Properties

Label 363.2.e.n.124.4
Level $363$
Weight $2$
Character 363.124
Analytic conductor $2.899$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: 16.0.22502537891856000000000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 7x^{14} + 45x^{12} + 287x^{10} + 1829x^{8} + 1148x^{6} + 720x^{4} + 448x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 124.4
Root \(2.04223 + 1.48377i\) of defining polynomial
Character \(\chi\) \(=\) 363.124
Dual form 363.2.e.n.202.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.04223 - 1.48377i) q^{2} +(0.309017 + 0.951057i) q^{3} +(1.35111 - 4.15829i) q^{4} +(1.91922 + 1.39439i) q^{5} +(2.04223 + 1.48377i) q^{6} +(-0.244830 + 0.753510i) q^{7} +(-1.85053 - 5.69534i) q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(2.04223 - 1.48377i) q^{2} +(0.309017 + 0.951057i) q^{3} +(1.35111 - 4.15829i) q^{4} +(1.91922 + 1.39439i) q^{5} +(2.04223 + 1.48377i) q^{6} +(-0.244830 + 0.753510i) q^{7} +(-1.85053 - 5.69534i) q^{8} +(-0.809017 + 0.587785i) q^{9} +5.98844 q^{10} +4.37228 q^{12} +(-3.32418 + 2.41516i) q^{13} +(0.618034 + 1.90211i) q^{14} +(-0.733075 + 2.25617i) q^{15} +(-5.15528 - 3.74553i) q^{16} +(-4.84475 - 3.51992i) q^{17} +(-0.780063 + 2.40079i) q^{18} +(-1.31530 - 4.04807i) q^{19} +(8.39135 - 6.09667i) q^{20} -0.792287 q^{21} +2.00000 q^{23} +(4.84475 - 3.51992i) q^{24} +(0.193976 + 0.596996i) q^{25} +(-3.20521 + 9.86463i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(2.80252 + 2.03615i) q^{28} +(0.780063 - 2.40079i) q^{29} +(1.85053 + 5.69534i) q^{30} +(-5.96430 + 4.33332i) q^{31} -4.10891 q^{32} -15.1168 q^{34} +(-1.52057 + 1.10476i) q^{35} +(1.35111 + 4.15829i) q^{36} +(1.54508 - 4.75528i) q^{37} +(-8.69253 - 6.31550i) q^{38} +(-3.32418 - 2.41516i) q^{39} +(4.38998 - 13.5110i) q^{40} +(1.75938 + 5.41483i) q^{41} +(-1.61803 + 1.17557i) q^{42} +6.63325 q^{43} -2.37228 q^{45} +(4.08446 - 2.96754i) q^{46} +(-0.387951 - 1.19399i) q^{47} +(1.96914 - 6.06040i) q^{48} +(5.15528 + 3.74553i) q^{49} +(1.28195 + 0.931389i) q^{50} +(1.85053 - 5.69534i) q^{51} +(5.55159 + 17.0860i) q^{52} +(-10.6117 + 7.70989i) q^{53} -2.52434 q^{54} +4.74456 q^{56} +(3.44349 - 2.50184i) q^{57} +(-1.96914 - 6.06040i) q^{58} +(-1.85410 + 5.70634i) q^{59} +(8.39135 + 6.09667i) q^{60} +(-2.16154 - 1.57045i) q^{61} +(-5.75085 + 17.6993i) q^{62} +(-0.244830 - 0.753510i) q^{63} +(1.91922 - 1.39439i) q^{64} -9.74749 q^{65} +16.1168 q^{67} +(-21.1826 + 15.3901i) q^{68} +(0.618034 + 1.90211i) q^{69} +(-1.46615 + 4.51235i) q^{70} +(-0.602364 - 0.437643i) q^{71} +(4.84475 + 3.51992i) q^{72} +(-2.29462 + 7.06210i) q^{73} +(-3.90032 - 12.0039i) q^{74} +(-0.507835 + 0.368964i) q^{75} -18.6101 q^{76} -10.3723 q^{78} +(4.72544 - 3.43323i) q^{79} +(-4.67136 - 14.3770i) q^{80} +(0.309017 - 0.951057i) q^{81} +(11.6274 + 8.44782i) q^{82} +(6.88698 + 5.00368i) q^{83} +(-1.07047 + 3.29456i) q^{84} +(-4.38998 - 13.5110i) q^{85} +(13.5466 - 9.84221i) q^{86} +2.52434 q^{87} -6.37228 q^{89} +(-4.84475 + 3.51992i) q^{90} +(-1.00599 - 3.09610i) q^{91} +(2.70222 - 8.31657i) q^{92} +(-5.96430 - 4.33332i) q^{93} +(-2.56389 - 1.86278i) q^{94} +(3.12025 - 9.60315i) q^{95} +(-1.26972 - 3.90781i) q^{96} +(10.1039 - 7.34092i) q^{97} +16.0858 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} - 6 q^{4} - 2 q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{3} - 6 q^{4} - 2 q^{5} - 4 q^{9} + 24 q^{12} - 8 q^{14} - 2 q^{15} - 14 q^{16} + 30 q^{20} + 32 q^{23} - 14 q^{25} + 30 q^{26} - 4 q^{27} - 18 q^{31} - 104 q^{34} - 6 q^{36} - 20 q^{37} - 20 q^{38} - 8 q^{42} + 8 q^{45} + 28 q^{47} - 14 q^{48} + 14 q^{49} - 18 q^{53} - 16 q^{56} + 14 q^{58} + 24 q^{59} + 30 q^{60} - 2 q^{64} + 120 q^{67} - 8 q^{69} - 4 q^{70} + 20 q^{71} - 14 q^{75} - 120 q^{78} + 26 q^{80} - 4 q^{81} + 46 q^{82} + 44 q^{86} - 56 q^{89} + 36 q^{91} - 12 q^{92} - 18 q^{93} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.04223 1.48377i 1.44408 1.04918i 0.456905 0.889515i \(-0.348958\pi\)
0.987171 0.159667i \(-0.0510422\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 1.35111 4.15829i 0.675555 2.07914i
\(5\) 1.91922 + 1.39439i 0.858299 + 0.623591i 0.927422 0.374017i \(-0.122020\pi\)
−0.0691223 + 0.997608i \(0.522020\pi\)
\(6\) 2.04223 + 1.48377i 0.833738 + 0.605746i
\(7\) −0.244830 + 0.753510i −0.0925371 + 0.284800i −0.986604 0.163134i \(-0.947840\pi\)
0.894067 + 0.447933i \(0.147840\pi\)
\(8\) −1.85053 5.69534i −0.654261 2.01361i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 5.98844 1.89371
\(11\) 0 0
\(12\) 4.37228 1.26217
\(13\) −3.32418 + 2.41516i −0.921961 + 0.669844i −0.944011 0.329913i \(-0.892981\pi\)
0.0220500 + 0.999757i \(0.492981\pi\)
\(14\) 0.618034 + 1.90211i 0.165177 + 0.508361i
\(15\) −0.733075 + 2.25617i −0.189279 + 0.582542i
\(16\) −5.15528 3.74553i −1.28882 0.936383i
\(17\) −4.84475 3.51992i −1.17502 0.853705i −0.183423 0.983034i \(-0.558718\pi\)
−0.991602 + 0.129329i \(0.958718\pi\)
\(18\) −0.780063 + 2.40079i −0.183863 + 0.565871i
\(19\) −1.31530 4.04807i −0.301750 0.928690i −0.980870 0.194663i \(-0.937639\pi\)
0.679120 0.734027i \(-0.262361\pi\)
\(20\) 8.39135 6.09667i 1.87636 1.36326i
\(21\) −0.792287 −0.172891
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 4.84475 3.51992i 0.988930 0.718500i
\(25\) 0.193976 + 0.596996i 0.0387951 + 0.119399i
\(26\) −3.20521 + 9.86463i −0.628594 + 1.93461i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 2.80252 + 2.03615i 0.529626 + 0.384796i
\(29\) 0.780063 2.40079i 0.144854 0.445815i −0.852138 0.523317i \(-0.824694\pi\)
0.996992 + 0.0775019i \(0.0246944\pi\)
\(30\) 1.85053 + 5.69534i 0.337859 + 1.03982i
