Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [363,2,Mod(32,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.j (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.89856959337\) |
Analytic rank: | \(0\) |
Dimension: | \(420\) |
Relative dimension: | \(42\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −0.387754 | + | 2.69689i | −0.434595 | − | 1.67664i | −5.20386 | − | 1.52799i | 0.517216 | − | 0.236205i | 4.69023 | − | 0.521929i | 2.68392 | + | 4.17627i | 3.87494 | − | 8.48493i | −2.62225 | + | 1.45732i | 0.436465 | + | 1.48646i |
32.2 | −0.365833 | + | 2.54443i | −0.176717 | + | 1.72301i | −4.42128 | − | 1.29820i | −2.49959 | + | 1.14152i | −4.31943 | − | 1.07998i | 0.379383 | + | 0.590331i | 2.78491 | − | 6.09811i | −2.93754 | − | 0.608971i | −1.99009 | − | 6.77762i |
32.3 | −0.361342 | + | 2.51319i | 1.32607 | − | 1.11424i | −4.26657 | − | 1.25278i | −3.13442 | + | 1.43144i | 2.32114 | + | 3.73529i | −1.50991 | − | 2.34946i | 2.58065 | − | 5.65084i | 0.516928 | − | 2.95513i | −2.46489 | − | 8.39464i |
32.4 | −0.358461 | + | 2.49315i | −1.73073 | + | 0.0675632i | −4.16833 | − | 1.22393i | 1.25213 | − | 0.571829i | 0.451955 | − | 4.33920i | −1.20271 | − | 1.87145i | 2.45295 | − | 5.37121i | 2.99087 | − | 0.233868i | 0.976817 | + | 3.32673i |
32.5 | −0.316621 | + | 2.20215i | 1.63910 | + | 0.559788i | −2.83022 | − | 0.831029i | −0.318850 | + | 0.145614i | −1.75171 | + | 3.43229i | −0.363417 | − | 0.565488i | 0.877733 | − | 1.92197i | 2.37327 | + | 1.83509i | −0.219709 | − | 0.748259i |
32.6 | −0.311426 | + | 2.16602i | 0.202912 | − | 1.72012i | −2.67566 | − | 0.785646i | 1.74484 | − | 0.796842i | 3.66263 | + | 0.975202i | −2.13578 | − | 3.32334i | 0.716897 | − | 1.56979i | −2.91765 | − | 0.698066i | 1.18258 | + | 4.02751i |
32.7 | −0.308207 | + | 2.14363i | −0.853328 | + | 1.50726i | −2.58117 | − | 0.757901i | 3.98329 | − | 1.81911i | −2.96801 | − | 2.29377i | 1.74278 | + | 2.71182i | 0.620889 | − | 1.35956i | −1.54366 | − | 2.57237i | 2.67181 | + | 9.09936i |
32.8 | −0.266170 | + | 1.85125i | 1.32649 | + | 1.11374i | −1.43731 | − | 0.422032i | −0.671943 | + | 0.306866i | −2.41490 | + | 2.15922i | 2.09860 | + | 3.26549i | −0.390038 | + | 0.854064i | 0.519146 | + | 2.95474i | −0.389236 | − | 1.32562i |
32.9 | −0.265003 | + | 1.84314i | −1.46622 | − | 0.922059i | −1.40795 | − | 0.413412i | 0.0491386 | − | 0.0224408i | 2.08804 | − | 2.45810i | 0.549764 | + | 0.855450i | −0.411996 | + | 0.902145i | 1.29961 | + | 2.70389i | 0.0283397 | + | 0.0965161i |
32.10 | −0.257411 | + | 1.79033i | −1.68358 | + | 0.406907i | −1.22005 | − | 0.358238i | −3.36319 | + | 1.53592i | −0.295129 | − | 3.11890i | 1.56775 | + | 2.43946i | −0.547339 | + | 1.19851i | 2.66885 | − | 1.37012i | −1.88408 | − | 6.41659i |
32.11 | −0.254274 | + | 1.76851i | −0.803137 | + | 1.53459i | −1.14400 | − | 0.335909i | −0.290233 | + | 0.132545i | −2.50973 | − | 1.81057i | −2.20243 | − | 3.42705i | −0.599495 | + | 1.31271i | −1.70994 | − | 2.46497i | −0.160609 | − | 0.546985i |
