Properties

Label 363.2.e.l.202.1
Level $363$
Weight $2$
Character 363.202
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,2,Mod(124,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.124"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,-1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 202.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.202
Dual form 363.2.e.l.124.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80902 + 1.31433i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.927051 + 2.85317i) q^{4} +(-1.61803 + 1.17557i) q^{5} +(1.80902 - 1.31433i) q^{6} +(1.38197 + 4.25325i) q^{7} +(-0.690983 + 2.12663i) q^{8} +(-0.809017 - 0.587785i) q^{9} -4.47214 q^{10} +3.00000 q^{12} +(-3.09017 + 9.51057i) q^{14} +(0.618034 + 1.90211i) q^{15} +(0.809017 - 0.587785i) q^{16} +(3.61803 - 2.62866i) q^{17} +(-0.690983 - 2.12663i) q^{18} +(1.38197 - 4.25325i) q^{19} +(-4.85410 - 3.52671i) q^{20} +4.47214 q^{21} -4.00000 q^{23} +(1.80902 + 1.31433i) q^{24} +(-0.309017 + 0.951057i) q^{25} +(-0.809017 + 0.587785i) q^{27} +(-10.8541 + 7.88597i) q^{28} +(-1.38197 - 4.25325i) q^{29} +(-1.38197 + 4.25325i) q^{30} +6.70820 q^{32} +10.0000 q^{34} +(-7.23607 - 5.25731i) q^{35} +(0.927051 - 2.85317i) q^{36} +(0.618034 + 1.90211i) q^{37} +(8.09017 - 5.87785i) q^{38} +(-1.38197 - 4.25325i) q^{40} +(1.38197 - 4.25325i) q^{41} +(8.09017 + 5.87785i) q^{42} -4.47214 q^{43} +2.00000 q^{45} +(-7.23607 - 5.25731i) q^{46} +(2.47214 - 7.60845i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(-10.5172 + 7.64121i) q^{49} +(-1.80902 + 1.31433i) q^{50} +(-1.38197 - 4.25325i) q^{51} +(-4.85410 - 3.52671i) q^{53} -2.23607 q^{54} -10.0000 q^{56} +(-3.61803 - 2.62866i) q^{57} +(3.09017 - 9.51057i) q^{58} +(-4.85410 + 3.52671i) q^{60} +(7.23607 - 5.25731i) q^{61} +(1.38197 - 4.25325i) q^{63} +(10.5172 + 7.64121i) q^{64} -12.0000 q^{67} +(10.8541 + 7.88597i) q^{68} +(-1.23607 + 3.80423i) q^{69} +(-6.18034 - 19.0211i) q^{70} +(6.47214 - 4.70228i) q^{71} +(1.80902 - 1.31433i) q^{72} +(2.76393 + 8.50651i) q^{73} +(-1.38197 + 4.25325i) q^{74} +(0.809017 + 0.587785i) q^{75} +13.4164 q^{76} +(10.8541 + 7.88597i) q^{79} +(-0.618034 + 1.90211i) q^{80} +(0.309017 + 0.951057i) q^{81} +(8.09017 - 5.87785i) q^{82} +(-7.23607 + 5.25731i) q^{83} +(4.14590 + 12.7598i) q^{84} +(-2.76393 + 8.50651i) q^{85} +(-8.09017 - 5.87785i) q^{86} -4.47214 q^{87} -14.0000 q^{89} +(3.61803 + 2.62866i) q^{90} +(-3.70820 - 11.4127i) q^{92} +(14.4721 - 10.5146i) q^{94} +(2.76393 + 8.50651i) q^{95} +(2.07295 - 6.37988i) q^{96} +(-1.61803 - 1.17557i) q^{97} -29.0689 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - q^{3} - 3 q^{4} - 2 q^{5} + 5 q^{6} + 10 q^{7} - 5 q^{8} - q^{9} + 12 q^{12} + 10 q^{14} - 2 q^{15} + q^{16} + 10 q^{17} - 5 q^{18} + 10 q^{19} - 6 q^{20} - 16 q^{23} + 5 q^{24} + q^{25}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80902 + 1.31433i 1.27917 + 0.929370i 0.999528 0.0307347i \(-0.00978469\pi\)
0.279641 + 0.960105i \(0.409785\pi\)
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0.927051 + 2.85317i 0.463525 + 1.42658i
\(5\) −1.61803 + 1.17557i −0.723607 + 0.525731i −0.887535 0.460741i \(-0.847584\pi\)
0.163928 + 0.986472i \(0.447584\pi\)
\(6\) 1.80902 1.31433i 0.738528 0.536572i
\(7\) 1.38197 + 4.25325i 0.522334 + 1.60758i 0.769528 + 0.638613i \(0.220491\pi\)
−0.247194 + 0.968966i \(0.579509\pi\)
\(8\) −0.690983 + 2.12663i −0.244299 + 0.751876i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) −4.47214 −1.41421
\(11\) 0 0
\(12\) 3.00000 0.866025
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) −3.09017 + 9.51057i −0.825883 + 2.54181i
\(15\) 0.618034 + 1.90211i 0.159576 + 0.491123i
\(16\) 0.809017 0.587785i 0.202254 0.146946i
\(17\) 3.61803 2.62866i 0.877502 0.637543i −0.0550873 0.998482i \(-0.517544\pi\)
0.932589 + 0.360939i \(0.117544\pi\)
\(18\) −0.690983 2.12663i −0.162866 0.501251i
\(19\) 1.38197 4.25325i 0.317045 0.975763i −0.657860 0.753140i \(-0.728538\pi\)
0.974905 0.222623i \(-0.0714619\pi\)
\(20\) −4.85410 3.52671i −1.08541 0.788597i
\(21\) 4.47214 0.975900
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 1.80902 + 1.31433i 0.369264 + 0.268286i
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) −10.8541 + 7.88597i −2.05123 + 1.49031i
\(29\) −1.38197 4.25325i −0.256625 0.789809i −0.993505 0.113787i \(-0.963702\pi\)