\(31\) −5.96430 + 4.33332i −1.07122 + 0.778287i −0.976131 0.217182i \(-0.930314\pi\)
−0.0950889 + 0.995469i \(0.530314\pi\)
\(32\) −4.10891 −0.726360
\(33\) 0 0
\(34\) −15.1168 −2.59252
\(35\) −1.52057 + 1.10476i −0.257023 + 0.186738i
\(36\) 1.35111 + 4.15829i 0.225185 + 0.693048i
\(37\) 1.54508 4.75528i 0.254010 0.781764i −0.740013 0.672593i \(-0.765181\pi\)
0.994023 0.109171i \(-0.0348195\pi\)
\(38\) −8.69253 6.31550i −1.41012 1.02451i
\(39\) −3.32418 2.41516i −0.532295 0.386735i
\(40\) 4.38998 13.5110i 0.694116 2.13627i
\(41\) 1.75938 + 5.41483i 0.274770 + 0.845654i 0.989280 + 0.146029i \(0.0466494\pi\)
−0.714511 + 0.699625i \(0.753351\pi\)
\(42\) −1.61803 + 1.17557i −0.249668 + 0.181394i
\(43\) 6.63325 1.01156 0.505781 0.862662i \(-0.331205\pi\)
0.505781 + 0.862662i \(0.331205\pi\)
\(44\) 0 0
\(45\) −2.37228 −0.353639
\(46\) 4.08446 2.96754i 0.602221 0.437539i
\(47\) −0.387951 1.19399i −0.0565885 0.174162i 0.918767 0.394800i \(-0.129186\pi\)
−0.975356 + 0.220638i \(0.929186\pi\)
\(48\) 1.96914 6.06040i 0.284221 0.874743i
\(49\) 5.15528 + 3.74553i 0.736469 + 0.535076i
\(50\) 1.28195 + 0.931389i 0.181295 + 0.131718i
\(51\) 1.85053 5.69534i 0.259126 0.797508i
\(52\) 5.55159 + 17.0860i 0.769867 + 2.36941i
\(53\) −10.6117 + 7.70989i −1.45764 + 1.05903i −0.473665 + 0.880705i \(0.657069\pi\)
−0.983971 + 0.178329i \(0.942931\pi\)
\(54\) −2.52434 −0.343519
\(55\) 0 0
\(56\) 4.74456 0.634019
\(57\) 3.44349 2.50184i 0.456101 0.331377i
\(58\) −1.96914 6.06040i −0.258561 0.795769i
\(59\) −1.85410 + 5.70634i −0.241384 + 0.742902i 0.754827 + 0.655924i \(0.227721\pi\)
−0.996210 + 0.0869778i \(0.972279\pi\)
\(60\) 8.39135 + 6.09667i 1.08332 + 0.787077i
\(61\) −2.16154 1.57045i −0.276757 0.201076i 0.440745 0.897633i \(-0.354714\pi\)
−0.717502 + 0.696557i \(0.754714\pi\)
\(62\) −5.75085 + 17.6993i −0.730358 + 2.24781i
\(63\) −0.244830 0.753510i −0.0308457 0.0949333i
\(64\) 1.91922 1.39439i 0.239902 0.174299i
\(65\) −9.74749 −1.20903
\(66\) 0 0
\(67\) 16.1168 1.96899 0.984493 0.175424i \(-0.0561297\pi\)
0.984493 + 0.175424i \(0.0561297\pi\)
\(68\) −21.1826 + 15.3901i −2.56877 + 1.86632i
\(69\) 0.618034 + 1.90211i 0.0744025 + 0.228988i
\(70\) −1.46615 + 4.51235i −0.175239 + 0.539329i
\(71\) −0.602364 0.437643i −0.0714874 0.0519387i 0.551468 0.834196i \(-0.314068\pi\)
−0.622955 + 0.782258i \(0.714068\pi\)
\(72\) 4.84475 + 3.51992i 0.570959 + 0.414826i
\(73\) −2.29462 + 7.06210i −0.268565 + 0.826557i 0.722286 + 0.691594i \(0.243091\pi\)
−0.990851 + 0.134962i \(0.956909\pi\)
\(74\) −3.90032 12.0039i −0.453403 1.39543i
\(75\) −0.507835 + 0.368964i −0.0586397 + 0.0426043i
\(76\) −18.6101 −2.13473
\(77\) 0 0
\(78\) −10.3723 −1.17443
\(79\) 4.72544 3.43323i 0.531653 0.386269i −0.289323 0.957232i \(-0.593430\pi\)
0.820976 + 0.570963i \(0.193430\pi\)
\(80\) −4.67136 14.3770i −0.522274 1.60739i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 11.6274 + 8.44782i 1.28403 + 0.932905i
\(83\) 6.88698 + 5.00368i 0.755944 + 0.549226i 0.897664 0.440681i \(-0.145263\pi\)
−0.141719 + 0.989907i \(0.545263\pi\)
\(84\) −1.07047 + 3.29456i −0.116797 + 0.359466i
\(85\) −4.38998 13.5110i −0.476160 1.46547i
\(86\) 13.5466 9.84221i 1.46077 1.06131i
\(87\) 2.52434 0.270637
\(88\) 0 0
\(89\) −6.37228 −0.675460 −0.337730 0.941243i \(-0.609659\pi\)
−0.337730 + 0.941243i \(0.609659\pi\)
\(90\) −4.84475 + 3.51992i −0.510681 + 0.371032i
\(91\) −1.00599 3.09610i −0.105456 0.324560i
\(92\) 2.70222 8.31657i 0.281726 0.867063i
\(93\) −5.96430 4.33332i −0.618469 0.449344i
\(94\) −2.56389 1.86278i −0.264446 0.192131i
\(95\) 3.12025 9.60315i 0.320131 0.985263i
\(96\) −1.26972 3.90781i −0.129591 0.398839i
\(97\) 10.1039 7.34092i 1.02590 0.745358i 0.0584137 0.998292i \(-0.481396\pi\)
0.967483 + 0.252935i \(0.0813957\pi\)
\(98\) 16.0858 1.62491
\(99\) 0 0
\(100\) 2.74456 0.274456
\(101\) −4.32309 + 3.14091i −0.430163 + 0.312532i −0.781714 0.623637i \(-0.785654\pi\)
0.351551 + 0.936169i \(0.385654\pi\)
\(102\) −4.67136 14.3770i −0.462534 1.42353i
\(103\) 2.50824 7.71958i 0.247144 0.760633i −0.748132 0.663550i \(-0.769049\pi\)
0.995276 0.0970824i \(-0.0309511\pi\)
\(104\) 19.9066 + 14.4630i 1.95201 + 1.41822i
\(105\) −1.52057 1.10476i −0.148392 0.107813i
\(106\) −10.2320 + 31.4908i −0.993817 + 3.05865i
\(107\) 0.0911457 + 0.280518i 0.00881139 + 0.0271187i 0.955366 0.295426i \(-0.0954617\pi\)
−0.946554 + 0.322545i \(0.895462\pi\)
\(108\) −3.53725 + 2.56996i −0.340372 + 0.247295i
\(109\) −9.94987 −0.953025 −0.476513 0.879168i \(-0.658099\pi\)
−0.476513 + 0.879168i \(0.658099\pi\)
\(110\) 0 0
\(111\) 5.00000 0.474579
\(112\) 4.08446 2.96754i 0.385946 0.280406i
\(113\) −1.35111 4.15829i −0.127102 0.391179i 0.867176 0.498001i \(-0.165932\pi\)
−0.994278 + 0.106822i \(0.965932\pi\)
\(114\) 3.32025 10.2187i 0.310970 0.957068i
\(115\) 3.83843 + 2.78878i 0.357936 + 0.260055i
\(116\) −8.92921 6.48745i −0.829057 0.602345i
\(117\) 1.26972 3.90781i 0.117386 0.361277i
\(118\) 4.68038 + 14.4047i 0.430864 + 1.32606i
\(119\) 3.83843 2.78878i 0.351868 0.255647i
\(120\) 14.2063 1.29685
\(121\) 0 0
\(122\) −6.74456 −0.610624
\(123\) −4.60613 + 3.34655i −0.415320 + 0.301748i
\(124\) 9.96076 + 30.6561i 0.894502 + 2.75300i
\(125\) 3.20521 9.86463i 0.286683 0.882319i
\(126\) −1.61803 1.17557i −0.144146 0.104728i
\(127\) 15.9355 + 11.5778i 1.41405 + 1.02737i 0.992718 + 0.120458i \(0.0384363\pi\)
0.421329 + 0.906908i \(0.361564\pi\)
\(128\) 4.38998 13.5110i 0.388023 1.19421i
\(129\) 2.04979 + 6.30860i 0.180474 + 0.555441i
\(130\) −19.9066 + 14.4630i −1.74593 + 1.26849i
\(131\) −6.63325 −0.579550 −0.289775 0.957095i \(-0.593580\pi\)
