Properties

Label 363.2.p
Level $363$
Weight $2$
Character orbit 363.p
Rep. character $\chi_{363}(2,\cdot)$
Character field $\Q(\zeta_{110})$
Dimension $1680$
Newform subspaces $1$
Sturm bound $88$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.p (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 363 \)
Character field: \(\Q(\zeta_{110})\)
Newform subspaces: \( 1 \)
Sturm bound: \(88\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(363, [\chi])\).

Total New Old
Modular forms 1840 1840 0
Cusp forms 1680 1680 0
Eisenstein series 160 160 0

Trace form

\( 1680 q - 28 q^{3} - 42 q^{4} - 66 q^{6} - 78 q^{7} - 42 q^{9} - 66 q^{10} - 40 q^{12} - 56 q^{13} - 96 q^{15} - 50 q^{16} - 66 q^{18} - 108 q^{19} - 11 q^{21} - 152 q^{22} + 21 q^{24} - 134 q^{25} - 25 q^{27}+ \cdots - 159 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(363, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
363.2.p.a 363.p 363.p $1680$ $2.899$ None 363.2.p.a \(0\) \(-28\) \(0\) \(-78\) $\mathrm{SU}(2)[C_{110}]$