32.12 | −0.213105 | + | 1.48218i | 1.43375 | − | 0.971775i | −0.232453 | − | 0.0682543i | 2.11238 | − | 0.964690i | 1.13480 | + | 2.33217i | 1.03013 | + | 1.60291i | −1.09340 | + | 2.39421i | 1.11130 | − | 2.78658i | 0.979685 | + | 3.33650i |
32.13 | −0.209582 | + | 1.45768i | 0.609230 | − | 1.62137i | −0.161914 | − | 0.0475423i | −2.60528 | + | 1.18979i | 2.23575 | + | 1.22787i | 1.45075 | + | 2.25741i | −1.12030 | + | 2.45312i | −2.25768 | − | 1.97557i | −1.18831 | − | 4.04702i |
32.14 | −0.193551 | + | 1.34618i | 1.09302 | + | 1.34362i | 0.144252 | + | 0.0423561i | 3.40713 | − | 1.55598i | −2.02031 | + | 1.21134i | −2.14471 | − | 3.33724i | −1.21489 | + | 2.66023i | −0.610623 | + | 2.93720i | 1.43518 | + | 4.88776i |
32.15 | −0.154971 | + | 1.07784i | −0.801675 | − | 1.53536i | 0.781254 | + | 0.229397i | −1.70392 | + | 0.778155i | 1.77911 | − | 0.626146i | −1.90542 | − | 2.96490i | −1.27304 | + | 2.78757i | −1.71463 | + | 2.46171i | −0.574672 | − | 1.95715i |
32.16 | −0.124578 | + | 0.866456i | −1.03984 | − | 1.38518i | 1.18376 | + | 0.347583i | 2.78717 | − | 1.27286i | 1.32974 | − | 0.728412i | 0.384572 | + | 0.598405i | −1.17592 | + | 2.57490i | −0.837471 | + | 2.88074i | 0.755657 | + | 2.57353i |
32.17 | −0.0828482 | + | 0.576222i | 0.253347 | + | 1.71342i | 1.59382 | + | 0.467987i | 0.422364 | − | 0.192887i | −1.00830 | + | 0.00403037i | 0.481188 | + | 0.748744i | −0.885375 | + | 1.93870i | −2.87163 | + | 0.868182i | 0.0761537 | + | 0.259356i |
32.18 | −0.0793462 | + | 0.551865i | 1.63436 | − | 0.573475i | 1.62073 | + | 0.475888i | −0.495271 | + | 0.226183i | 0.186801 | + | 0.947448i | −1.05566 | − | 1.64263i | −0.854445 | + | 1.87097i | 2.34225 | − | 1.87453i | −0.0855244 | − | 0.291270i |
32.19 | −0.0650821 | + | 0.452656i | 0.599616 | + | 1.62495i | 1.71832 | + | 0.504546i | −3.22999 | + | 1.47508i | −0.774567 | + | 0.165664i | −0.550400 | − | 0.856439i | −0.720165 | + | 1.57694i | −2.28092 | + | 1.94869i | −0.457491 | − | 1.55807i |
32.20 | −0.0577953 | + | 0.401975i | −1.37405 | + | 1.05451i | 1.76074 | + | 0.517001i | 0.766302 | − | 0.349959i | −0.344473 | − | 0.613279i | 1.94086 | + | 3.02004i | −0.646991 | + | 1.41671i | 0.776017 | − | 2.89790i | 0.0963859 | + | 0.328260i |
See next 80 embeddings (of 420 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
121.f | odd | 22 | 1 | inner |
363.j | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.2.j.a | ✓ | 420 |
3.b | odd | 2 | 1 | inner | 363.2.j.a | ✓ | 420 |
121.f | odd | 22 | 1 | inner | 363.2.j.a | ✓ | 420 |
363.j | even | 22 | 1 | inner | 363.2.j.a | ✓ | 420 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.2.j.a | ✓ | 420 | 1.a | even | 1 | 1 | trivial |
363.2.j.a | ✓ | 420 | 3.b | odd | 2 | 1 | inner |
363.2.j.a | ✓ | 420 | 121.f | odd | 22 | 1 | inner |
363.2.j.a | ✓ | 420 | 363.j | even | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(363, [\chi])\).