Properties

Label 363.2.f.f.215.1
Level $363$
Weight $2$
Character 363.215
Analytic conductor $2.899$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(161,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.f (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 215.1
Root \(-0.831254 - 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 363.215
Dual form 363.2.f.f.233.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{2} +(-1.64027 + 0.556338i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-2.68999 - 0.874032i) q^{5} +(1.03598 + 1.38807i) q^{6} +(0.831254 + 1.14412i) q^{7} +(-2.42705 - 1.76336i) q^{8} +(2.38098 - 1.82509i) q^{9} +2.82843i q^{10} +(-1.00000 + 1.41421i) q^{12} +(-4.03499 + 1.31105i) q^{13} +(0.831254 - 1.14412i) q^{14} +(4.89858 - 0.0628954i) q^{15} +(-0.309017 + 0.951057i) q^{16} +(-1.85410 + 5.70634i) q^{17} +(-2.47152 - 1.70046i) q^{18} +(-2.49376 + 3.43237i) q^{19} +(-2.68999 + 0.874032i) q^{20} +(-2.00000 - 1.41421i) q^{21} +(4.96204 + 1.54212i) q^{24} +(2.42705 + 1.76336i) q^{25} +(2.49376 + 3.43237i) q^{26} +(-2.89008 + 4.31827i) q^{27} +(1.34500 + 0.437016i) q^{28} +(-1.61803 + 1.17557i) q^{29} +(-1.57356 - 4.63939i) q^{30} +(-0.618034 - 1.90211i) q^{31} -5.00000 q^{32} +6.00000 q^{34} +(-1.23607 - 3.80423i) q^{35} +(0.853491 - 2.87603i) q^{36} +(-6.47214 + 4.70228i) q^{37} +(4.03499 + 1.31105i) q^{38} +(5.88909 - 4.39529i) q^{39} +(4.98752 + 6.86474i) q^{40} +(4.85410 + 3.52671i) q^{41} +(-0.726963 + 2.33913i) q^{42} -4.24264i q^{43} +(-8.00000 + 2.82843i) q^{45} +(-1.66251 + 2.28825i) q^{47} +(-0.0222369 - 1.73191i) q^{48} +(1.54508 - 4.75528i) q^{49} +(0.927051 - 2.85317i) q^{50} +(-0.133421 - 10.3914i) q^{51} +(-2.49376 + 3.43237i) q^{52} +(5.37999 - 1.74806i) q^{53} +(5.00000 + 1.41421i) q^{54} -4.24264i q^{56} +(2.18089 - 7.01739i) q^{57} +(1.61803 + 1.17557i) q^{58} +(-6.65003 - 9.15298i) q^{59} +(3.92606 - 2.93019i) q^{60} +(-9.41498 - 3.05911i) q^{61} +(-1.61803 + 1.17557i) q^{62} +(4.06732 + 1.20702i) q^{63} +(2.16312 + 6.65740i) q^{64} +12.0000 q^{65} +2.00000 q^{67} +(1.85410 + 5.70634i) q^{68} +(-3.23607 + 2.35114i) q^{70} +(-2.68999 - 0.874032i) q^{71} +(-8.99703 + 0.231073i) q^{72} +(0.831254 + 1.14412i) q^{73} +(6.47214 + 4.70228i) q^{74} +(-4.96204 - 1.54212i) q^{75} +4.24264i q^{76} +(-6.00000 - 4.24264i) q^{78} +(-4.03499 + 1.31105i) q^{79} +(1.66251 - 2.28825i) q^{80} +(2.33810 - 8.69099i) q^{81} +(1.85410 - 5.70634i) q^{82} +(4.94427 - 15.2169i) q^{83} +(-2.44929 + 0.0314477i) q^{84} +(9.97505 - 13.7295i) q^{85} +(-4.03499 + 1.31105i) q^{86} +(2.00000 - 2.82843i) q^{87} +(5.16213 + 6.73442i) q^{90} +(-4.85410 - 3.52671i) q^{91} +(2.07196 + 2.77615i) q^{93} +(2.68999 + 0.874032i) q^{94} +(9.70820 - 7.05342i) q^{95} +(8.20135 - 2.78169i) q^{96} +(-0.618034 - 1.90211i) q^{97} -5.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 6 q^{8} + 2 q^{9} - 8 q^{12} + 8 q^{15} + 2 q^{16} + 12 q^{17} - 2 q^{18} - 16 q^{21} - 6 q^{24} + 6 q^{25} + 10 q^{27} - 4 q^{29} - 8 q^{30} + 4 q^{31} - 40 q^{32}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.951057i −0.218508 0.672499i −0.998886 0.0471903i \(-0.984973\pi\)
0.780378 0.625308i \(-0.215027\pi\)
\(3\) −1.64027 + 0.556338i −0.947011 + 0.321202i
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) −2.68999 0.874032i −1.20300 0.390879i −0.362137 0.932125i \(-0.617953\pi\)
−0.840864 + 0.541246i \(0.817953\pi\)
\(6\) 1.03598 + 1.38807i 0.422937 + 0.566678i
\(7\) 0.831254 + 1.14412i 0.314184 + 0.432438i 0.936680 0.350185i \(-0.113881\pi\)
−0.622496 + 0.782623i \(0.713881\pi\)
\(8\) −2.42705 1.76336i −0.858092 0.623440i
\(9\) 2.38098 1.82509i 0.793659 0.608363i
\(10\) 2.82843i 0.894427i
\(11\) 0 0
\(12\) −1.00000 + 1.41421i −0.288675 + 0.408248i
\(13\) −4.03499 + 1.31105i −1.11911 + 0.363619i −0.809426 0.587222i \(-0.800222\pi\)
−0.309679 + 0.950841i \(0.600222\pi\)
\(14\) 0.831254 1.14412i 0.222162 0.305780i
\(15\) 4.89858 0.0628954i 1.26481 0.0162395i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) −1.85410 + 5.70634i −0.449686 + 1.38399i 0.427576 + 0.903979i \(0.359367\pi\)
−0.877262 + 0.480011i \(0.840633\pi\)
\(18\) −2.47152 1.70046i −0.582544 0.400802i
\(19\) −2.49376 + 3.43237i −0.572108 + 0.787439i −0.992802 0.119763i \(-0.961786\pi\)
0.420694 + 0.907202i \(0.361786\pi\)
\(20\) −2.68999 + 0.874032i −0.601501 + 0.195440i
\(21\) −2.00000 1.41421i −0.436436 0.308607i
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 4.96204 + 1.54212i 1.01287 + 0.314784i
\(25\) 2.42705 + 1.76336i 0.485410 + 0.352671i
\(26\) 2.49376 + 3.43237i 0.489067 + 0.673143i
\(27\) −2.89008 + 4.31827i −0.556197 + 0.831051i
\(28\) 1.34500 + 0.437016i 0.254181 + 0.0825883i
\(29\) −1.61803 + 1.17557i −0.300461 + 0.218298i −0.727793 0.685797i \(-0.759454\pi\)
0.427331 + 0.904095i \(0.359454\pi\)
\(30\) −1.57356 4.63939i −0.287291 0.847032i
\(31\) −0.618034 1.90211i −0.111002 0.341630i 0.880090 0.474807i \(-0.157482\pi\)
−0.991092 + 0.133177i \(0.957482\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) −1.23607 3.80423i −0.208934 0.643032i
\(36\) 0.853491 2.87603i 0.142248 0.479338i
\(37\) −6.47214 + 4.70228i −1.06401 + 0.773050i −0.974827 0.222965i \(-0.928427\pi\)
−0.0891861 + 0.996015i \(0.528427\pi\)
\(38\) 4.03499 + 1.31105i 0.654562 + 0.212680i
\(39\) 5.88909 4.39529i 0.943010 0.703810i
\(40\) 4.98752 + 6.86474i 0.788597 + 1.08541i
\(41\) 4.85410 + 3.52671i 0.758083 + 0.550780i 0.898322 0.439338i \(-0.144787\pi\)
−0.140238 + 0.990118i \(0.544787\pi\)
\(42\) −0.726963 + 2.33913i −0.112173 + 0.360935i
\(43\) 4.24264i 0.646997i −0.946229 0.323498i \(-0.895141\pi\)
0.946229 0.323498i \(-0.104859\pi\)
\(44\) 0 0
\(45\) −8.00000 + 2.82843i −1.19257 + 0.421637i
\(46\) 0 0
\(47\) −1.66251 + 2.28825i −0.242502 + 0.333775i −0.912868 0.408256i \(-0.866137\pi\)
0.670366 + 0.742031i \(0.266137\pi\)
\(48\) −0.0222369 1.73191i −0.00320962 0.249979i
\(49\) 1.54508 4.75528i 0.220726 0.679326i
\(50\) 0.927051 2.85317i 0.131105 0.403499i
\(51\) −0.133421 10.3914i −0.0186827 1.45509i
\(52\) −2.49376 + 3.43237i −0.345823 + 0.475984i
\(53\) 5.37999 1.74806i 0.738998 0.240115i 0.0847577 0.996402i \(-0.472988\pi\)
0.654241 + 0.756287i \(0.272988\pi\)
\(54\) 5.00000 + 1.41421i 0.680414 + 0.192450i
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 2.18089 7.01739i 0.288866 0.929476i
\(58\) 1.61803 + 1.17557i 0.212458 + 0.154360i
\(59\) −6.65003 9.15298i −0.865760 1.19162i −0.980165 0.198183i \(-0.936496\pi\)
0.114405 0.993434i \(-0.463504\pi\)
\(60\) 3.92606 2.93019i 0.506852 0.378286i
\(61\) −9.41498 3.05911i −1.20546 0.391679i −0.363696 0.931518i \(-0.618485\pi\)
−0.841769 + 0.539839i \(0.818485\pi\)
\(62\) −1.61803 + 1.17557i −0.205491 + 0.149298i
\(63\) 4.06732 + 1.20702i 0.512434 + 0.152070i
\(64\) 2.16312 + 6.65740i 0.270390 + 0.832174i
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 1.85410 + 5.70634i 0.224843 + 0.691995i
\(69\) 0 0