−0.289775 + 0.957095i \(0.593580\pi\)
\(132\) 0 0
\(133\) 3.37228 0.292414
\(134\) 32.9143 23.9137i 2.84337 2.06583i
\(135\) −0.733075 2.25617i −0.0630931 0.194181i
\(136\) −11.0818 + 34.1062i −0.950255 + 2.92458i
\(137\) −0.602364 0.437643i −0.0514634 0.0373904i 0.561756 0.827303i \(-0.310126\pi\)
−0.613220 + 0.789912i \(0.710126\pi\)
\(138\) 4.08446 + 2.96754i 0.347693 + 0.252614i
\(139\) 3.21140 9.88367i 0.272387 0.838322i −0.717512 0.696547i \(-0.754719\pi\)
0.989899 0.141775i \(-0.0452810\pi\)
\(140\) 2.53945 + 7.81561i 0.214622 + 0.660540i
\(141\) 1.01567 0.737928i 0.0855349 0.0621447i
\(142\) −1.87953 −0.157726
\(143\) 0 0
\(144\) 6.37228 0.531023
\(145\) 4.84475 3.51992i 0.402335 0.292313i
\(146\) 5.79239 + 17.8271i 0.479381 + 1.47538i
\(147\) −1.96914 + 6.06040i −0.162412 + 0.499853i
\(148\) −17.6862 12.8498i −1.45380 1.05625i
\(149\) −4.84475 3.51992i −0.396897 0.288363i 0.371379 0.928481i \(-0.378885\pi\)
−0.768276 + 0.640119i \(0.778885\pi\)
\(150\) −0.489660 + 1.50702i −0.0399806 + 0.123048i
\(151\) −0.671952 2.06805i −0.0546827 0.168296i 0.919985 0.391953i \(-0.128200\pi\)
−0.974668 + 0.223657i \(0.928200\pi\)
\(152\) −20.6211 + 14.9821i −1.67259 + 1.21521i
\(153\) 5.98844 0.484137
\(154\) 0 0
\(155\) −17.4891 −1.40476
\(156\) −14.5342 + 10.5597i −1.16367 + 0.845457i
\(157\) 2.04808 + 6.30334i 0.163454 + 0.503061i 0.998919 0.0464833i \(-0.0148014\pi\)
−0.835465 + 0.549544i \(0.814801\pi\)
\(158\) 4.55632 14.0229i 0.362481 1.11560i
\(159\) −10.6117 7.70989i −0.841566 0.611434i
\(160\) −7.88589 5.72943i −0.623434 0.452951i
\(161\) −0.489660 + 1.50702i −0.0385906 + 0.118770i
\(162\) −0.780063 2.40079i −0.0612876 0.188624i
\(163\) 7.58233 5.50889i 0.593894 0.431489i −0.249812 0.968294i \(-0.580369\pi\)
0.843706 + 0.536805i \(0.180369\pi\)
\(164\) 24.8935 1.94386
\(165\) 0 0
\(166\) 21.4891 1.66788
\(167\) −2.32527 + 1.68941i −0.179935 + 0.130730i −0.674107 0.738634i \(-0.735471\pi\)
0.494172 + 0.869364i \(0.335471\pi\)
\(168\) 1.46615 + 4.51235i 0.113116 + 0.348135i
\(169\) 1.19996 3.69310i 0.0923047 0.284085i
\(170\) −29.0125 21.0788i −2.22516 1.61667i
\(171\) 3.44349 + 2.50184i 0.263330 + 0.191321i
\(172\) 8.96224 27.5830i 0.683365 2.10318i
\(173\) 2.14093 + 6.58911i 0.162772 + 0.500961i 0.998865 0.0476266i \(-0.0151657\pi\)
−0.836093 + 0.548588i \(0.815166\pi\)
\(174\) 5.15528 3.74553i 0.390821 0.283948i
\(175\) −0.497333 −0.0375949
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) −13.0137 + 9.45499i −0.975416 + 0.708681i
\(179\) −7.48862 23.0476i −0.559726 1.72266i −0.683125 0.730302i \(-0.739379\pi\)
0.123399 0.992357i \(-0.460621\pi\)
\(180\) −3.20521 + 9.86463i −0.238902 + 0.735266i
\(181\) −13.7533 9.99235i −1.02227 0.742725i −0.0555261 0.998457i \(-0.517684\pi\)
−0.966748 + 0.255732i \(0.917684\pi\)
\(182\) −6.64836 4.83032i −0.492809 0.358047i
\(183\) 0.825636 2.54105i 0.0610328 0.187840i
\(184\) −3.70106 11.3907i −0.272846 0.839733i
\(185\) 9.59608 6.97196i 0.705518 0.512589i
\(186\) −18.6101 −1.36456
\(187\) 0 0
\(188\) −5.48913 −0.400336
\(189\) 0.640974 0.465695i 0.0466240 0.0338743i
\(190\) −7.87657 24.2416i −0.571427 1.75867i
\(191\) −5.40444 + 16.6331i −0.391051 + 1.20353i 0.540943 + 0.841059i \(0.318067\pi\)
−0.931994 + 0.362473i \(0.881933\pi\)
\(192\) 1.91922 + 1.39439i 0.138507 + 0.100632i
\(193\) −13.8933 10.0941i −1.00006 0.726586i −0.0379588 0.999279i \(-0.512086\pi\)
−0.962101 + 0.272693i \(0.912086\pi\)
\(194\) 9.74231 29.9837i 0.699457 2.15271i
\(195\) −3.01214 9.27042i −0.215704 0.663868i
\(196\) 22.5404 16.3765i 1.61003 1.16975i
\(197\) −21.1345 −1.50577 −0.752884 0.658153i \(-0.771338\pi\)
−0.752884 + 0.658153i \(0.771338\pi\)
\(198\) 0 0
\(199\) −6.86141 −0.486392 −0.243196 0.969977i \(-0.578196\pi\)
−0.243196 + 0.969977i \(0.578196\pi\)
\(200\) 3.04114 2.20952i 0.215041 0.156236i
\(201\) 4.98038 + 15.3280i 0.351289 + 1.08116i
\(202\) −4.16837 + 12.8289i −0.293285 + 0.902640i
\(203\) 1.61803 + 1.17557i 0.113564 + 0.0825089i
\(204\) −21.1826 15.3901i −1.48308 1.07752i
\(205\) −4.17375 + 12.8455i −0.291508 + 0.897168i
\(206\) −6.33165 19.4868i −0.441147 1.35771i
\(207\) −1.61803 + 1.17557i −0.112461 + 0.0817078i
\(208\) 26.1831 1.81547
\(209\) 0 0
\(210\) −4.74456 −0.327406
\(211\) 10.0918 7.33216i 0.694752 0.504767i −0.183467 0.983026i \(-0.558732\pi\)
0.878219 + 0.478259i \(0.158732\pi\)
\(212\) 17.7223 + 54.5436i 1.21717 + 3.74607i
\(213\) 0.230083 0.708121i 0.0157650 0.0485197i
\(214\) 0.602364 + 0.437643i 0.0411767 + 0.0299167i
\(215\) 12.7306 + 9.24935i 0.868222 + 0.630800i
\(216\) −1.85053 + 5.69534i −0.125913 + 0.387519i
\(217\) −1.80496 5.55509i −0.122528 0.377104i
\(218\) −20.3200 + 14.7633i −1.37624 + 0.999898i
\(219\) −7.42554 −0.501771
\(220\) 0 0
\(221\) 24.6060 1.65518
\(222\) 10.2112 7.41884i 0.685328 0.497920i
\(223\) −1.50226 4.62347i −0.100599 0.309611i 0.888074 0.459701i \(-0.152043\pi\)
−0.988672 + 0.150091i \(0.952043\pi\)
\(224\) 1.00599 3.09610i 0.0672152 0.206867i
\(225\) −0.507835 0.368964i −0.0338557 0.0245976i
\(226\) −8.92921 6.48745i −0.593962 0.431539i
\(227\) −7.80063 + 24.0079i −0.517746 + 1.59346i 0.260483 + 0.965478i \(0.416118\pi\)
−0.778229 + 0.627980i \(0.783882\pi\)
\(228\) −5.75085 17.6993i −0.380859 1.17216i
\(229\) 2.93489 2.13232i 0.193943 0.140908i −0.486576 0.873638i \(-0.661754\pi\)
0.680519 + 0.732730i \(0.261754\pi\)
\(230\) 11.9769 0.789732
\(231\) 0 0
\(232\) −15.1168 −0.992469
\(233\) 2.04223 1.48377i 0.133791 0.0972049i −0.518877 0.854849i \(-0.673650\pi\)
0.652668 + 0.757644i \(0.273650\pi\)
\(234\) −3.20521 9.86463i −0.209531 0.644871i
\(235\) 0.920330 2.83248i 0.0600357 0.184771i
