Properties

Label 363.2.e.n
Level $363$
Weight $2$
Character orbit 363.e
Analytic conductor $2.899$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: 16.0.22502537891856000000000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 7x^{14} + 45x^{12} + 287x^{10} + 1829x^{8} + 1148x^{6} + 720x^{4} + 448x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{12} q^{2} + \beta_{4} q^{3} + ( - \beta_{15} + \beta_{13} + \cdots + \beta_{3}) q^{4}+ \cdots - \beta_{8} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{12} q^{2} + \beta_{4} q^{3} + ( - \beta_{15} + \beta_{13} + \cdots + \beta_{3}) q^{4}+ \cdots + (2 \beta_{11} + 5 \beta_{9}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} - 6 q^{4} - 2 q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{3} - 6 q^{4} - 2 q^{5} - 4 q^{9} + 24 q^{12} - 8 q^{14} - 2 q^{15} - 14 q^{16} + 30 q^{20} + 32 q^{23} - 14 q^{25} + 30 q^{26} - 4 q^{27} - 18 q^{31} - 104 q^{34} - 6 q^{36} - 20 q^{37} - 20 q^{38} - 8 q^{42} + 8 q^{45} + 28 q^{47} - 14 q^{48} + 14 q^{49} - 18 q^{53} - 16 q^{56} + 14 q^{58} + 24 q^{59} + 30 q^{60} - 2 q^{64} + 120 q^{67} - 8 q^{69} - 4 q^{70} + 20 q^{71} - 14 q^{75} - 120 q^{78} + 26 q^{80} - 4 q^{81} + 46 q^{82} + 44 q^{86} - 56 q^{89} + 36 q^{91} - 12 q^{92} - 18 q^{93} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 7x^{14} + 45x^{12} + 287x^{10} + 1829x^{8} + 1148x^{6} + 720x^{4} + 448x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{11} + 7997\nu ) / 3658 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{10} + 4339 ) / 1829 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{12} + 11655\nu^{2} ) / 7316 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{13} - 11655\nu^{3} ) / 7316 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{12} - 27649\nu^{2} ) / 7316 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5\nu^{13} - 50959\nu^{3} ) / 14632 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 7\nu^{14} - 74269\nu^{4} ) / 29264 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 7\nu^{15} - 74269\nu^{5} ) / 29264 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 3\nu^{14} - 31307\nu^{4} ) / 3658 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -\nu^{15} + 10475\nu^{5} ) / 1888 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 287 \nu^{15} + 2009 \nu^{13} + 12915 \nu^{11} + 82305 \nu^{9} + 524923 \nu^{7} + 329476 \nu^{5} + \cdots + 128576 \nu ) / 117056 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 287 \nu^{14} - 2009 \nu^{12} - 12915 \nu^{10} - 82305 \nu^{8} - 524923 \nu^{6} - 329476 \nu^{4} + \cdots - 128576 ) / 117056 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 1379 \nu^{15} + 8865 \nu^{13} + 56539 \nu^{11} + 360313 \nu^{9} + 2295395 \nu^{7} + \cdots + 50432 \nu ) / 234112 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 749 \nu^{14} - 4815 \nu^{12} - 30709 \nu^{10} - 195703 \nu^{8} - 1245549 \nu^{6} - 77040 \nu^{4} + \cdots - 27392 ) / 117056 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 3\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} - 5\beta_{5} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{10} - 24\beta_{8} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -14\beta_{11} - 31\beta_{9} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 45\beta_{15} - 107\beta_{13} + 107\beta_{8} - 107\beta_{4} - 107 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -90\beta_{14} + 