\(70\) −3.23607 + 2.35114i −0.386784 + 0.281015i
\(71\) −2.68999 0.874032i −0.319244 0.103729i 0.145012 0.989430i \(-0.453678\pi\)
−0.464255 + 0.885701i \(0.653678\pi\)
\(72\) −8.99703 + 0.231073i −1.06031 + 0.0272323i
\(73\) 0.831254 + 1.14412i 0.0972909 + 0.133909i 0.854887 0.518814i \(-0.173626\pi\)
−0.757596 + 0.652724i \(0.773626\pi\)
\(74\) 6.47214 + 4.70228i 0.752371 + 0.546629i
\(75\) −4.96204 1.54212i −0.572967 0.178069i
\(76\) 4.24264i 0.486664i
\(77\) 0 0
\(78\) −6.00000 4.24264i −0.679366 0.480384i
\(79\) −4.03499 + 1.31105i −0.453972 + 0.147504i −0.527073 0.849820i \(-0.676710\pi\)
0.0731009 + 0.997325i \(0.476710\pi\)
\(80\) 1.66251 2.28825i 0.185874 0.255834i
\(81\) 2.33810 8.69099i 0.259789 0.965665i
\(82\) 1.85410 5.70634i 0.204751 0.630160i
\(83\) 4.94427 15.2169i 0.542704 1.67027i −0.183682 0.982986i \(-0.558802\pi\)
0.726386 0.687287i \(-0.241198\pi\)
\(84\) −2.44929 + 0.0314477i −0.267239 + 0.00343123i
\(85\) 9.97505 13.7295i 1.08195 1.48917i
\(86\) −4.03499 + 1.31105i −0.435104 + 0.141374i
\(87\) 2.00000 2.82843i 0.214423 0.303239i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 5.16213 + 6.73442i 0.544136 + 0.709870i
\(91\) −4.85410 3.52671i −0.508848 0.369700i
\(92\) 0 0
\(93\) 2.07196 + 2.77615i 0.214852 + 0.287873i
\(94\) 2.68999 + 0.874032i 0.277452 + 0.0901495i
\(95\) 9.70820 7.05342i 0.996041 0.723666i
\(96\) 8.20135 2.78169i 0.837047 0.283905i
\(97\) −0.618034 1.90211i −0.0627518 0.193130i 0.914766 0.403985i \(-0.132375\pi\)
−0.977517 + 0.210855i \(0.932375\pi\)
\(98\) −5.00000 −0.505076
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) 3.09017 + 9.51057i 0.307483 + 0.946337i 0.978739 + 0.205110i \(0.0657554\pi\)
−0.671255 + 0.741226i \(0.734245\pi\)
\(102\) −9.84163 + 3.33803i −0.974466 + 0.330514i
\(103\) −6.47214 + 4.70228i −0.637719 + 0.463330i −0.859066 0.511865i \(-0.828955\pi\)
0.221347 + 0.975195i \(0.428955\pi\)
\(104\) 12.1050 + 3.93314i 1.18699 + 0.385677i
\(105\) 4.14392 + 5.55229i 0.404405 + 0.541848i
\(106\) −3.32502 4.57649i −0.322954 0.444508i
\(107\) −12.9443 9.40456i −1.25137 0.909174i −0.253069 0.967448i \(-0.581440\pi\)
−0.998301 + 0.0582746i \(0.981440\pi\)
\(108\) 0.200088 + 5.19230i 0.0192535 + 0.499629i
\(109\) 4.24264i 0.406371i −0.979140 0.203186i \(-0.934871\pi\)
0.979140 0.203186i \(-0.0651295\pi\)
\(110\) 0 0
\(111\) 8.00000 11.3137i 0.759326 1.07385i
\(112\) −1.34500 + 0.437016i −0.127090 + 0.0412941i
\(113\) −1.66251 + 2.28825i −0.156396 + 0.215260i −0.880023 0.474930i \(-0.842473\pi\)
0.723628 + 0.690190i \(0.242473\pi\)
\(114\) −7.34786 + 0.0943431i −0.688190 + 0.00883604i
\(115\) 0 0
\(116\) −0.618034 + 1.90211i −0.0573830 + 0.176607i
\(117\) −7.21444 + 10.4858i −0.666975 + 0.969412i
\(118\) −6.65003 + 9.15298i −0.612185 + 0.842600i
\(119\) −8.06998 + 2.62210i −0.739774 + 0.240367i
\(120\) −12.0000 8.48528i −1.09545 0.774597i
\(121\) 0 0
\(122\) 9.89949i 0.896258i
\(123\) −9.92408 3.08424i −0.894825 0.278097i
\(124\) −1.61803 1.17557i −0.145304 0.105569i
\(125\) 3.32502 + 4.57649i 0.297398 + 0.409334i
\(126\) −0.108929 4.24124i −0.00970417 0.377840i
\(127\) −9.41498 3.05911i −0.835444 0.271452i −0.140107 0.990136i \(-0.544745\pi\)
−0.695337 + 0.718684i \(0.744745\pi\)
\(128\) −2.42705 + 1.76336i −0.214523 + 0.155860i
\(129\) 2.36034 + 6.95908i 0.207816 + 0.612713i
\(130\) −3.70820 11.4127i −0.325231 1.00096i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) −0.618034 1.90211i −0.0533900 0.164318i
\(135\) 11.5486 9.09009i 0.993946 0.782350i
\(136\) 14.5623 10.5801i 1.24871 0.907239i
\(137\) −2.68999 0.874032i −0.229822 0.0746736i 0.191842 0.981426i \(-0.438554\pi\)
−0.421664 + 0.906752i \(0.638554\pi\)
\(138\) 0 0
\(139\) 0.831254 + 1.14412i 0.0705060 + 0.0970432i 0.842814 0.538206i \(-0.180898\pi\)
−0.772308 + 0.635249i \(0.780898\pi\)
\(140\) −3.23607 2.35114i −0.273498 0.198708i
\(141\) 1.45393 4.67826i 0.122443 0.393980i
\(142\) 2.82843i 0.237356i
\(143\) 0 0
\(144\) 1.00000 + 2.82843i 0.0833333 + 0.235702i
\(145\) 5.37999 1.74806i 0.446784 0.145169i
\(146\) 0.831254 1.14412i 0.0687951 0.0946883i
\(147\) 0.111184 + 8.65954i 0.00917034 + 0.714227i
\(148\) −2.47214 + 7.60845i −0.203208 + 0.625411i
\(149\) −1.85410 + 5.70634i −0.151894 + 0.467482i −0.997833 0.0657982i \(-0.979041\pi\)
0.845939 + 0.533280i \(0.179041\pi\)
\(150\) 0.0667106 + 5.19572i 0.00544690 + 0.424229i
\(151\) −2.49376 + 3.43237i −0.202939 + 0.279322i −0.898341 0.439300i \(-0.855227\pi\)
0.695401 + 0.718622i \(0.255227\pi\)
\(152\) 12.1050 3.93314i 0.981843 0.319020i
\(153\) 6.00000 + 16.9706i 0.485071 + 1.37199i
\(154\) 0 0
\(155\) 5.65685i 0.454369i
\(156\) 2.18089 7.01739i 0.174611 0.561841i
\(157\) 16.1803 + 11.7557i 1.29133 + 0.938207i 0.999831 0.0183633i \(-0.00584556\pi\)
0.291500 + 0.956571i \(0.405846\pi\)
\(158\) 2.49376 + 3.43237i 0.198393 + 0.273065i
\(159\) −7.85212 + 5.86039i −0.622714 + 0.464759i
\(160\) 13.4500 + 4.37016i 1.06331 + 0.345492i
\(161\) 0 0
\(162\) −8.98813 + 0.461994i −0.706175 + 0.0362977i
\(163\) 6.18034 + 19.0211i 0.484082 + 1.48985i 0.833307 + 0.552811i \(0.186445\pi\)
−0.349225 + 0.937039i \(0.613555\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −16.0000 −1.24184
\(167\) −3.70820 11.4127i −0.286949 0.883140i −0.985808 0.167879i \(-0.946308\pi\)
0.698858 0.715260i \(-0.253692\pi\)
\(168\) 2.36034 + 6.95908i 0.182104 + 0.536905i
\(169\) 4.04508 2.93893i 0.311160 0.226071i
\(170\) −16.1400 5.24419i −1.23788 0.402211i
\(171\) 0.326787 + 12.7237i 0.0249900 + 0.973008i
\(172\) −2.49376 3.43237i −0.190148 0.261716i
\(173\) 4.85410 + 3.52671i 0.369051 + 0.268131i 0.756817 0.653627i \(-0.226753\pi\)
−0.387767 + 0.921758i \(0.626753\pi\)
\(174\) −3.30803 1.02808i −0.250781 0.0779386i
\(175\) 4.24264i 0.320713i
\(176\) 0 0
\(177\) 16.0000 + 11.3137i 1.20263 + 0.850390i
\(178\) 0 0
\(179\) −1.66251 + 2.28825i −0.124262 + 0.171032i −0.866615 0.498977i \(-0.833709\pi\)
0.742354 + 0.670008i \(0.233709\pi\)
\(180\) −4.80963 + 6.99053i −0.358489 + 0.521043i
\(181\) −3.09017 + 9.51057i −0.229691 + 0.706915i 0.768091 + 0.640341i \(0.221207\pi\)
−0.997781 + 0.0665740i \(0.978793\pi\)
\(182\) −1.85410 + 5.70634i −0.137435 + 0.422982i
\(183\) 17.1450 0.220134i 1.26740 0.0162728i
\(184\) 0 0
\(185\) 21.5200 6.99226i 1.58218 0.514081i
\(186\) 2.00000 2.82843i 0.146647 0.207390i
\(187\) 0 0
\(188\) 2.82843i 0.206284i
\(189\) −7.34302 + 0.282967i −0.534126 + 0.0205828i
\(190\) −9.70820 7.05342i −0.704307 0.511709i
\(191\) 11.6376 + 16.0177i 0.842064 + 1.15900i 0.985556 + 0.169350i \(0.0541668\pi\)
−0.143492 + 0.989651i \(0.545833\pi\)
\(192\) −7.25186 9.71651i −0.523358 0.701229i
\(193\) 20.1750 + 6.55524i 1.45223 + 0.471857i 0.925685 0.378294i \(-0.123489\pi\)
0.526540 + 0.850151i \(0.323489\pi\)
\(194\) −1.61803 + 1.17557i −0.116168 + 0.0844010i
\(195\) −19.6833 + 6.67605i −1.40955 + 0.478082i
\(196\) −1.54508 4.75528i −0.110363 0.339663i
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) −2.78115 8.55951i −0.196657 0.605249i
