Properties

Label 363.3.b.n.122.1
Level $363$
Weight $3$
Character 363.122
Analytic conductor $9.891$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(122,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.122"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,-44,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 12 x^{9} + 290 x^{8} + 580 x^{7} + 3656 x^{6} + 5424 x^{5} + \cdots + 48312 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 122.1
Root \(-0.156151 + 2.44140i\) of defining polynomial
Character \(\chi\) \(=\) 363.122
Dual form 363.3.b.n.122.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.83317i q^{2} +(1.74344 - 2.44140i) q^{3} -10.6932 q^{4} -0.620885i q^{5} +(-9.35829 - 6.68291i) q^{6} -1.92745 q^{7} +25.6562i q^{8} +(-2.92083 - 8.51286i) q^{9} -2.37996 q^{10} +(-18.6430 + 26.1064i) q^{12} -15.9458 q^{13} +7.38824i q^{14} +(-1.51582 - 1.08248i) q^{15} +55.5719 q^{16} +14.4412i q^{17} +(-32.6313 + 11.1960i) q^{18} -16.4986 q^{19} +6.63925i q^{20} +(-3.36039 + 4.70566i) q^{21} -10.6669i q^{23} +(62.6370 + 44.7301i) q^{24} +24.6145 q^{25} +61.1231i q^{26} +(-25.8755 - 7.71077i) q^{27} +20.6106 q^{28} -19.1659i q^{29} +(-4.14932 + 5.81042i) q^{30} +22.0054 q^{31} -110.392i q^{32} +55.3557 q^{34} +1.19672i q^{35} +(31.2330 + 91.0298i) q^{36} -20.6452 q^{37} +63.2420i q^{38} +(-27.8006 + 38.9301i) q^{39} +15.9296 q^{40} -27.0161i q^{41} +(18.0376 + 12.8810i) q^{42} -53.1596 q^{43} +(-5.28550 + 1.81350i) q^{45} -40.8879 q^{46} -45.7258i q^{47} +(96.8864 - 135.673i) q^{48} -45.2849 q^{49} -94.3516i q^{50} +(35.2567 + 25.1774i) q^{51} +170.512 q^{52} -60.4562i q^{53} +(-29.5567 + 99.1854i) q^{54} -49.4511i q^{56} +(-28.7643 + 40.2796i) q^{57} -73.4661 q^{58} -40.5384i q^{59} +(16.2090 + 11.5751i) q^{60} -64.1073 q^{61} -84.3505i q^{62} +(5.62974 + 16.4081i) q^{63} -200.863 q^{64} +9.90052i q^{65} -25.7214 q^{67} -154.423i q^{68} +(-26.0420 - 18.5970i) q^{69} +4.58724 q^{70} +114.125i q^{71} +(218.408 - 74.9374i) q^{72} +84.4359 q^{73} +79.1367i q^{74} +(42.9139 - 60.0937i) q^{75} +176.423 q^{76} +(149.226 + 106.565i) q^{78} +65.2788 q^{79} -34.5038i q^{80} +(-63.9375 + 49.7292i) q^{81} -103.558 q^{82} +89.6649i q^{83} +(35.9334 - 50.3187i) q^{84} +8.96633 q^{85} +203.770i q^{86} +(-46.7915 - 33.4145i) q^{87} -146.530i q^{89} +(6.95145 + 20.2602i) q^{90} +30.7348 q^{91} +114.063i q^{92} +(38.3651 - 53.7239i) q^{93} -175.275 q^{94} +10.2437i q^{95} +(-269.510 - 192.462i) q^{96} +62.3547 q^{97} +173.585i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 44 q^{4} - 12 q^{9} - 80 q^{12} + 68 q^{15} + 92 q^{16} - 88 q^{25} - 232 q^{27} - 8 q^{31} + 116 q^{34} + 164 q^{36} - 244 q^{37} + 404 q^{42} - 52 q^{45} + 540 q^{48} + 100 q^{49} - 460 q^{58}+ \cdots - 156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.83317i 1.91659i −0.285787 0.958293i \(-0.592255\pi\)
0.285787 0.958293i \(-0.407745\pi\)
\(3\) 1.74344 2.44140i 0.581147 0.813799i
\(4\) −10.6932 −2.67330
\(5\) 0.620885i 0.124177i −0.998071 0.0620885i \(-0.980224\pi\)
0.998071 0.0620885i \(-0.0197761\pi\)
\(6\) −9.35829 6.68291i −1.55972 1.11382i
\(7\) −1.92745 −0.275350 −0.137675 0.990477i \(-0.543963\pi\)
−0.137675 + 0.990477i \(0.543963\pi\)
\(8\) 25.6562i 3.20703i
\(9\) −2.92083 8.51286i −0.324536 0.945873i
\(10\) −2.37996 −0.237996
\(11\) 0 0
\(12\) −18.6430 + 26.1064i −1.55358 + 2.17553i
\(13\) −15.9458 −1.22660 −0.613301 0.789849i \(-0.710159\pi\)
−0.613301 + 0.789849i \(0.710159\pi\)
\(14\) 7.38824i 0.527732i
\(15\) −1.51582 1.08248i −0.101055 0.0721650i
\(16\) 55.5719 3.47325
\(17\) 14.4412i 0.849484i 0.905315 + 0.424742i \(0.139635\pi\)
−0.905315 + 0.424742i \(0.860365\pi\)
\(18\) −32.6313 + 11.1960i −1.81285 + 0.622002i
\(19\) −16.4986 −0.868348 −0.434174 0.900829i \(-0.642960\pi\)
−0.434174 + 0.900829i \(0.642960\pi\)
\(20\) 6.63925i 0.331962i
\(21\) −3.36039 + 4.70566i −0.160019 + 0.224079i
\(22\) 0 0
\(23\) 10.6669i 0.463776i −0.972742 0.231888i \(-0.925510\pi\)
0.972742 0.231888i \(-0.0744903\pi\)
\(24\) 62.6370 + 44.7301i 2.60988 + 1.86376i
\(25\) 24.6145 0.984580
\(26\) 61.1231i 2.35089i
\(27\) −25.8755 7.71077i −0.958354 0.285584i
\(28\) 20.6106 0.736093
\(29\) 19.1659i 0.660892i −0.943825 0.330446i \(-0.892801\pi\)
0.943825 0.330446i \(-0.107199\pi\)
\(30\) −4.14932 + 5.81042i −0.138311 + 0.193681i
\(31\) 22.0054 0.709852 0.354926 0.934894i \(-0.384506\pi\)
0.354926 + 0.934894i \(0.384506\pi\)
\(32\) 110.392i 3.44975i
\(33\) 0 0
\(34\) 55.3557 1.62811
\(35\) 1.19672i 0.0341921i
\(36\) 31.2330 + 91.0298i 0.867584 + 2.52861i
\(37\) −20.6452 −0.557979 −0.278990 0.960294i \(-0.589999\pi\)
−0.278990 + 0.960294i \(0.589999\pi\)
\(38\) 63.2420i 1.66426i
\(39\) −27.8006 + 38.9301i −0.712836 + 0.998207i
\(40\) 15.9296 0.398239
\(41\) 27.0161i 0.658930i −0.944168 0.329465i \(-0.893132\pi\)
0.944168 0.329465i \(-0.106868\pi\)
\(42\) 18.0376 + 12.8810i 0.429467 + 0.306690i
\(43\) −53.1596 −1.23627 −0.618134 0.786072i \(-0.712111\pi\)
−0.618134 + 0.786072i \(0.712111\pi\)
\(44\) 0 0
\(45\) −5.28550 + 1.81350i −0.117456 + 0.0402999i
\(46\) −40.8879 −0.888867
\(47\) 45.7258i 0.972888i −0.873712 0.486444i \(-0.838294\pi\)
0.873712 0.486444i \(-0.161706\pi\)
\(48\) 96.8864 135.673i 2.01847 2.82652i
\(49\) −45.2849 −0.924183
\(50\) 94.3516i 1.88703i
\(51\) 35.2567 + 25.1774i 0.691309 + 0.493675i
\(52\) 170.512 3.27908
\(53\) 60.4562i 1.14068i −0.821408 0.570341i \(-0.806811\pi\)
0.821408 0.570341i \(-0.193189\pi\)
\(54\) −29.5567 + 99.1854i −0.547346 + 1.83677i
\(55\) 0 0
\(56\) 49.4511i 0.883055i
\(57\) −28.7643 + 40.2796i −0.504638 + 0.706660i
\(58\) −73.4661 −1.26666
\(59\) 40.5384i 0.687092i −0.939136 0.343546i \(-0.888372\pi\)
0.939136 0.343546i \(-0.111628\pi\)
\(60\) 16.2090 + 11.5751i 0.270151 + 0.192919i
\(61\) −64.1073 −1.05094 −0.525469 0.850812i \(-0.676110\pi\)
−0.525469 + 0.850812i \(0.676110\pi\)
\(62\) 84.3505i 1.36049i
\(63\) 5.62974 + 16.4081i 0.0893610 + 0.260446i
\(64\) −200.863 −3.13849
\(65\) 9.90052i 0.152316i