0.736881 0.676023i \(-0.236298\pi\)
\(30\) −1.38197 + 4.25325i −0.252311 + 0.776534i
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 6.70820 1.18585
\(33\) 0 0
\(34\) 10.0000 1.71499
\(35\) −7.23607 5.25731i −1.22312 0.888648i
\(36\) 0.927051 2.85317i 0.154508 0.475528i
\(37\) 0.618034 + 1.90211i 0.101604 + 0.312705i 0.988918 0.148460i \(-0.0474315\pi\)
−0.887314 + 0.461165i \(0.847432\pi\)
\(38\) 8.09017 5.87785i 1.31240 0.953514i
\(39\) 0 0
\(40\) −1.38197 4.25325i −0.218508 0.672499i
\(41\) 1.38197 4.25325i 0.215827 0.664247i −0.783267 0.621685i \(-0.786448\pi\)
0.999094 0.0425613i \(-0.0135518\pi\)
\(42\) 8.09017 + 5.87785i 1.24834 + 0.906972i
\(43\) −4.47214 −0.681994 −0.340997 0.940064i \(-0.610765\pi\)
−0.340997 + 0.940064i \(0.610765\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) −7.23607 5.25731i −1.06690 0.775148i
\(47\) 2.47214 7.60845i 0.360598 1.10981i −0.592094 0.805869i \(-0.701699\pi\)
0.952692 0.303938i \(-0.0983015\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −10.5172 + 7.64121i −1.50246 + 1.09160i
\(50\) −1.80902 + 1.31433i −0.255834 + 0.185874i
\(51\) −1.38197 4.25325i −0.193514 0.595575i
\(52\) 0 0
\(53\) −4.85410 3.52671i −0.666762 0.484431i 0.202178 0.979349i \(-0.435198\pi\)
−0.868940 + 0.494918i \(0.835198\pi\)
\(54\) −2.23607 −0.304290
\(55\) 0 0
\(56\) −10.0000 −1.33631
\(57\) −3.61803 2.62866i −0.479220 0.348174i
\(58\) 3.09017 9.51057i 0.405759 1.24880i
\(59\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(60\) −4.85410 + 3.52671i −0.626662 + 0.455296i
\(61\) 7.23607 5.25731i 0.926484 0.673130i −0.0186458 0.999826i \(-0.505935\pi\)
0.945129 + 0.326696i \(0.105935\pi\)
\(62\) 0 0
\(63\) 1.38197 4.25325i 0.174111 0.535860i
\(64\) 10.5172 + 7.64121i 1.31465 + 0.955151i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 10.8541 + 7.88597i 1.31625 + 0.956314i
\(69\) −1.23607 + 3.80423i −0.148805 + 0.457975i
\(70\) −6.18034 19.0211i −0.738692 2.27346i
\(71\) 6.47214 4.70228i 0.768101 0.558058i −0.133283 0.991078i \(-0.542552\pi\)
0.901384 + 0.433020i \(0.142552\pi\)
\(72\) 1.80902 1.31433i 0.213195 0.154895i
\(73\) 2.76393 + 8.50651i 0.323494 + 0.995611i 0.972116 + 0.234501i \(0.0753456\pi\)
−0.648622 + 0.761111i \(0.724654\pi\)
\(74\) −1.38197 + 4.25325i −0.160650 + 0.494431i
\(75\) 0.809017 + 0.587785i 0.0934172 + 0.0678716i
\(76\) 13.4164 1.53897
\(77\) 0 0
\(78\) 0 0
\(79\) 10.8541 + 7.88597i 1.22118 + 0.887241i 0.996198 0.0871218i \(-0.0277669\pi\)
0.224984 + 0.974362i \(0.427767\pi\)
\(80\) −0.618034 + 1.90211i −0.0690983 + 0.212663i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 8.09017 5.87785i 0.893410 0.649100i
\(83\) −7.23607 + 5.25731i −0.794262 + 0.577065i −0.909225 0.416305i \(-0.863325\pi\)
0.114963 + 0.993370i \(0.463325\pi\)
\(84\) 4.14590 + 12.7598i 0.452355 + 1.39220i
\(85\) −2.76393 + 8.50651i −0.299791 + 0.922660i
\(86\) −8.09017 5.87785i −0.872385 0.633825i
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 3.61803 + 2.62866i 0.381374 + 0.277085i
\(91\) 0 0
\(92\) −3.70820 11.4127i −0.386607 1.18985i
\(93\) 0 0
\(94\) 14.4721 10.5146i 1.49269 1.08450i
\(95\) 2.76393 + 8.50651i 0.283573 + 0.872749i
\(96\) 2.07295 6.37988i 0.211569 0.651144i
\(97\) −1.61803 1.17557i −0.164286 0.119361i 0.502604 0.864517i \(-0.332375\pi\)
−0.666891 + 0.745155i \(0.732375\pi\)
\(98\) −29.0689 −2.93640
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) 3.61803 + 2.62866i 0.360008 + 0.261561i 0.753055 0.657957i \(-0.228579\pi\)
−0.393048 + 0.919518i \(0.628579\pi\)
\(102\) 3.09017 9.51057i 0.305972 0.941686i
\(103\) 4.94427 + 15.2169i 0.487174 + 1.49937i 0.828808 + 0.559533i \(0.189020\pi\)
−0.341634 + 0.939833i \(0.610980\pi\)
\(104\) 0 0
\(105\) −7.23607 + 5.25731i −0.706168 + 0.513061i
\(106\) −4.14590 12.7598i −0.402685 1.23934i
\(107\) −2.76393 + 8.50651i −0.267199 + 0.822355i 0.723979 + 0.689822i \(0.242311\pi\)
−0.991179 + 0.132533i \(0.957689\pi\)
\(108\) −2.42705 1.76336i −0.233543 0.169679i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 3.61803 + 2.62866i 0.341872 + 0.248385i
\(113\) 1.85410 5.70634i 0.174419 0.536807i −0.825187 0.564859i \(-0.808930\pi\)
0.999606 + 0.0280521i \(0.00893043\pi\)
\(114\) −3.09017 9.51057i −0.289421 0.890746i
\(115\) 6.47214 4.70228i 0.603530 0.438490i
\(116\) 10.8541 7.88597i 1.00778 0.732194i
\(117\) 0 0
\(118\) 0 0