\(201\) −3.28054 + 1.11268i −0.231392 + 0.0784821i
\(202\) 8.09017 5.87785i 0.569222 0.413564i
\(203\) −2.68999 0.874032i −0.188801 0.0613450i
\(204\) −6.21588 8.32844i −0.435199 0.583107i
\(205\) −9.97505 13.7295i −0.696687 0.958908i
\(206\) 6.47214 + 4.70228i 0.450935 + 0.327624i
\(207\) 0 0
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) 4.00000 5.65685i 0.276026 0.390360i
\(211\) 25.5549 8.30330i 1.75927 0.571623i 0.762150 0.647400i \(-0.224144\pi\)
0.997125 + 0.0757773i \(0.0241438\pi\)
\(212\) 3.32502 4.57649i 0.228363 0.314315i
\(213\) 4.89858 0.0628954i 0.335645 0.00430952i
\(214\) −4.94427 + 15.2169i −0.337983 + 1.04021i
\(215\) −3.70820 + 11.4127i −0.252897 + 0.778338i
\(216\) 14.6290 5.38441i 0.995378 0.366363i
\(217\) 1.66251 2.28825i 0.112858 0.155336i
\(218\) −4.03499 + 1.31105i −0.273284 + 0.0887954i
\(219\) −2.00000 1.41421i −0.135147 0.0955637i
\(220\) 0 0
\(221\) 25.4558i 1.71235i
\(222\) −13.2321 4.11232i −0.888081 0.276001i
\(223\) −19.4164 14.1068i −1.30022 0.944664i −0.300261 0.953857i \(-0.597074\pi\)
−0.999958 + 0.00919277i \(0.997074\pi\)
\(224\) −4.15627 5.72061i −0.277702 0.382225i
\(225\) 8.99703 0.231073i 0.599802 0.0154049i
\(226\) 2.68999 + 0.874032i 0.178936 + 0.0581397i
\(227\) −19.4164 + 14.1068i −1.28871 + 0.936304i −0.999779 0.0210448i \(-0.993301\pi\)
−0.288934 + 0.957349i \(0.593301\pi\)
\(228\) −2.36034 6.95908i −0.156317 0.460876i
\(229\) −7.41641 22.8254i −0.490090 1.50834i −0.824471 0.565904i \(-0.808527\pi\)
0.334381 0.942438i \(-0.391473\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 3.09017 + 9.51057i 0.202444 + 0.623058i 0.999809 + 0.0195604i \(0.00622666\pi\)
−0.797365 + 0.603497i \(0.793773\pi\)
\(234\) 12.2020 + 3.62105i 0.797667 + 0.236716i
\(235\) 6.47214 4.70228i 0.422196 0.306743i
\(236\) −10.7600 3.49613i −0.700415 0.227579i
\(237\) 5.88909 4.39529i 0.382538 0.285505i
\(238\) 4.98752 + 6.86474i 0.323293 + 0.444975i
\(239\) −12.9443 9.40456i −0.837295 0.608331i 0.0843185 0.996439i \(-0.473129\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) −1.45393 + 4.67826i −0.0938505 + 0.301980i
\(241\) 4.24264i 0.273293i −0.990620 0.136646i \(-0.956368\pi\)
0.990620 0.136646i \(-0.0436324\pi\)
\(242\) 0 0
\(243\) 1.00000 + 15.5563i 0.0641500 + 0.997940i
\(244\) −9.41498 + 3.05911i −0.602732 + 0.195840i
\(245\) −8.31254 + 11.4412i −0.531069 + 0.730953i
\(246\) 0.133421 + 10.3914i 0.00850663 + 0.662535i
\(247\) 5.56231 17.1190i 0.353921 1.08926i
\(248\) −1.85410 + 5.70634i −0.117736 + 0.362353i
\(249\) 0.355790 + 27.7105i 0.0225473 + 1.75608i
\(250\) 3.32502 4.57649i 0.210292 0.289443i
\(251\) −24.2099 + 7.86629i −1.52812 + 0.496516i −0.948069 0.318065i \(-0.896967\pi\)
−0.580050 + 0.814581i \(0.696967\pi\)
\(252\) 4.00000 1.41421i 0.251976 0.0890871i
\(253\) 0 0
\(254\) 9.89949i 0.621150i
\(255\) −8.72356 + 28.0695i −0.546290 + 1.75778i
\(256\) 13.7533 + 9.99235i 0.859581 + 0.624522i
\(257\) −6.65003 9.15298i −0.414818 0.570947i 0.549568 0.835449i \(-0.314792\pi\)
−0.964385 + 0.264502i \(0.914792\pi\)
\(258\) 5.88909 4.39529i 0.366639 0.273639i
\(259\) −10.7600 3.49613i −0.668592 0.217239i
\(260\) 9.70820 7.05342i 0.602077 0.437435i
\(261\) −1.70698 + 5.75206i −0.105660 + 0.356044i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −16.0000 −0.982872
\(266\) 1.85410 + 5.70634i 0.113682 + 0.349878i
\(267\) 0 0
\(268\) 1.61803 1.17557i 0.0988372 0.0718094i
\(269\) 26.8999 + 8.74032i 1.64012 + 0.532907i 0.976565 0.215222i \(-0.0690476\pi\)
0.663553 + 0.748129i \(0.269048\pi\)
\(270\) −12.2139 8.17439i −0.743314 0.497477i
\(271\) −17.4563 24.0266i −1.06040 1.45951i −0.879434 0.476021i \(-0.842079\pi\)
−0.180963 0.983490i \(-0.557921\pi\)
\(272\) −4.85410 3.52671i −0.294323 0.213838i
\(273\) 9.92408 + 3.08424i 0.600633 + 0.186667i
\(274\) 2.82843i 0.170872i
\(275\) 0 0
\(276\) 0 0
\(277\) −4.03499 + 1.31105i −0.242439 + 0.0787732i −0.427716 0.903913i \(-0.640682\pi\)
0.185277 + 0.982686i \(0.440682\pi\)
\(278\) 0.831254 1.14412i 0.0498553 0.0686199i
\(279\) −4.94305 3.40092i −0.295933 0.203608i
\(280\) −3.70820 + 11.4127i −0.221608 + 0.682038i
\(281\) −1.85410 + 5.70634i −0.110606 + 0.340412i −0.991005 0.133822i \(-0.957275\pi\)
0.880399 + 0.474234i \(0.157275\pi\)
\(282\) −4.89858 + 0.0628954i −0.291706 + 0.00374537i
\(283\) 15.7938 21.7383i 0.938845 1.29221i −0.0174623 0.999848i \(-0.505559\pi\)
0.956308 0.292362i \(-0.0944413\pi\)
\(284\) −2.68999 + 0.874032i −0.159622 + 0.0518643i
\(285\) −12.0000 + 16.9706i −0.710819 + 1.00525i
\(286\) 0 0
\(287\) 8.48528i 0.500870i
\(288\) −11.9049 + 9.12544i −0.701502 + 0.537722i
\(289\) −15.3713 11.1679i −0.904195 0.656936i
\(290\) −3.32502 4.57649i −0.195252 0.268741i
\(291\) 2.07196 + 2.77615i 0.121460 + 0.162741i
\(292\) 1.34500 + 0.437016i 0.0787100 + 0.0255744i
\(293\) −1.61803 + 1.17557i −0.0945266 + 0.0686776i −0.634045 0.773296i \(-0.718606\pi\)
0.539518 + 0.841974i \(0.318606\pi\)
\(294\) 8.20135 2.78169i 0.478313 0.162231i
\(295\) 9.88854 + 30.4338i 0.575733 + 1.77192i
\(296\) 24.0000 1.39497
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) −4.92081 + 1.66901i −0.284103 + 0.0963605i
\(301\) 4.85410 3.52671i 0.279786 0.203276i
\(302\) 4.03499 + 1.31105i 0.232188 + 0.0754423i
\(303\) −10.3598 13.8807i −0.595155 0.797427i
\(304\) −2.49376 3.43237i −0.143027 0.196860i
\(305\) 22.6525 + 16.4580i 1.29708 + 0.942382i
\(306\) 14.2859 10.9505i 0.816668 0.626000i
\(307\) 4.24264i 0.242140i −0.992644 0.121070i \(-0.961367\pi\)
0.992644 0.121070i \(-0.0386326\pi\)
\(308\) 0 0
\(309\) 8.00000 11.3137i 0.455104 0.643614i
\(310\) 5.37999 1.74806i 0.305563 0.0992834i
\(311\) 16.6251 22.8825i 0.942722 1.29755i −0.0119638 0.999928i \(-0.503808\pi\)
0.954685 0.297617i \(-0.0961917\pi\)
\(312\) −22.0436 + 0.283029i −1.24797 + 0.0160234i
\(313\) 3.70820 11.4127i 0.209600 0.645083i −0.789893 0.613245i \(-0.789864\pi\)
0.999493 0.0318380i \(-0.0101361\pi\)
\(314\) 6.18034 19.0211i 0.348777 1.07342i
\(315\) −9.88610 6.80184i −0.557019 0.383240i
\(316\) −2.49376 + 3.43237i −0.140285 + 0.193086i
\(317\) −24.2099 + 7.86629i −1.35977 + 0.441815i −0.895965 0.444125i \(-0.853515\pi\)
−0.463801 + 0.885939i \(0.653515\pi\)
\(318\) 8.00000 + 5.65685i 0.448618 + 0.317221i
\(319\) 0 0
\(320\) 19.7990i 1.10680i
\(321\) 26.4642 + 8.22465i 1.47709 + 0.459055i
\(322\) 0 0
\(323\) −14.9626 20.5942i −0.832540 1.14589i
\(324\) −3.21687 8.40546i −0.178715 0.466970i
\(325\) −12.1050 3.93314i −0.671463 0.218172i
\(326\) 16.1803 11.7557i 0.896146 0.651088i
\(327\) 2.36034 + 6.95908i 0.130527 + 0.384838i
\(328\) −5.56231 17.1190i −0.307127 0.945240i
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −4.94427 15.2169i −0.271352 0.835136i
\(333\) −6.82793 + 23.0082i −0.374168 + 1.26084i
\(334\) −9.70820 + 7.05342i −0.531209 + 0.385946i
\(335\) −5.37999 1.74806i −0.293940 0.0955069i
\(336\) 1.96303 1.46510i 0.107092 0.0799276i