\(66\) 0 0
\(67\) −25.7214 −0.383901 −0.191951 0.981405i \(-0.561481\pi\)
−0.191951 + 0.981405i \(0.561481\pi\)
\(68\) 154.423i 2.27093i
\(69\) −26.0420 18.5970i −0.377420 0.269522i
\(70\) 4.58724 0.0655321
\(71\) 114.125i 1.60740i 0.595036 + 0.803699i \(0.297138\pi\)
−0.595036 + 0.803699i \(0.702862\pi\)
\(72\) 218.408 74.9374i 3.03344 1.04080i
\(73\) 84.4359 1.15666 0.578328 0.815804i \(-0.303705\pi\)
0.578328 + 0.815804i \(0.303705\pi\)
\(74\) 79.1367i 1.06942i
\(75\) 42.9139 60.0937i 0.572186 0.801250i
\(76\) 176.423 2.32136
\(77\) 0 0
\(78\) 149.226 + 106.565i 1.91315 + 1.36621i
\(79\) 65.2788 0.826314 0.413157 0.910660i \(-0.364426\pi\)
0.413157 + 0.910660i \(0.364426\pi\)
\(80\) 34.5038i 0.431297i
\(81\) −63.9375 + 49.7292i −0.789352 + 0.613941i
\(82\) −103.558 −1.26290
\(83\) 89.6649i 1.08030i 0.841569 + 0.540150i \(0.181633\pi\)
−0.841569 + 0.540150i \(0.818367\pi\)
\(84\) 35.9334 50.3187i 0.427778 0.599032i
\(85\) 8.96633 0.105486
\(86\) 203.770i 2.36942i
\(87\) −46.7915 33.4145i −0.537833 0.384075i
\(88\) 0 0
\(89\) 146.530i 1.64640i −0.567750 0.823201i \(-0.692186\pi\)
0.567750 0.823201i \(-0.307814\pi\)
\(90\) 6.95145 + 20.2602i 0.0772383 + 0.225114i
\(91\) 30.7348 0.337745
\(92\) 114.063i 1.23981i
\(93\) 38.3651 53.7239i 0.412528 0.577677i
\(94\) −175.275 −1.86462
\(95\) 10.2437i 0.107829i
\(96\) −269.510 192.462i −2.80740 2.00481i
\(97\) 62.3547 0.642832 0.321416 0.946938i \(-0.395841\pi\)
0.321416 + 0.946938i \(0.395841\pi\)
\(98\) 173.585i 1.77128i
\(99\) 0 0
\(100\) −263.208 −2.63208
\(101\) 88.2635i 0.873896i 0.899487 + 0.436948i \(0.143941\pi\)
−0.899487 + 0.436948i \(0.856059\pi\)
\(102\) 96.5094 135.145i 0.946170 1.32495i
\(103\) −30.0534 −0.291781 −0.145890 0.989301i \(-0.546605\pi\)
−0.145890 + 0.989301i \(0.546605\pi\)
\(104\) 409.110i 3.93375i
\(105\) 2.92167 + 2.08642i 0.0278255 + 0.0198706i
\(106\) −231.739 −2.18622
\(107\) 120.202i 1.12338i −0.827348 0.561689i \(-0.810152\pi\)
0.827348 0.561689i \(-0.189848\pi\)
\(108\) 276.693 + 82.4529i 2.56197 + 0.763453i
\(109\) −152.110 −1.39551 −0.697753 0.716338i \(-0.745817\pi\)
−0.697753 + 0.716338i \(0.745817\pi\)
\(110\) 0 0
\(111\) −35.9937 + 50.4032i −0.324268 + 0.454083i
\(112\) −107.112 −0.956357
\(113\) 129.552i 1.14648i 0.819387 + 0.573241i \(0.194314\pi\)
−0.819387 + 0.573241i \(0.805686\pi\)
\(114\) 154.399 + 110.259i 1.35437 + 0.967181i
\(115\) −6.62288 −0.0575903
\(116\) 204.945i 1.76676i
\(117\) 46.5750 + 135.745i 0.398077 + 1.16021i
\(118\) −155.391 −1.31687
\(119\) 27.8347i 0.233905i
\(120\) 27.7722 38.8904i 0.231435 0.324086i
\(121\) 0 0
\(122\) 245.734i 2.01422i
\(123\) −65.9571 47.1011i −0.536237 0.382935i
\(124\) −235.309 −1.89765
\(125\) 30.8049i 0.246439i
\(126\) 62.8951 21.5798i 0.499167 0.171268i
\(127\) 63.1439 0.497196 0.248598 0.968607i \(-0.420030\pi\)
0.248598 + 0.968607i \(0.420030\pi\)
\(128\) 328.376i 2.56544i
\(129\) −92.6805 + 129.784i −0.718454 + 1.00607i
\(130\) 37.9504 0.291926
\(131\) 79.8306i 0.609394i −0.952449 0.304697i \(-0.901445\pi\)
0.952449 0.304697i \(-0.0985552\pi\)
\(132\) 0 0
\(133\) 31.8002 0.239099
\(134\) 98.5945i 0.735780i
\(135\) −4.78750 + 16.0657i −0.0354629 + 0.119005i
\(136\) −370.507 −2.72432
\(137\) 83.5542i 0.609885i 0.952371 + 0.304942i \(0.0986372\pi\)
−0.952371 + 0.304942i \(0.901363\pi\)
\(138\) −71.2856 + 99.8235i −0.516562 + 0.723359i
\(139\) −80.8218 −0.581452 −0.290726 0.956806i \(-0.593897\pi\)
−0.290726 + 0.956806i \(0.593897\pi\)
\(140\) 12.7968i 0.0914058i
\(141\) −111.635 79.7202i −0.791735 0.565391i
\(142\) 437.462 3.08072
\(143\) 0 0
\(144\) −162.316 473.076i −1.12719 3.28525i
\(145\) −11.8998 −0.0820675
\(146\) 323.657i 2.21683i
\(147\) −78.9516 + 110.558i −0.537086 + 0.752098i
\(148\) 220.764 1.49165
\(149\) 273.816i 1.83769i −0.394613 0.918847i \(-0.629121\pi\)
0.394613 0.918847i \(-0.370879\pi\)
\(150\) −230.350 164.496i −1.53566 1.09664i
\(151\) −4.36383 −0.0288995 −0.0144498 0.999896i \(-0.504600\pi\)
−0.0144498 + 0.999896i \(0.504600\pi\)
\(152\) 423.292i 2.78482i
\(153\) 122.936 42.1803i 0.803504 0.275688i
\(154\) 0 0
\(155\) 13.6628i 0.0881472i
\(156\) 297.278 416.288i 1.90563 2.66851i
\(157\) 137.724 0.877222 0.438611 0.898677i \(-0.355471\pi\)
0.438611 + 0.898677i \(0.355471\pi\)
\(158\) 250.225i 1.58370i
\(159\) −147.597 105.402i −0.928286 0.662904i
\(160\) −68.5406 −0.428379
\(161\) 20.5598i 0.127701i
\(162\) 190.621 + 245.084i 1.17667 + 1.51286i
\(163\) −301.797 −1.85152 −0.925759 0.378115i \(-0.876573\pi\)
−0.925759 + 0.378115i \(0.876573\pi\)
\(164\) 288.889i 1.76152i
\(165\) 0 0
\(166\) 343.701 2.07049
\(167\) 140.149i 0.839213i −0.907706 0.419606i \(-0.862168\pi\)
0.907706 0.419606i \(-0.137832\pi\)
\(168\) −120.730 86.2150i −0.718629 0.513185i
\(169\) 85.2695 0.504553
\(170\) 34.3695i 0.202174i
\(171\) 48.1896 + 140.450i 0.281810 + 0.821347i
\(172\) 568.446 3.30492
\(173\) 187.690i 1.08492i −0.840083 0.542458i \(-0.817494\pi\)
0.840083 0.542458i \(-0.182506\pi\)
\(174\) −128.084 + 179.360i −0.736113 + 1.03080i
\(175\) −47.4432 −0.271104
\(176\) 0 0
\(177\) −98.9703 70.6763i −0.559154 0.399301i
\(178\) −561.674 −3.15547
\(179\) 118.994i 0.664771i 0.943144 + 0.332386i \(0.107854\pi\)
−0.943144 + 0.332386i \(0.892146\pi\)
\(180\) 56.5190 19.3921i 0.313994 0.107734i
\(181\) 207.591 1.14691 0.573456 0.819236i \(-0.305602\pi\)
0.573456 + 0.819236i \(0.305602\pi\)
\(182\) 117.812i 0.647317i
\(183\) −111.767 + 156.511i −0.610750 + 0.855253i
\(184\) 273.671 1.48734
\(185\) 12.8183i 0.0692881i
\(186\) −205.933 147.060i −1.10717 0.790646i
\(187\) 0 0
\(188\) 488.955i 2.60083i
\(189\) 49.8738 + 14.8621i 0.263882 + 0.0786355i
\(190\) 39.2660 0.206663
\(191\) 368.710i 1.93042i −0.261480 0.965209i \(-0.584210\pi\)
0.261480 0.965209i \(-0.415790\pi\)
\(192\) −350.193 + 490.387i −1.82392 + 2.55410i
\(193\) 204.400 1.05907 0.529533 0.848289i \(-0.322367\pi\)
0.529533 + 0.848289i \(0.322367\pi\)
\(194\) 239.016i 1.23204i
\(195\) 24.1711 + 17.2610i 0.123954 + 0.0885178i