\(236\) 21.2235 + 15.4198i 1.38153 + 1.00374i
\(237\) 4.72544 + 3.43323i 0.306950 + 0.223012i
\(238\) 3.70106 11.3907i 0.239904 0.738349i
\(239\) 9.05339 + 27.8635i 0.585615 + 1.80234i 0.596786 + 0.802400i \(0.296444\pi\)
−0.0111708 + 0.999938i \(0.503556\pi\)
\(240\) 12.2298 8.88546i 0.789429 0.573554i
\(241\) 13.2665 0.854570 0.427285 0.904117i \(-0.359470\pi\)
0.427285 + 0.904117i \(0.359470\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −9.45088 + 6.86646i −0.605030 + 0.439580i
\(245\) 4.67136 + 14.3770i 0.298442 + 0.918511i
\(246\) −4.44128 + 13.6689i −0.283166 + 0.871494i
\(247\) 14.1490 + 10.2798i 0.900279 + 0.654091i
\(248\) 35.7169 + 25.9498i 2.26802 + 1.64781i
\(249\) −2.63059 + 8.09613i −0.166707 + 0.513072i
\(250\) −8.09104 24.9016i −0.511722 1.57492i
\(251\) 0.413306 0.300285i 0.0260877 0.0189538i −0.574665 0.818389i \(-0.694868\pi\)
0.600753 + 0.799435i \(0.294868\pi\)
\(252\) −3.46410 −0.218218
\(253\) 0 0
\(254\) 49.7228 3.11989
\(255\) 11.4931 8.35023i 0.719726 0.522912i
\(256\) −9.61563 29.5939i −0.600977 1.84962i
\(257\) 7.53145 23.1794i 0.469799 1.44589i −0.383047 0.923729i \(-0.625125\pi\)
0.852846 0.522163i \(-0.174875\pi\)
\(258\) 13.5466 + 9.84221i 0.843377 + 0.612749i
\(259\) 3.20487 + 2.32847i 0.199141 + 0.144684i
\(260\) −13.1699 + 40.5329i −0.816764 + 2.51374i
\(261\) 0.780063 + 2.40079i 0.0482847 + 0.148605i
\(262\) −13.5466 + 9.84221i −0.836914 + 0.608054i
\(263\) 22.3692 1.37934 0.689671 0.724122i \(-0.257755\pi\)
0.689671 + 0.724122i \(0.257755\pi\)
\(264\) 0 0
\(265\) −31.1168 −1.91149
\(266\) 6.88698 5.00368i 0.422268 0.306796i
\(267\) −1.96914 6.06040i −0.120510 0.370890i
\(268\) 21.7756 67.0185i 1.33016 4.09380i
\(269\) −7.37568 5.35875i −0.449703 0.326729i 0.339775 0.940507i \(-0.389649\pi\)
−0.789479 + 0.613778i \(0.789649\pi\)
\(270\) −4.84475 3.51992i −0.294842 0.214215i
\(271\) 3.21140 9.88367i 0.195079 0.600390i −0.804897 0.593414i \(-0.797780\pi\)
0.999976 0.00697572i \(-0.00222046\pi\)
\(272\) 11.7921 + 36.2923i 0.715001 + 2.20055i
\(273\) 2.63370 1.91350i 0.159399 0.115810i
\(274\) −1.87953 −0.113546
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) −7.00629 + 5.09037i −0.420967 + 0.305851i −0.778027 0.628231i \(-0.783779\pi\)
0.357060 + 0.934082i \(0.383779\pi\)
\(278\) −8.10666 24.9497i −0.486205 1.49638i
\(279\) 2.27816 7.01146i 0.136390 0.419765i
\(280\) 9.10584 + 6.61578i 0.544178 + 0.395368i
\(281\) −0.477245 0.346739i −0.0284701 0.0206847i 0.573459 0.819234i \(-0.305601\pi\)
−0.601929 + 0.798549i \(0.705601\pi\)
\(282\) 0.979321 3.01404i 0.0583177 0.179483i
\(283\) 0.734490 + 2.26053i 0.0436609 + 0.134375i 0.970511 0.241058i \(-0.0774943\pi\)
−0.926850 + 0.375432i \(0.877494\pi\)
\(284\) −2.63370 + 1.91350i −0.156282 + 0.113545i
\(285\) 10.0974 0.598115
\(286\) 0 0
\(287\) −4.51087 −0.266269
\(288\) 3.32418 2.41516i 0.195879 0.142315i
\(289\) 5.82850 + 17.9383i 0.342853 + 1.05519i
\(290\) 4.67136 14.3770i 0.274312 0.844245i
\(291\) 10.1039 + 7.34092i 0.592302 + 0.430333i
\(292\) 26.2660 + 19.0834i 1.53710 + 1.11677i
\(293\) −2.03282 + 6.25638i −0.118759 + 0.365502i −0.992712 0.120508i \(-0.961548\pi\)
0.873954 + 0.486009i \(0.161548\pi\)
\(294\) 4.97078 + 15.2985i 0.289902 + 0.892226i
\(295\) −11.5153 + 8.36635i −0.670446 + 0.487108i
\(296\) −29.9422 −1.74035
\(297\) 0 0
\(298\) −15.1168 −0.875695
\(299\) −6.64836 + 4.83032i −0.384485 + 0.279344i
\(300\) 0.848116 + 2.61023i 0.0489660 + 0.150702i
\(301\) −1.62402 + 4.99822i −0.0936069 + 0.288092i
\(302\) −4.44080 3.22643i −0.255539 0.185660i
\(303\) −4.32309 3.14091i −0.248355 0.180440i
\(304\) −8.38144 + 25.7954i −0.480708 + 1.47947i
\(305\) −1.95864 6.02808i −0.112151 0.345167i
\(306\) 12.2298 8.88546i 0.699130 0.507948i
\(307\) 17.8178 1.01692 0.508459 0.861086i \(-0.330215\pi\)
0.508459 + 0.861086i \(0.330215\pi\)
\(308\) 0 0
\(309\) 8.11684 0.461751
\(310\) −35.7169 + 25.9498i −2.02858 + 1.47385i
\(311\) −2.01197 6.19221i −0.114088 0.351128i 0.877667 0.479270i \(-0.159099\pi\)
−0.991756 + 0.128142i \(0.959099\pi\)
\(312\) −7.60366 + 23.4017i −0.430473 + 1.32486i
\(313\) −7.37568 5.35875i −0.416898 0.302894i 0.359490 0.933149i \(-0.382951\pi\)
−0.776389 + 0.630255i \(0.782951\pi\)
\(314\) 13.5353 + 9.83400i 0.763843 + 0.554965i
\(315\) 0.580806 1.78754i 0.0327247 0.100716i
\(316\) −7.89178 24.2884i −0.443947 1.36633i
\(317\) −12.3419 + 8.96692i −0.693191 + 0.503632i −0.877707 0.479197i \(-0.840928\pi\)
0.184517 + 0.982829i \(0.440928\pi\)
\(318\) −33.1113 −1.85679
\(319\) 0 0
\(320\) 5.62772 0.314599
\(321\) −0.238623 + 0.173369i −0.0133186 + 0.00967654i
\(322\) 1.23607 + 3.80423i 0.0688834 + 0.212001i
\(323\) −7.87657 + 24.2416i −0.438264 + 1.34884i
\(324\) −3.53725 2.56996i −0.196514 0.142776i
\(325\) −2.08665 1.51604i −0.115746 0.0840947i
\(326\) 7.31097 22.5009i 0.404917 1.24621i
\(327\) −3.07468 9.46289i −0.170030 0.523299i
\(328\) 27.5835 20.0406i 1.52304 1.10656i
\(329\) 0.994667 0.0548377
\(330\) 0 0
\(331\) −0.627719 −0.0345025 −0.0172513 0.999851i \(-0.505492\pi\)
−0.0172513 + 0.999851i \(0.505492\pi\)
\(332\) 30.1118 21.8775i 1.65260 1.20068i
\(333\) 1.54508 + 4.75528i 0.0846701 + 0.260588i
\(334\) −2.24205 + 6.90033i −0.122680 + 0.377569i
\(335\) 30.9317 + 22.4732i 1.68998 + 1.22784i
\(336\) 4.08446 + 2.96754i 0.222826 + 0.161892i
\(337\) −4.72595 + 14.5450i −0.257439 + 0.792316i 0.735900 + 0.677090i \(0.236759\pi\)
−0.993339 + 0.115226i \(0.963241\pi\)
\(338\) −3.02911 9.32263i −0.164762 0.507084i
\(339\) 3.53725 2.56996i 0.192117 0.139581i
\(340\) −62.1138 −3.36859
\(341\) 0 0
\(342\) 10.7446 0.580999