\(337\) 19.1188 + 26.3148i 1.04147 + 1.43346i 0.895977 + 0.444100i \(0.146477\pi\)
0.145493 + 0.989359i \(0.453523\pi\)
\(338\) −4.04508 2.93893i −0.220024 0.159857i
\(339\) 1.45393 4.67826i 0.0789664 0.254088i
\(340\) 16.9706i 0.920358i
\(341\) 0 0
\(342\) 12.0000 4.24264i 0.648886 0.229416i
\(343\) 16.1400 5.24419i 0.871476 0.283160i
\(344\) −7.48128 + 10.2971i −0.403364 + 0.555183i
\(345\) 0 0
\(346\) 1.85410 5.70634i 0.0996771 0.306775i
\(347\) 4.94427 15.2169i 0.265422 0.816886i −0.726173 0.687512i \(-0.758703\pi\)
0.991596 0.129375i \(-0.0412970\pi\)
\(348\) −0.0444738 3.46382i −0.00238404 0.185680i
\(349\) −2.49376 + 3.43237i −0.133488 + 0.183730i −0.870528 0.492118i \(-0.836223\pi\)
0.737040 + 0.675849i \(0.236223\pi\)
\(350\) 4.03499 1.31105i 0.215679 0.0700785i
\(351\) 6.00000 21.2132i 0.320256 1.13228i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 5.81570 18.7130i 0.309101 0.994586i
\(355\) 6.47214 + 4.70228i 0.343505 + 0.249571i
\(356\) 0 0
\(357\) 11.7782 8.79058i 0.623368 0.465247i
\(358\) 2.68999 + 0.874032i 0.142171 + 0.0461940i
\(359\) 16.1803 11.7557i 0.853966 0.620442i −0.0722709 0.997385i \(-0.523025\pi\)
0.926237 + 0.376943i \(0.123025\pi\)
\(360\) 24.4039 + 7.24211i 1.28620 + 0.381693i
\(361\) 0.309017 + 0.951057i 0.0162641 + 0.0500556i
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) −1.23607 3.80423i −0.0646988 0.199122i
\(366\) −5.50746 16.2379i −0.287880 0.848766i
\(367\) −6.47214 + 4.70228i −0.337843 + 0.245457i −0.743751 0.668457i \(-0.766955\pi\)
0.405908 + 0.913914i \(0.366955\pi\)
\(368\) 0 0
\(369\) 17.9941 0.462147i 0.936734 0.0240584i
\(370\) −13.3001 18.3060i −0.691437 0.951682i
\(371\) 6.47214 + 4.70228i 0.336017 + 0.244130i
\(372\) 3.30803 + 1.02808i 0.171513 + 0.0533035i
\(373\) 4.24264i 0.219676i −0.993950 0.109838i \(-0.964967\pi\)
0.993950 0.109838i \(-0.0350331\pi\)
\(374\) 0 0
\(375\) −8.00000 5.65685i −0.413118 0.292119i
\(376\) 8.06998 2.62210i 0.416178 0.135224i
\(377\) 4.98752 6.86474i 0.256871 0.353552i
\(378\) 2.53824 + 6.89618i 0.130553 + 0.354701i
\(379\) 3.70820 11.4127i 0.190478 0.586230i −0.809522 0.587090i \(-0.800274\pi\)
1.00000 0.000859657i \(0.000273637\pi\)
\(380\) 3.70820 11.4127i 0.190227 0.585458i
\(381\) 17.1450 0.220134i 0.878366 0.0112778i
\(382\) 11.6376 16.0177i 0.595429 0.819538i
\(383\) 5.37999 1.74806i 0.274905 0.0893219i −0.168320 0.985732i \(-0.553834\pi\)
0.443225 + 0.896410i \(0.353834\pi\)
\(384\) 3.00000 4.24264i 0.153093 0.216506i
\(385\) 0 0
\(386\) 21.2132i 1.07972i
\(387\) −7.74320 10.1016i −0.393609 0.513495i
\(388\) −1.61803 1.17557i −0.0821432 0.0596806i
\(389\) 11.6376 + 16.0177i 0.590047 + 0.812131i 0.994752 0.102317i \(-0.0326256\pi\)
−0.404704 + 0.914448i \(0.632626\pi\)
\(390\) 12.4318 + 16.6569i 0.629507 + 0.843453i
\(391\) 0 0
\(392\) −12.1353 + 8.81678i −0.612923 + 0.445315i
\(393\) 0 0
\(394\) 6.79837 + 20.9232i 0.342497 + 1.05410i
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −0.618034 1.90211i −0.0309792 0.0953443i
\(399\) 9.84163 3.33803i 0.492698 0.167110i
\(400\) −2.42705 + 1.76336i −0.121353 + 0.0881678i
\(401\) −2.68999 0.874032i −0.134332 0.0436471i 0.241079 0.970505i \(-0.422499\pi\)
−0.375411 + 0.926858i \(0.622499\pi\)
\(402\) 2.07196 + 2.77615i 0.103340 + 0.138462i
\(403\) 4.98752 + 6.86474i 0.248446 + 0.341957i
\(404\) 8.09017 + 5.87785i 0.402501 + 0.292434i
\(405\) −13.8857 + 21.3351i −0.689985 + 1.06015i
\(406\) 2.82843i 0.140372i
\(407\) 0 0
\(408\) −18.0000 + 25.4558i −0.891133 + 1.26025i
\(409\) −4.03499 + 1.31105i −0.199517 + 0.0648272i −0.407071 0.913396i \(-0.633450\pi\)
0.207554 + 0.978224i \(0.433450\pi\)
\(410\) −9.97505 + 13.7295i −0.492632 + 0.678050i
\(411\) 4.89858 0.0628954i 0.241629 0.00310240i
\(412\) −2.47214 + 7.60845i −0.121793 + 0.374842i
\(413\) 4.94427 15.2169i 0.243292 0.748775i
\(414\) 0 0
\(415\) −26.6001 + 36.6119i −1.30575 + 1.79721i
\(416\) 20.1750 6.55524i 0.989159 0.321397i
\(417\) −2.00000 1.41421i −0.0979404 0.0692543i
\(418\) 0 0
\(419\) 31.1127i 1.51995i 0.649950 + 0.759977i \(0.274790\pi\)
−0.649950 + 0.759977i \(0.725210\pi\)
\(420\) 6.61606 + 2.05616i 0.322830 + 0.100330i
\(421\) 16.1803 + 11.7557i 0.788582 + 0.572938i 0.907542 0.419961i \(-0.137956\pi\)
−0.118961 + 0.992899i \(0.537956\pi\)
\(422\) −15.7938 21.7383i −0.768831 1.05821i
\(423\) 0.217858 + 8.48248i 0.0105926 + 0.412432i
\(424\) −16.1400 5.24419i −0.783826 0.254680i
\(425\) −14.5623 + 10.5801i −0.706376 + 0.513212i
\(426\) −1.57356 4.63939i −0.0762392 0.224779i
\(427\) −4.32624 13.3148i −0.209361 0.644348i
\(428\) −16.0000 −0.773389
\(429\) 0 0
\(430\) 12.0000 0.578691
\(431\) 9.88854 + 30.4338i 0.476314 + 1.46594i 0.844177 + 0.536065i \(0.180090\pi\)
−0.367862 + 0.929880i \(0.619910\pi\)
\(432\) −3.21383 4.08305i −0.154626 0.196446i
\(433\) −24.2705 + 17.6336i −1.16637 + 0.847415i −0.990569 0.137012i \(-0.956250\pi\)
−0.175797 + 0.984426i \(0.556250\pi\)
\(434\) −2.68999 0.874032i −0.129124 0.0419549i
\(435\) −7.85212 + 5.86039i −0.376481 + 0.280984i
\(436\) −2.49376 3.43237i −0.119430 0.164381i
\(437\) 0 0
\(438\) −0.726963 + 2.33913i −0.0347356 + 0.111768i
\(439\) 26.8701i 1.28244i 0.767358 + 0.641219i \(0.221571\pi\)
−0.767358 + 0.641219i \(0.778429\pi\)
\(440\) 0 0
\(441\) −5.00000 14.1421i −0.238095 0.673435i
\(442\) −24.2099 + 7.86629i −1.15155 + 0.374161i
\(443\) 16.6251 22.8825i 0.789881 1.08718i −0.204242 0.978921i \(-0.565473\pi\)
0.994123 0.108258i \(-0.0345272\pi\)
\(444\) −0.177895 13.8553i −0.00844253 0.657542i
\(445\) 0 0
\(446\) −7.41641 + 22.8254i −0.351177 + 1.08081i
\(447\) −0.133421 10.3914i −0.00631061 0.491499i
\(448\) −5.81878 + 8.00886i −0.274911 + 0.378383i
\(449\) 5.37999 1.74806i 0.253897 0.0824962i −0.179303 0.983794i \(-0.557384\pi\)
0.433200 + 0.901298i \(0.357384\pi\)
\(450\) −3.00000 8.48528i −0.141421 0.400000i
\(451\) 0 0
\(452\) 2.82843i 0.133038i
\(453\) 2.18089 7.01739i 0.102467 0.329706i
\(454\) 19.4164 + 14.1068i 0.911257 + 0.662067i
\(455\) 9.97505 + 13.7295i 0.467637 + 0.643648i
\(456\) −17.6673 + 13.1859i −0.827346 + 0.617485i
\(457\) −9.41498 3.05911i −0.440414 0.143099i 0.0804125 0.996762i \(-0.474376\pi\)
−0.520827 + 0.853662i \(0.674376\pi\)
\(458\) −19.4164 + 14.1068i −0.907269 + 0.659170i
\(459\) −19.2830 24.4983i −0.900053 1.14348i
\(460\) 0 0
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) −0.618034 1.90211i −0.0286915 0.0883034i
\(465\) −3.14712 9.27877i −0.145944 0.430293i
\(466\) 8.09017 5.87785i 0.374770 0.272286i
\(467\) 26.8999 + 8.74032i 1.24478 + 0.404454i 0.856048 0.516897i \(-0.172913\pi\)
0.388733 + 0.921350i \(0.372913\pi\)
\(468\) 0.326787 + 12.7237i 0.0151057 + 0.588154i
\(469\) 1.66251 + 2.28825i 0.0767675 + 0.105661i
\(470\) −6.47214 4.70228i −0.298537 0.216900i
\(471\) −33.0803 10.2808i −1.52426 0.473715i
\(472\) 33.9411i 1.56227i
\(473\) 0 0
\(474\) −6.00000 4.24264i −0.275589 0.194871i
\(475\) −12.1050 + 3.93314i −0.555414 + 0.180465i
