 0.583806i 0.956448 + 0.291903i \(0.0942885\pi\)
−0.956448 + 0.291903i \(0.905711\pi\)
\(660\) 0 0
\(661\) −746.000 −1.12859 −0.564297 0.825572i \(-0.690853\pi\)
−0.564297 + 0.825572i \(0.690853\pi\)
\(662\) −424.983 584.939i −0.641968 0.883593i
\(663\) −151.406 + 49.1949i −0.228365 + 0.0742004i
\(664\) −122.371 + 376.618i −0.184293 + 0.567196i
\(665\) −187.148 + 257.588i −0.281426 + 0.387350i
\(666\) −526.355 + 724.466i −0.790323 + 1.08779i
\(667\) −81.5805 + 251.079i −0.122310 + 0.376430i
\(668\) 1589.77 516.546i 2.37989 0.773273i
\(669\) 732.969 532.533i 1.09562 0.796014i
\(670\) −44.0000 −0.0656716
\(671\) 0 0
\(672\) 557.193i 0.829156i
\(673\) −512.917 + 372.656i −0.762135 + 0.553723i −0.899564 0.436788i \(-0.856116\pi\)
0.137430 + 0.990512i \(0.456116\pi\)
\(674\) −876.895 + 284.920i −1.30103 + 0.422731i
\(675\) −158.526 + 487.892i −0.234853 + 0.722803i
\(676\) −866.457 629.518i −1.28174 0.931240i
\(677\) −467.871 + 643.969i −0.691095 + 0.951210i 0.308905 + 0.951093i \(0.400037\pi\)
−1.00000 0.000117512i \(0.999963\pi\)
\(678\) −122.371 + 376.618i −0.180488 + 0.555484i
\(679\) 153.272 + 471.724i 0.225733 + 0.694733i
\(680\) 514.658 + 708.366i 0.756850 + 1.04172i
\(681\) 596.992i 0.876641i
\(682\) 0 0
\(683\) 451.061i 0.660411i −0.943909 0.330206i \(-0.892882\pi\)
0.943909 0.330206i \(-0.107118\pi\)
\(684\) 305.808 222.183i 0.447088 0.324829i
\(685\) 217.548 + 669.544i 0.317588 + 0.977436i
\(686\) 857.969 + 278.771i 1.25068 + 0.406372i
\(687\) −364.058 264.503i −0.529924 0.385012i
\(688\) 169.894 + 123.435i 0.246938 + 0.179411i
\(689\) 227.109 + 73.7923i 0.329622 + 0.107101i
\(690\) 416.367 135.286i 0.603431 0.196067i
\(691\) −370.530 + 269.206i −0.536223 + 0.389588i −0.822680 0.568504i \(-0.807522\pi\)
0.286458 + 0.958093i \(0.407522\pi\)
\(692\) 1392.98i 2.01298i
\(693\) 0 0
\(694\) −1100.00 −1.58501
\(695\) 288.521 + 397.114i 0.415137 + 0.571388i
\(696\) −367.112 1129.86i −0.527460 1.62336i
\(697\) −54.3870 + 167.386i −0.0780301 + 0.240152i
\(698\) 631.626 869.359i 0.904908 1.24550i
\(699\) 771.987 1062.55i 1.10442 1.52010i
\(700\) 328.794 1011.92i 0.469706 1.44561i
\(701\) 479.453 155.784i 0.683956 0.222231i 0.0536295 0.998561i \(-0.482921\pi\)
0.630327 + 0.776330i \(0.282921\pi\)
\(702\) −210.542 289.786i −0.299917 0.412801i
\(703\) 180.000 0.256046
\(704\) 0 0
\(705\) 1716.00 2.43404
\(706\) −1067.90 + 775.877i −1.51261 + 1.09898i
\(707\) 807.500 262.373i 1.14215 0.371107i
\(708\) −1324.80 430.455i −1.87119 0.607988i
\(709\) 454.668 + 330.335i 0.641280 + 0.465917i 0.860290 0.509805i \(-0.170283\pi\)
−0.219010 + 0.975723i \(0.570283\pi\)
\(710\) 771.987 1062.55i 1.08731 1.49655i
\(711\) 111.246 342.380i 0.156464 0.481548i