\(343\) −8.57128 + 6.22740i −0.462806 + 0.336248i
\(344\) −12.2750 37.7786i −0.661825 2.03689i
\(345\) −1.46615 + 4.51235i −0.0789349 + 0.242937i
\(346\) 14.1490 + 10.2798i 0.760655 + 0.552648i
\(347\) −14.5787 10.5920i −0.782624 0.568609i 0.123142 0.992389i \(-0.460703\pi\)
−0.905765 + 0.423780i \(0.860703\pi\)
\(348\) 3.41066 10.4969i 0.182830 0.562694i
\(349\) 8.02850 + 24.7092i 0.429756 + 1.32265i 0.898366 + 0.439247i \(0.144755\pi\)
−0.468611 + 0.883405i \(0.655245\pi\)
\(350\) −1.01567 + 0.737928i −0.0542899 + 0.0394439i
\(351\) 4.10891 0.219317
\(352\) 0 0
\(353\) −29.3505 −1.56217 −0.781086 0.624424i \(-0.785334\pi\)
−0.781086 + 0.624424i \(0.785334\pi\)
\(354\) −12.2534 + 8.90261i −0.651260 + 0.473168i
\(355\) −0.545820 1.67986i −0.0289691 0.0891578i
\(356\) −8.60965 + 26.4978i −0.456310 + 1.40438i
\(357\) 3.83843 + 2.78878i 0.203151 + 0.147598i
\(358\) −49.4908 35.9572i −2.61567 1.90040i
\(359\) 0.398515 1.22650i 0.0210328 0.0647323i −0.939989 0.341204i \(-0.889165\pi\)
0.961022 + 0.276472i \(0.0891653\pi\)
\(360\) 4.38998 + 13.5110i 0.231372 + 0.712090i
\(361\) 0.714488 0.519106i 0.0376046 0.0273214i
\(362\) −42.9137 −2.25550
\(363\) 0 0
\(364\) −14.2337 −0.746048
\(365\) −14.2512 + 10.3541i −0.745942 + 0.541959i
\(366\) −2.08418 6.41446i −0.108942 0.335289i
\(367\) −7.33075 + 22.5617i −0.382662 + 1.17771i 0.555500 + 0.831517i \(0.312527\pi\)
−0.938162 + 0.346196i \(0.887473\pi\)
\(368\) −10.3106 7.49107i −0.537475 0.390499i
\(369\) −4.60613 3.34655i −0.239785 0.174214i
\(370\) 9.25265 28.4767i 0.481022 1.48043i
\(371\) −3.21140 9.88367i −0.166728 0.513135i
\(372\) −26.0776 + 18.9465i −1.35206 + 0.982330i
\(373\) 24.4511 1.26603 0.633015 0.774140i \(-0.281817\pi\)
0.633015 + 0.774140i \(0.281817\pi\)
\(374\) 0 0
\(375\) 10.3723 0.535622
\(376\) −6.08228 + 4.41903i −0.313670 + 0.227894i
\(377\) 3.20521 + 9.86463i 0.165077 + 0.508054i
\(378\) 0.618034 1.90211i 0.0317882 0.0978341i
\(379\) −19.1922 13.9439i −0.985835 0.716251i −0.0268299 0.999640i \(-0.508541\pi\)
−0.959005 + 0.283389i \(0.908541\pi\)
\(380\) −35.7169 25.9498i −1.83224 1.33120i
\(381\) −6.08682 + 18.7333i −0.311837 + 0.959737i
\(382\) 13.6426 + 41.9877i 0.698017 + 2.14828i
\(383\) 19.0031 13.8066i 0.971013 0.705482i 0.0153309 0.999882i \(-0.495120\pi\)
0.955682 + 0.294400i \(0.0951198\pi\)
\(384\) 14.2063 0.724960
\(385\) 0 0
\(386\) −43.3505 −2.20648
\(387\) −5.36641 + 3.89893i −0.272790 + 0.198194i
\(388\) −16.8742 51.9334i −0.856656 2.63652i
\(389\) −2.81726 + 8.67063i −0.142841 + 0.439619i −0.996727 0.0808411i \(-0.974239\pi\)
0.853886 + 0.520460i \(0.174239\pi\)
\(390\) −19.9066 14.4630i −1.00801 0.732364i
\(391\) −9.68950 7.03983i −0.490019 0.356020i
\(392\) 11.7921 36.2923i 0.595591 1.83304i
\(393\) −2.04979 6.30860i −0.103398 0.318227i
\(394\) −43.1615 + 31.3587i −2.17444 + 1.57983i
\(395\) 13.8564 0.697191
\(396\) 0 0
\(397\) 24.4891 1.22907 0.614537 0.788888i \(-0.289343\pi\)
0.614537 + 0.788888i \(0.289343\pi\)
\(398\) −14.0126 + 10.1807i −0.702387 + 0.510314i
\(399\) 1.04209 + 3.20723i 0.0521699 + 0.160562i
\(400\) 1.23607 3.80423i 0.0618034 0.190211i
\(401\) 15.4659 + 11.2366i 0.772328 + 0.561129i 0.902667 0.430341i \(-0.141607\pi\)
−0.130339 + 0.991470i \(0.541607\pi\)
\(402\) 32.9143 + 23.9137i 1.64162 + 1.19271i
\(403\) 9.36076 28.8095i 0.466293 1.43510i
\(404\) 7.21983 + 22.2203i 0.359200 + 1.10550i
\(405\) 1.91922 1.39439i 0.0953666 0.0692879i
\(406\) 5.04868 0.250562
\(407\) 0 0
\(408\) −35.8614 −1.77540
\(409\) 0.357934 0.260054i 0.0176987 0.0128588i −0.578901 0.815398i \(-0.696518\pi\)
0.596599 + 0.802539i \(0.296518\pi\)
\(410\) 10.5360 + 32.4264i 0.520334 + 1.60142i
\(411\) 0.230083 0.708121i 0.0113491 0.0349290i
\(412\) −28.7113 20.8600i −1.41450 1.02770i
\(413\) −3.84584 2.79417i −0.189242 0.137492i
\(414\) −1.56013 + 4.80158i −0.0766760 + 0.235985i
\(415\) 6.24051 + 19.2063i 0.306334 + 0.942800i
\(416\) 13.6588 9.92367i 0.669676 0.486548i
\(417\) 10.3923 0.508913
\(418\) 0 0
\(419\) −8.51087 −0.415783 −0.207892 0.978152i \(-0.566660\pi\)
−0.207892 + 0.978152i \(0.566660\pi\)
\(420\) −6.64836 + 4.83032i −0.324407 + 0.235695i
\(421\) 1.89693 + 5.83815i 0.0924507 + 0.284534i 0.986581 0.163273i \(-0.0522052\pi\)
−0.894130 + 0.447807i \(0.852205\pi\)
\(422\) 9.73067 29.9479i 0.473682 1.45784i
\(423\) 1.01567 + 0.737928i 0.0493836 + 0.0358793i
\(424\) 63.5478 + 46.1702i 3.08615 + 2.24222i
\(425\) 1.16161 3.57507i 0.0563465 0.173417i
\(426\) −0.580806 1.78754i −0.0281401 0.0866065i
\(427\) 1.71256 1.24425i 0.0828767 0.0602135i
\(428\) 1.28962 0.0623362
\(429\) 0 0
\(430\) 39.7228 1.91560
\(431\) 19.1404 13.9063i 0.921959 0.669843i −0.0220516 0.999757i \(-0.507020\pi\)
0.944011 + 0.329914i \(0.107020\pi\)
\(432\) 1.96914 + 6.06040i 0.0947404 + 0.291581i
\(433\) −7.17960 + 22.0966i −0.345030 + 1.06189i 0.616538 + 0.787325i \(0.288535\pi\)
−0.961568 + 0.274567i \(0.911465\pi\)
\(434\) −11.9286 8.66664i −0.572591 0.416012i
\(435\) 4.84475 + 3.51992i 0.232288 + 0.168767i
\(436\) −13.4434 + 41.3744i −0.643821 + 1.98148i
\(437\) −2.63059 8.09613i −0.125838 0.387291i
\(438\) −15.1647 + 11.0178i −0.724596 + 0.526450i
\(439\) −24.4511 −1.16699 −0.583493 0.812118i \(-0.698315\pi\)
−0.583493 + 0.812118i \(0.698315\pi\)
\(440\) 0 0
\(441\) −6.37228 −0.303442
\(442\) 50.2511 36.5096i 2.39020 1.73658i
\(443\) 6.41042 + 19.7293i 0.304568 + 0.937365i 0.979838 + 0.199794i \(0.0640273\pi\)
−0.675270 + 0.737571i \(0.735973\pi\)
\(444\) 6.75555 20.7914i 0.320604 0.986718i
\(445\) −12.2298 8.88546i −0.579747 0.421211i
\(446\) −9.92812 7.21320i −0.470110 0.341555i
\(447\) 1.85053 5.69534i 0.0875270 0.269381i