\(476\) −4.98752 + 6.86474i −0.228603 + 0.314645i
\(477\) 9.61926 13.9811i 0.440435 0.640149i
\(478\) −4.94427 + 15.2169i −0.226146 + 0.696005i
\(479\) −8.65248 + 26.6296i −0.395342 + 1.21674i 0.533353 + 0.845893i \(0.320932\pi\)
−0.928695 + 0.370844i \(0.879068\pi\)
\(480\) −24.4929 + 0.314477i −1.11794 + 0.0143538i
\(481\) 19.9501 27.4589i 0.909646 1.25202i
\(482\) −4.03499 + 1.31105i −0.183789 + 0.0597166i
\(483\) 0 0
\(484\) 0 0
\(485\) 5.65685i 0.256865i
\(486\) 14.4860 5.75823i 0.657096 0.261199i
\(487\) −1.61803 1.17557i −0.0733201 0.0532702i 0.550521 0.834821i \(-0.314429\pi\)
−0.623842 + 0.781551i \(0.714429\pi\)
\(488\) 17.4563 + 24.0266i 0.790211 + 1.08763i
\(489\) −20.7196 27.7615i −0.936973 1.25542i
\(490\) 13.4500 + 4.37016i 0.607608 + 0.197424i
\(491\) 16.1803 11.7557i 0.730209 0.530528i −0.159421 0.987211i \(-0.550963\pi\)
0.889629 + 0.456683i \(0.150963\pi\)
\(492\) −9.84163 + 3.33803i −0.443695 + 0.150490i
\(493\) −3.70820 11.4127i −0.167009 0.514001i
\(494\) −18.0000 −0.809858
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) −1.23607 3.80423i −0.0554452 0.170643i
\(498\) 26.2443 8.90140i 1.17604 0.398881i
\(499\) 11.3262 8.22899i 0.507032 0.368380i −0.304664 0.952460i \(-0.598544\pi\)
0.811697 + 0.584079i \(0.198544\pi\)
\(500\) 5.37999 + 1.74806i 0.240600 + 0.0781758i
\(501\) 12.4318 + 16.6569i 0.555410 + 0.744174i
\(502\) 14.9626 + 20.5942i 0.667812 + 0.919165i
\(503\) −12.9443 9.40456i −0.577157 0.419329i 0.260541 0.965463i \(-0.416099\pi\)
−0.837698 + 0.546134i \(0.816099\pi\)
\(504\) −7.74320 10.1016i −0.344909 0.449962i
\(505\) 28.2843i 1.25863i
\(506\) 0 0
\(507\) −5.00000 + 7.07107i −0.222058 + 0.314037i
\(508\) −9.41498 + 3.05911i −0.417722 + 0.135726i
\(509\) −19.9501 + 27.4589i −0.884272 + 1.21710i 0.0909469 + 0.995856i \(0.471011\pi\)
−0.975219 + 0.221241i \(0.928989\pi\)
\(510\) 29.3915 0.377372i 1.30148 0.0167103i
\(511\) −0.618034 + 1.90211i −0.0273402 + 0.0841445i
\(512\) 3.39919 10.4616i 0.150224 0.462343i
\(513\) −7.61471 20.6886i −0.336197 0.913422i
\(514\) −6.65003 + 9.15298i −0.293320 + 0.403721i
\(515\) 21.5200 6.99226i 0.948282 0.308116i
\(516\) 6.00000 + 4.24264i 0.264135 + 0.186772i
\(517\) 0 0
\(518\) 11.3137i 0.497096i
\(519\) −9.92408 3.08424i −0.435619 0.135383i
\(520\) −29.1246 21.1603i −1.27720 0.927939i
\(521\) 11.6376 + 16.0177i 0.509851 + 0.701749i 0.983894 0.178752i \(-0.0572061\pi\)
−0.474044 + 0.880501i \(0.657206\pi\)
\(522\) 5.99802 0.154049i 0.262526 0.00674254i
\(523\) 20.1750 + 6.55524i 0.882189 + 0.286641i 0.714866 0.699261i \(-0.246488\pi\)
0.167323 + 0.985902i \(0.446488\pi\)
\(524\) 0 0
\(525\) −2.36034 6.95908i −0.103014 0.303719i
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 4.94427 + 15.2169i 0.214765 + 0.660980i
\(531\) −32.5386 9.65615i −1.41205 0.419041i
\(532\) −4.85410 + 3.52671i −0.210452 + 0.152902i
\(533\) −24.2099 7.86629i −1.04865 0.340727i
\(534\) 0 0
\(535\) 26.6001 + 36.6119i 1.15002 + 1.58287i
\(536\) −4.85410 3.52671i −0.209665 0.152331i
\(537\) 1.45393 4.67826i 0.0627415 0.201882i
\(538\) 28.2843i 1.21942i
\(539\) 0 0
\(540\) 4.00000 14.1421i 0.172133 0.608581i
\(541\) −33.6249 + 10.9254i −1.44565 + 0.469720i −0.923653 0.383229i \(-0.874812\pi\)
−0.521995 + 0.852949i \(0.674812\pi\)
\(542\) −17.4563 + 24.0266i −0.749814 + 1.03203i
\(543\) −0.222369 17.3191i −0.00954276 0.743233i
\(544\) 9.27051 28.5317i 0.397470 1.22329i
\(545\) −3.70820 + 11.4127i −0.158842 + 0.488865i
\(546\) −0.133421 10.3914i −0.00570990 0.444713i
\(547\) −20.7813 + 28.6031i −0.888546 + 1.22298i 0.0854335 + 0.996344i \(0.472772\pi\)
−0.973980 + 0.226635i \(0.927228\pi\)
\(548\) −2.68999 + 0.874032i −0.114911 + 0.0373368i
\(549\) −28.0000 + 9.89949i −1.19501 + 0.422500i
\(550\) 0 0
\(551\) 8.48528i 0.361485i
\(552\) 0 0
\(553\) −4.85410 3.52671i −0.206417 0.149971i
\(554\) 2.49376 + 3.43237i 0.105950 + 0.145827i
\(555\) −31.4085 + 23.4416i −1.33322 + 0.995038i
\(556\) 1.34500 + 0.437016i 0.0570406 + 0.0185336i
\(557\) −1.61803 + 1.17557i −0.0685583 + 0.0498105i −0.621537 0.783385i \(-0.713491\pi\)
0.552978 + 0.833196i \(0.313491\pi\)
\(558\) −1.70698 + 5.75206i −0.0722623 + 0.243504i
\(559\) 5.56231 + 17.1190i 0.235260 + 0.724057i
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −3.70820 11.4127i −0.156282 0.480987i 0.842006 0.539468i \(-0.181374\pi\)
−0.998289 + 0.0584805i \(0.981374\pi\)
\(564\) −1.57356 4.63939i −0.0662588 0.195353i
\(565\) 6.47214 4.70228i 0.272285 0.197826i
\(566\) −25.5549 8.30330i −1.07415 0.349014i
\(567\) 11.8871 4.54934i 0.499212 0.191054i
\(568\) 4.98752 + 6.86474i 0.209272 + 0.288038i
\(569\) −30.7426 22.3358i −1.28880 0.936367i −0.289018 0.957324i \(-0.593329\pi\)
−0.999780 + 0.0209564i \(0.993329\pi\)
\(570\) 19.8482 + 6.16849i 0.831348 + 0.258369i
\(571\) 26.8701i 1.12448i 0.826975 + 0.562238i \(0.190060\pi\)
−0.826975 + 0.562238i \(0.809940\pi\)
\(572\) 0 0
\(573\) −28.0000 19.7990i −1.16972 0.827115i
\(574\) 8.06998 2.62210i 0.336835 0.109444i
\(575\) 0 0
\(576\) 17.3007 + 11.9032i 0.720861 + 0.495968i
\(577\) −9.88854 + 30.4338i −0.411665 + 1.26698i 0.503534 + 0.863975i \(0.332033\pi\)
−0.915200 + 0.403001i \(0.867967\pi\)
\(578\) −5.87132 + 18.0701i −0.244215 + 0.751616i
\(579\) −36.7393 + 0.471715i −1.52683 + 0.0196038i
\(580\) 3.32502 4.57649i 0.138064 0.190028i
\(581\) 21.5200 6.99226i 0.892798 0.290088i
\(582\) 2.00000 2.82843i 0.0829027 0.117242i
\(583\) 0 0
\(584\) 4.24264i 0.175562i
\(585\) 28.5717 21.9011i 1.18130 0.905498i
\(586\) 1.61803 + 1.17557i 0.0668404 + 0.0485624i
\(587\) −6.65003 9.15298i −0.274476 0.377784i 0.649418 0.760431i \(-0.275012\pi\)
−0.923894 + 0.382647i \(0.875012\pi\)
\(588\) 5.17990 + 6.94036i 0.213615 + 0.286216i
\(589\) 8.06998 + 2.62210i 0.332518 + 0.108042i
\(590\) 25.8885 18.8091i 1.06581 0.774360i
\(591\) 36.0860 12.2394i 1.48438 0.503463i
\(592\) −2.47214 7.60845i −0.101604 0.312705i
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 24.0000 0.983904
\(596\) 1.85410 + 5.70634i 0.0759470 + 0.233741i
\(597\) −3.28054 + 1.11268i −0.134264 + 0.0455388i
\(598\) 0 0
\(599\) −32.2799 10.4884i −1.31892 0.428544i −0.436798 0.899560i \(-0.643887\pi\)
−0.882125 + 0.471016i \(0.843887\pi\)
\(600\) 9.32382 + 12.4927i 0.380643 + 0.510010i
\(601\) −17.4563 24.0266i −0.712059 0.980065i −0.999750 0.0223415i \(-0.992888\pi\)
0.287692 0.957723i \(-0.407112\pi\)
\(602\) −4.85410 3.52671i −0.197838 0.143738i
\(603\) 4.76195 3.65018i 0.193922 0.148647i
\(604\) 4.24264i 0.172631i
\(605\) 0 0
\(606\) −10.0000 + 14.1421i −0.406222 + 0.574485i
\(607\) −4.03499 + 1.31105i −0.163775 + 0.0532138i −0.389757 0.920918i \(-0.627441\pi\)
0.225982 + 0.974132i \(0.427441\pi\)
\(608\) 12.4688 17.1618i 0.505677 0.696005i
\(609\) 4.89858 0.0628954i 0.198500 0.00254865i
\(610\) 8.65248 26.6296i 0.350329 1.07820i
\(611\) 3.70820 11.4127i 0.150018 0.461708i
\(612\) 14.8291 + 10.2028i 0.599433 + 0.412422i