\(712\) 367.112 + 1129.86i 0.515607 + 1.58688i
\(713\) 101.372 + 139.527i 0.142177 + 0.195690i
\(714\) −1056.00 −1.47899
\(715\) 0 0
\(716\) 1392.98i 1.94551i
\(717\) 0 0
\(718\) 312.725 + 962.469i 0.435550 + 1.34049i
\(719\) 321.738 + 104.539i 0.447480 + 0.145395i 0.524084 0.851666i \(-0.324408\pi\)
−0.0766039 + 0.997062i \(0.524408\pi\)
\(720\) −175.452 + 241.489i −0.243683 + 0.335401i
\(721\) −478.938 347.969i −0.664269 0.482620i
\(722\) 1025.15 + 333.090i 1.41987 + 0.461344i
\(723\) −120.517 370.912i −0.166690 0.513018i
\(724\) 56.6312 41.1450i 0.0782199 0.0568301i
\(725\) 756.190i 1.04302i
\(726\) 0 0
\(727\) −42.0000 −0.0577717 −0.0288858 0.999583i \(-0.509196\pi\)
−0.0288858 + 0.999583i \(0.509196\pi\)
\(728\) 187.148 + 257.588i 0.257072 + 0.353829i
\(729\) 225.273 + 693.320i 0.309017 + 0.951057i
\(730\) −503.080 + 1548.32i −0.689150 + 2.12099i
\(731\) 327.510 450.779i 0.448030 0.616660i
\(732\) −203.872 148.122i −0.278514 0.202352i
\(733\) 192.827 593.459i 0.263065 0.809631i −0.729068 0.684441i \(-0.760046\pi\)
0.992133 0.125189i \(-0.0399538\pi\)
\(734\) −876.895 + 284.920i −1.19468 + 0.388175i
\(735\) 175.452 + 241.489i 0.238710 + 0.328556i
\(736\) −154.000 −0.209239
\(737\) 0 0
\(738\) −396.000 −0.536585
\(739\) 554.986 403.221i 0.750995 0.545630i −0.145140 0.989411i \(-0.546363\pi\)
0.896135 + 0.443781i \(0.146363\pi\)
\(740\) −1324.80 + 430.455i −1.79028 + 0.581696i
\(741\) −22.2492 + 68.4761i −0.0300259 + 0.0924103i
\(742\) 1281.48 + 931.052i 1.72707 + 1.25479i
\(743\) 506.860 697.634i 0.682181 0.938941i −0.317777 0.948166i \(-0.602936\pi\)
0.999957 + 0.00922416i \(0.00293618\pi\)
\(744\) −738.106 239.825i −0.992077 0.322346i
\(745\) 190.354 + 585.851i 0.255509 + 0.786377i
\(746\) 132.563 + 182.458i 0.177699 + 0.244582i
\(747\) 358.195i 0.479512i
\(748\) 0 0
\(749\) 318.396i 0.425095i
\(750\) 320.371 232.763i 0.427161 0.310351i
\(751\) 29.0476 + 89.3993i 0.0386786 + 0.119040i 0.968531 0.248891i \(-0.0800661\pi\)
−0.929853 + 0.367931i \(0.880066\pi\)
\(752\) 410.059 + 133.236i 0.545291 + 0.177176i
\(753\) 514.658 708.366i 0.683477 0.940726i
\(754\) 427.161 + 310.351i 0.566526 + 0.411606i
\(755\) −1009.38 327.966i −1.33692 0.434392i
\(756\) −467.234 1438.00i −0.618034 1.90211i
\(757\) −904.481 + 657.144i −1.19482 + 0.868090i −0.993766 0.111490i \(-0.964438\pi\)
−0.201057 + 0.979579i \(0.564438\pi\)
\(758\) 2222.14i 2.93158i
\(759\) 0 0
\(760\) 396.000 0.521053
\(761\) −678.413 933.756i −0.891476 1.22701i −0.973108 0.230349i \(-0.926013\pi\)
0.0816322 0.996663i \(-0.473987\pi\)
\(762\) −1779.02 + 578.040i −2.33468 + 0.758583i
\(763\) 494.427 1521.69i 0.648004 1.99435i
\(764\) 463.972 638.603i 0.607293 0.835868i