\(196\) 484.241 2.47062
\(197\) 61.4657i 0.312009i 0.987756 + 0.156004i \(0.0498614\pi\)
−0.987756 + 0.156004i \(0.950139\pi\)
\(198\) 0 0
\(199\) −53.9505 −0.271108 −0.135554 0.990770i \(-0.543281\pi\)
−0.135554 + 0.990770i \(0.543281\pi\)
\(200\) 631.515i 3.15758i
\(201\) −44.8437 + 62.7961i −0.223103 + 0.312418i
\(202\) 338.329 1.67490
\(203\) 36.9412i 0.181976i
\(204\) −377.008 269.227i −1.84808 1.31974i
\(205\) −16.7739 −0.0818239
\(206\) 115.200i 0.559223i
\(207\) −90.8054 + 31.1560i −0.438674 + 0.150512i
\(208\) −886.141 −4.26029
\(209\) 0 0
\(210\) 7.99759 11.1993i 0.0380838 0.0533299i
\(211\) 153.970 0.729714 0.364857 0.931064i \(-0.381118\pi\)
0.364857 + 0.931064i \(0.381118\pi\)
\(212\) 646.470i 3.04939i
\(213\) 278.625 + 198.971i 1.30810 + 0.934135i
\(214\) −460.753 −2.15305
\(215\) 33.0059i 0.153516i
\(216\) 197.829 663.869i 0.915876 3.07347i
\(217\) −42.4143 −0.195458
\(218\) 583.064i 2.67461i
\(219\) 147.209 206.141i 0.672187 0.941285i
\(220\) 0 0
\(221\) 230.277i 1.04198i
\(222\) 193.204 + 137.970i 0.870289 + 0.621487i
\(223\) −155.734 −0.698357 −0.349178 0.937056i \(-0.613539\pi\)
−0.349178 + 0.937056i \(0.613539\pi\)
\(224\) 212.775i 0.949886i
\(225\) −71.8947 209.540i −0.319532 0.931288i
\(226\) 496.597 2.19733
\(227\) 76.7844i 0.338257i −0.985594 0.169129i \(-0.945905\pi\)
0.985594 0.169129i \(-0.0540953\pi\)
\(228\) 307.583 430.719i 1.34905 1.88912i
\(229\) −42.1829 −0.184205 −0.0921023 0.995750i \(-0.529359\pi\)
−0.0921023 + 0.995750i \(0.529359\pi\)
\(230\) 25.3867i 0.110377i
\(231\) 0 0
\(232\) 491.724 2.11950
\(233\) 46.7608i 0.200690i −0.994953 0.100345i \(-0.968005\pi\)
0.994953 0.100345i \(-0.0319946\pi\)
\(234\) 520.333 178.530i 2.22364 0.762949i
\(235\) −28.3904 −0.120810
\(236\) 433.486i 1.83680i
\(237\) 113.810 159.371i 0.480210 0.672453i
\(238\) −106.695 −0.448299
\(239\) 157.528i 0.659114i −0.944136 0.329557i \(-0.893101\pi\)
0.944136 0.329557i \(-0.106899\pi\)
\(240\) −84.2373 60.1553i −0.350989 0.250647i
\(241\) 267.401 1.10955 0.554773 0.832002i \(-0.312805\pi\)
0.554773 + 0.832002i \(0.312805\pi\)
\(242\) 0 0
\(243\) 9.93733 + 242.797i 0.0408944 + 0.999163i
\(244\) 685.513 2.80948
\(245\) 28.1167i 0.114762i
\(246\) −180.546 + 252.825i −0.733929 + 1.02774i
\(247\) 263.084 1.06512
\(248\) 564.576i 2.27652i
\(249\) 218.908 + 156.326i 0.879147 + 0.627813i
\(250\) −118.080 −0.472322
\(251\) 327.642i 1.30535i 0.757639 + 0.652673i \(0.226353\pi\)
−0.757639 + 0.652673i \(0.773647\pi\)
\(252\) −60.2000 175.455i −0.238889 0.696251i
\(253\) 0 0
\(254\) 242.042i 0.952919i
\(255\) 15.6323 21.8904i 0.0613030 0.0858446i
\(256\) 455.270 1.77840
\(257\) 6.13018i 0.0238528i −0.999929 0.0119264i \(-0.996204\pi\)
0.999929 0.0119264i \(-0.00379639\pi\)
\(258\) 497.483 + 355.261i 1.92823 + 1.37698i
\(259\) 39.7926 0.153639
\(260\) 105.868i 0.407186i
\(261\) −163.156 + 55.9802i −0.625120 + 0.214483i
\(262\) −306.004 −1.16796
\(263\) 171.833i 0.653356i −0.945136 0.326678i \(-0.894071\pi\)
0.945136 0.326678i \(-0.105929\pi\)
\(264\) 0 0
\(265\) −37.5363 −0.141646
\(266\) 121.896i 0.458254i
\(267\) −357.737 255.466i −1.33984 0.956802i
\(268\) 275.044 1.02628
\(269\) 96.2444i 0.357786i −0.983869 0.178893i \(-0.942748\pi\)
0.983869 0.178893i \(-0.0572516\pi\)
\(270\) 61.5827 + 18.3513i 0.228084 + 0.0679678i
\(271\) 81.6129 0.301155 0.150577 0.988598i \(-0.451887\pi\)
0.150577 + 0.988598i \(0.451887\pi\)
\(272\) 802.527i 2.95047i
\(273\) 53.5842 75.0357i 0.196279 0.274856i
\(274\) 320.278 1.16890
\(275\) 0 0
\(276\) 278.473 + 198.862i 1.00896 + 0.720514i
\(277\) 160.351 0.578886 0.289443 0.957195i \(-0.406530\pi\)
0.289443 + 0.957195i \(0.406530\pi\)
\(278\) 309.804i 1.11440i
\(279\) −64.2740 187.329i −0.230373 0.671430i
\(280\) −30.7034 −0.109655
\(281\) 342.068i 1.21732i −0.793430 0.608662i \(-0.791707\pi\)
0.793430 0.608662i \(-0.208293\pi\)
\(282\) −305.581 + 427.915i −1.08362 + 1.51743i
\(283\) 291.087 1.02858 0.514288 0.857618i \(-0.328056\pi\)
0.514288 + 0.857618i \(0.328056\pi\)
\(284\) 1220.37i 4.29706i
\(285\) 25.0090 + 17.8593i 0.0877509 + 0.0626643i
\(286\) 0 0
\(287\) 52.0722i 0.181436i
\(288\) −939.750 + 322.436i −3.26302 + 1.11957i
\(289\) 80.4511 0.278377
\(290\) 45.6139i 0.157289i
\(291\) 108.712 152.232i 0.373580 0.523136i
\(292\) −902.890 −3.09209
\(293\) 120.198i 0.410233i −0.978738 0.205117i \(-0.934243\pi\)
0.978738 0.205117i \(-0.0657574\pi\)
\(294\) 423.790 + 302.635i 1.44146 + 1.02937i
\(295\) −25.1697 −0.0853209
\(296\) 529.679i 1.78946i
\(297\) 0 0
\(298\) −1049.59 −3.52210
\(299\) 170.092i 0.568869i
\(300\) −458.888 + 642.595i −1.52963 + 2.14198i
\(301\) 102.462 0.340406
\(302\) 16.7273i 0.0553884i
\(303\) 215.486 + 153.882i 0.711176 + 0.507862i
\(304\) −916.859 −3.01598
\(305\) 39.8032i 0.130502i
\(306\) −161.684 471.235i −0.528381 1.53998i
\(307\) −140.853 −0.458806 −0.229403 0.973332i \(-0.573677\pi\)
−0.229403 + 0.973332i \(0.573677\pi\)
\(308\) 0 0
\(309\) −52.3963 + 73.3722i −0.169567 + 0.237451i
\(310\) −52.3719 −0.168942
\(311\) 409.326i 1.31616i −0.752947 0.658081i \(-0.771368\pi\)
0.752947 0.658081i \(-0.228632\pi\)
\(312\) −998.799 713.259i −3.20128 2.28609i
\(313\) 373.913 1.19461 0.597305 0.802014i \(-0.296238\pi\)
0.597305 + 0.802014i \(0.296238\pi\)
\(314\) 527.919i 1.68127i
\(315\) 10.1875 3.49542i 0.0323414 0.0110966i
\(316\) −698.040 −2.20899
\(317\) 176.622i 0.557168i 0.960412 + 0.278584i \(0.0898651\pi\)
−0.960412 + 0.278584i \(0.910135\pi\)
\(318\) −404.023 + 565.766i −1.27051 + 1.77914i
\(319\) 0 0
\(320\) 124.713i 0.389728i
\(321\) −293.460 209.564i −0.914204 0.652848i
\(322\) 78.8093 0.244749
\(323\) 238.260i 0.737647i
\(324\) 683.698 531.765i 2.11018 1.64125i
\(325\) −392.499 −1.20769
\(326\) 1156.84i 3.54859i
\(327\) −265.195 + 371.361i −0.810994 + 1.13566i
\(328\) 693.133 2.11321
\(329\) 88.1340i 0.267885i
\(330\) 0 0
\(331\) 97.5763 0.294793 0.147396 0.989078i \(-0.452911\pi\)
0.147396 + 0.989078i \(0.452911\pi\)
\(332\) 958.806i 2.88797i