\(119\) 16.1803 + 11.7557i 1.48325 + 1.07764i
\(120\) −4.47214 −0.408248
\(121\) 0 0
\(122\) 20.0000 1.81071
\(123\) −3.61803 2.62866i −0.326227 0.237018i
\(124\) 0 0
\(125\) −3.70820 11.4127i −0.331672 1.02078i
\(126\) 8.09017 5.87785i 0.720730 0.523641i
\(127\) 10.8541 7.88597i 0.963146 0.699766i 0.00926659 0.999957i \(-0.497050\pi\)
0.953879 + 0.300191i \(0.0970503\pi\)
\(128\) 4.83688 + 14.8864i 0.427524 + 1.31578i
\(129\) −1.38197 + 4.25325i −0.121675 + 0.374478i
\(130\) 0 0
\(131\) 17.8885 1.56293 0.781465 0.623949i \(-0.214473\pi\)
0.781465 + 0.623949i \(0.214473\pi\)
\(132\) 0 0
\(133\) 20.0000 1.73422
\(134\) −21.7082 15.7719i −1.87530 1.36249i
\(135\) 0.618034 1.90211i 0.0531919 0.163708i
\(136\) 3.09017 + 9.51057i 0.264980 + 0.815524i
\(137\) −17.7984 + 12.9313i −1.52062 + 1.10479i −0.559437 + 0.828873i \(0.688983\pi\)
−0.961180 + 0.275921i \(0.911017\pi\)
\(138\) −7.23607 + 5.25731i −0.615975 + 0.447532i
\(139\) −4.14590 12.7598i −0.351650 1.08227i −0.957926 0.287014i \(-0.907337\pi\)
0.606276 0.795254i \(-0.292663\pi\)
\(140\) 8.29180 25.5195i 0.700785 2.15679i
\(141\) −6.47214 4.70228i −0.545052 0.396004i
\(142\) 17.8885 1.50117
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 7.23607 + 5.25731i 0.600923 + 0.436596i
\(146\) −6.18034 + 19.0211i −0.511489 + 1.57420i
\(147\) 4.01722 + 12.3637i 0.331335 + 1.01974i
\(148\) −4.85410 + 3.52671i −0.399005 + 0.289894i
\(149\) −18.0902 + 13.1433i −1.48200 + 1.07674i −0.505100 + 0.863061i \(0.668545\pi\)
−0.976904 + 0.213679i \(0.931455\pi\)
\(150\) 0.690983 + 2.12663i 0.0564185 + 0.173638i
\(151\) −4.14590 + 12.7598i −0.337388 + 1.03837i 0.628145 + 0.778096i \(0.283814\pi\)
−0.965534 + 0.260279i \(0.916186\pi\)
\(152\) 8.09017 + 5.87785i 0.656199 + 0.476757i
\(153\) −4.47214 −0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.618034 1.90211i 0.0493245 0.151805i −0.923361 0.383934i \(-0.874569\pi\)
0.972685 + 0.232129i \(0.0745691\pi\)
\(158\) 9.27051 + 28.5317i 0.737522 + 2.26986i
\(159\) −4.85410 + 3.52671i −0.384955 + 0.279686i
\(160\) −10.8541 + 7.88597i −0.858092 + 0.623440i
\(161\) −5.52786 17.0130i −0.435657 1.34081i
\(162\) −0.690983 + 2.12663i −0.0542888 + 0.167084i
\(163\) −3.23607 2.35114i −0.253468 0.184156i 0.453794 0.891107i \(-0.350070\pi\)
−0.707263 + 0.706951i \(0.750070\pi\)
\(164\) 13.4164 1.04765
\(165\) 0 0
\(166\) −20.0000 −1.55230
\(167\) 7.23607 + 5.25731i 0.559944 + 0.406823i 0.831438 0.555617i \(-0.187518\pi\)
−0.271495 + 0.962440i \(0.587518\pi\)
\(168\) −3.09017 + 9.51057i −0.238412 + 0.733756i
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) −16.1803 + 11.7557i −1.24098 + 0.901621i
\(171\) −3.61803 + 2.62866i −0.276678 + 0.201018i
\(172\) −4.14590 12.7598i −0.316122 0.972923i
\(173\) 4.14590 12.7598i 0.315207 0.970107i −0.660462 0.750859i \(-0.729640\pi\)
0.975669 0.219248i \(-0.0703603\pi\)
\(174\) −8.09017 5.87785i −0.613314 0.445599i
\(175\) −4.47214 −0.338062
\(176\) 0 0
\(177\) 0 0
\(178\) −25.3262 18.4006i −1.89828 1.37918i
\(179\) −1.23607 + 3.80423i −0.0923881 + 0.284341i −0.986564 0.163374i \(-0.947762\pi\)
0.894176 + 0.447715i \(0.147762\pi\)
\(180\) 1.85410 + 5.70634i 0.138197 + 0.425325i
\(181\) 8.09017 5.87785i 0.601338 0.436897i −0.245016 0.969519i \(-0.578793\pi\)
0.846353 + 0.532622i \(0.178793\pi\)
\(182\) 0 0
\(183\) −2.76393 8.50651i −0.204316 0.628819i
\(184\) 2.76393 8.50651i 0.203760 0.627108i
\(185\) −3.23607 2.35114i −0.237920 0.172859i
\(186\) 0 0
\(187\) 0 0
\(188\) 24.0000 1.75038
\(189\) −3.61803 2.62866i −0.263173 0.191207i
\(190\) −6.18034 + 19.0211i −0.448369 + 1.37994i
\(191\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(192\) 10.5172 7.64121i 0.759015 0.551457i
\(193\) −14.4721 + 10.5146i −1.04173 + 0.756859i −0.970622 0.240610i \(-0.922653\pi\)
−0.0711052 + 0.997469i \(0.522653\pi\)
\(194\) −1.38197 4.25325i −0.0992194 0.305366i
\(195\) 0 0
\(196\) −31.5517 22.9236i −2.25369 1.63740i
\(197\) −22.3607 −1.59313 −0.796566 0.604551i \(-0.793352\pi\)
−0.796566 + 0.604551i \(0.793352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −1.80902 1.31433i −0.127917 0.0929370i
\(201\) −3.70820 + 11.4127i −0.261557 + 0.804988i
\(202\) 3.09017 + 9.51057i 0.217424 + 0.669161i
\(203\) 16.1803 11.7557i 1.13564 0.825089i
\(204\) 10.8541 7.88597i 0.759939 0.552128i
\(205\) 2.76393 + 8.50651i 0.193041 + 0.594120i