\(765\) 640.741 + 465.526i 0.837571 + 0.608531i
\(766\) −33.9919 + 104.616i −0.0443758 + 0.136575i
\(767\) 252.344 81.9915i 0.329001 0.106899i
\(768\) 900.436 654.205i 1.17244 0.851829i
\(769\) −1274.00 −1.65670 −0.828349 0.560213i \(-0.810719\pi\)
−0.828349 + 0.560213i \(0.810719\pi\)
\(770\) 0 0
\(771\) 1472.58i 1.90996i
\(772\) −1687.61 + 1226.12i −2.18602 + 1.58824i
\(773\) 889.512 289.020i 1.15073 0.373894i 0.329310 0.944222i \(-0.393184\pi\)
0.821417 + 0.570328i \(0.193184\pi\)
\(774\) 1192.32 + 387.410i 1.54047 + 0.500529i
\(775\) −399.654 290.366i −0.515683 0.374666i
\(776\) 362.600 499.076i 0.467268 0.643140i
\(777\) 222.492 684.761i 0.286348 0.881288i
\(778\) −428.298 1318.16i −0.550511 1.69430i
\(779\) 46.7871 + 64.3969i 0.0600605 + 0.0826662i
\(780\) 557.193i 0.714350i
\(781\) 0 0
\(782\) 291.863i 0.373226i
\(783\) −631.626 869.359i −0.806674 1.11029i
\(784\) 23.1763 + 71.3292i 0.0295616 + 0.0909812i
\(785\) −1148.16 373.061i −1.46263 0.475237i
\(786\) 320.371 + 232.763i 0.407596 + 0.296136i
\(787\) 241.087 + 175.160i 0.306337 + 0.222567i 0.730323 0.683102i \(-0.239370\pi\)
−0.423986 + 0.905669i \(0.639370\pi\)
\(788\) 883.203 + 286.970i 1.12082 + 0.364175i
\(789\) 643.477 209.078i 0.815560 0.264991i
\(790\) 711.935 517.251i 0.901183 0.654748i
\(791\) 318.396i 0.402523i
\(792\) 0 0
\(793\) 48.0000 0.0605296
\(794\) −167.654 230.756i −0.211151 0.290624i
\(795\) −367.112 1129.86i −0.461776 1.42120i
\(796\) 90.8510 279.611i 0.114134 0.351270i
\(797\) 308.015 423.947i 0.386468 0.531928i −0.570815 0.821078i \(-0.693373\pi\)
0.957284 + 0.289151i \(0.0933728\pi\)
\(798\) −280.723 + 386.382i −0.351783 + 0.484188i
\(799\) 353.515 1088.01i 0.442447 1.36171i
\(800\) 419.522 136.311i 0.524402 0.170389i
\(801\) 631.626 + 869.359i 0.788547 + 1.08534i
\(802\) −836.000 −1.04239
\(803\) 0 0
\(804\) −42.0000 −0.0522388
\(805\) −284.774 + 206.900i −0.353756 + 0.257019i
\(806\) 328.047 106.589i 0.407006 0.132244i
\(807\) 208.184 + 67.6430i 0.257972 + 0.0838203i
\(808\) −854.322 620.701i −1.05733 0.768195i
\(809\) 538.052 740.565i 0.665083 0.915408i −0.334554 0.942377i \(-0.608586\pi\)
0.999636 + 0.0269690i \(0.00858555\pi\)
\(810\) −550.668 + 1694.78i −0.679837 + 2.09232i
\(811\) 56.2411 + 173.092i 0.0693478 + 0.213431i 0.979724 0.200350i \(-0.0642080\pi\)
−0.910377 + 0.413781i \(0.864208\pi\)
\(812\) 1310.04 + 1803.11i 1.61335 + 2.22058i
\(813\) 1344.00 1.65314
\(814\) 0 0
\(815\) 1923.64i 2.36030i
\(816\) 116.968 + 160.992i 0.143343 + 0.197295i
\(817\) −77.8723 239.666i −0.0953149 0.293349i
\(818\) 1608.69 + 522.696i 1.96662 + 0.638992i
\(819\) 232.997 + 169.282i 0.284489 + 0.206694i
\(820\) −498.354 362.076i −0.607749 0.441556i