\(448\) 0.580806 + 1.78754i 0.0274405 + 0.0844532i
\(449\) −19.9066 + 14.4630i −0.939453 + 0.682552i −0.948289 0.317409i \(-0.897187\pi\)
0.00883611 + 0.999961i \(0.497187\pi\)
\(450\) −1.58457 −0.0746975
\(451\) 0 0
\(452\) −19.1168 −0.899181
\(453\) 1.75919 1.27813i 0.0826541 0.0600517i
\(454\) 19.6914 + 60.6040i 0.924165 + 2.84429i
\(455\) 2.38648 7.34483i 0.111880 0.344331i
\(456\) −20.6211 14.9821i −0.965673 0.701603i
\(457\) −6.84256 4.97141i −0.320082 0.232553i 0.416129 0.909306i \(-0.363387\pi\)
−0.736210 + 0.676753i \(0.763387\pi\)
\(458\) 2.82985 8.70938i 0.132230 0.406963i
\(459\) 1.85053 + 5.69534i 0.0863753 + 0.265836i
\(460\) 16.7827 12.1933i 0.782498 0.568518i
\(461\) −14.5012 −0.675389 −0.337694 0.941256i \(-0.609647\pi\)
−0.337694 + 0.941256i \(0.609647\pi\)
\(462\) 0 0
\(463\) −3.25544 −0.151293 −0.0756465 0.997135i \(-0.524102\pi\)
−0.0756465 + 0.997135i \(0.524102\pi\)
\(464\) −13.0137 + 9.45499i −0.604145 + 0.438937i
\(465\) −5.40444 16.6331i −0.250625 0.771344i
\(466\) 1.96914 6.06040i 0.0912188 0.280743i
\(467\) 17.9874 + 13.0686i 0.832359 + 0.604744i 0.920226 0.391388i \(-0.128005\pi\)
−0.0878667 + 0.996132i \(0.528005\pi\)
\(468\) −14.5342 10.5597i −0.671846 0.488125i
\(469\) −3.94589 + 12.1442i −0.182204 + 0.560767i
\(470\) −2.32322 7.15015i −0.107162 0.329812i
\(471\) −5.36194 + 3.89568i −0.247065 + 0.179503i
\(472\) 35.9306 1.65384
\(473\) 0 0
\(474\) 14.7446 0.677240
\(475\) 2.16154 1.57045i 0.0991784 0.0720573i
\(476\) −6.41042 19.7293i −0.293821 0.904289i
\(477\) 4.05333 12.4749i 0.185589 0.571185i
\(478\) 59.8321 + 43.4705i 2.73666 + 1.98830i
\(479\) 30.3504 + 22.0509i 1.38675 + 1.00753i 0.996213 + 0.0869422i \(0.0277095\pi\)
0.390534 + 0.920589i \(0.372290\pi\)
\(480\) 3.01214 9.27042i 0.137485 0.423135i
\(481\) 6.34862 + 19.5390i 0.289472 + 0.890903i
\(482\) 27.0933 19.6844i 1.23406 0.896600i
\(483\) −1.58457 −0.0721006
\(484\) 0 0
\(485\) 29.6277 1.34533
\(486\) 2.04223 1.48377i 0.0926375 0.0673051i
\(487\) −3.93829 12.1208i −0.178461 0.549246i 0.821314 0.570477i \(-0.193242\pi\)
−0.999775 + 0.0212308i \(0.993242\pi\)
\(488\) −4.94427 + 15.2169i −0.223817 + 0.688837i
\(489\) 7.58233 + 5.50889i 0.342885 + 0.249121i
\(490\) 30.8721 + 22.4299i 1.39466 + 1.01328i
\(491\) −5.75085 + 17.6993i −0.259532 + 0.798758i 0.733371 + 0.679829i \(0.237946\pi\)
−0.992903 + 0.118929i \(0.962054\pi\)
\(492\) 7.69252 + 23.6751i 0.346806 + 1.06736i
\(493\) −12.2298 + 8.88546i −0.550802 + 0.400181i
\(494\) 44.1485 1.98633
\(495\) 0 0
\(496\) 46.9783 2.10939
\(497\) 0.477245 0.346739i 0.0214074 0.0155534i
\(498\) 6.64050 + 20.4374i 0.297568 + 0.915821i
\(499\) −11.6931 + 35.9877i −0.523455 + 1.61103i 0.243896 + 0.969801i \(0.421574\pi\)
−0.767351 + 0.641227i \(0.778426\pi\)
\(500\) −36.6894 26.6564i −1.64080 1.19211i
\(501\) −2.32527 1.68941i −0.103885 0.0754772i
\(502\) 0.398515 1.22650i 0.0177866 0.0547415i
\(503\) −6.82131 20.9938i −0.304147 0.936069i −0.979994 0.199027i \(-0.936222\pi\)
0.675847 0.737042i \(-0.263778\pi\)
\(504\) −3.83843 + 2.78878i −0.170977 + 0.124222i
\(505\) −12.6766 −0.564101
\(506\) 0 0
\(507\) 3.88316 0.172457
\(508\) 69.6745 50.6215i 3.09131 2.24597i
\(509\) −12.6630 38.9726i −0.561277 1.72743i −0.678763 0.734357i \(-0.737484\pi\)
0.117487 0.993074i \(-0.462516\pi\)
\(510\) 11.0818 34.1062i 0.490710 1.51025i
\(511\) −4.75957 3.45803i −0.210551 0.152974i
\(512\) −40.5616 29.4697i −1.79259 1.30239i
\(513\) −1.31530 + 4.04807i −0.0580718 + 0.178726i
\(514\) −19.0119 58.5127i −0.838580 2.58088i
\(515\) 15.5780 11.3181i 0.686448 0.498733i
\(516\) 29.0024 1.27676
\(517\) 0 0
\(518\) 10.0000 0.439375
\(519\) −5.60503 + 4.07230i −0.246034 + 0.178754i
\(520\) 18.0380 + 55.5153i 0.791020 + 2.43451i
\(521\) 5.24657 16.1473i 0.229856 0.707425i −0.767906 0.640563i \(-0.778701\pi\)
0.997762 0.0668623i \(-0.0212988\pi\)
\(522\) 5.15528 + 3.74553i 0.225641 + 0.163938i
\(523\) −5.53014 4.01788i −0.241816 0.175690i 0.460276 0.887776i \(-0.347750\pi\)
−0.702092 + 0.712086i \(0.747750\pi\)
\(524\) −8.96224 + 27.5830i −0.391517 + 1.20497i
\(525\) −0.153684 0.472992i −0.00670734 0.0206431i
\(526\) 45.6831 33.1907i 1.99188 1.44718i
\(527\) 44.1485 1.92314
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) −63.5478 + 46.1702i −2.76034 + 2.00551i
\(531\) −1.85410 5.70634i −0.0804612 0.247634i
\(532\) 4.55632 14.0229i 0.197542 0.607970i
\(533\) −18.9262 13.7507i −0.819783 0.595607i
\(534\) −13.0137 9.45499i −0.563157 0.409157i
\(535\) −0.216223 + 0.665467i −0.00934814 + 0.0287706i
\(536\) −29.8247 91.7910i −1.28823 3.96477i
\(537\) 19.6055 14.2442i 0.846038 0.614683i
\(538\) −23.0140 −0.992204
\(539\) 0 0
\(540\) −10.3723 −0.446352
\(541\) −22.4201 + 16.2892i −0.963917 + 0.700327i −0.954057 0.299625i \(-0.903139\pi\)
−0.00985982 + 0.999951i \(0.503139\pi\)
\(542\) −8.10666 24.9497i −0.348211 1.07168i
\(543\) 5.25329 16.1680i 0.225440 0.693834i
\(544\) 19.9066 + 14.4630i 0.853490 + 0.620097i
\(545\) −19.0960 13.8740i −0.817981 0.594298i
\(546\) 2.53945 7.81561i 0.108678 0.334477i
\(547\) −12.9707 39.9196i −0.554586 1.70684i −0.697034 0.717038i \(-0.745498\pi\)
0.142448 0.989802i \(-0.454502\pi\)
\(548\) −2.63370 + 1.91350i −0.112506 + 0.0817406i
\(549\) 2.67181 0.114030
\(550\) 0 0
\(551\) −10.7446 −0.457734
\(552\) 9.68950 7.03983i 0.412412 0.299635i
\(553\) 1.43004 + 4.40122i 0.0608116 + 0.187159i
\(554\) −6.75555 + 20.7914i −0.287016 + 0.883343i
\(555\) 9.59608 + 6.97196i 0.407331 + 0.295943i
\(556\) −36.7602 26.7078i −1.55898 1.13266i
\(557\) −2.93796 + 9.04212i −0.124485 + 0.383127i −0.993807 0.111120i \(-0.964556\pi\)