\(206\) −11.0557 + 34.0260i −0.770289 + 2.37071i
\(207\) 3.23607 + 2.35114i 0.224922 + 0.163416i
\(208\) 0 0
\(209\) 0 0
\(210\) −20.0000 −1.38013
\(211\) −3.61803 2.62866i −0.249076 0.180964i 0.456241 0.889856i \(-0.349195\pi\)
−0.705317 + 0.708892i \(0.749195\pi\)
\(212\) 5.56231 17.1190i 0.382021 1.17574i
\(213\) −2.47214 7.60845i −0.169388 0.521323i
\(214\) −16.1803 + 11.7557i −1.10607 + 0.803603i
\(215\) 7.23607 5.25731i 0.493496 0.358546i
\(216\) −0.690983 2.12663i −0.0470154 0.144699i
\(217\) 0 0
\(218\) 0 0
\(219\) 8.94427 0.604398
\(220\) 0 0
\(221\) 0 0
\(222\) 3.61803 + 2.62866i 0.242827 + 0.176424i
\(223\) −4.94427 + 15.2169i −0.331093 + 1.01900i 0.637522 + 0.770432i \(0.279960\pi\)
−0.968615 + 0.248567i \(0.920040\pi\)
\(224\) 9.27051 + 28.5317i 0.619412 + 1.90635i
\(225\) 0.809017 0.587785i 0.0539345 0.0391857i
\(226\) 10.8541 7.88597i 0.722004 0.524567i
\(227\) −2.76393 8.50651i −0.183449 0.564597i 0.816470 0.577388i \(-0.195928\pi\)
−0.999918 + 0.0127917i \(0.995928\pi\)
\(228\) 4.14590 12.7598i 0.274569 0.845036i
\(229\) −8.09017 5.87785i −0.534613 0.388419i 0.287467 0.957790i \(-0.407187\pi\)
−0.822081 + 0.569371i \(0.807187\pi\)
\(230\) 17.8885 1.17954
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) −3.61803 2.62866i −0.237025 0.172209i 0.462932 0.886394i \(-0.346798\pi\)
−0.699957 + 0.714185i \(0.746798\pi\)
\(234\) 0 0
\(235\) 4.94427 + 15.2169i 0.322529 + 0.992641i
\(236\) 0 0
\(237\) 10.8541 7.88597i 0.705050 0.512249i
\(238\) 13.8197 + 42.5325i 0.895796 + 2.75698i
\(239\) −2.76393 + 8.50651i −0.178784 + 0.550240i −0.999786 0.0206848i \(-0.993415\pi\)
0.821002 + 0.570925i \(0.193415\pi\)
\(240\) 1.61803 + 1.17557i 0.104444 + 0.0758827i
\(241\) −8.94427 −0.576151 −0.288076 0.957608i \(-0.593015\pi\)
−0.288076 + 0.957608i \(0.593015\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 21.7082 + 15.7719i 1.38973 + 1.00969i
\(245\) 8.03444 24.7275i 0.513302 1.57978i
\(246\) −3.09017 9.51057i −0.197022 0.606371i
\(247\) 0 0
\(248\) 0 0
\(249\) 2.76393 + 8.50651i 0.175157 + 0.539078i
\(250\) 8.29180 25.5195i 0.524419 1.61400i
\(251\) 9.70820 + 7.05342i 0.612776 + 0.445208i 0.850391 0.526151i \(-0.176365\pi\)
−0.237614 + 0.971360i \(0.576365\pi\)
\(252\) 13.4164 0.845154
\(253\) 0 0
\(254\) 30.0000 1.88237
\(255\) 7.23607 + 5.25731i 0.453140 + 0.329226i
\(256\) −2.78115 + 8.55951i −0.173822 + 0.534969i
\(257\) −6.79837 20.9232i −0.424071 1.30516i −0.903881 0.427784i \(-0.859294\pi\)
0.479810 0.877372i \(-0.340706\pi\)
\(258\) −8.09017 + 5.87785i −0.503672 + 0.365939i
\(259\) −7.23607 + 5.25731i −0.449627 + 0.326673i
\(260\) 0 0
\(261\) −1.38197 + 4.25325i −0.0855415 + 0.263270i
\(262\) 32.3607 + 23.5114i 1.99925 + 1.45254i
\(263\) −8.94427 −0.551527 −0.275764 0.961225i \(-0.588931\pi\)
−0.275764 + 0.961225i \(0.588931\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 36.1803 + 26.2866i 2.21836 + 1.61173i
\(267\) −4.32624 + 13.3148i −0.264761 + 0.814852i
\(268\) −11.1246 34.2380i −0.679544 2.09142i
\(269\) 8.09017 5.87785i 0.493266 0.358379i −0.313173 0.949696i \(-0.601392\pi\)
0.806439 + 0.591317i \(0.201392\pi\)
\(270\) 3.61803 2.62866i 0.220187 0.159975i
\(271\) 4.14590 + 12.7598i 0.251845 + 0.775100i 0.994435 + 0.105353i \(0.0335974\pi\)
−0.742589 + 0.669747i \(0.766403\pi\)
\(272\) 1.38197 4.25325i 0.0837940 0.257891i
\(273\) 0 0
\(274\) −49.1935 −2.97189
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) 9.27051 28.5317i 0.556008 1.71122i
\(279\) 0 0
\(280\) 16.1803 11.7557i 0.966960 0.702538i
\(281\) 25.3262 18.4006i 1.51084 1.09769i 0.545032 0.838415i \(-0.316517\pi\)
0.965804 0.259272i \(-0.0834826\pi\)
\(282\) −5.52786 17.0130i −0.329180 1.01311i
\(283\) 4.14590 12.7598i 0.246448 0.758489i −0.748947 0.662630i \(-0.769440\pi\)
0.995395 0.0958591i \(-0.0305598\pi\)
\(284\) 19.4164 + 14.1068i 1.15215 + 0.837087i
\(285\) 8.94427 0.529813
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) −5.42705 3.94298i −0.319792 0.232343i
\(289\) 0.927051 2.85317i 0.0545324 0.167834i
\(290\) 6.18034 + 19.0211i 0.362922 + 1.11696i
\(291\) −1.61803 + 1.17557i −0.0948508 + 0.0689132i
\(292\) −21.7082 + 15.7719i −1.27038 + 0.922983i
\(293\) 6.90983 + 21.2663i 0.403677 + 1.24239i 0.921995 + 0.387201i \(0.126558\pi\)
−0.518319 + 0.855188i \(0.673442\pi\)
\(294\) −8.98278 + 27.6462i −0.523886 + 1.61236i
\(295\) 0 0
\(296\) −4.47214 −0.259938