\(821\) 782.266 + 254.174i 0.952821 + 0.309590i 0.743861 0.668334i \(-0.232992\pi\)
0.208959 + 0.977924i \(0.432992\pi\)
\(822\) 326.322 + 1004.32i 0.396985 + 1.22180i
\(823\) 199.018 144.595i 0.241820 0.175693i −0.460274 0.887777i \(-0.652249\pi\)
0.702094 + 0.712084i \(0.252249\pi\)
\(824\) 736.291i 0.893557i
\(825\) 0 0
\(826\) 1760.00 2.13075
\(827\) 319.712 + 440.046i 0.386592 + 0.532099i 0.957316 0.289043i \(-0.0933372\pi\)
−0.570724 + 0.821142i \(0.693337\pi\)
\(828\) 397.441 129.137i 0.480002 0.155962i
\(829\) 77.2542 237.764i 0.0931897 0.286808i −0.893588 0.448888i \(-0.851820\pi\)
0.986778 + 0.162080i \(0.0518202\pi\)
\(830\) −514.658 + 708.366i −0.620070 + 0.853453i
\(831\) −631.033 458.472i −0.759366 0.551712i
\(832\) −119.899 + 369.010i −0.144109 + 0.443522i
\(833\) 189.258 61.4936i 0.227200 0.0738219i
\(834\) 432.781 + 595.672i 0.518922 + 0.714235i
\(835\) 1584.00 1.89701
\(836\) 0 0
\(837\) −702.000 −0.838710
\(838\) 1423.87 1034.50i 1.69913 1.23449i
\(839\) −447.910 + 145.535i −0.533862 + 0.173462i −0.563527 0.826098i \(-0.690556\pi\)
0.0296650 + 0.999560i \(0.490556\pi\)
\(840\) 489.483 1506.47i 0.582718 1.79342i
\(841\) 601.100 + 436.724i 0.714744 + 0.519292i
\(842\) 331.409 456.145i 0.393597 0.541740i
\(843\) 567.774 + 184.481i 0.673516 + 0.218838i
\(844\) 532.127 + 1637.72i 0.630483 + 1.94043i
\(845\) −596.536 821.061i −0.705959 0.971670i
\(846\) 2574.00 3.04255
\(847\) 0 0
\(848\) 298.496i 0.352000i
\(849\) −121.353 + 88.1678i −0.142936 + 0.103849i
\(850\) 258.338 + 795.083i 0.303927 + 0.935392i
\(851\) 189.258 + 61.4936i 0.222395 + 0.0722604i
\(852\) 736.897 1014.25i 0.864903 1.19044i
\(853\) 45.3050 + 32.9160i 0.0531125 + 0.0385885i 0.614025 0.789287i \(-0.289549\pi\)
−0.560912 + 0.827875i \(0.689549\pi\)
\(854\) 302.813 + 98.3898i 0.354581 + 0.115211i
\(855\) 340.664 110.688i 0.398438 0.129460i
\(856\) 320.371 232.763i 0.374265 0.271919i
\(857\) 252.063i 0.294123i 0.989127 + 0.147062i \(0.0469815\pi\)
−0.989127 + 0.147062i \(0.953018\pi\)
\(858\) 0 0
\(859\) 1278.00 1.48778 0.743888 0.668304i \(-0.232979\pi\)
0.743888 + 0.668304i \(0.232979\pi\)
\(860\) 1146.28 + 1577.73i 1.33289 + 1.83456i
\(861\) 302.813 98.3898i 0.351699 0.114274i
\(862\) −285.532 + 878.776i −0.331243 + 1.01946i
\(863\) −666.716 + 917.656i −0.772557 + 1.06333i 0.223508 + 0.974702i \(0.428249\pi\)
−0.996065 + 0.0886309i \(0.971751\pi\)
\(864\) 368.449 507.126i 0.426445 0.586951i
\(865\) −407.902 + 1255.39i −0.471564 + 1.45132i
\(866\) −1709.63 + 555.492i −1.97417 + 0.641446i
\(867\) −274.257 + 199.259i −0.316328 + 0.229826i
\(868\) 1456.00 1.67742
\(869\) 0 0
\(870\) 2626.77i 3.01927i
\(871\) 6.47214 4.70228i 0.00743070 0.00539872i