0.869322 + 0.494247i \(0.164556\pi\)
\(558\) −5.75085 17.6993i −0.243453 0.749270i
\(559\) −22.0501 + 16.0203i −0.932620 + 0.677588i
\(560\) 11.9769 0.506116
\(561\) 0 0
\(562\) −1.48913 −0.0628150
\(563\) 11.7761 8.55587i 0.496305 0.360587i −0.311299 0.950312i \(-0.600764\pi\)
0.807604 + 0.589725i \(0.200764\pi\)
\(564\) −1.69623 5.22047i −0.0714243 0.219821i
\(565\) 3.20521 9.86463i 0.134844 0.415008i
\(566\) 4.85410 + 3.52671i 0.204033 + 0.148239i
\(567\) 0.640974 + 0.465695i 0.0269184 + 0.0195573i
\(568\) −1.37784 + 4.24054i −0.0578127 + 0.177929i
\(569\) −7.58441 23.3424i −0.317955 0.978565i −0.974521 0.224296i \(-0.927992\pi\)
0.656566 0.754269i \(-0.272008\pi\)
\(570\) 20.6211 14.9821i 0.863724 0.627532i
\(571\) −4.55134 −0.190468 −0.0952339 0.995455i \(-0.530360\pi\)
−0.0952339 + 0.995455i \(0.530360\pi\)
\(572\) 0 0
\(573\) −17.4891 −0.730619
\(574\) −9.21225 + 6.69309i −0.384512 + 0.279364i
\(575\) 0.387951 + 1.19399i 0.0161787 + 0.0497929i
\(576\) −0.733075 + 2.25617i −0.0305448 + 0.0940072i
\(577\) 13.3400 + 9.69206i 0.555351 + 0.403486i 0.829754 0.558129i \(-0.188480\pi\)
−0.274404 + 0.961615i \(0.588480\pi\)
\(578\) 38.5194 + 27.9860i 1.60219 + 1.16406i
\(579\) 5.30676 16.3325i 0.220541 0.678757i
\(580\) −8.09104 24.9016i −0.335962 1.03398i
\(581\) −5.45647 + 3.96435i −0.226372 + 0.164469i
\(582\) 31.5268 1.30683
\(583\) 0 0
\(584\) 44.4674 1.84007
\(585\) 7.88589 5.72943i 0.326041 0.236883i
\(586\) 5.13153 + 15.7932i 0.211981 + 0.652412i
\(587\) 12.0449 37.0705i 0.497148 1.53006i −0.316434 0.948614i \(-0.602486\pi\)
0.813582 0.581450i \(-0.197514\pi\)
\(588\) 22.5404 + 16.3765i 0.929548 + 0.675356i
\(589\) 25.3864 + 18.4443i 1.04603 + 0.759984i
\(590\) −11.1032 + 34.1721i −0.457111 + 1.40684i
\(591\) −6.53091 20.1001i −0.268646 0.826806i
\(592\) −25.7764 + 18.7277i −1.05940 + 0.769702i
\(593\) −27.7677 −1.14028 −0.570142 0.821546i \(-0.693112\pi\)
−0.570142 + 0.821546i \(0.693112\pi\)
\(594\) 0 0
\(595\) 11.2554 0.461428
\(596\) −21.1826 + 15.3901i −0.867673 + 0.630402i
\(597\) −2.12029 6.52559i −0.0867777 0.267074i
\(598\) −6.41042 + 19.7293i −0.262142 + 0.806789i
\(599\) −32.7388 23.7861i −1.33767 0.971875i −0.999526 0.0307807i \(-0.990201\pi\)
−0.338145 0.941094i \(-0.609799\pi\)
\(600\) 3.04114 + 2.20952i 0.124154 + 0.0902032i
\(601\) 12.4354 38.2723i 0.507252 1.56116i −0.289699 0.957118i \(-0.593555\pi\)
0.796951 0.604044i \(-0.206445\pi\)
\(602\) 4.09957 + 12.6172i 0.167086 + 0.514238i
\(603\) −13.0388 + 9.47324i −0.530981 + 0.385780i
\(604\) −9.50744 −0.386852
\(605\) 0 0
\(606\) −13.4891 −0.547958
\(607\) 21.1382 15.3578i 0.857973 0.623354i −0.0693600 0.997592i \(-0.522096\pi\)
0.927333 + 0.374238i \(0.122096\pi\)
\(608\) 5.40444 + 16.6331i 0.219179 + 0.674563i
\(609\) −0.618034 + 1.90211i −0.0250440 + 0.0770775i
\(610\) −12.9443 9.40456i −0.524098 0.380780i
\(611\) 4.17330 + 3.03208i 0.168834 + 0.122665i
\(612\) 8.09104 24.9016i 0.327061 1.00659i
\(613\) 13.4148 + 41.2864i 0.541817 + 1.66754i 0.728440 + 0.685110i \(0.240246\pi\)
−0.186623 + 0.982432i \(0.559754\pi\)
\(614\) 36.3882 26.4376i 1.46851 1.06693i
\(615\) −13.5065 −0.544637
\(616\) 0 0
\(617\) 43.8614 1.76579 0.882897 0.469567i \(-0.155590\pi\)
0.882897 + 0.469567i \(0.155590\pi\)
\(618\) 16.5765 12.0435i 0.666804 0.484461i
\(619\) 3.16238 + 9.73282i 0.127107 + 0.391195i 0.994279 0.106814i \(-0.0340648\pi\)
−0.867172 + 0.498009i \(0.834065\pi\)
\(620\) −23.6297 + 72.7248i −0.948992 + 2.92070i
\(621\) −1.61803 1.17557i −0.0649295 0.0471740i
\(622\) −13.2967 9.66063i −0.533150 0.387356i
\(623\) 1.56013 4.80158i 0.0625052 0.192371i
\(624\) 8.09104 + 24.9016i 0.323901 + 0.996864i
\(625\) 22.4458 16.3078i 0.897833 0.652314i
\(626\) −23.0140 −0.919824
\(627\) 0 0
\(628\) 28.9783 1.15636
\(629\) −24.2237 + 17.5996i −0.965864 + 0.701741i
\(630\) −1.46615 4.51235i −0.0584128 0.179776i
\(631\) 6.87059 21.1455i 0.273514 0.841789i −0.716095 0.698003i \(-0.754072\pi\)
0.989609 0.143786i \(-0.0459277\pi\)
\(632\) −28.2980 20.5597i −1.12563 0.817821i
\(633\) 10.0918 + 7.33216i 0.401115 + 0.291427i
\(634\) −11.9002 + 36.6251i −0.472618 + 1.45457i
\(635\) 14.4397 + 44.4407i 0.573020 + 1.76357i
\(636\) −46.3976 + 33.7098i −1.83978 + 1.33668i
\(637\) −26.1831 −1.03741
\(638\) 0 0
\(639\) 0.744563 0.0294544
\(640\) 27.2649 19.8091i 1.07774 0.783023i
\(641\) 2.19923 + 6.76852i 0.0868642 + 0.267340i 0.985048 0.172279i \(-0.0551132\pi\)
−0.898184 + 0.439620i \(0.855113\pi\)
\(642\) −0.230083 + 0.708121i −0.00908063 + 0.0279473i
\(643\) −17.0663 12.3994i −0.673029 0.488984i 0.198009 0.980200i \(-0.436553\pi\)
−0.871038 + 0.491216i \(0.836553\pi\)
\(644\) 5.60503 + 4.07230i 0.220869 + 0.160471i
\(645\) −4.86267 + 14.9658i −0.191467 + 0.589276i
\(646\) 19.8831 + 61.1940i 0.782291 + 2.40765i
\(647\) 9.70820 7.05342i 0.381669 0.277299i −0.380364 0.924837i \(-0.624201\pi\)
0.762033 + 0.647538i \(0.224201\pi\)
\(648\) −5.98844 −0.235248
\(649\) 0 0
\(650\) −6.51087 −0.255378
\(651\) 4.72544 3.43323i 0.185205 0.134559i
\(652\) −12.6630 38.9726i −0.495920 1.52629i
\(653\) 1.39394 4.29010i 0.0545490 0.167884i −0.920070 0.391753i \(-0.871869\pi\)
0.974619 + 0.223869i \(0.0718687\pi\)
\(654\) −20.3200 14.7633i −0.794573 0.577291i
\(655\) −12.7306 9.24935i −0.497427 0.361402i
\(656\) 11.2113 34.5048i 0.437727 1.34719i
\(657\) −2.29462 7.06210i −0.0895215 0.275519i
\(658\) 2.03134 1.47586i 0.0791899 0.0575348i
\(659\) −22.3692 −0.871380 −0.435690 0.900097i \(-0.643496\pi\)
−0.435690 + 0.900097i \(0.643496\pi\)
\(660\) 0 0
\(661\) −26.7228 −1.03940 −0.519698 0.854350i \(-0.673956\pi\)
−0.519698 + 0.854350i \(0.673956\pi\)