\(297\) 0 0
\(298\) −50.0000 −2.89642
\(299\) 0 0
\(300\) −0.927051 + 2.85317i −0.0535233 + 0.164728i
\(301\) −6.18034 19.0211i −0.356229 1.09636i
\(302\) −24.2705 + 17.6336i −1.39661 + 1.01470i
\(303\) 3.61803 2.62866i 0.207851 0.151012i
\(304\) −1.38197 4.25325i −0.0792612 0.243941i
\(305\) −5.52786 + 17.0130i −0.316525 + 0.974162i
\(306\) −8.09017 5.87785i −0.462484 0.336014i
\(307\) 4.47214 0.255238 0.127619 0.991823i \(-0.459266\pi\)
0.127619 + 0.991823i \(0.459266\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) −3.70820 + 11.4127i −0.210273 + 0.647154i 0.789183 + 0.614159i \(0.210505\pi\)
−0.999456 + 0.0329949i \(0.989495\pi\)
\(312\) 0 0
\(313\) −11.3262 + 8.22899i −0.640197 + 0.465130i −0.859918 0.510433i \(-0.829485\pi\)
0.219721 + 0.975563i \(0.429485\pi\)
\(314\) 3.61803 2.62866i 0.204177 0.148344i
\(315\) 2.76393 + 8.50651i 0.155730 + 0.479287i
\(316\) −12.4377 + 38.2793i −0.699675 + 2.15338i
\(317\) −14.5623 10.5801i −0.817901 0.594240i 0.0982098 0.995166i \(-0.468688\pi\)
−0.916110 + 0.400926i \(0.868688\pi\)
\(318\) −13.4164 −0.752355
\(319\) 0 0
\(320\) −26.0000 −1.45344
\(321\) 7.23607 + 5.25731i 0.403878 + 0.293434i
\(322\) 12.3607 38.0423i 0.688834 2.12001i
\(323\) −6.18034 19.0211i −0.343883 1.05836i
\(324\) −2.42705 + 1.76336i −0.134836 + 0.0979642i
\(325\) 0 0
\(326\) −2.76393 8.50651i −0.153080 0.471132i
\(327\) 0 0
\(328\) 8.09017 + 5.87785i 0.446705 + 0.324550i
\(329\) 35.7771 1.97245
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −21.7082 15.7719i −1.19139 0.865597i
\(333\) 0.618034 1.90211i 0.0338681 0.104235i
\(334\) 6.18034 + 19.0211i 0.338173 + 1.04079i
\(335\) 19.4164 14.1068i 1.06083 0.770739i
\(336\) 3.61803 2.62866i 0.197380 0.143405i
\(337\) −2.76393 8.50651i −0.150561 0.463379i 0.847123 0.531397i \(-0.178333\pi\)
−0.997684 + 0.0680176i \(0.978333\pi\)
\(338\) 8.98278 27.6462i 0.488599 1.50375i
\(339\) −4.85410 3.52671i −0.263639 0.191545i
\(340\) −26.8328 −1.45521
\(341\) 0 0
\(342\) −10.0000 −0.540738
\(343\) −21.7082 15.7719i −1.17213 0.851604i
\(344\) 3.09017 9.51057i 0.166611 0.512775i
\(345\) −2.47214 7.60845i −0.133095 0.409625i
\(346\) 24.2705 17.6336i 1.30479 0.947986i
\(347\) 7.23607 5.25731i 0.388452 0.282227i −0.376369 0.926470i \(-0.622827\pi\)
0.764821 + 0.644243i \(0.222827\pi\)
\(348\) −4.14590 12.7598i −0.222243 0.683995i
\(349\) 8.29180 25.5195i 0.443850 1.36603i −0.439891 0.898051i \(-0.644983\pi\)
0.883740 0.467978i \(-0.155017\pi\)
\(350\) −8.09017 5.87785i −0.432438 0.314184i
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −4.94427 + 15.2169i −0.262415 + 0.807629i
\(356\) −12.9787 39.9444i −0.687870 2.11705i
\(357\) 16.1803 11.7557i 0.856354 0.622178i
\(358\) −7.23607 + 5.25731i −0.382438 + 0.277858i
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) −1.38197 + 4.25325i −0.0728360 + 0.224166i
\(361\) −0.809017 0.587785i −0.0425798 0.0309361i
\(362\) 22.3607 1.17525
\(363\) 0 0
\(364\) 0 0
\(365\) −14.4721 10.5146i −0.757506 0.550360i
\(366\) 6.18034 19.0211i 0.323052 0.994250i
\(367\) 2.47214 + 7.60845i 0.129044 + 0.397158i 0.994616 0.103627i \(-0.0330448\pi\)
−0.865572 + 0.500785i \(0.833045\pi\)
\(368\) −3.23607 + 2.35114i −0.168692 + 0.122562i
\(369\) −3.61803 + 2.62866i −0.188347 + 0.136842i
\(370\) −2.76393 8.50651i −0.143690 0.442232i
\(371\) 8.29180 25.5195i 0.430489 1.32491i
\(372\) 0 0
\(373\) 26.8328 1.38935 0.694675 0.719323i \(-0.255548\pi\)
0.694675 + 0.719323i \(0.255548\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 14.4721 + 10.5146i 0.746343 + 0.542250i
\(377\) 0 0
\(378\) −3.09017 9.51057i −0.158941 0.489171i
\(379\) 16.1803 11.7557i 0.831128 0.603850i −0.0887501 0.996054i \(-0.528287\pi\)
0.919878 + 0.392204i \(0.128287\pi\)
\(380\) −21.7082 + 15.7719i −1.11361 + 0.809083i
\(381\) −4.14590 12.7598i −0.212401 0.653702i
\(382\) 0 0
\(383\) 29.1246 + 21.1603i 1.48820 + 1.08124i 0.974798 + 0.223090i \(0.0716144\pi\)
0.513400 + 0.858149i \(0.328386\pi\)
\(384\) 15.6525 0.798762
\(385\) 0 0
\(386\) −40.0000 −2.03595
\(387\) 3.61803 + 2.62866i 0.183915 + 0.133622i
\(388\) 1.85410 5.70634i 0.0941278 0.289695i
\(389\) 3.09017 + 9.51057i 0.156678 + 0.482205i 0.998327 0.0578199i \(-0.0184149\pi\)
−0.841649 + 0.540025i \(0.818415\pi\)
\(390\) 0 0
\(391\) −14.4721 + 10.5146i −0.731887 + 0.531747i
\(392\) −8.98278 27.6462i −0.453699 1.39634i