\(333\) 60.3011 + 175.750i 0.181085 + 0.527777i
\(334\) −537.214 −1.60842
\(335\) 15.9700i 0.0476717i
\(336\) −186.743 + 261.503i −0.555784 + 0.778282i
\(337\) −170.086 −0.504707 −0.252353 0.967635i \(-0.581205\pi\)
−0.252353 + 0.967635i \(0.581205\pi\)
\(338\) 326.853i 0.967020i
\(339\) 316.289 + 225.867i 0.933005 + 0.666275i
\(340\) −95.8789 −0.281997
\(341\) 0 0
\(342\) 538.370 184.719i 1.57418 0.540114i
\(343\) 181.729 0.529823
\(344\) 1363.87i 3.96475i
\(345\) −11.5466 + 16.1691i −0.0334684 + 0.0468669i
\(346\) −719.450 −2.07934
\(347\) 433.131i 1.24822i 0.781338 + 0.624108i \(0.214537\pi\)
−0.781338 + 0.624108i \(0.785463\pi\)
\(348\) 500.351 + 357.309i 1.43779 + 1.02675i
\(349\) 412.379 1.18160 0.590800 0.806818i \(-0.298812\pi\)
0.590800 + 0.806818i \(0.298812\pi\)
\(350\) 181.858i 0.519594i
\(351\) 412.607 + 122.955i 1.17552 + 0.350298i
\(352\) 0 0
\(353\) 116.450i 0.329888i 0.986303 + 0.164944i \(0.0527443\pi\)
−0.986303 + 0.164944i \(0.947256\pi\)
\(354\) −270.915 + 379.370i −0.765295 + 1.07167i
\(355\) 70.8586 0.199602
\(356\) 1566.87i 4.40133i
\(357\) −67.9555 48.5282i −0.190352 0.135933i
\(358\) 456.125 1.27409
\(359\) 579.340i 1.61376i −0.590716 0.806880i \(-0.701154\pi\)
0.590716 0.806880i \(-0.298846\pi\)
\(360\) −46.5275 135.606i −0.129243 0.376684i
\(361\) −88.7961 −0.245973
\(362\) 795.733i 2.19816i
\(363\) 0 0
\(364\) −328.653 −0.902894
\(365\) 52.4249i 0.143630i
\(366\) 599.935 + 428.423i 1.63917 + 1.17056i
\(367\) −135.045 −0.367970 −0.183985 0.982929i \(-0.558900\pi\)
−0.183985 + 0.982929i \(0.558900\pi\)
\(368\) 592.778i 1.61081i
\(369\) −229.985 + 78.9095i −0.623265 + 0.213847i
\(370\) 49.1348 0.132797
\(371\) 116.526i 0.314087i
\(372\) −410.247 + 574.481i −1.10281 + 1.54430i
\(373\) 125.984 0.337760 0.168880 0.985637i \(-0.445985\pi\)
0.168880 + 0.985637i \(0.445985\pi\)
\(374\) 0 0
\(375\) −75.2069 53.7065i −0.200552 0.143217i
\(376\) 1173.15 3.12008
\(377\) 305.616i 0.810651i
\(378\) 56.9690 191.175i 0.150712 0.505753i
\(379\) −402.169 −1.06113 −0.530565 0.847644i \(-0.678020\pi\)
−0.530565 + 0.847644i \(0.678020\pi\)
\(380\) 109.538i 0.288259i
\(381\) 110.088 154.159i 0.288944 0.404618i
\(382\) −1413.33 −3.69981
\(383\) 417.205i 1.08931i −0.838661 0.544653i \(-0.816661\pi\)
0.838661 0.544653i \(-0.183339\pi\)
\(384\) 801.697 + 572.505i 2.08775 + 1.49090i
\(385\) 0 0
\(386\) 783.499i 2.02979i
\(387\) 155.270 + 452.540i 0.401214 + 1.16935i
\(388\) −666.772 −1.71848
\(389\) 423.279i 1.08812i 0.839046 + 0.544061i \(0.183114\pi\)
−0.839046 + 0.544061i \(0.816886\pi\)
\(390\) 66.1643 92.6520i 0.169652 0.237569i
\(391\) 154.042 0.393970
\(392\) 1161.84i 2.96388i
\(393\) −194.898 139.180i −0.495924 0.354147i
\(394\) 235.609 0.597992
\(395\) 40.5306i 0.102609i
\(396\) 0 0
\(397\) 230.173 0.579781 0.289891 0.957060i \(-0.406381\pi\)
0.289891 + 0.957060i \(0.406381\pi\)
\(398\) 206.802i 0.519602i
\(399\) 55.4418 77.6369i 0.138952 0.194579i
\(400\) 1367.88 3.41969
\(401\) 420.358i 1.04827i 0.851634 + 0.524137i \(0.175612\pi\)
−0.851634 + 0.524137i \(0.824388\pi\)
\(402\) 240.708 + 171.894i 0.598777 + 0.427596i
\(403\) −350.895 −0.870706
\(404\) 943.821i 2.33619i
\(405\) 30.8761 + 39.6978i 0.0762372 + 0.0980193i
\(406\) 141.602 0.348773
\(407\) 0 0
\(408\) −645.958 + 904.555i −1.58323 + 2.21705i
\(409\) −432.898 −1.05843 −0.529215 0.848488i \(-0.677514\pi\)
−0.529215 + 0.848488i \(0.677514\pi\)
\(410\) 64.2973i 0.156823i
\(411\) 203.989 + 145.672i 0.496323 + 0.354433i
\(412\) 321.367 0.780018
\(413\) 78.1357i 0.189190i
\(414\) 119.426 + 348.073i 0.288470 + 0.840756i
\(415\) 55.6716 0.134148
\(416\) 1760.29i 4.23147i
\(417\) −140.908 + 197.318i −0.337909 + 0.473185i
\(418\) 0 0
\(419\) 258.662i 0.617331i 0.951171 + 0.308665i \(0.0998823\pi\)
−0.951171 + 0.308665i \(0.900118\pi\)
\(420\) −31.2421 22.3105i −0.0743859 0.0531202i
\(421\) 559.980 1.33012 0.665060 0.746790i \(-0.268406\pi\)
0.665060 + 0.746790i \(0.268406\pi\)
\(422\) 590.192i 1.39856i
\(423\) −389.257 + 133.557i −0.920229 + 0.315738i
\(424\) 1551.08 3.65820
\(425\) 355.464i 0.836385i
\(426\) 762.689 1068.02i 1.79035 2.50708i
\(427\) 123.563 0.289376
\(428\) 1285.34i 3.00313i
\(429\) 0 0
\(430\) 126.517 0.294227
\(431\) 137.319i 0.318606i −0.987230 0.159303i \(-0.949075\pi\)
0.987230 0.159303i \(-0.0509247\pi\)
\(432\) −1437.95 428.502i −3.32860 0.991904i
\(433\) 443.788 1.02491 0.512457 0.858713i \(-0.328735\pi\)
0.512457 + 0.858713i \(0.328735\pi\)
\(434\) 162.581i 0.374611i
\(435\) −20.7466 + 29.0521i −0.0476933 + 0.0667864i
\(436\) 1626.55 3.73061
\(437\) 175.988i 0.402719i
\(438\) −790.175 564.277i −1.80405 1.28830i
\(439\) −850.056 −1.93635 −0.968173 0.250281i \(-0.919477\pi\)
−0.968173 + 0.250281i \(0.919477\pi\)
\(440\) 0 0
\(441\) 132.270 + 385.504i 0.299931 + 0.874159i
\(442\) −882.693 −1.99704
\(443\) 300.820i 0.679052i −0.940597 0.339526i \(-0.889733\pi\)
0.940597 0.339526i \(-0.110267\pi\)
\(444\) 384.889 538.972i 0.866866 1.21390i
\(445\) −90.9781 −0.204445
\(446\) 596.954i 1.33846i
\(447\) −668.494 477.383i −1.49551 1.06797i
\(448\) 387.154 0.864182
\(449\) 242.612i 0.540339i 0.962813 + 0.270170i \(0.0870798\pi\)
−0.962813 + 0.270170i \(0.912920\pi\)
\(450\) −803.202 + 275.585i −1.78489 + 0.612411i
\(451\) 0 0
\(452\) 1385.33i 3.06489i
\(453\) −7.60808 + 10.6538i −0.0167949 + 0.0235184i
\(454\) −294.328 −0.648299
\(455\) 19.0827i 0.0419401i
\(456\) −1033.42 737.985i −2.26628 1.61839i
\(457\) −643.634 −1.40839 −0.704194 0.710007i \(-0.748692\pi\)
−0.704194 + 0.710007i \(0.748692\pi\)
\(458\) 161.694i 0.353044i
\(459\) 111.353 373.675i 0.242599 0.814106i
\(460\) 70.8199 0.153956
\(461\) 526.878i 1.14290i 0.820636 + 0.571451i \(0.193619\pi\)
−0.820636 + 0.571451i \(0.806381\pi\)
\(462\) 0 0
\(463\) 487.010 1.05186 0.525928 0.850529i \(-0.323718\pi\)
0.525928 + 0.850529i \(0.323718\pi\)
\(464\) 1065.08i 2.29544i
\(465\) −33.3564 23.8203i −0.0717341 0.0512265i
\(466\) −179.242 −0.384640
\(467\) 395.720i 0.847367i −0.905810 0.423683i \(-0.860737\pi\)