\(662\) −1.28195 + 0.931389i −0.0498243 + 0.0361995i
\(663\) 7.60366 + 23.4017i 0.295302 + 0.908845i
\(664\) 15.7531 48.4832i 0.611341 1.88151i
\(665\) 6.47214 + 4.70228i 0.250979 + 0.182347i
\(666\) 10.2112 + 7.41884i 0.395674 + 0.287474i
\(667\) 1.56013 4.80158i 0.0604083 0.185918i
\(668\) 3.88335 + 11.9517i 0.150251 + 0.462426i
\(669\) 3.93296 2.85746i 0.152057 0.110476i
\(670\) 96.5147 3.72869
\(671\) 0 0
\(672\) 3.25544 0.125581
\(673\) 33.5553 24.3794i 1.29346 0.939755i 0.293593 0.955931i \(-0.405149\pi\)
0.999869 + 0.0161752i \(0.00514896\pi\)
\(674\) 11.9299 + 36.7165i 0.459523 + 1.41427i
\(675\) 0.193976 0.596996i 0.00746613 0.0229784i
\(676\) −13.7357 9.97957i −0.528296 0.383829i
\(677\) 29.3515 + 21.3251i 1.12807 + 0.819592i 0.985413 0.170180i \(-0.0544350\pi\)
0.142658 + 0.989772i \(0.454435\pi\)
\(678\) 3.41066 10.4969i 0.130985 0.403132i
\(679\) 3.05771 + 9.41068i 0.117344 + 0.361149i
\(680\) −68.8258 + 50.0049i −2.63935 + 1.91760i
\(681\) −25.2434 −0.967328
\(682\) 0 0
\(683\) 2.00000 0.0765279 0.0382639 0.999268i \(-0.487817\pi\)
0.0382639 + 0.999268i \(0.487817\pi\)
\(684\) 15.0559 10.9388i 0.575677 0.418254i
\(685\) −0.545820 1.67986i −0.0208547 0.0641843i
\(686\) −8.26452 + 25.4356i −0.315541 + 0.971135i
\(687\) 2.93489 + 2.13232i 0.111973 + 0.0813531i
\(688\) −34.1963 24.8451i −1.30372 0.947209i
\(689\) 16.6548 51.2581i 0.634496 1.95278i
\(690\) 3.70106 + 11.3907i 0.140897 + 0.433636i
\(691\) 3.33060 2.41982i 0.126702 0.0920543i −0.522629 0.852560i \(-0.675049\pi\)
0.649331 + 0.760506i \(0.275049\pi\)
\(692\) 30.2921 1.15153
\(693\) 0 0
\(694\) −45.4891 −1.72674
\(695\) 19.9451 14.4909i 0.756560 0.549673i
\(696\) −4.67136 14.3770i −0.177068 0.544958i
\(697\) 10.5360 32.4264i 0.399078 1.22824i
\(698\) 53.0587 + 38.5494i 2.00830 + 1.45912i
\(699\) 2.04223 + 1.48377i 0.0772443 + 0.0561213i
\(700\) −0.671952 + 2.06805i −0.0253974 + 0.0781651i
\(701\) −3.10329 9.55094i −0.117210 0.360734i 0.875192 0.483776i \(-0.160735\pi\)
−0.992401 + 0.123042i \(0.960735\pi\)
\(702\) 8.39135 6.09667i 0.316711 0.230104i
\(703\) −21.2819 −0.802664
\(704\) 0 0
\(705\) 2.97825 0.112167
\(706\) −59.9406 + 43.5494i −2.25589 + 1.63900i
\(707\) −1.30828 4.02648i −0.0492030 0.151431i
\(708\) −8.10666 + 24.9497i −0.304667 + 0.937668i
\(709\) −4.85410 3.52671i −0.182300 0.132448i 0.492893 0.870090i \(-0.335939\pi\)
−0.675192 + 0.737642i \(0.735939\pi\)
\(710\) −3.60722 2.62080i −0.135377 0.0983568i
\(711\) −1.80496 + 5.55509i −0.0676912 + 0.208332i
\(712\) 11.7921 + 36.2923i 0.441927 + 1.36011i
\(713\) −11.9286 + 8.66664i −0.446730 + 0.324568i
\(714\) 11.9769 0.448223
\(715\) 0 0
\(716\) −105.957 −3.95978
\(717\) −23.7021 + 17.2206i −0.885171 + 0.643114i
\(718\) −1.00599 3.09610i −0.0375430 0.115546i
\(719\) −1.85410 + 5.70634i −0.0691463 + 0.212811i −0.979659 0.200672i \(-0.935688\pi\)
0.910512 + 0.413482i \(0.135688\pi\)
\(720\) 12.2298 + 8.88546i 0.455777 + 0.331141i
\(721\) 5.20268 + 3.77997i 0.193758 + 0.140773i
\(722\) 0.688918 2.12027i 0.0256389 0.0789083i
\(723\) 4.09957 + 12.6172i 0.152465 + 0.469238i
\(724\) −60.1332 + 43.6894i −2.23483 + 1.62370i
\(725\) 1.58457 0.0588496
\(726\) 0 0
\(727\) 7.25544 0.269089 0.134545 0.990908i \(-0.457043\pi\)
0.134545 + 0.990908i \(0.457043\pi\)
\(728\) −15.7718 + 11.4589i −0.584541 + 0.424694i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) −13.7412 + 42.2910i −0.508584 + 1.56526i
\(731\) −32.1364 23.3485i −1.18861 0.863575i
\(732\) −9.45088 6.86646i −0.349314 0.253792i
\(733\) 2.82985 8.70938i 0.104523 0.321688i −0.885095 0.465410i \(-0.845907\pi\)
0.989618 + 0.143721i \(0.0459069\pi\)
\(734\) 18.5053 + 56.9534i 0.683043 + 2.10219i
\(735\) −12.2298 + 8.88546i −0.451102 + 0.327745i
\(736\) −8.21782 −0.302913
\(737\) 0 0
\(738\) −14.3723 −0.529051
\(739\) −31.4687 + 22.8633i −1.15759 + 0.841041i −0.989472 0.144725i \(-0.953770\pi\)
−0.168122 + 0.985766i \(0.553770\pi\)
\(740\) −16.0261 49.3231i −0.589130 1.81315i
\(741\) −5.40444 + 16.6331i −0.198537 + 0.611034i
\(742\) −21.2235 15.4198i −0.779139 0.566078i
\(743\) −19.9451 14.4909i −0.731714 0.531621i 0.158391 0.987376i \(-0.449369\pi\)
−0.890105 + 0.455755i \(0.849369\pi\)
\(744\) −13.6426 + 41.9877i −0.500163 + 1.53934i
\(745\) −4.38998 13.5110i −0.160836 0.495003i
\(746\) 49.9348 36.2798i 1.82824 1.32830i
\(747\) −8.51278 −0.311466
\(748\) 0 0
\(749\) −0.233688 −0.00853877
\(750\) 21.1826 15.3901i 0.773479 0.561966i
\(751\) −5.05259 15.5503i −0.184372 0.567438i 0.815565 0.578665i \(-0.196426\pi\)
−0.999937 + 0.0112273i \(0.996426\pi\)
\(752\) −2.47214 + 7.60845i −0.0901495 + 0.277452i
\(753\) 0.413306 + 0.300285i 0.0150617 + 0.0109430i
\(754\) 21.1826 + 15.3901i 0.771425 + 0.560473i
\(755\) 1.59406 4.90601i 0.0580137 0.178548i
\(756\) −1.07047 3.29456i −0.0389325 0.119822i
\(757\) −7.69446 + 5.59035i −0.279660 + 0.203185i −0.718769 0.695249i \(-0.755294\pi\)
0.439109 + 0.898434i \(0.355294\pi\)
\(758\) −59.8844 −2.17510
\(759\) 0 0
\(760\) −60.4674 −2.19338
\(761\) 32.8699 23.8814i 1.19153 0.865700i 0.198108 0.980180i \(-0.436520\pi\)
0.993426 + 0.114480i \(0.0365203\pi\)
\(762\) 15.3652 + 47.2892i 0.556622 + 1.71311i
\(763\) 2.43603 7.49733i 0.0881902 0.271421i
\(764\) 61.8634 + 44.9464i 2.23814 + 1.62610i
\(765\) 11.4931 + 8.35023i 0.415534 + 0.301903i
\(766\) 18.3230 56.3924i 0.662037 2.03754i
\(767\) −7.61834 23.4468i −0.275082 0.846616i
\(768\) 25.1741 18.2900i 0.908390 0.659984i
\(769\) −34.7885 −1.25451 −0.627253 0.778816i \(-0.715821\pi\)
−0.627253 + 0.778816i \(0.715821\pi\)
\(770\) 0 0
\(771\) 24.3723 0.877746
\(772\) −60.7453 + 44.1340i −2.18627 + 1.58842i