\(393\) 5.52786 17.0130i 0.278844 0.858193i
\(394\) −40.4508 29.3893i −2.03788 1.48061i
\(395\) −26.8328 −1.35011
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) 6.18034 19.0211i 0.309404 0.952248i
\(400\) 0.309017 + 0.951057i 0.0154508 + 0.0475528i
\(401\) −24.2705 + 17.6336i −1.21201 + 0.880578i −0.995412 0.0956827i \(-0.969497\pi\)
−0.216600 + 0.976261i \(0.569497\pi\)
\(402\) −21.7082 + 15.7719i −1.08271 + 0.786633i
\(403\) 0 0
\(404\) −4.14590 + 12.7598i −0.206266 + 0.634822i
\(405\) −1.61803 1.17557i −0.0804008 0.0584146i
\(406\) 44.7214 2.21948
\(407\) 0 0
\(408\) 10.0000 0.495074
\(409\) −21.7082 15.7719i −1.07340 0.779872i −0.0968810 0.995296i \(-0.530887\pi\)
−0.976521 + 0.215424i \(0.930887\pi\)
\(410\) −6.18034 + 19.0211i −0.305225 + 0.939387i
\(411\) 6.79837 + 20.9232i 0.335339 + 1.03207i
\(412\) −38.8328 + 28.2137i −1.91316 + 1.38999i
\(413\) 0 0
\(414\) 2.76393 + 8.50651i 0.135840 + 0.418072i
\(415\) 5.52786 17.0130i 0.271352 0.835136i
\(416\) 0 0
\(417\) −13.4164 −0.657004
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) −21.7082 15.7719i −1.05925 0.769592i
\(421\) 3.09017 9.51057i 0.150606 0.463517i −0.847084 0.531460i \(-0.821644\pi\)
0.997689 + 0.0679432i \(0.0216437\pi\)
\(422\) −3.09017 9.51057i −0.150427 0.462967i
\(423\) −6.47214 + 4.70228i −0.314686 + 0.228633i
\(424\) 10.8541 7.88597i 0.527122 0.382976i
\(425\) 1.38197 + 4.25325i 0.0670352 + 0.206313i
\(426\) 5.52786 17.0130i 0.267826 0.824283i
\(427\) 32.3607 + 23.5114i 1.56604 + 1.13780i
\(428\) −26.8328 −1.29701
\(429\) 0 0
\(430\) 20.0000 0.964486
\(431\) −7.23607 5.25731i −0.348549 0.253236i 0.399711 0.916641i \(-0.369110\pi\)
−0.748260 + 0.663405i \(0.769110\pi\)
\(432\) −0.309017 + 0.951057i −0.0148676 + 0.0457577i
\(433\) −1.85410 5.70634i −0.0891025 0.274229i 0.896569 0.442903i \(-0.146051\pi\)
−0.985672 + 0.168674i \(0.946051\pi\)
\(434\) 0 0
\(435\) 7.23607 5.25731i 0.346943 0.252069i
\(436\) 0 0
\(437\) −5.52786 + 17.0130i −0.264434 + 0.813843i
\(438\) 16.1803 + 11.7557i 0.773127 + 0.561709i
\(439\) 13.4164 0.640330 0.320165 0.947362i \(-0.396262\pi\)
0.320165 + 0.947362i \(0.396262\pi\)
\(440\) 0 0
\(441\) 13.0000 0.619048
\(442\) 0 0
\(443\) −7.41641 + 22.8254i −0.352364 + 1.08447i 0.605158 + 0.796105i \(0.293110\pi\)
−0.957522 + 0.288360i \(0.906890\pi\)
\(444\) 1.85410 + 5.70634i 0.0879918 + 0.270811i
\(445\) 22.6525 16.4580i 1.07383 0.780183i
\(446\) −28.9443 + 21.0292i −1.37055 + 0.995764i
\(447\) 6.90983 + 21.2663i 0.326824 + 1.00586i
\(448\) −17.9656 + 55.2923i −0.848793 + 2.61232i
\(449\) 4.85410 + 3.52671i 0.229079 + 0.166436i 0.696404 0.717650i \(-0.254782\pi\)
−0.467325 + 0.884086i \(0.654782\pi\)
\(450\) 2.23607 0.105409
\(451\) 0 0
\(452\) 18.0000 0.846649
\(453\) 10.8541 + 7.88597i 0.509970 + 0.370515i
\(454\) 6.18034 19.0211i 0.290058 0.892706i
\(455\) 0 0
\(456\) 8.09017 5.87785i 0.378857 0.275256i
\(457\) 21.7082 15.7719i 1.01547 0.737780i 0.0501182 0.998743i \(-0.484040\pi\)
0.965349 + 0.260963i \(0.0840402\pi\)
\(458\) −6.90983 21.2663i −0.322875 0.993708i
\(459\) −1.38197 + 4.25325i −0.0645046 + 0.198525i
\(460\) 19.4164 + 14.1068i 0.905295 + 0.657735i
\(461\) −13.4164 −0.624864 −0.312432 0.949940i \(-0.601144\pi\)
−0.312432 + 0.949940i \(0.601144\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) −3.61803 2.62866i −0.167963 0.122032i
\(465\) 0 0
\(466\) −3.09017 9.51057i −0.143149 0.440568i
\(467\) 6.47214 4.70228i 0.299495 0.217596i −0.427881 0.903835i \(-0.640740\pi\)
0.727376 + 0.686239i \(0.240740\pi\)
\(468\) 0 0
\(469\) −16.5836 51.0390i −0.765759 2.35676i
\(470\) −11.0557 + 34.0260i −0.509963 + 1.56950i
\(471\) −1.61803 1.17557i −0.0745551 0.0541674i
\(472\) 0 0
\(473\) 0 0
\(474\) 30.0000 1.37795
\(475\) 3.61803 + 2.62866i 0.166007 + 0.120611i
\(476\) −18.5410 + 57.0634i −0.849826 + 2.61550i
\(477\) 1.85410 + 5.70634i 0.0848935 + 0.261275i
\(478\) −16.1803 + 11.7557i −0.740072 + 0.537693i
\(479\) −7.23607 + 5.25731i −0.330624 + 0.240213i −0.740696 0.671841i \(-0.765504\pi\)
0.410071 + 0.912054i \(0.365504\pi\)
\(480\) 4.14590 + 12.7598i 0.189233 + 0.582401i
\(481\) 0 0
\(482\) −16.1803 11.7557i −0.736994 0.535458i
\(483\) −17.8885 −0.813957
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) 1.80902 + 1.31433i 0.0820587 + 0.0596191i
\(487\) 2.47214 7.60845i 0.112023 0.344772i −0.879291 0.476284i \(-0.841983\pi\)