197\beta_{12} + 197\beta_{9} + 197\beta_{5} - 197\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -287\beta_{15} + 681\beta_{13} - 287\beta_{10} + 287\beta_{8} - 287\beta_{6} + 287\beta_{3} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 574\beta_{14} - 1255\beta_{12} + 574\beta_{11} - 574\beta_{7} + 574\beta_{2} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -1829\beta_{3} + 4339 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -3658\beta_{2} + 7997\beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 11655\beta_{6} + 27649\beta_{4} \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 23310\beta_{7} - 50959\beta_{5} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 74269\beta_{10} - 250456\beta_{8} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( -148538\beta_{11} - 324725\beta_{9} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(\beta_{13}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
124.1
−2.04223 1.48377i
−0.640974 0.465695i
0.640974 + 0.465695i
2.04223 + 1.48377i
−0.780063 2.40079i
−0.244830 0.753510i
0.244830 + 0.753510i
0.780063 + 2.40079i
−0.780063 + 2.40079i
−0.244830 + 0.753510i
0.244830 0.753510i
0.780063 2.40079i
−2.04223 + 1.48377i
−0.640974 + 0.465695i
0.640974 0.465695i
2.04223 1.48377i
−2.04223 + 1.48377i 0.309017 + 0.951057i 1.35111 4.15829i 1.91922 + 1.39439i −2.04223 1.48377i 0.244830 0.753510i 1.85053 + 5.69534i −0.809017 + 0.587785i −5.98844
124.2 −0.640974 + 0.465695i 0.309017 + 0.951057i −0.424058 + 1.30512i −2.72823 1.98218i −0.640974 0.465695i 0.780063 2.40079i −0.825636 2.54105i −0.809017 + 0.587785i 2.67181
124.3 0.640974 0.465695i 0.309017 + 0.951057i −0.424058 + 1.30512i −2.72823 1.98218i 0.640974 + 0.465695i −0.780063 + 2.40079i 0.825636 + 2.54105i −0.809017 + 0.587785i −2.67181
124.4 2.04223 1.48377i 0.309017 + 0.951057i 1.35111 4.15829i 1.91922 + 1.39439i 2.04223 + 1.48377i −0.244830 + 0.753510i −1.85053 5.69534i −0.809017 + 0.587785i 5.98844
130.1 −0.780063 + 2.40079i −0.809017 + 0.587785i −3.53725 2.56996i −0.733075 2.25617i −0.780063 2.40079i 0.640974 + 0.465695i 4.84475 3.51992i 0.309017 0.951057i 5.98844
130.2 −0.244830 + 0.753510i −0.809017 + 0.587785i 1.11020 + 0.806607i 1.04209 + 3.20723i −0.244830 0.753510i 2.04223 + 1.48377i −2.16154 + 1.57045i 0.309017 0.951057i −2.67181
130.3 0.244830 0.753510i −0.809017 + 0.587785i 1.11020 + 0.806607i 1.04209 + 3.20723i 0.244830 + 0.753510i −2.04223 1.48377i 2.16154 1.57045i 0.309017 0.951057i 2.67181
130.4 0.780063 2.40079i −0.809017 + 0.587785i −3.53725 2.56996i −0.733075 2.25617i 0.780063 + 2.40079i −0.640974 0.465695i −4.84475 + 3.51992i 0.309017 0.951057i −5.98844
148.1 −0.780063 2.40079i −0.809017 0.587785i −3.53725 + 2.56996i −0.733075 + 2.25617i −0.780063 + 2.40079i 0.640974 0.465695i 4.84475 + 3.51992i 0.309017 + 0.951057i 5.98844
148.2 −0.244830 0.753510i −0.809017 0.587785i 1.11020 0.806607i 1.04209 3.20723i −0.244830 + 0.753510i 2.04223 1.48377i −2.16154 1.57045i 0.309017 + 0.951057i −2.67181
148.3 0.244830 + 0.753510i −0.809017 0.587785i 1.11020 0.806607i 1.04209 3.20723i 0.244830 0.753510i −2.04223 + 1.48377i 2.16154 + 1.57045i 0.309017 + 0.951057i 2.67181
148.4 0.780063 + 2.40079i −0.809017 0.587785i −3.53725 + 2.56996i −0.733075 + 2.25617i 0.780063 2.40079i −0.640974 + 0.465695i −4.84475 3.51992i 0.309017 + 0.951057i −5.98844