\(872\) −1892.58 + 614.936i −2.17039 + 0.705202i
\(873\) 172.431 530.690i 0.197516 0.607892i
\(874\) −106.790 77.5877i −0.122186 0.0887731i
\(875\) −187.148 + 257.588i −0.213884 + 0.294386i
\(876\) −480.212 + 1477.94i −0.548188 + 1.68715i
\(877\) −140.912 433.682i −0.160675 0.494506i 0.838017 0.545644i \(-0.183715\pi\)
−0.998692 + 0.0511384i \(0.983715\pi\)
\(878\) −639.424 880.092i −0.728273 1.00238i
\(879\) 1432.78i 1.63001i
\(880\) 0 0
\(881\) 610.259i 0.692689i −0.938107 0.346344i \(-0.887423\pi\)
0.938107 0.346344i \(-0.112577\pi\)
\(882\) 263.178 + 362.233i 0.298387 + 0.410695i
\(883\) −338.065 1040.46i −0.382859 1.17832i −0.938021 0.346577i \(-0.887344\pi\)
0.555162 0.831742i \(-0.312656\pi\)
\(884\) −353.281 114.788i −0.399640 0.129851i
\(885\) −1067.90 775.877i −1.20667 0.876697i
\(886\) −355.967 258.626i −0.401769 0.291902i
\(887\) −138.789 45.0953i −0.156470 0.0508403i 0.229735 0.973253i \(-0.426214\pi\)
−0.386205 + 0.922413i \(0.626214\pi\)
\(888\) −851.660 + 276.721i −0.959077 + 0.311623i
\(889\) 1216.76 884.029i 1.36869 0.994408i
\(890\) 2626.77i 2.95142i
\(891\) 0 0
\(892\) 2114.00 2.36996
\(893\) −304.116 418.580i −0.340556 0.468735i
\(894\) 285.532 + 878.776i 0.319387 + 0.982971i
\(895\) 407.902 1255.39i 0.455757 1.40268i
\(896\) −1076.10 + 1481.13i −1.20101 + 1.65305i
\(897\) −46.7871 + 64.3969i −0.0521595 + 0.0717915i
\(898\) −462.289 + 1422.78i −0.514799 + 1.58439i
\(899\) 984.141 319.767i 1.09471 0.355692i
\(900\) −968.393 + 703.579i −1.07599 + 0.781754i
\(901\) −792.000 −0.879023
\(902\) 0 0
\(903\) −1008.00 −1.11628
\(904\) −320.371 + 232.763i −0.354392 + 0.257481i
\(905\) 63.0860 20.4979i 0.0697082 0.0226496i
\(906\) −1514.06 491.949i −1.67115 0.542990i
\(907\) −150.477 109.328i −0.165906 0.120538i 0.501734 0.865022i \(-0.332696\pi\)
−0.667640 + 0.744484i \(0.732696\pi\)
\(908\) −818.775 + 1126.95i −0.901734 + 1.24113i
\(909\) −908.438 295.169i −0.999381 0.324719i
\(910\) 217.548 + 669.544i 0.239064 + 0.735762i
\(911\) −502.961 692.267i −0.552098 0.759898i 0.438197 0.898879i \(-0.355617\pi\)
−0.990295 + 0.138981i \(0.955617\pi\)
\(912\) 90.0000 0.0986842
\(913\) 0 0
\(914\) 1134.29i 1.24101i
\(915\) −140.361 193.191i −0.153400 0.211138i
\(916\) −324.468 998.609i −0.354223 1.09018i
\(917\) −302.813 98.3898i −0.330221 0.107295i
\(918\) 961.112 + 698.289i 1.04696 + 0.760663i
\(919\) −346.259 251.572i −0.376778 0.273745i 0.383238 0.923650i \(-0.374809\pi\)
−0.760016 + 0.649904i \(0.774809\pi\)
\(920\) 416.367 + 135.286i 0.452573 + 0.147050i
\(921\) −79.7264 245.373i −0.0865650 0.266420i
\(922\) −213.580 + 155.175i −0.231649 + 0.168303i
\(923\) 238.797i 0.258718i
\(924\) 0 0