\(613\) −2.49376 + 3.43237i −0.100722 + 0.138632i −0.856403 0.516308i \(-0.827306\pi\)
0.755681 + 0.654940i \(0.227306\pi\)
\(614\) −4.03499 + 1.31105i −0.162839 + 0.0529096i
\(615\) 24.0000 + 16.9706i 0.967773 + 0.684319i
\(616\) 0 0
\(617\) 31.1127i 1.25255i 0.779602 + 0.626275i \(0.215421\pi\)
−0.779602 + 0.626275i \(0.784579\pi\)
\(618\) −13.2321 4.11232i −0.532274 0.165422i
\(619\) 16.1803 + 11.7557i 0.650343 + 0.472502i 0.863388 0.504541i \(-0.168338\pi\)
−0.213045 + 0.977042i \(0.568338\pi\)
\(620\) 3.32502 + 4.57649i 0.133536 + 0.183796i
\(621\) 0 0
\(622\) −26.8999 8.74032i −1.07859 0.350455i
\(623\) 0 0
\(624\) 2.36034 + 6.95908i 0.0944892 + 0.278586i
\(625\) −9.57953 29.4828i −0.383181 1.17931i
\(626\) −12.0000 −0.479616
\(627\) 0 0
\(628\) 20.0000 0.798087
\(629\) −14.8328 45.6507i −0.591423 1.82021i
\(630\) −3.41396 + 11.5041i −0.136016 + 0.458335i
\(631\) 11.3262 8.22899i 0.450890 0.327591i −0.339057 0.940766i \(-0.610108\pi\)
0.789947 + 0.613175i \(0.210108\pi\)
\(632\) 12.1050 + 3.93314i 0.481510 + 0.156452i
\(633\) −37.2976 + 27.8368i −1.48245 + 1.10642i
\(634\) 14.9626 + 20.5942i 0.594240 + 0.817901i
\(635\) 22.6525 + 16.4580i 0.898936 + 0.653115i
\(636\) −2.90785 + 9.35652i −0.115304 + 0.371010i
\(637\) 21.2132i 0.840498i
\(638\) 0 0
\(639\) −8.00000 + 2.82843i −0.316475 + 0.111891i
\(640\) 8.06998 2.62210i 0.318994 0.103647i
\(641\) 16.6251 22.8825i 0.656651 0.903803i −0.342714 0.939440i \(-0.611346\pi\)
0.999365 + 0.0356372i \(0.0113461\pi\)
\(642\) −0.355790 27.7105i −0.0140419 1.09365i
\(643\) 3.70820 11.4127i 0.146237 0.450072i −0.850931 0.525278i \(-0.823961\pi\)
0.997168 + 0.0752058i \(0.0239614\pi\)
\(644\) 0 0
\(645\) −0.266843 20.7829i −0.0105069 0.818326i
\(646\) −14.9626 + 20.5942i −0.588694 + 0.810268i
\(647\) 5.37999 1.74806i 0.211509 0.0687235i −0.201346 0.979520i \(-0.564532\pi\)
0.412855 + 0.910797i \(0.364532\pi\)
\(648\) −21.0000 + 16.9706i −0.824958 + 0.666667i
\(649\) 0 0
\(650\) 12.7279i 0.499230i
\(651\) −1.45393 + 4.67826i −0.0569839 + 0.183355i
\(652\) 16.1803 + 11.7557i 0.633671 + 0.460389i
\(653\) −6.65003 9.15298i −0.260236 0.358184i 0.658827 0.752294i \(-0.271053\pi\)
−0.919063 + 0.394110i \(0.871053\pi\)
\(654\) 5.88909 4.39529i 0.230282 0.171869i
\(655\) 0 0
\(656\) −4.85410 + 3.52671i −0.189521 + 0.137695i
\(657\) 4.06732 + 1.20702i 0.158681 + 0.0470903i
\(658\) 1.23607 + 3.80423i 0.0481869 + 0.148304i
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −20.0000 −0.777910 −0.388955 0.921257i \(-0.627164\pi\)
−0.388955 + 0.921257i \(0.627164\pi\)
\(662\) 6.18034 + 19.0211i 0.240206 + 0.739277i
\(663\) 14.1620 + 41.7545i 0.550008 + 1.62161i
\(664\) −38.8328 + 28.2137i −1.50701 + 1.09490i
\(665\) 16.1400 + 5.24419i 0.625881 + 0.203361i
\(666\) 23.9921 0.616196i 0.929675 0.0238771i
\(667\) 0 0
\(668\) −9.70820 7.05342i −0.375622 0.272905i
\(669\) 39.6963 + 12.3370i 1.53475 + 0.476975i
\(670\) 5.65685i 0.218543i
\(671\) 0 0
\(672\) 10.0000 + 7.07107i 0.385758 + 0.272772i
\(673\) −4.03499 + 1.31105i −0.155537 + 0.0505372i −0.385751 0.922603i \(-0.626058\pi\)
0.230213 + 0.973140i \(0.426058\pi\)
\(674\) 19.1188 26.3148i 0.736430 1.01361i
\(675\) −14.6290 + 5.38441i −0.563071 + 0.207246i
\(676\) 1.54508 4.75528i 0.0594263 0.182895i
\(677\) 11.7426 36.1401i 0.451307 1.38898i −0.424111 0.905610i \(-0.639413\pi\)
0.875417 0.483368i \(-0.160587\pi\)
\(678\) −4.89858 + 0.0628954i −0.188129 + 0.00241548i
\(679\) 1.66251 2.28825i 0.0638012 0.0878148i
\(680\) −48.4199 + 15.7326i −1.85682 + 0.603317i
\(681\) 24.0000 33.9411i 0.919682 1.30063i
\(682\) 0 0
\(683\) 31.1127i 1.19049i −0.803543 0.595247i \(-0.797054\pi\)
0.803543 0.595247i \(-0.202946\pi\)
\(684\) 7.74320 + 10.1016i 0.296068 + 0.386245i
\(685\) 6.47214 + 4.70228i 0.247288 + 0.179665i
\(686\) −9.97505 13.7295i −0.380849 0.524194i
\(687\) 24.8635 + 33.3137i 0.948602 + 1.27100i
\(688\) 4.03499 + 1.31105i 0.153833 + 0.0499832i
\(689\) −19.4164 + 14.1068i −0.739706 + 0.537428i
\(690\) 0 0
\(691\) 6.18034 + 19.0211i 0.235111 + 0.723598i 0.997107 + 0.0760155i \(0.0242198\pi\)
−0.761995 + 0.647582i \(0.775780\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −16.0000 −0.607352
\(695\) −1.23607 3.80423i −0.0468867 0.144303i
\(696\) −9.84163 + 3.33803i −0.373046 + 0.126528i
\(697\) −29.1246 + 21.1603i −1.10317 + 0.801502i
\(698\) 4.03499 + 1.31105i 0.152727 + 0.0496239i
\(699\) −10.3598 13.8807i −0.391844 0.525017i
\(700\) 2.49376 + 3.43237i 0.0942553 + 0.129731i
\(701\) 4.85410 + 3.52671i 0.183337 + 0.133202i 0.675668 0.737206i \(-0.263855\pi\)
−0.492331 + 0.870408i \(0.663855\pi\)
\(702\) −22.0291 + 0.848901i −0.831433 + 0.0320397i
\(703\) 33.9411i 1.28011i
\(704\) 0 0
\(705\) −8.00000 + 11.3137i −0.301297 + 0.426099i
\(706\) 0 0
\(707\) −8.31254 + 11.4412i −0.312625 + 0.430292i
\(708\) 19.5943 0.251582i 0.736399 0.00945502i
\(709\) −9.88854 + 30.4338i −0.371372 + 1.14297i 0.574522 + 0.818489i \(0.305188\pi\)
−0.945894 + 0.324476i \(0.894812\pi\)
\(710\) 2.47214 7.60845i 0.0927776 0.285540i
\(711\) −7.21444 + 10.4858i −0.270563 + 0.393248i
\(712\) 0 0
\(713\) 0 0
\(714\) −12.0000 8.48528i −0.449089 0.317554i
\(715\) 0 0
\(716\) 2.82843i 0.105703i
\(717\) 26.4642 + 8.22465i 0.988325 + 0.307155i
\(718\) −16.1803 11.7557i −0.603845 0.438719i
\(719\) 11.6376 + 16.0177i 0.434008 + 0.597360i 0.968867 0.247581i \(-0.0796355\pi\)
−0.534860 + 0.844941i \(0.679636\pi\)
\(720\) −0.217858 8.48248i −0.00811909 0.316124i
\(721\) −10.7600 3.49613i −0.400722 0.130203i
\(722\) 0.809017 0.587785i 0.0301085 0.0218751i
\(723\) 2.36034 + 6.95908i 0.0877820 + 0.258811i
\(724\) 3.09017 + 9.51057i 0.114845 + 0.353457i
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) 5.56231 + 17.1190i 0.206153 + 0.634473i
\(729\) −10.2949 24.9603i −0.381291 0.924455i
\(730\) −3.23607 + 2.35114i −0.119772 + 0.0870196i
\(731\) 24.2099 + 7.86629i 0.895437 + 0.290945i
\(732\) 13.7412 10.2557i 0.507890 0.379061i
\(733\) 0.831254 + 1.14412i 0.0307031 + 0.0422591i 0.824093 0.566455i \(-0.191686\pi\)
−0.793389 + 0.608714i \(0.791686\pi\)
\(734\) 6.47214 + 4.70228i 0.238891 + 0.173564i
\(735\) 7.26963 23.3913i 0.268144 0.862801i
\(736\) 0 0
\(737\) 0 0
\(738\) −6.00000 16.9706i −0.220863 0.624695i
\(739\) −4.03499 + 1.31105i −0.148430 + 0.0482277i −0.382289 0.924043i \(-0.624864\pi\)
0.233860 + 0.972270i \(0.424864\pi\)
\(740\) 13.3001 18.3060i 0.488920 0.672941i
\(741\) 0.400264 + 31.1743i 0.0147041 + 1.14522i
\(742\) 2.47214 7.60845i 0.0907550 0.279315i
\(743\) 4.94427 15.2169i 0.181388 0.558254i −0.818480 0.574535i \(-0.805183\pi\)
0.999867 + 0.0162814i \(0.00518275\pi\)
\(744\) −0.133421 10.3914i −0.00489146 0.380969i
\(745\) 9.97505 13.7295i 0.365457 0.503009i
\(746\) −4.03499 + 1.31105i −0.147732 + 0.0480009i
\(747\) −16.0000 45.2548i −0.585409 1.65579i
\(748\) 0 0
\(749\) 22.6274i 0.826788i
\(750\) −2.90785 + 9.35652i −0.106180 + 0.341652i
\(751\) −1.61803 1.17557i −0.0590429 0.0428972i 0.557872 0.829927i \(-0.311618\pi\)