202.1 −2.04223 1.48377i 0.309017 0.951057i 1.35111 + 4.15829i 1.91922 1.39439i −2.04223 + 1.48377i 0.244830 + 0.753510i 1.85053 5.69534i −0.809017 0.587785i −5.98844
202.2 −0.640974 0.465695i 0.309017 0.951057i −0.424058 1.30512i −2.72823 + 1.98218i −0.640974 + 0.465695i 0.780063 + 2.40079i −0.825636 + 2.54105i −0.809017 0.587785i 2.67181
202.3 0.640974 + 0.465695i 0.309017 0.951057i −0.424058 1.30512i −2.72823 + 1.98218i 0.640974 0.465695i −0.780063 2.40079i 0.825636 2.54105i −0.809017 0.587785i −2.67181
202.4 2.04223 + 1.48377i 0.309017 0.951057i 1.35111 + 4.15829i 1.91922 1.39439i 2.04223 1.48377i −0.244830 0.753510i −1.85053 + 5.69534i −0.809017 0.587785i 5.98844
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 124.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 363.2.e.n 16
11.b odd 2 1 inner 363.2.e.n 16
11.c even 5 1 363.2.a.j 4
11.c even 5 3 inner 363.2.e.n 16
11.d odd 10 1 363.2.a.j 4
11.d odd 10 3 inner 363.2.e.n 16
33.f even 10 1 1089.2.a.u 4
33.h odd 10 1 1089.2.a.u 4
44.g even 10 1 5808.2.a.ck 4
44.h odd 10 1 5808.2.a.ck 4
55.h odd 10 1 9075.2.a.cv 4
55.j even 10 1 9075.2.a.cv 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
363.2.a.j 4 11.c even 5 1
363.2.a.j 4 11.d odd 10 1
363.2.e.n 16 1.a even 1 1 trivial
363.2.e.n 16 11.b odd 2 1 inner
363.2.e.n 16 11.c even 5 3 inner
363.2.e.n 16 11.d odd 10 3 inner
1089.2.a.u 4 33.f even 10 1
1089.2.a.u 4 33.h odd 10 1
5808.2.a.ck 4 44.g even 10 1
5808.2.a.ck 4 44.h odd 10 1
9075.2.a.cv 4 55.h odd 10 1
9075.2.a.cv 4 55.j even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 7T_{2}^{14} + 45T_{2}^{12} + 287T_{2}^{10} + 1829T_{2}^{8} + 1148T_{2}^{6} + 720T_{2}^{4} + 448T_{2}^{2} + 256 \) acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 7 T^{14} + \cdots + 256 \) Copy content Toggle raw display
$3$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{8} + T^{7} + 9 T^{6} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} + 7 T^{14} + \cdots + 256 \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 110075314176 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 4294967296 \) Copy content Toggle raw display
$19$ \( T^{16} + 19 T^{14} + \cdots + 65536 \) Copy content Toggle raw display
$23$ \( (T - 2)^{16} \) Copy content Toggle raw display
$29$ \( T^{16} + 7 T^{14} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( (T^{8} + 9 T^{7} + \cdots + 20736)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 5 T^{3} + \cdots + 625)^{4} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 218340105584896 \) Copy content Toggle raw display
$43$ \( (T^{2} - 44)^{8} \) Copy content Toggle raw display
$47$ \( (T^{8} - 14 T^{7} + \cdots + 65536)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 9 T^{7} + \cdots + 8503056)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 6 T^{3} + \cdots + 1296)^{4} \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 4294967296 \) Copy content Toggle raw display
$67$ \( (T^{2} - 15 T - 18)^{8} \) Copy content Toggle raw display
$71$ \( (T^{8} - 10 T^{7} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 457163239653376 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 110075314176 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 4294967296 \) Copy content Toggle raw display
$89$ \( (T^{2} + 7 T + 4)^{8} \) Copy content Toggle raw display
$97$ \( (T^{8} - 2 T^{7} + \cdots + 294499921)^{2} \) Copy content Toggle raw display
show more
show less