0.905810 0.423683i \(-0.139263\pi\)
\(468\) −498.037 1451.55i −1.06418 3.10159i
\(469\) 49.5767 0.105707
\(470\) 108.825i 0.231543i
\(471\) 240.113 336.238i 0.509795 0.713882i
\(472\) 1040.06 2.20352
\(473\) 0 0
\(474\) −610.898 436.252i −1.28881 0.920363i
\(475\) −406.105 −0.854958
\(476\) 297.642i 0.625299i
\(477\) −514.655 + 176.582i −1.07894 + 0.370193i
\(478\) −603.833 −1.26325
\(479\) 283.860i 0.592610i −0.955093 0.296305i \(-0.904246\pi\)
0.955093 0.296305i \(-0.0957545\pi\)
\(480\) −119.496 + 167.335i −0.248951 + 0.348614i
\(481\) 329.205 0.684418
\(482\) 1024.99i 2.12654i
\(483\) 50.1946 + 35.8448i 0.103923 + 0.0742129i
\(484\) 0 0
\(485\) 38.7151i 0.0798249i
\(486\) 930.682 38.0915i 1.91498 0.0783776i
\(487\) 185.942 0.381811 0.190906 0.981608i \(-0.438858\pi\)
0.190906 + 0.981608i \(0.438858\pi\)
\(488\) 1644.75i 3.37039i
\(489\) −526.166 + 736.807i −1.07600 + 1.50676i
\(490\) 107.776 0.219952
\(491\) 603.898i 1.22993i −0.788553 0.614967i \(-0.789169\pi\)
0.788553 0.614967i \(-0.210831\pi\)
\(492\) 705.293 + 503.662i 1.43352 + 1.02370i
\(493\) 276.778 0.561417
\(494\) 1008.45i 2.04139i
\(495\) 0 0
\(496\) 1222.88 2.46549
\(497\) 219.971i 0.442597i
\(498\) 599.223 839.111i 1.20326 1.68496i
\(499\) −831.869 −1.66707 −0.833536 0.552465i \(-0.813687\pi\)
−0.833536 + 0.552465i \(0.813687\pi\)
\(500\) 329.403i 0.658806i
\(501\) −342.158 244.341i −0.682950 0.487706i
\(502\) 1255.91 2.50181
\(503\) 865.650i 1.72097i 0.509472 + 0.860487i \(0.329841\pi\)
−0.509472 + 0.860487i \(0.670159\pi\)
\(504\) −420.970 + 144.438i −0.835258 + 0.286583i
\(505\) 54.8015 0.108518
\(506\) 0 0
\(507\) 148.662 208.177i 0.293220 0.410605i
\(508\) −675.211 −1.32916
\(509\) 224.906i 0.441859i 0.975290 + 0.220930i \(0.0709091\pi\)
−0.975290 + 0.220930i \(0.929091\pi\)
\(510\) −83.9095 59.9212i −0.164529 0.117493i
\(511\) −162.746 −0.318485
\(512\) 431.622i 0.843012i
\(513\) 426.910 + 127.217i 0.832184 + 0.247986i
\(514\) −23.4980 −0.0457160
\(515\) 18.6597i 0.0362324i
\(516\) 991.053 1387.80i 1.92064 2.68954i
\(517\) 0 0
\(518\) 152.532i 0.294463i
\(519\) −458.227 327.227i −0.882903 0.630496i
\(520\) −254.010 −0.488481
\(521\) 685.513i 1.31576i 0.753121 + 0.657882i \(0.228547\pi\)
−0.753121 + 0.657882i \(0.771453\pi\)
\(522\) 214.582 + 625.406i 0.411076 + 1.19810i
\(523\) 144.428 0.276153 0.138076 0.990422i \(-0.455908\pi\)
0.138076 + 0.990422i \(0.455908\pi\)
\(524\) 853.645i 1.62909i
\(525\) −82.7144 + 115.828i −0.157551 + 0.220624i
\(526\) −658.664 −1.25221
\(527\) 317.785i 0.603008i
\(528\) 0 0
\(529\) 415.218 0.784912
\(530\) 143.883i 0.271478i
\(531\) −345.098 + 118.406i −0.649902 + 0.222986i
\(532\) −340.046 −0.639185
\(533\) 430.795i 0.808246i
\(534\) −979.246 + 1371.27i −1.83379 + 2.56792i
\(535\) −74.6313 −0.139498
\(536\) 659.914i 1.23118i
\(537\) 290.512 + 207.459i 0.540990 + 0.386330i
\(538\) −368.921 −0.685727
\(539\) 0 0
\(540\) 51.1937 171.794i 0.0948032 0.318137i
\(541\) 175.837 0.325023 0.162511 0.986707i \(-0.448041\pi\)
0.162511 + 0.986707i \(0.448041\pi\)
\(542\) 312.836i 0.577189i
\(543\) 361.923 506.812i 0.666525 0.933356i
\(544\) 1594.19 2.93050
\(545\) 94.4428i 0.173290i
\(546\) −287.625 205.398i −0.526785 0.376186i
\(547\) −257.468 −0.470691 −0.235345 0.971912i \(-0.575622\pi\)
−0.235345 + 0.971912i \(0.575622\pi\)
\(548\) 893.463i 1.63041i
\(549\) 187.246 + 545.736i 0.341068 + 0.994055i
\(550\) 0 0
\(551\) 316.210i 0.573884i
\(552\) 477.130 668.140i 0.864366 1.21040i
\(553\) −125.821 −0.227525
\(554\) 614.655i 1.10949i
\(555\) 31.2945 + 22.3480i 0.0563866 + 0.0402666i
\(556\) 864.245 1.55440
\(557\) 702.773i 1.26171i 0.775901 + 0.630855i \(0.217296\pi\)
−0.775901 + 0.630855i \(0.782704\pi\)
\(558\) −718.064 + 246.373i −1.28685 + 0.441529i
\(559\) 847.673 1.51641
\(560\) 66.5042i 0.118757i
\(561\) 0 0
\(562\) −1311.21 −2.33311
\(563\) 791.940i 1.40664i 0.710872 + 0.703322i \(0.248301\pi\)
−0.710872 + 0.703322i \(0.751699\pi\)
\(564\) 1193.73 + 852.464i 2.11655 + 1.51146i
\(565\) 80.4371 0.142367
\(566\) 1115.79i 1.97135i
\(567\) 123.236 95.8504i 0.217348 0.169048i
\(568\) −2928.03 −5.15497
\(569\) 422.423i 0.742395i −0.928554 0.371197i \(-0.878947\pi\)
0.928554 0.371197i \(-0.121053\pi\)
\(570\) 68.4579 95.8638i 0.120102 0.168182i
\(571\) −637.530 −1.11652 −0.558258 0.829668i \(-0.688530\pi\)
−0.558258 + 0.829668i \(0.688530\pi\)
\(572\) 0 0
\(573\) −900.167 642.824i −1.57097 1.12186i
\(574\) 199.602 0.347738
\(575\) 262.559i 0.456625i
\(576\) 586.687 + 1709.92i 1.01855 + 2.96861i
\(577\) 606.711 1.05149 0.525746 0.850641i \(-0.323786\pi\)
0.525746 + 0.850641i \(0.323786\pi\)
\(578\) 308.383i 0.533534i
\(579\) 356.359 499.021i 0.615473 0.861866i
\(580\) 127.247 0.219391
\(581\) 172.825i 0.297460i
\(582\) −583.533 416.711i −1.00263 0.715998i
\(583\) 0 0
\(584\) 2166.31i 3.70943i
\(585\) 84.2817 28.9177i 0.144071 0.0494320i
\(586\) −460.741 −0.786248
\(587\) 950.811i 1.61978i 0.586582 + 0.809890i \(0.300473\pi\)
−0.586582 + 0.809890i \(0.699527\pi\)
\(588\) 844.246 1182.23i 1.43579 2.01059i
\(589\) −363.059 −0.616398
\(590\) 96.4797i 0.163525i
\(591\) 150.062 + 107.162i 0.253912 + 0.181323i
\(592\) −1147.30 −1.93800
\(593\) 590.217i 0.995307i 0.867376 + 0.497654i \(0.165805\pi\)
−0.867376 + 0.497654i \(0.834195\pi\)
\(594\) 0 0
\(595\) −17.2821 −0.0290456
\(596\) 2927.98i 4.91271i
\(597\) −94.0595 + 131.715i −0.157554 + 0.220627i
\(598\) 651.991 1.09029
\(599\) 567.280i 0.947045i −0.880782 0.473522i \(-0.842982\pi\)
0.880782 0.473522i \(-0.157018\pi\)
\(600\) 1541.78 + 1101.01i 2.56963 + 1.83502i
\(601\) −13.6571 −0.0227239 −0.0113620 0.999935i \(-0.503617\pi\)
−0.0113620 + 0.999935i \(0.503617\pi\)
\(602\) 392.756i 0.652418i
\(603\) 75.1278 + 218.963i 0.124590 + 0.363122i
\(604\) 46.6633 0.0772572
\(605\) 0 0
\(606\) 589.857 825.996i 0.973362 1.36303i
\(607\) 683.261 1.12564 0.562818 0.826581i \(-0.309717\pi\)
0.562818 + 0.826581i \(0.309717\pi\)
\(608\) 1821.31i 2.99558i
\(609\) 90.1881 + 64.4048i 0.148092 + 0.105755i
