Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [363,2,Mod(34,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.34");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.89856959337\) |
Analytic rank: | \(0\) |
Dimension: | \(110\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 | −0.372443 | − | 2.59040i | −1.00000 | −4.65246 | + | 1.36609i | −0.603037 | + | 1.32047i | 0.372443 | + | 2.59040i | 1.26395 | + | 0.812294i | 3.09717 | + | 6.78185i | 1.00000 | 3.64513 | + | 1.07031i | ||||
34.2 | −0.333445 | − | 2.31916i | −1.00000 | −3.34834 | + | 0.983160i | 0.934002 | − | 2.04518i | 0.333445 | + | 2.31916i | −0.690758 | − | 0.443923i | 1.44995 | + | 3.17495i | 1.00000 | −5.05454 | − | 1.48415i | ||||
34.3 | −0.234121 | − | 1.62835i | −1.00000 | −0.677711 | + | 0.198994i | −0.779539 | + | 1.70695i | 0.234121 | + | 1.62835i | 2.23438 | + | 1.43595i | −0.884093 | − | 1.93589i | 1.00000 | 2.96201 | + | 0.869726i | ||||
34.4 | −0.229572 | − | 1.59670i | −1.00000 | −0.577778 | + | 0.169651i | −1.04500 | + | 2.28823i | 0.229572 | + | 1.59670i | −3.38186 | − | 2.17339i | −0.936708 | − | 2.05111i | 1.00000 | 3.89353 | + | 1.14324i | ||||
34.5 | −0.118218 | − | 0.822222i | −1.00000 | 1.25691 | − | 0.369063i | 1.32647 | − | 2.90456i | 0.118218 | + | 0.822222i | 3.25231 | + | 2.09013i | −1.14219 | − | 2.50105i | 1.00000 | −2.54501 | − | 0.747282i | ||||
34.6 | 3.16538e−5 | 0 | 0.000220157i | −1.00000 | 1.91899 | − | 0.563465i | 0.860954 | − | 1.88523i | −3.16538e−5 | 0 | 0.000220157i | −1.38748 | − | 0.891679i | 0.000369588 | 0 | 0.000809285i | 1.00000 | 0.000442298 | 0 | 0.000129870i | ||||
34.7 | 0.119152 | + | 0.828718i | −1.00000 | 1.24641 | − | 0.365979i | 0.0551712 | − | 0.120808i | −0.119152 | − | 0.828718i | −1.17983 | − | 0.758230i | 1.14741 | + | 2.51247i | 1.00000 | 0.106690 | + | 0.0313269i | ||||
34.8 | 0.134483 | + | 0.935349i | −1.00000 | 1.06219 | − | 0.311888i | −0.623940 | + | 1.36624i | −0.134483 | − | 0.935349i | 1.94368 | + | 1.24912i | 1.21968 | + | 2.67072i | 1.00000 | −1.36182 | − | 0.399866i | ||||
34.9 | 0.296211 | + | 2.06019i | −1.00000 | −2.23765 | + | 0.657034i | 0.454482 | − | 0.995176i | −0.296211 | − | 2.06019i | 3.71384 | + | 2.38674i | −0.287163 | − | 0.628800i | 1.00000 | 2.18487 | + | 0.641536i | ||||
34.10 | 0.319232 | + | 2.22031i | −1.00000 | −2.90888 | + | 0.854124i | −1.74740 | + | 3.82626i | −0.319232 | − | 2.22031i | −2.15950 | − | 1.38783i | −0.961360 | − | 2.10509i | 1.00000 | −9.05331 | − | 2.65829i | ||||
34.11 | 0.321558 | + | 2.23649i | −1.00000 | −2.97948 | + | 0.874855i | 1.71191 | − | 3.74856i | −0.321558 | − | 2.23649i | −2.16567 | − | 1.39179i | −1.03743 | − | 2.27166i | 1.00000 | 8.93409 | + | 2.62328i | ||||
67.1 | −2.49126 | + | 0.731501i | −1.00000 | 3.98879 | − | 2.56344i | 1.82020 | + | 2.10062i | 2.49126 | − | 0.731501i | −0.304924 | − | 0.667691i | −4.66135 | + | 5.37948i | 1.00000 | −6.07119 | − | 3.90172i | ||||
67.2 | −2.29718 | + | 0.674512i | −1.00000 | 3.13954 | − | 2.01766i | −2.16455 | − | 2.49802i | 2.29718 | − | 0.674512i | −1.83607 | − | 4.02043i | −2.71547 | + | 3.13382i | 1.00000 | 6.65729 | + | 4.27838i | ||||
67.3 | −1.38165 | + | 0.405688i | −1.00000 | 0.0618561 | − | 0.0397525i | −0.813654 | − | 0.939007i | 1.38165 | − | 0.405688i | 1.03641 | + | 2.26941i | 1.81663 | − | 2.09650i | 1.00000 | 1.50513 | + | 0.967285i | ||||
67.4 | −1.25314 | + | 0.367954i | −1.00000 | −0.247549 | + | 0.159090i | 2.56030 | + | 2.95474i | 1.25314 | − | 0.367954i | 1.41216 | + | 3.09219i | 1.96222 | − | 2.26452i | 1.00000 | −4.29561 | − | 2.76062i | ||||
67.5 | −0.950338 | + | 0.279044i | −1.00000 | −0.857231 | + | 0.550909i | −0.579522 | − | 0.668804i | 0.950338 | − | 0.279044i | −0.911908 | − | 1.99680i | 1.95816 | − | 2.25983i | 1.00000 | 0.737367 | + | 0.473877i | ||||
67.6 | −0.0202291 | + | 0.00593980i | −1.00000 | −1.68213 | + | 1.08104i | −1.16759 | − | 1.34747i | 0.0202291 | − | 0.00593980i | 0.759230 | + | 1.66248i | 0.0552199 | − | 0.0637271i | 1.00000 | 0.0316229 | + | 0.0203228i | ||||
67.7 | 0.621164 | − | 0.182390i | −1.00000 | −1.32993 | + | 0.854693i | 0.973544 | + | 1.12353i | −0.621164 | + | 0.182390i | −0.181234 | − | 0.396846i | −1.51811 | + | 1.75200i | 1.00000 | 0.809652 | + | 0.520332i | ||||
67.8 | 1.48096 | − | 0.434848i | −1.00000 | 0.321634 | − | 0.206702i | 1.52565 | + | 1.76069i | −1.48096 | + | 0.434848i | 0.157288 | + | 0.344413i | −1.63508 | + | 1.88699i | 1.00000 | 3.02505 | + | 1.94408i | ||||
67.9 | 1.69108 | − | 0.496547i | −1.00000 | 0.930702 | − | 0.598126i | −1.35902 | − | 1.56839i | −1.69108 | + | 0.496547i | −2.05690 | − | 4.50398i | −1.03146 | + | 1.19036i | 1.00000 | −3.07700 | − | 1.97747i | ||||
See next 80 embeddings (of 110 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
121.e | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.2.i.b | ✓ | 110 |
121.e | even | 11 | 1 | inner | 363.2.i.b | ✓ | 110 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.2.i.b | ✓ | 110 | 1.a | even | 1 | 1 | trivial |
363.2.i.b | ✓ | 110 | 121.e | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{110} + T_{2}^{109} + 16 T_{2}^{108} + 16 T_{2}^{107} + 165 T_{2}^{106} + 231 T_{2}^{105} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\).