0.991315 + 0.131512i \(0.0419833\pi\)
\(488\) 6.18034 + 19.0211i 0.279771 + 0.861046i
\(489\) −3.23607 + 2.35114i −0.146340 + 0.106322i
\(490\) 47.0344 34.1725i 2.12480 1.54376i
\(491\) 8.29180 + 25.5195i 0.374204 + 1.15168i 0.944014 + 0.329904i \(0.107016\pi\)
−0.569811 + 0.821776i \(0.692984\pi\)
\(492\) 4.14590 12.7598i 0.186912 0.575255i
\(493\) −16.1803 11.7557i −0.728726 0.529450i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.9443 + 21.0292i 1.29833 + 0.943291i
\(498\) −6.18034 + 19.0211i −0.276948 + 0.852357i
\(499\) −6.18034 19.0211i −0.276670 0.851503i −0.988773 0.149427i \(-0.952257\pi\)
0.712103 0.702075i \(-0.247743\pi\)
\(500\) 29.1246 21.1603i 1.30249 0.946316i
\(501\) 7.23607 5.25731i 0.323284 0.234879i
\(502\) 8.29180 + 25.5195i 0.370081 + 1.13899i
\(503\) 8.29180 25.5195i 0.369713 1.13786i −0.577264 0.816558i \(-0.695880\pi\)
0.946977 0.321302i \(-0.104120\pi\)
\(504\) 8.09017 + 5.87785i 0.360365 + 0.261820i
\(505\) −8.94427 −0.398015
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 32.5623 + 23.6579i 1.44472 + 1.04965i
\(509\) 9.27051 28.5317i 0.410908 1.26465i −0.504952 0.863147i \(-0.668490\pi\)
0.915860 0.401498i \(-0.131510\pi\)
\(510\) 6.18034 + 19.0211i 0.273670 + 0.842270i
\(511\) −32.3607 + 23.5114i −1.43155 + 1.04008i
\(512\) 9.04508 6.57164i 0.399740 0.290428i
\(513\) 1.38197 + 4.25325i 0.0610153 + 0.187786i
\(514\) 15.2016 46.7858i 0.670515 2.06363i
\(515\) −25.8885 18.8091i −1.14079 0.828829i
\(516\) −13.4164 −0.590624
\(517\) 0 0
\(518\) −20.0000 −0.878750
\(519\) −10.8541 7.88597i −0.476442 0.346156i
\(520\) 0 0
\(521\) 9.27051 + 28.5317i 0.406148 + 1.25000i 0.919933 + 0.392077i \(0.128243\pi\)
−0.513784 + 0.857920i \(0.671757\pi\)
\(522\) −8.09017 + 5.87785i −0.354097 + 0.257267i
\(523\) 3.61803 2.62866i 0.158206 0.114943i −0.505866 0.862612i \(-0.668827\pi\)
0.664072 + 0.747669i \(0.268827\pi\)
\(524\) 16.5836 + 51.0390i 0.724458 + 2.22965i
\(525\) −1.38197 + 4.25325i −0.0603139 + 0.185627i
\(526\) −16.1803 11.7557i −0.705496 0.512573i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 21.7082 + 15.7719i 0.942944 + 0.685089i
\(531\) 0 0
\(532\) 18.5410 + 57.0634i 0.803855 + 2.47401i
\(533\) 0 0
\(534\) −25.3262 + 18.4006i −1.09597 + 0.796271i
\(535\) −5.52786 17.0130i −0.238990 0.735537i
\(536\) 8.29180 25.5195i 0.358151 1.10228i
\(537\) 3.23607 + 2.35114i 0.139647 + 0.101459i
\(538\) 22.3607 0.964037
\(539\) 0 0
\(540\) 6.00000 0.258199
\(541\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(542\) −9.27051 + 28.5317i −0.398202 + 1.22554i
\(543\) −3.09017 9.51057i −0.132612 0.408137i
\(544\) 24.2705 17.6336i 1.04059 0.756033i
\(545\) 0 0
\(546\) 0 0
\(547\) −12.4377 + 38.2793i −0.531797 + 1.63670i 0.218672 + 0.975798i \(0.429828\pi\)
−0.750469 + 0.660906i \(0.770172\pi\)
\(548\) −53.3951 38.7938i −2.28093 1.65719i
\(549\) −8.94427 −0.381732
\(550\) 0 0
\(551\) −20.0000 −0.852029
\(552\) −7.23607 5.25731i −0.307988 0.223766i
\(553\) −18.5410 + 57.0634i −0.788444 + 2.42658i
\(554\) 0 0
\(555\) −3.23607 + 2.35114i −0.137363 + 0.0998004i
\(556\) 32.5623 23.6579i 1.38095 1.00332i
\(557\) 12.4377 + 38.2793i 0.527002 + 1.62195i 0.760323 + 0.649546i \(0.225041\pi\)
−0.233321 + 0.972400i \(0.574959\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −8.94427 −0.377964
\(561\) 0 0
\(562\) 70.0000 2.95277
\(563\) 14.4721 + 10.5146i 0.609928 + 0.443138i 0.849389 0.527767i \(-0.176971\pi\)
−0.239461 + 0.970906i \(0.576971\pi\)
\(564\) 7.41641 22.8254i 0.312287 0.961121i
\(565\) 3.70820 + 11.4127i 0.156005 + 0.480135i
\(566\) 24.2705 17.6336i 1.02017 0.741194i
\(567\) −3.61803 + 2.62866i −0.151943 + 0.110393i
\(568\) 5.52786 + 17.0130i 0.231944 + 0.713850i
\(569\) −1.38197 + 4.25325i −0.0579350 + 0.178306i −0.975836 0.218503i \(-0.929883\pi\)
0.917901 + 0.396809i \(0.129883\pi\)
\(570\) 16.1803 + 11.7557i 0.677720 + 0.492392i
\(571\) 13.4164 0.561459 0.280730 0.959787i \(-0.409424\pi\)
0.280730 + 0.959787i \(0.409424\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 36.1803 + 26.2866i 1.51014 + 1.09718i
\(575\) 1.23607 3.80423i 0.0515476 0.158647i
\(576\) −4.01722 12.3637i −0.167384 0.515156i
\(577\) 1.61803 1.17557i 0.0673596 0.0489396i −0.553596 0.832785i \(-0.686745\pi\)
0.620956 + 0.783846i \(0.286745\pi\)
\(578\) 5.42705 3.94298i 0.225736 0.164006i
\(579\) 5.52786 + 17.0130i 0.229730 + 0.707037i