\(925\) −570.000 −0.616216
\(926\) −167.654 230.756i −0.181052 0.249196i
\(927\) 205.805 + 633.404i 0.222012 + 0.683283i
\(928\) −285.532 + 878.776i −0.307685 + 0.946957i
\(929\) 374.297 515.176i 0.402903 0.554548i −0.558567 0.829460i \(-0.688648\pi\)
0.961470 + 0.274911i \(0.0886485\pi\)
\(930\) −1388.27 1008.64i −1.49277 1.08456i
\(931\) 27.8115 85.5951i 0.0298727 0.0919389i
\(932\) 2914.57 947.002i 3.12722 1.01610i
\(933\) −35.0903 48.2977i −0.0376102 0.0517660i
\(934\) −1980.00 −2.11991
\(935\) 0 0
\(936\) 358.195i 0.382687i
\(937\) 234.615 170.458i 0.250389 0.181919i −0.455510 0.890231i \(-0.650543\pi\)
0.705899 + 0.708312i \(0.250543\pi\)
\(938\) 50.4688 16.3983i 0.0538047 0.0174822i
\(939\) 90.8510 279.611i 0.0967529 0.297775i
\(940\) 3239.30 + 2353.49i 3.44607 + 2.50372i
\(941\) −514.658 + 708.366i −0.546927 + 0.752780i −0.989591 0.143907i \(-0.954033\pi\)
0.442664 + 0.896687i \(0.354033\pi\)
\(942\) −1722.25 559.592i −1.82829 0.594047i
\(943\) 27.1935 + 83.6930i 0.0288372 + 0.0887518i
\(944\) −194.946 268.321i −0.206511 0.284238i
\(945\) 1432.78i 1.51617i
\(946\) 0 0
\(947\) 79.5990i 0.0840538i −0.999116 0.0420269i \(-0.986618\pi\)
0.999116 0.0420269i \(-0.0133815\pi\)
\(948\) 679.574 493.740i 0.716851 0.520822i
\(949\) −91.4690 281.513i −0.0963846 0.296641i
\(950\) 359.590 + 116.838i 0.378516 + 0.122987i
\(951\) 549.749 756.664i 0.578074 0.795651i
\(952\) −854.322 620.701i −0.897397 0.651997i
\(953\) 744.414 + 241.875i 0.781127 + 0.253804i 0.672321 0.740259i \(-0.265297\pi\)
0.108806 + 0.994063i \(0.465297\pi\)
\(954\) −550.668 1694.78i −0.577220 1.77650i
\(955\) 605.145 439.663i 0.633659 0.460380i
\(956\) 0 0
\(957\) 0 0
\(958\) −748.000 −0.780793
\(959\) −499.063 686.901i −0.520399 0.716268i
\(960\) 1835.80 596.488i 1.91229 0.621342i
\(961\) −88.0698 + 271.051i −0.0916440 + 0.282051i
\(962\) 233.936 321.985i 0.243176 0.334703i
\(963\) 210.542 289.786i 0.218631 0.300920i
\(964\) 281.205 865.461i 0.291707 0.897782i
\(965\) −1879.96 + 610.836i −1.94815 + 0.632991i
\(966\) −427.161 + 310.351i −0.442196 + 0.321274i
\(967\) −460.000 −0.475698 −0.237849 0.971302i \(-0.576442\pi\)
−0.237849 + 0.971302i \(0.576442\pi\)
\(968\) 0 0
\(969\) 238.797i 0.246437i
\(970\) 1103.50 801.739i 1.13763 0.826535i
\(971\) 1110.31 360.762i 1.14347 0.371537i 0.324792 0.945785i \(-0.394706\pi\)
0.818681 + 0.574248i \(0.194706\pi\)
\(972\) −525.638 + 1617.75i −0.540780 + 1.66435i
\(973\) −478.938 347.969i −0.492228 0.357625i
\(974\) −869.461 + 1196.71i −0.892670 + 1.22865i
\(975\) 70.4559 216.841i 0.0722624 0.222401i
\(976\) −18.5410 57.0634i −0.0189969 0.0584666i
\(977\) −771.987 1062.55i −0.790161 1.08756i −0.994088 0.108577i \(-0.965370\pi\)