−0.616915 + 0.787030i \(0.711618\pi\)
\(752\) −1.66251 2.28825i −0.0606254 0.0834437i
\(753\) 35.3346 26.3717i 1.28766 0.961040i
\(754\) −8.06998 2.62210i −0.293891 0.0954911i
\(755\) 9.70820 7.05342i 0.353318 0.256700i
\(756\) −5.77430 + 4.54504i −0.210009 + 0.165302i
\(757\) 6.18034 + 19.0211i 0.224628 + 0.691335i 0.998329 + 0.0577836i \(0.0184034\pi\)
−0.773701 + 0.633551i \(0.781597\pi\)
\(758\) −12.0000 −0.435860
\(759\) 0 0
\(760\) −36.0000 −1.30586
\(761\) 3.09017 + 9.51057i 0.112019 + 0.344758i 0.991314 0.131520i \(-0.0419857\pi\)
−0.879295 + 0.476278i \(0.841986\pi\)
\(762\) −5.50746 16.2379i −0.199514 0.588235i
\(763\) 4.85410 3.52671i 0.175730 0.127676i
\(764\) 18.8300 + 6.11822i 0.681244 + 0.221350i
\(765\) −1.30715 50.8949i −0.0472601 1.84011i
\(766\) −3.32502 4.57649i −0.120138 0.165355i
\(767\) 38.8328 + 28.2137i 1.40217 + 1.01874i
\(768\) −28.1182 8.73869i −1.01463 0.315330i
\(769\) 35.3553i 1.27495i −0.770473 0.637473i \(-0.779980\pi\)
0.770473 0.637473i \(-0.220020\pi\)
\(770\) 0 0
\(771\) 16.0000 + 11.3137i 0.576226 + 0.407453i
\(772\) 20.1750 6.55524i 0.726113 0.235928i
\(773\) −19.9501 + 27.4589i −0.717555 + 0.987630i 0.282047 + 0.959401i \(0.408987\pi\)
−0.999601 + 0.0282290i \(0.991013\pi\)
\(774\) −7.21444 + 10.4858i −0.259318 + 0.376904i
\(775\) 1.85410 5.70634i 0.0666013 0.204978i
\(776\) −1.85410 + 5.70634i −0.0665584 + 0.204846i
\(777\) 19.5943 0.251582i 0.702942 0.00902544i
\(778\) 11.6376 16.0177i 0.417227 0.574263i
\(779\) −24.2099 + 7.86629i −0.867411 + 0.281839i
\(780\) −12.0000 + 16.9706i −0.429669 + 0.607644i
\(781\) 0 0
\(782\) 0 0
\(783\) −0.400176 10.3846i −0.0143011 0.371115i
\(784\) 4.04508 + 2.93893i 0.144467 + 0.104962i
\(785\) −33.2502 45.7649i −1.18675 1.63342i
\(786\) 0 0
\(787\) 20.1750 + 6.55524i 0.719159 + 0.233669i 0.645659 0.763626i \(-0.276583\pi\)
0.0735007 + 0.997295i \(0.476583\pi\)
\(788\) −17.7984 + 12.9313i −0.634041 + 0.460658i
\(789\) 0 0
\(790\) −3.70820 11.4127i −0.131932 0.406045i
\(791\) −4.00000 −0.142224
\(792\) 0 0
\(793\) 42.0000 1.49146
\(794\) −0.618034 1.90211i −0.0219332 0.0675035i
\(795\) 26.2443 8.90140i 0.930791 0.315700i
\(796\) 1.61803 1.17557i 0.0573497 0.0416670i
\(797\) −2.68999 0.874032i −0.0952845 0.0309598i 0.260987 0.965342i \(-0.415952\pi\)
−0.356271 + 0.934383i \(0.615952\pi\)
\(798\) −6.21588 8.32844i −0.220040 0.294823i
\(799\) −9.97505 13.7295i −0.352892 0.485714i
\(800\) −12.1353 8.81678i −0.429046 0.311720i
\(801\) 0 0
\(802\) 2.82843i 0.0998752i
\(803\) 0 0
\(804\) −2.00000 + 2.82843i −0.0705346 + 0.0997509i
\(805\) 0 0
\(806\) 4.98752 6.86474i 0.175678 0.241800i
\(807\) −48.9858 + 0.628954i −1.72438 + 0.0221402i
\(808\) 9.27051 28.5317i 0.326135 1.00374i
\(809\) −15.4508 + 47.5528i −0.543223 + 1.67187i 0.181955 + 0.983307i \(0.441757\pi\)
−0.725178 + 0.688561i \(0.758243\pi\)
\(810\) 24.5818 + 6.61316i 0.863717 + 0.232363i
\(811\) 15.7938 21.7383i 0.554596 0.763336i −0.436031 0.899932i \(-0.643616\pi\)
0.990627 + 0.136596i \(0.0436161\pi\)
\(812\) −2.68999 + 0.874032i −0.0944003 + 0.0306725i
\(813\) 42.0000 + 29.6985i 1.47300 + 1.04157i
\(814\) 0 0
\(815\) 56.5685i 1.98151i
\(816\) 9.92408 + 3.08424i 0.347412 + 0.107970i
\(817\) 14.5623 + 10.5801i 0.509471 + 0.370152i
\(818\) 2.49376 + 3.43237i 0.0871923 + 0.120010i
\(819\) −17.9941 + 0.462147i −0.628764 + 0.0161487i
\(820\) −16.1400 5.24419i −0.563632 0.183135i
\(821\) 33.9787 24.6870i 1.18587 0.861582i 0.193044 0.981190i \(-0.438164\pi\)
0.992821 + 0.119609i \(0.0381639\pi\)
\(822\) −1.57356 4.63939i −0.0548842 0.161817i
\(823\) −7.41641 22.8254i −0.258520 0.795642i −0.993116 0.117137i \(-0.962628\pi\)
0.734596 0.678505i \(-0.237372\pi\)
\(824\) 24.0000 0.836080
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) −3.70820 11.4127i −0.128947 0.396858i 0.865653 0.500645i \(-0.166904\pi\)
−0.994600 + 0.103787i \(0.966904\pi\)
\(828\) 0 0
\(829\) 11.3262 8.22899i 0.393377 0.285805i −0.373461 0.927646i \(-0.621829\pi\)
0.766838 + 0.641841i \(0.221829\pi\)
\(830\) 43.0399 + 13.9845i 1.49394 + 0.485410i
\(831\) 5.88909 4.39529i 0.204290 0.152471i
\(832\) −17.4563 24.0266i −0.605189 0.832972i
\(833\) 24.2705 + 17.6336i 0.840923 + 0.610967i
\(834\) −0.726963 + 2.33913i −0.0251727 + 0.0809974i
\(835\) 33.9411i 1.17458i
\(836\) 0 0
\(837\) 10.0000 + 2.82843i 0.345651 + 0.0977647i
\(838\) 29.5899 9.61435i 1.02217 0.332122i
\(839\) −19.9501 + 27.4589i −0.688754 + 0.947988i −0.999997 0.00234204i \(-0.999255\pi\)
0.311244 + 0.950330i \(0.399255\pi\)
\(840\) −0.266843 20.7829i −0.00920694 0.717078i
\(841\) −7.72542 + 23.7764i −0.266394 + 0.819876i
\(842\) 6.18034 19.0211i 0.212989 0.655511i
\(843\) −0.133421 10.3914i −0.00459527 0.357900i
\(844\) 15.7938 21.7383i 0.543646 0.748264i
\(845\) −13.4500 + 4.37016i −0.462693 + 0.150338i
\(846\) 8.00000 2.82843i 0.275046 0.0972433i
\(847\) 0 0
\(848\) 5.65685i 0.194257i
\(849\) −13.8123 + 44.4435i −0.474037 + 1.52530i
\(850\) 14.5623 + 10.5801i 0.499483 + 0.362896i
\(851\) 0 0
\(852\) 3.92606 2.93019i 0.134505 0.100387i
\(853\) −39.0049 12.6735i −1.33550 0.433931i −0.447712 0.894178i \(-0.647761\pi\)
−0.887791 + 0.460247i \(0.847761\pi\)
\(854\) −11.3262 + 8.22899i −0.387576 + 0.281590i
\(855\) 10.2419 34.5124i 0.350265 1.18030i
\(856\) 14.8328 + 45.6507i 0.506975 + 1.56031i
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 3.70820 + 11.4127i 0.126449 + 0.389169i
\(861\) −4.72068 13.9182i −0.160880 0.474330i
\(862\) 25.8885 18.8091i 0.881767 0.640641i
\(863\) −32.2799 10.4884i −1.09882 0.357029i −0.297173 0.954824i \(-0.596044\pi\)
−0.801649 + 0.597795i \(0.796044\pi\)
\(864\) 14.4504 21.5913i 0.491613 0.734552i
\(865\) −9.97505 13.7295i −0.339162 0.466816i
\(866\) 24.2705 + 17.6336i 0.824745 + 0.599213i
\(867\) 31.4263 + 9.76677i 1.06729 + 0.331697i
\(868\) 2.82843i 0.0960031i
\(869\) 0 0
\(870\) 8.00000 + 5.65685i 0.271225 + 0.191785i
\(871\) −8.06998 + 2.62210i −0.273441 + 0.0888463i
\(872\) −7.48128 + 10.2971i −0.253348 + 0.348704i
\(873\) −4.94305 3.40092i −0.167297 0.115104i
\(874\) 0 0
\(875\) −2.47214 + 7.60845i −0.0835734 + 0.257213i
\(876\) −2.44929 + 0.0314477i −0.0827538 + 0.00106252i
\(877\) −20.7813 + 28.6031i −0.701736 + 0.965857i 0.298199 + 0.954504i \(0.403614\pi\)
−0.999936 + 0.0113534i \(0.996386\pi\)
\(878\) 25.5549 8.30330i 0.862438 0.280223i
\(879\) 2.00000 2.82843i 0.0674583 0.0954005i
\(880\) 0 0
\(881\) 31.1127i 1.04821i 0.851653 + 0.524107i \(0.175601\pi\)
−0.851653 + 0.524107i \(0.824399\pi\)
\(882\) −11.9049 + 9.12544i −0.400858 + 0.307270i
\(883\) −37.2148 27.0381i −1.25238 0.909905i −0.254020 0.967199i \(-0.581753\pi\)
−0.998357 + 0.0572938i \(0.981753\pi\)
\(884\) −14.9626 20.5942i −0.503246 0.692658i
\(885\) −33.1514 44.4183i −1.11437 1.49311i
\(886\) −26.8999 8.74032i −0.903721 0.293637i
\(887\) −19.4164 + 14.1068i −0.651939 + 0.473662i −0.863931 0.503610i \(-0.832005\pi\)
0.211992 + 0.977271i \(0.432005\pi\)