\(610\) 152.573 0.250119
\(611\) 729.135i 1.19335i
\(612\) −1314.58 + 451.043i −2.14801 + 0.736999i
\(613\) 284.867 0.464710 0.232355 0.972631i \(-0.425357\pi\)
0.232355 + 0.972631i \(0.425357\pi\)
\(614\) 539.916i 0.879341i
\(615\) −29.2443 + 40.9517i −0.0475517 + 0.0665882i
\(616\) 0 0
\(617\) 1136.28i 1.84162i 0.390010 + 0.920811i \(0.372472\pi\)
−0.390010 + 0.920811i \(0.627528\pi\)
\(618\) 281.248 + 200.844i 0.455095 + 0.324991i
\(619\) −318.917 −0.515213 −0.257606 0.966250i \(-0.582934\pi\)
−0.257606 + 0.966250i \(0.582934\pi\)
\(620\) 146.099i 0.235644i
\(621\) −82.2497 + 276.011i −0.132447 + 0.444462i
\(622\) −1569.02 −2.52254
\(623\) 282.429i 0.453337i
\(624\) −1544.93 + 2163.42i −2.47586 + 3.46702i
\(625\) 596.236 0.953978
\(626\) 1433.27i 2.28957i
\(627\) 0 0
\(628\) −1472.71 −2.34508
\(629\) 298.142i 0.473994i
\(630\) −13.3986 39.0506i −0.0212675 0.0619850i
\(631\) −204.174 −0.323572 −0.161786 0.986826i \(-0.551725\pi\)
−0.161786 + 0.986826i \(0.551725\pi\)
\(632\) 1674.81i 2.65001i
\(633\) 268.437 375.901i 0.424071 0.593840i
\(634\) 677.024 1.06786
\(635\) 39.2051i 0.0617403i
\(636\) 1578.29 + 1127.08i 2.48159 + 1.77214i
\(637\) 722.106 1.13360
\(638\) 0 0
\(639\) 971.533 333.340i 1.52040 0.521659i
\(640\) 203.884 0.318568
\(641\) 167.647i 0.261540i −0.991413 0.130770i \(-0.958255\pi\)
0.991413 0.130770i \(-0.0417450\pi\)
\(642\) −803.296 + 1124.88i −1.25124 + 1.75215i
\(643\) 194.763 0.302897 0.151449 0.988465i \(-0.451606\pi\)
0.151449 + 0.988465i \(0.451606\pi\)
\(644\) 219.850i 0.341383i
\(645\) 80.5806 + 57.5439i 0.124931 + 0.0892154i
\(646\) −913.292 −1.41376
\(647\) 133.888i 0.206937i −0.994633 0.103469i \(-0.967006\pi\)
0.994633 0.103469i \(-0.0329941\pi\)
\(648\) −1275.86 1640.40i −1.96893 2.53148i
\(649\) 0 0
\(650\) 1504.52i 2.31464i
\(651\) −73.9468 + 103.550i −0.113590 + 0.159063i
\(652\) 3227.18 4.94967
\(653\) 360.838i 0.552585i 0.961074 + 0.276293i \(0.0891059\pi\)
−0.961074 + 0.276293i \(0.910894\pi\)
\(654\) 1423.49 + 1016.54i 2.17659 + 1.55434i
\(655\) −49.5656 −0.0756726
\(656\) 1501.34i 2.28863i
\(657\) −246.623 718.791i −0.375377 1.09405i
\(658\) 337.833 0.513424
\(659\) 281.019i 0.426433i −0.977005 0.213216i \(-0.931606\pi\)
0.977005 0.213216i \(-0.0683939\pi\)
\(660\) 0 0
\(661\) −301.249 −0.455748 −0.227874 0.973691i \(-0.573177\pi\)
−0.227874 + 0.973691i \(0.573177\pi\)
\(662\) 374.027i 0.564995i
\(663\) −562.198 401.475i −0.847961 0.605543i
\(664\) −2300.46 −3.46456
\(665\) 19.7443i 0.0296906i
\(666\) 673.680 231.145i 1.01153 0.347064i
\(667\) −204.439 −0.306506
\(668\) 1498.64i 2.24347i
\(669\) −271.512 + 380.207i −0.405848 + 0.568322i
\(670\) 61.2158 0.0913669
\(671\) 0 0
\(672\) 519.467 + 370.960i 0.773016 + 0.552024i
\(673\) 469.517 0.697648 0.348824 0.937188i \(-0.386581\pi\)
0.348824 + 0.937188i \(0.386581\pi\)
\(674\) 651.970i 0.967314i
\(675\) −636.914 189.797i −0.943576 0.281180i
\(676\) −911.805 −1.34882
\(677\) 437.913i 0.646843i −0.946255 0.323421i \(-0.895167\pi\)
0.946255 0.323421i \(-0.104833\pi\)
\(678\) 865.787 1212.39i 1.27697 1.78819i
\(679\) −120.185 −0.177004
\(680\) 230.042i 0.338298i
\(681\) −187.461 133.869i −0.275273 0.196577i
\(682\) 0 0
\(683\) 848.684i 1.24258i −0.783580 0.621291i \(-0.786608\pi\)
0.783580 0.621291i \(-0.213392\pi\)
\(684\) −515.301 1501.86i −0.753365 2.19571i
\(685\) 51.8775 0.0757336
\(686\) 696.600i 1.01545i
\(687\) −73.5433 + 102.985i −0.107050 + 0.149906i
\(688\) −2954.18 −4.29387
\(689\) 964.024i 1.39916i
\(690\) 61.9789 + 44.2601i 0.0898245 + 0.0641451i
\(691\) −1104.18 −1.59794 −0.798970 0.601370i \(-0.794622\pi\)
−0.798970 + 0.601370i \(0.794622\pi\)
\(692\) 2007.01i 2.90031i
\(693\) 0 0
\(694\) 1660.27 2.39231
\(695\) 50.1810i 0.0722029i
\(696\) 857.292 1200.49i 1.23174 1.72485i
\(697\) 390.146 0.559751
\(698\) 1580.72i 2.26464i
\(699\) −114.162 81.5246i −0.163321 0.116630i
\(700\) 507.320 0.724743
\(701\) 950.887i 1.35647i 0.734844 + 0.678236i \(0.237255\pi\)
−0.734844 + 0.678236i \(0.762745\pi\)
\(702\) 471.306 1581.59i 0.671376 2.25298i
\(703\) 340.617 0.484520
\(704\) 0 0
\(705\) −49.4970 + 69.3122i −0.0702085 + 0.0983152i
\(706\) 446.374 0.632258
\(707\) 170.123i 0.240627i
\(708\) 1058.31 + 755.757i 1.49479 + 1.06745i
\(709\) −995.240 −1.40372 −0.701862 0.712313i \(-0.747648\pi\)
−0.701862 + 0.712313i \(0.747648\pi\)
\(710\) 271.613i 0.382554i
\(711\) −190.668 555.709i −0.268169 0.781588i
\(712\) 3759.40 5.28006
\(713\) 234.729i 0.329213i
\(714\) −186.017 + 260.485i −0.260528 + 0.364825i
\(715\) 0 0
\(716\) 1272.43i 1.77714i
\(717\) −384.589 274.641i −0.536386 0.383042i
\(718\) −2220.71 −3.09291
\(719\) 1099.64i 1.52940i −0.644386 0.764701i \(-0.722887\pi\)
0.644386 0.764701i \(-0.277113\pi\)
\(720\) −293.726 + 100.780i −0.407952 + 0.139972i
\(721\) 57.9264 0.0803417
\(722\) 340.371i 0.471428i
\(723\) 466.197 652.831i 0.644809 0.902947i
\(724\) −2219.82 −3.06604
\(725\) 471.758i 0.650701i
\(726\) 0 0
\(727\) −1427.40 −1.96342 −0.981708 0.190395i \(-0.939023\pi\)
−0.981708 + 0.190395i \(0.939023\pi\)
\(728\) 788.538i 1.08316i
\(729\) 610.088 + 399.041i 0.836883 + 0.547381i
\(730\) −200.954 −0.275279
\(731\) 767.689i 1.05019i
\(732\) 1195.15 1673.61i 1.63272 2.28635i
\(733\) −324.830 −0.443151 −0.221576 0.975143i \(-0.571120\pi\)
−0.221576 + 0.975143i \(0.571120\pi\)
\(734\) 517.651i 0.705247i
\(735\) 68.6440 + 49.0198i 0.0933933 + 0.0666937i
\(736\) −1177.53 −1.59991
\(737\) 0 0
\(738\) 302.474 + 881.571i 0.409856 + 1.19454i
\(739\) −344.719 −0.466467 −0.233233 0.972421i \(-0.574931\pi\)
−0.233233 + 0.972421i \(0.574931\pi\)
\(740\) 137.069i 0.185228i
\(741\) 458.671 642.292i 0.618990 0.866791i
\(742\) 446.665 0.601974
\(743\) 236.630i 0.318479i −0.987240 0.159239i \(-0.949096\pi\)
0.987240 0.159239i \(-0.0509041\pi\)
\(744\) 1378.35 + 984.305i 1.85263 + 1.32299i
\(745\) −170.008 −0.228199
\(746\) 482.920i 0.647346i
\(747\) 763.305 261.896i 1.02183 0.350597i
\(748\) 0 0
\(749\) 231.682i 0.309322i