0.203927 0.978986i \(-0.434630\pi\)
\(978\) 2885.46i 2.95037i
\(979\) 0 0
\(980\) 696.491i 0.710705i
\(981\) −1456.23 + 1058.01i −1.48443 + 1.07851i
\(982\) 720.628 + 2217.86i 0.733837 + 2.25852i
\(983\) 397.441 + 129.137i 0.404315 + 0.131370i 0.504113 0.863638i \(-0.331820\pi\)
−0.0997979 + 0.995008i \(0.531820\pi\)
\(984\) −320.371 232.763i −0.325580 0.236548i
\(985\) 711.935 + 517.251i 0.722777 + 0.525128i
\(986\) −1665.47 541.144i −1.68912 0.548827i
\(987\) −1968.28 + 639.533i −1.99421 + 0.647957i
\(988\) −135.915 + 98.7479i −0.137566 + 0.0999473i
\(989\) 278.596i 0.281695i
\(990\) 0 0
\(991\) 838.000 0.845610 0.422805 0.906221i \(-0.361045\pi\)
0.422805 + 0.906221i \(0.361045\pi\)
\(992\) 354.802 + 488.343i 0.357664 + 0.492282i
\(993\) −202.097 621.991i −0.203522 0.626376i
\(994\) −489.483 + 1506.47i −0.492438 + 1.51557i
\(995\) 163.755 225.389i 0.164578 0.226522i
\(996\) −491.265 + 676.168i −0.493238 + 0.678883i
\(997\) 16.0689 49.4549i 0.0161172 0.0496038i −0.942674 0.333714i \(-0.891698\pi\)
0.958792 + 0.284110i \(0.0916981\pi\)
\(998\) −182.949 + 59.4438i −0.183316 + 0.0595629i
\(999\) −655.304 + 476.106i −0.655960 + 0.476583i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.d.245.2 8
3.2 odd 2 inner 363.3.h.d.245.1 8
11.2 odd 10 33.3.b.a.23.2 yes 2
11.3 even 5 inner 363.3.h.d.269.2 8
11.4 even 5 inner 363.3.h.d.323.1 8
11.5 even 5 inner 363.3.h.d.251.1 8
11.6 odd 10 363.3.h.e.251.2 8
11.7 odd 10 363.3.h.e.323.2 8
11.8 odd 10 363.3.h.e.269.1 8
11.9 even 5 363.3.b.d.122.1 2
11.10 odd 2 363.3.h.e.245.1 8
33.2 even 10 33.3.b.a.23.1 2
33.5 odd 10 inner 363.3.h.d.251.2 8
33.8 even 10 363.3.h.e.269.2 8
33.14 odd 10 inner 363.3.h.d.269.1 8
33.17 even 10 363.3.h.e.251.1 8
33.20 odd 10 363.3.b.d.122.2 2
33.26 odd 10 inner 363.3.h.d.323.2 8
33.29 even 10 363.3.h.e.323.1 8
33.32 even 2 363.3.h.e.245.2 8
44.35 even 10 528.3.i.a.353.1 2
132.35 odd 10 528.3.i.a.353.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.b.a.23.1 2 33.2 even 10
33.3.b.a.23.2 yes 2 11.2 odd 10
363.3.b.d.122.1 2 11.9 even 5
363.3.b.d.122.2 2 33.20 odd 10
363.3.h.d.245.1 8 3.2 odd 2 inner
363.3.h.d.245.2 8 1.1 even 1 trivial
363.3.h.d.251.1 8 11.5 even 5 inner
363.3.h.d.251.2 8 33.5 odd 10 inner
363.3.h.d.269.1 8 33.14 odd 10 inner
363.3.h.d.269.2 8 11.3 even 5 inner
363.3.h.d.323.1 8 11.4 even 5 inner
363.3.h.d.323.2 8 33.26 odd 10 inner
363.3.h.e.245.1 8 11.10 odd 2
363.3.h.e.245.2 8 33.32 even 2
363.3.h.e.251.1 8 33.17 even 10
363.3.h.e.251.2 8 11.6 odd 10
363.3.h.e.269.1 8 11.8 odd 10
363.3.h.e.269.2 8 33.8 even 10
363.3.h.e.323.1 8 33.29 even 10
363.3.h.e.323.2 8 11.7 odd 10
528.3.i.a.353.1 2 44.35 even 10
528.3.i.a.353.2 2 132.35 odd 10