\(888\) −39.3665 + 13.3521i −1.32105 + 0.448067i
\(889\) −4.32624 13.3148i −0.145097 0.446564i
\(890\) 0 0
\(891\) 0 0
\(892\) −24.0000 −0.803579
\(893\) −3.70820 11.4127i −0.124090 0.381911i
\(894\) −9.84163 + 3.33803i −0.329153 + 0.111640i
\(895\) 6.47214 4.70228i 0.216340 0.157180i
\(896\) −4.03499 1.31105i −0.134800 0.0437990i
\(897\) 0 0
\(898\) −3.32502 4.57649i −0.110957 0.152719i
\(899\) 3.23607 + 2.35114i 0.107929 + 0.0784149i
\(900\) 7.14293 5.47527i 0.238098 0.182509i
\(901\) 33.9411i 1.13074i
\(902\) 0 0
\(903\) −6.00000 + 8.48528i −0.199667 + 0.282372i
\(904\) 8.06998 2.62210i 0.268404 0.0872096i
\(905\) 16.6251 22.8825i 0.552636 0.760639i
\(906\) −7.34786 + 0.0943431i −0.244116 + 0.00313434i
\(907\) 3.70820 11.4127i 0.123129 0.378952i −0.870427 0.492298i \(-0.836157\pi\)
0.993556 + 0.113346i \(0.0361570\pi\)
\(908\) −7.41641 + 22.8254i −0.246122 + 0.757486i
\(909\) 24.7152 + 17.0046i 0.819753 + 0.564007i
\(910\) 9.97505 13.7295i 0.330670 0.455128i
\(911\) 34.9699 11.3624i 1.15861 0.376454i 0.334227 0.942493i \(-0.391525\pi\)
0.824378 + 0.566039i \(0.191525\pi\)
\(912\) 6.00000 + 4.24264i 0.198680 + 0.140488i
\(913\) 0 0
\(914\) 9.89949i 0.327446i
\(915\) −46.3124 14.3931i −1.53104 0.475822i
\(916\) −19.4164 14.1068i −0.641536 0.466103i
\(917\) 0 0
\(918\) −17.3405 + 25.9096i −0.572322 + 0.855144i
\(919\) 20.1750 + 6.55524i 0.665510 + 0.216237i 0.622241 0.782826i \(-0.286223\pi\)
0.0432697 + 0.999063i \(0.486223\pi\)
\(920\) 0 0
\(921\) 2.36034 + 6.95908i 0.0777759 + 0.229309i
\(922\) 6.79837 + 20.9232i 0.223893 + 0.689070i
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) −24.0000 −0.789115
\(926\) −7.41641 22.8254i −0.243718 0.750088i
\(927\) −6.82793 + 23.0082i −0.224259 + 0.755690i
\(928\) 8.09017 5.87785i 0.265573 0.192950i
\(929\) −2.68999 0.874032i −0.0882558 0.0286761i 0.264556 0.964370i \(-0.414775\pi\)
−0.352812 + 0.935694i \(0.614775\pi\)
\(930\) −7.85212 + 5.86039i −0.257481 + 0.192170i
\(931\) 12.4688 + 17.1618i 0.408649 + 0.562457i
\(932\) 8.09017 + 5.87785i 0.265002 + 0.192535i
\(933\) −14.5393 + 46.7826i −0.475994 + 1.53159i
\(934\) 28.2843i 0.925490i
\(935\) 0 0
\(936\) 36.0000 12.7279i 1.17670 0.416025i
\(937\) −33.6249 + 10.9254i −1.09848 + 0.356917i −0.801517 0.597972i \(-0.795973\pi\)
−0.296962 + 0.954889i \(0.595973\pi\)
\(938\) 1.66251 2.28825i 0.0542828 0.0747139i
\(939\) 0.266843 + 20.7829i 0.00870808 + 0.678224i
\(940\) 2.47214 7.60845i 0.0806322 0.248160i
\(941\) 11.7426 36.1401i 0.382799 1.17814i −0.555265 0.831674i \(-0.687383\pi\)
0.938064 0.346462i \(-0.112617\pi\)
\(942\) 0.444738 + 34.6382i 0.0144903 + 1.12857i
\(943\) 0 0
\(944\) 10.7600 3.49613i 0.350207 0.113789i
\(945\) 20.0000 + 5.65685i 0.650600 + 0.184017i
\(946\) 0 0
\(947\) 31.1127i 1.01103i −0.862819 0.505513i \(-0.831303\pi\)
0.862819 0.505513i \(-0.168697\pi\)
\(948\) 2.18089 7.01739i 0.0708320 0.227914i
\(949\) −4.85410 3.52671i −0.157571 0.114482i
\(950\) 7.48128 + 10.2971i 0.242725 + 0.334082i
\(951\) 35.3346 26.3717i 1.14580 0.855162i
\(952\) 24.2099 + 7.86629i 0.784649 + 0.254948i
\(953\) −1.61803 + 1.17557i −0.0524133 + 0.0380805i −0.613683 0.789552i \(-0.710313\pi\)
0.561270 + 0.827633i \(0.310313\pi\)
\(954\) −16.2693 4.82807i −0.526738 0.156315i
\(955\) −17.3050 53.2592i −0.559975 1.72343i
\(956\) −16.0000 −0.517477
\(957\) 0 0
\(958\) 28.0000 0.904639
\(959\) −1.23607 3.80423i −0.0399147 0.122845i
\(960\) 11.0149 + 32.4757i 0.355505 + 1.04815i
\(961\) 21.8435 15.8702i 0.704628 0.511942i
\(962\) −32.2799 10.4884i −1.04075 0.338159i
\(963\) −47.9842 + 1.23239i −1.54627 + 0.0397133i
\(964\) −2.49376 3.43237i −0.0803187 0.110549i
\(965\) −48.5410 35.2671i −1.56259 1.13529i
\(966\) 0 0
\(967\) 4.24264i 0.136434i −0.997671 0.0682171i \(-0.978269\pi\)
0.997671 0.0682171i \(-0.0217310\pi\)
\(968\) 0 0
\(969\) 36.0000 + 25.4558i 1.15649 + 0.817760i
\(970\) 5.37999 1.74806i 0.172741 0.0561270i
\(971\) −19.9501 + 27.4589i −0.640229 + 0.881200i −0.998628 0.0523690i \(-0.983323\pi\)
0.358399 + 0.933569i \(0.383323\pi\)
\(972\) 9.95281 + 11.9976i 0.319237 + 0.384822i
\(973\) −0.618034 + 1.90211i −0.0198133 + 0.0609789i
\(974\) −0.618034 + 1.90211i −0.0198031 + 0.0609476i
\(975\) 22.0436 0.283029i 0.705960 0.00906419i
\(976\) 5.81878 8.00886i 0.186255 0.256357i
\(977\) −24.2099 + 7.86629i −0.774545 + 0.251665i −0.669509 0.742804i \(-0.733496\pi\)
−0.105035 + 0.994468i \(0.533496\pi\)
\(978\) −20.0000 + 28.2843i −0.639529 + 0.904431i
\(979\) 0 0
\(980\) 14.1421i 0.451754i
\(981\) −7.74320 10.1016i −0.247221 0.322520i
\(982\) −16.1803 11.7557i −0.516335 0.375140i
\(983\) −6.65003 9.15298i −0.212103 0.291935i 0.689688 0.724106i \(-0.257748\pi\)
−0.901791 + 0.432171i \(0.857748\pi\)
\(984\) 18.6476 + 24.9853i 0.594465 + 0.796502i
\(985\) 59.1799 + 19.2287i 1.88563 + 0.612677i
\(986\) −9.70820 + 7.05342i −0.309172 + 0.224627i
\(987\) 6.56108 2.22535i 0.208842 0.0708337i
\(988\) −5.56231 17.1190i −0.176961 0.544628i
\(989\) 0 0
\(990\) 0 0
\(991\) −42.0000 −1.33417 −0.667087 0.744980i \(-0.732459\pi\)
−0.667087 + 0.744980i \(0.732459\pi\)
\(992\) 3.09017 + 9.51057i 0.0981130 + 0.301961i
\(993\) 32.8054 11.1268i 1.04105 0.353097i
\(994\) −3.23607 + 2.35114i −0.102642 + 0.0745737i
\(995\) −5.37999 1.74806i −0.170557 0.0554174i
\(996\) 16.5757 + 22.2092i 0.525221 + 0.703724i
\(997\) −17.4563 24.0266i −0.552848 0.760929i 0.437548 0.899195i \(-0.355847\pi\)
−0.990395 + 0.138266i \(0.955847\pi\)
\(998\) −11.3262 8.22899i −0.358526 0.260484i
\(999\) −1.60070 41.5384i −0.0506440 1.31422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.f.f.215.1 8
3.2 odd 2 363.2.f.a.215.2 8
11.2 odd 10 363.2.f.a.233.2 8
11.3 even 5 363.2.d.a.362.1 2
11.4 even 5 inner 363.2.f.f.239.2 8
11.5 even 5 inner 363.2.f.f.161.1 8
11.6 odd 10 363.2.f.a.161.1 8
11.7 odd 10 363.2.f.a.239.2 8
11.8 odd 10 363.2.d.b.362.1 yes 2
11.9 even 5 inner 363.2.f.f.233.2 8
11.10 odd 2 363.2.f.a.215.1 8
33.2 even 10 inner 363.2.f.f.233.1 8
33.5 odd 10 363.2.f.a.161.2 8
33.8 even 10 363.2.d.a.362.2 yes 2
33.14 odd 10 363.2.d.b.362.2 yes 2
33.17 even 10 inner 363.2.f.f.161.2 8
33.20 odd 10 363.2.f.a.233.1 8
33.26 odd 10 363.2.f.a.239.1 8
33.29 even 10 inner 363.2.f.f.239.1 8
33.32 even 2 inner 363.2.f.f.215.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.d.a.362.1 2 11.3 even 5
363.2.d.a.362.2 yes 2 33.8 even 10
363.2.d.b.362.1 yes 2 11.8 odd 10
363.2.d.b.362.2 yes 2 33.14 odd 10
363.2.f.a.161.1 8 11.6 odd 10
363.2.f.a.161.2 8 33.5 odd 10
363.2.f.a.215.1 8 11.10 odd 2
363.2.f.a.215.2 8 3.2 odd 2
363.2.f.a.233.1 8 33.20 odd 10
363.2.f.a.233.2 8 11.2 odd 10
363.2.f.a.239.1 8 33.26 odd 10
363.2.f.a.239.2 8 11.7 odd 10
363.2.f.f.161.1 8 11.5 even 5 inner
363.2.f.f.161.2 8 33.17 even 10 inner
363.2.f.f.215.1 8 1.1 even 1 trivial
363.2.f.f.215.2 8 33.32 even 2 inner
363.2.f.f.233.1 8 33.2 even 10 inner
363.2.f.f.233.2 8 11.9 even 5 inner
363.2.f.f.239.1 8 33.29 even 10 inner
363.2.f.f.239.2 8 11.4 even 5 inner