\(750\) −205.866 + 288.281i −0.274488 + 0.384375i
\(751\) −251.272 −0.334583 −0.167292 0.985907i \(-0.553502\pi\)
−0.167292 + 0.985907i \(0.553502\pi\)
\(752\) 2541.07i 3.37908i
\(753\) 799.904 + 571.225i 1.06229 + 0.758598i
\(754\) 1171.48 1.55368
\(755\) 2.70943i 0.00358865i
\(756\) −533.311 158.924i −0.705438 0.210216i
\(757\) −33.2746 −0.0439559 −0.0219779 0.999758i \(-0.506996\pi\)
−0.0219779 + 0.999758i \(0.506996\pi\)
\(758\) 1541.58i 2.03375i
\(759\) 0 0
\(760\) −262.815 −0.345810
\(761\) 1143.98i 1.50326i −0.659586 0.751629i \(-0.729268\pi\)
0.659586 0.751629i \(-0.270732\pi\)
\(762\) −590.919 421.985i −0.775485 0.553786i
\(763\) 293.184 0.384252
\(764\) 3942.69i 5.16059i
\(765\) −26.1891 76.3291i −0.0342341 0.0997766i
\(766\) −1599.22 −2.08775
\(767\) 646.419i 0.842788i
\(768\) 793.736 1111.49i 1.03351 1.44726i
\(769\) −344.520 −0.448010 −0.224005 0.974588i \(-0.571913\pi\)
−0.224005 + 0.974588i \(0.571913\pi\)
\(770\) 0 0
\(771\) −14.9662 10.6876i −0.0194114 0.0138620i
\(772\) −2185.69 −2.83120
\(773\) 1184.63i 1.53250i 0.642541 + 0.766252i \(0.277880\pi\)
−0.642541 + 0.766252i \(0.722120\pi\)
\(774\) 1734.66 595.176i 2.24117 0.768962i
\(775\) 541.652 0.698906
\(776\) 1599.79i 2.06158i
\(777\) 69.3761 97.1495i 0.0892871 0.125032i
\(778\) 1622.50 2.08548
\(779\) 445.729i 0.572181i
\(780\) −258.467 184.575i −0.331367 0.236635i
\(781\) 0 0
\(782\) 590.471i 0.755078i
\(783\) −147.784 + 495.927i −0.188740 + 0.633368i
\(784\) −2516.57 −3.20991
\(785\) 85.5106i 0.108931i
\(786\) −533.501 + 747.078i −0.678754 + 0.950481i
\(787\) 1199.85 1.52458 0.762292 0.647233i \(-0.224074\pi\)
0.762292 + 0.647233i \(0.224074\pi\)
\(788\) 657.266i 0.834094i
\(789\) −419.511 299.580i −0.531700 0.379696i
\(790\) −155.361 −0.196659
\(791\) 249.706i 0.315684i
\(792\) 0 0
\(793\) 1022.24 1.28908
\(794\) 882.294i 1.11120i
\(795\) −65.4423 + 91.6409i −0.0823174 + 0.115272i
\(796\) 576.904 0.724754
\(797\) 1221.08i 1.53210i −0.642783 0.766048i \(-0.722220\pi\)
0.642783 0.766048i \(-0.277780\pi\)
\(798\) −297.596 212.518i −0.372927 0.266313i
\(799\) 660.336 0.826453
\(800\) 2717.24i 3.39655i
\(801\) −1247.39 + 427.988i −1.55729 + 0.534318i
\(802\) 1611.30 2.00911
\(803\) 0 0
\(804\) 479.524 671.492i 0.596422 0.835189i
\(805\) 12.7653 0.0158575
\(806\) 1345.04i 1.66878i
\(807\) −234.971 167.796i −0.291166 0.207926i
\(808\) −2264.51 −2.80261
\(809\) 985.567i 1.21825i 0.793073 + 0.609127i \(0.208480\pi\)
−0.793073 + 0.609127i \(0.791520\pi\)
\(810\) 152.169 118.353i 0.187862 0.146115i
\(811\) 312.547 0.385385 0.192692 0.981259i \(-0.438278\pi\)
0.192692 + 0.981259i \(0.438278\pi\)
\(812\) 395.020i 0.486478i
\(813\) 142.287 199.249i 0.175015 0.245079i
\(814\) 0 0
\(815\) 187.381i 0.229916i
\(816\) 1959.29 + 1399.16i 2.40108 + 1.71465i
\(817\) 877.058 1.07351
\(818\) 1659.37i 2.02857i
\(819\) −89.7709 261.641i −0.109610 0.319464i
\(820\) 179.367 0.218740
\(821\) 376.986i 0.459178i −0.973288 0.229589i \(-0.926262\pi\)
0.973288 0.229589i \(-0.0737383\pi\)
\(822\) 558.385 781.925i 0.679301 0.951246i
\(823\) −1435.09 −1.74373 −0.871864 0.489748i \(-0.837089\pi\)
−0.871864 + 0.489748i \(0.837089\pi\)
\(824\) 771.057i 0.935749i
\(825\) 0 0
\(826\) 299.508 0.362600
\(827\) 711.817i 0.860722i 0.902657 + 0.430361i \(0.141614\pi\)
−0.902657 + 0.430361i \(0.858386\pi\)
\(828\) 971.002 333.158i 1.17271 0.402365i
\(829\) 1313.36 1.58428 0.792138 0.610342i \(-0.208968\pi\)
0.792138 + 0.610342i \(0.208968\pi\)
\(830\) 213.399i 0.257107i
\(831\) 279.563 391.481i 0.336418 0.471097i
\(832\) 3202.93 3.84968
\(833\) 653.970i 0.785078i
\(834\) 756.354 + 540.125i 0.906899 + 0.647632i
\(835\) −87.0161 −0.104211
\(836\) 0 0
\(837\) −569.402 169.679i −0.680289 0.202722i
\(838\) 991.495 1.18317
\(839\) 1195.33i 1.42470i −0.701823 0.712351i \(-0.747630\pi\)
0.701823 0.712351i \(-0.252370\pi\)
\(840\) −53.5296 + 74.9592i −0.0637257 + 0.0892371i
\(841\) 473.670 0.563222
\(842\) 2146.50i 2.54929i
\(843\) −835.124 596.376i −0.990657 0.707444i
\(844\) −1646.43 −1.95075
\(845\) 52.9425i 0.0626539i
\(846\) 511.947 + 1492.09i 0.605139 + 1.76370i
\(847\) 0 0
\(848\) 3359.67i 3.96187i
\(849\) 507.493 710.659i 0.597754 0.837054i
\(850\) 1362.55 1.60300
\(851\) 220.220i 0.258777i
\(852\) −2979.40 2127.64i −3.49694 2.49723i
\(853\) 280.038 0.328298 0.164149 0.986436i \(-0.447512\pi\)
0.164149 + 0.986436i \(0.447512\pi\)
\(854\) 473.640i 0.554614i
\(855\) 87.2034 29.9202i 0.101992 0.0349943i
\(856\) 3083.92 3.60271
\(857\) 1450.04i 1.69200i −0.533184 0.845999i \(-0.679005\pi\)
0.533184 0.845999i \(-0.320995\pi\)
\(858\) 0 0
\(859\) 451.309 0.525389 0.262694 0.964879i \(-0.415389\pi\)
0.262694 + 0.964879i \(0.415389\pi\)
\(860\) 352.940i 0.410395i
\(861\) 127.129 + 90.7848i 0.147653 + 0.105441i
\(862\) −526.368 −0.610636
\(863\) 443.496i 0.513900i −0.966425 0.256950i \(-0.917282\pi\)
0.966425 0.256950i \(-0.0827176\pi\)
\(864\) −851.206 + 2856.45i −0.985192 + 3.30608i
\(865\) −116.534 −0.134722
\(866\) 1701.12i 1.96434i
\(867\) 140.262 196.413i 0.161778 0.226543i
\(868\) 453.545 0.522517
\(869\) 0 0
\(870\) 111.362 + 79.5252i 0.128002 + 0.0914083i
\(871\) 410.149 0.470894
\(872\) 3902.57i 4.47543i
\(873\) −182.127 530.817i −0.208622 0.608037i
\(874\) 674.593 0.771846
\(875\) 59.3748i 0.0678569i
\(876\) −1574.14 + 2204.31i −1.79696 + 2.51634i
\(877\) −1013.08 −1.15516 −0.577582 0.816332i \(-0.696004\pi\)
−0.577582 + 0.816332i \(0.696004\pi\)
\(878\) 3258.41i 3.71118i
\(879\) −293.452 209.559i −0.333847 0.238406i
\(880\) 0 0
\(881\) 213.844i 0.242729i −0.992608 0.121364i \(-0.961273\pi\)
0.992608 0.121364i \(-0.0387269\pi\)
\(882\) 1477.70 507.012i 1.67540 0.574843i
\(883\) 405.012 0.458678 0.229339 0.973347i \(-0.426344\pi\)
0.229339 + 0.973347i \(0.426344\pi\)
\(884\) 2462.40i 2.78552i
\(885\) −43.8818 + 61.4491i −0.0495840 + 0.0694340i
\(886\) −1153.09 −1.30146
\(887\) 703.939i 0.793617i 0.917901 + 0.396809i \(0.129882\pi\)
−0.917901 + 0.396809i \(0.870118\pi\)
\(888\) −1293.16 923.464i −1.45626 1.03994i
\(889\) −121.707 −0.136903
\(890\) 348.735i 0.391837i
\(891\) 0 0
\(892\) 1665.29 1.86692
\(893\) 754.411i 0.844805i
\(894\) −1829.89 + 2562.45i −2.04686 + 2.86628i
\(895\) 73.8816 0.0825492
\(896\) 632.928i 0.706393i
\(897\) 415.262 + 296.545i 0.462945 + 0.330597i
\(898\) 929.975 1.03561
\(899\) 421.753i 0.469135i
\(900\) 768.785 + 2240.65i 0.854206 + 2.48961i
\(901\) 873.061 0.968991
\(902\) 0 0
\(903\) 178.637 250.151i 0.197826 0.277022i
\(904\) −3323.83 −3.67680
\(905\) 128.890i 0.142420i
\(906\) 40.8380 + 29.1631i 0.0450750 + 0.0321888i
\(907\) 884.283 0.974953 0.487477 0.873136i \(-0.337917\pi\)
0.487477 + 0.873136i \(0.337917\pi\)
\(908\) 821.072i 0.904264i
\(909\) 751.375 257.803i 0.826595 0.283611i
\(910\) −73.1474 −0.0803818
\(911\) 849.732i 0.932747i −0.884588 0.466373i \(-0.845560\pi\)
0.884588 0.466373i \(-0.154440\pi\)
\(912\) −1598.49 + 2238.42i −1.75273 + 2.45440i
\(913\) 0 0
\(914\) 2467.16i 2.69930i
\(915\) 97.1754 + 69.3946i 0.106203 + 0.0758410i
\(916\) 451.070 0.492435
\(917\) 153.869i 0.167796i
\(918\) −1432.36 426.835i −1.56030 0.464962i
\(919\) 1026.78 1.11728 0.558640 0.829410i \(-0.311323\pi\)
0.558640 + 0.829410i \(0.311323\pi\)
\(920\) 169.918i 0.184694i
\(921\) −245.570 + 343.879i −0.266634 + 0.373376i
\(922\) 2019.61 2.19047
\(923\) 1819.82i 1.97164i
\(924\) 0 0
\(925\) −508.172 −0.549375
\(926\) 1866.79i 2.01597i
\(927\) 87.7808 + 255.840i 0.0946934 + 0.275987i
\(928\) −2115.76 −2.27991
\(929\) 322.042i 0.346654i 0.984864 + 0.173327i \(0.0554518\pi\)
−0.984864 + 0.173327i \(0.944548\pi\)
\(930\) −91.3074 + 127.861i −0.0981800 + 0.137485i
\(931\) 747.138 0.802512
\(932\) 500.023i 0.536505i
\(933\) −999.327 713.636i −1.07109 0.764883i
\(934\) −1516.86 −1.62405
\(935\) 0 0
\(936\) −3482.70 + 1194.94i −3.72083 + 1.27665i
\(937\) −952.845 −1.01691 −0.508455 0.861088i \(-0.669783\pi\)
−0.508455 + 0.861088i \(0.669783\pi\)
\(938\) 190.036i 0.202597i
\(939\) 651.895 912.869i 0.694244 0.972172i
\(940\) 303.585 0.322962
\(941\) 1291.41i 1.37238i −0.727422 0.686190i \(-0.759282\pi\)
0.727422 0.686190i \(-0.240718\pi\)
\(942\) −1288.86 920.396i −1.36822 0.977066i
\(943\) −288.177 −0.305596
\(944\) 2252.80i 2.38644i
\(945\) 9.22765 30.9659i 0.00976471 0.0327681i
\(946\) 0 0
\(947\) 1080.15i 1.14060i 0.821435 + 0.570302i \(0.193174\pi\)
−0.821435 + 0.570302i \(0.806826\pi\)
\(948\) −1216.99 + 1704.19i −1.28375 + 1.79767i
\(949\) −1346.40 −1.41876
\(950\) 1556.67i 1.63860i
\(951\) 431.205 + 307.931i 0.453423 + 0.323797i
\(952\) 714.134 0.750141
\(953\) 647.480i 0.679412i 0.940532 + 0.339706i \(0.110328\pi\)
−0.940532 + 0.339706i \(0.889672\pi\)
\(954\) 676.869 + 1972.76i 0.709507 + 2.06788i
\(955\) −228.926 −0.239713
\(956\) 1684.48i 1.76201i
\(957\) 0 0
\(958\) −1088.09 −1.13579
\(959\) 161.046i 0.167932i
\(960\) 304.474 + 217.430i 0.317160 + 0.226489i
\(961\) −476.762 −0.496110
\(962\) 1261.90i 1.31175i
\(963\) −1023.26 + 351.088i −1.06257 + 0.364577i
\(964\) −2859.37 −2.96615
\(965\) 126.909i 0.131512i
\(966\) 137.399 192.405i 0.142235 0.199177i
\(967\) −4.41092 −0.00456145 −0.00228072 0.999997i \(-0.500726\pi\)
−0.00228072 + 0.999997i \(0.500726\pi\)
\(968\) 0 0
\(969\) −581.687 415.392i −0.600296 0.428681i
\(970\) −148.401 −0.152991
\(971\) 1112.88i 1.14612i 0.819515 + 0.573058i \(0.194243\pi\)
−0.819515 + 0.573058i \(0.805757\pi\)
\(972\) −106.262 2596.28i −0.109323 2.67107i
\(973\) 155.780 0.160103
\(974\) 712.748i 0.731775i
\(975\) −684.298 + 958.245i −0.701844 + 0.982815i
\(976\) −3562.57 −3.65017
\(977\) 205.544i 0.210383i 0.994452 + 0.105191i \(0.0335456\pi\)
−0.994452 + 0.105191i \(0.966454\pi\)
\(978\) 2824.31 + 2016.88i 2.88784 + 2.06225i
\(979\) 0 0
\(980\) 300.658i 0.306794i
\(981\) 444.288 + 1294.89i 0.452892 + 1.31997i
\(982\) −2314.84 −2.35728
\(983\) 578.012i 0.588009i −0.955804 0.294004i \(-0.905012\pi\)
0.955804 0.294004i \(-0.0949880\pi\)
\(984\) 1208.44 1692.21i 1.22809 1.71973i
\(985\) 38.1631 0.0387443
\(986\) 1060.94i 1.07600i
\(987\) 215.170 + 153.656i 0.218004 + 0.155680i
\(988\) −2813.21 −2.84738
\(989\) 567.045i 0.573352i
\(990\) 0 0
\(991\) −576.755 −0.581993 −0.290997 0.956724i \(-0.593987\pi\)
−0.290997 + 0.956724i \(0.593987\pi\)
\(992\) 2429.22i 2.44881i
\(993\) 170.119 238.222i 0.171318 0.239902i
\(994\) −843.185 −0.848275
\(995\) 33.4970i 0.0336654i
\(996\) −2340.83 1671.62i −2.35023 1.67834i
\(997\) −576.276 −0.578010 −0.289005 0.957328i \(-0.593324\pi\)
−0.289005 + 0.957328i \(0.593324\pi\)
\(998\) 3188.70i 3.19509i
\(999\) 534.207 + 159.191i 0.534741 + 0.159350i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.b.n.122.1 12
3.2 odd 2 inner 363.3.b.n.122.12 yes 12
11.2 odd 10 363.3.h.r.323.11 48
11.3 even 5 363.3.h.r.251.2 48
11.4 even 5 363.3.h.r.269.11 48
11.5 even 5 363.3.h.r.245.12 48
11.6 odd 10 363.3.h.r.245.2 48
11.7 odd 10 363.3.h.r.269.1 48
11.8 odd 10 363.3.h.r.251.12 48
11.9 even 5 363.3.h.r.323.1 48
11.10 odd 2 inner 363.3.b.n.122.11 yes 12
33.2 even 10 363.3.h.r.323.2 48
33.5 odd 10 363.3.h.r.245.1 48
33.8 even 10 363.3.h.r.251.1 48
33.14 odd 10 363.3.h.r.251.11 48
33.17 even 10 363.3.h.r.245.11 48
33.20 odd 10 363.3.h.r.323.12 48
33.26 odd 10 363.3.h.r.269.2 48
33.29 even 10 363.3.h.r.269.12 48
33.32 even 2 inner 363.3.b.n.122.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.3.b.n.122.1 12 1.1 even 1 trivial
363.3.b.n.122.2 yes 12 33.32 even 2 inner
363.3.b.n.122.11 yes 12 11.10 odd 2 inner
363.3.b.n.122.12 yes 12 3.2 odd 2 inner
363.3.h.r.245.1 48 33.5 odd 10
363.3.h.r.245.2 48 11.6 odd 10
363.3.h.r.245.11 48 33.17 even 10
363.3.h.r.245.12 48 11.5 even 5
363.3.h.r.251.1 48 33.8 even 10
363.3.h.r.251.2 48 11.3 even 5
363.3.h.r.251.11 48 33.14 odd 10
363.3.h.r.251.12 48 11.8 odd 10
363.3.h.r.269.1 48 11.7 odd 10
363.3.h.r.269.2 48 33.26 odd 10
363.3.h.r.269.11 48 11.4 even 5
363.3.h.r.269.12 48 33.29 even 10
363.3.h.r.323.1 48 11.9 even 5
363.3.h.r.323.2 48 33.2 even 10
363.3.h.r.323.11 48 11.2 odd 10
363.3.h.r.323.12 48 33.20 odd 10