\(580\) −8.29180 + 25.5195i −0.344298 + 1.05964i
\(581\) −32.3607 23.5114i −1.34255 0.975418i
\(582\) −4.47214 −0.185376
\(583\) 0 0
\(584\) −20.0000 −0.827606
\(585\) 0 0
\(586\) −15.4508 + 47.5528i −0.638269 + 1.96439i
\(587\) −2.47214 7.60845i −0.102036 0.314034i 0.886987 0.461794i \(-0.152794\pi\)
−0.989023 + 0.147759i \(0.952794\pi\)
\(588\) −31.5517 + 22.9236i −1.30117 + 0.945354i
\(589\) 0 0
\(590\) 0 0
\(591\) −6.90983 + 21.2663i −0.284232 + 0.874777i
\(592\) 1.61803 + 1.17557i 0.0665008 + 0.0483157i
\(593\) 22.3607 0.918243 0.459122 0.888373i \(-0.348164\pi\)
0.459122 + 0.888373i \(0.348164\pi\)
\(594\) 0 0
\(595\) −40.0000 −1.63984
\(596\) −54.2705 39.4298i −2.22301 1.61511i
\(597\) 0 0
\(598\) 0 0
\(599\) 29.1246 21.1603i 1.19000 0.864585i 0.196735 0.980457i \(-0.436966\pi\)
0.993264 + 0.115872i \(0.0369661\pi\)
\(600\) −1.80902 + 1.31433i −0.0738528 + 0.0536572i
\(601\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(602\) 13.8197 42.5325i 0.563247 1.73350i
\(603\) 9.70820 + 7.05342i 0.395349 + 0.287238i
\(604\) −40.2492 −1.63772
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) −3.61803 2.62866i −0.146851 0.106694i 0.511934 0.859025i \(-0.328929\pi\)
−0.658785 + 0.752331i \(0.728929\pi\)
\(608\) 9.27051 28.5317i 0.375969 1.15711i
\(609\) −6.18034 19.0211i −0.250440 0.770775i
\(610\) −32.3607 + 23.5114i −1.31025 + 0.951949i
\(611\) 0 0
\(612\) −4.14590 12.7598i −0.167588 0.515783i
\(613\) −13.8197 + 42.5325i −0.558171 + 1.71787i 0.129248 + 0.991612i \(0.458744\pi\)
−0.687419 + 0.726261i \(0.741256\pi\)
\(614\) 8.09017 + 5.87785i 0.326493 + 0.237211i
\(615\) 8.94427 0.360668
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 28.9443 + 21.0292i 1.16431 + 0.845920i
\(619\) 13.5967 41.8465i 0.546499 1.68195i −0.170898 0.985289i \(-0.554667\pi\)
0.717398 0.696664i \(-0.245333\pi\)
\(620\) 0 0
\(621\) 3.23607 2.35114i 0.129859 0.0943480i
\(622\) −21.7082 + 15.7719i −0.870420 + 0.632397i
\(623\) −19.3475 59.5456i −0.775142 2.38564i
\(624\) 0 0
\(625\) 15.3713 + 11.1679i 0.614853 + 0.446717i
\(626\) −31.3050 −1.25120
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 7.23607 + 5.25731i 0.288521 + 0.209623i
\(630\) −6.18034 + 19.0211i −0.246231 + 0.757820i
\(631\) 9.88854 + 30.4338i 0.393657 + 1.21155i 0.930003 + 0.367553i \(0.119804\pi\)
−0.536346 + 0.843998i \(0.680196\pi\)
\(632\) −24.2705 + 17.6336i −0.965429 + 0.701425i
\(633\) −3.61803 + 2.62866i −0.143804 + 0.104480i
\(634\) −12.4377 38.2793i −0.493964 1.52026i
\(635\) −8.29180 + 25.5195i −0.329050 + 1.01271i
\(636\) −14.5623 10.5801i −0.577433 0.419530i
\(637\) 0 0
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) −25.3262 18.4006i −1.00111 0.727347i
\(641\) −9.27051 + 28.5317i −0.366163 + 1.12693i 0.583086 + 0.812410i \(0.301845\pi\)
−0.949250 + 0.314524i \(0.898155\pi\)
\(642\) 6.18034 + 19.0211i 0.243919 + 0.750704i
\(643\) −29.1246 + 21.1603i −1.14856 + 0.834480i −0.988289 0.152593i \(-0.951238\pi\)
−0.160273 + 0.987073i \(0.551238\pi\)
\(644\) 43.4164 31.5439i 1.71085 1.24300i
\(645\) −2.76393 8.50651i −0.108830 0.334943i
\(646\) 13.8197 42.5325i 0.543727 1.67342i
\(647\) 9.70820 + 7.05342i 0.381669 + 0.277299i 0.762033 0.647538i \(-0.224201\pi\)
−0.380364 + 0.924837i \(0.624201\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 3.70820 11.4127i 0.145224 0.446955i
\(653\) 14.2148 + 43.7486i 0.556267 + 1.71202i 0.692573 + 0.721348i \(0.256477\pi\)
−0.136305 + 0.990667i \(0.543523\pi\)
\(654\) 0 0
\(655\) −28.9443 + 21.0292i −1.13095 + 0.821681i
\(656\) −1.38197 4.25325i −0.0539567 0.166062i
\(657\) 2.76393 8.50651i 0.107831 0.331870i
\(658\) 64.7214 + 47.0228i 2.52310 + 1.83314i
\(659\) −17.8885 −0.696839 −0.348419 0.937339i \(-0.613281\pi\)
−0.348419 + 0.937339i \(0.613281\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −36.1803 26.2866i −1.40619 1.02166i
\(663\) 0 0
\(664\) −6.18034 19.0211i −0.239844 0.738163i
\(665\) −32.3607 + 23.5114i −1.25489 + 0.911733i
\(666\) 3.61803 2.62866i 0.140196 0.101858i
\(667\) 5.52786 + 17.0130i 0.214040 + 0.658747i
\(668\) −8.29180 + 25.5195i −0.320819 + 0.987380i
\(669\) 12.9443 + 9.40456i 0.500454 + 0.363601i
\(670\) 53.6656 2.07328
\(671\) 0 0
\(672\) 30.0000 1.15728
\(673\) −14.4721 10.5146i −0.557860 0.405309i 0.272815 0.962066i \(-0.412045\pi\)
−0.830675 + 0.556758i \(0.812045\pi\)
\(674\) 6.18034 19.0211i 0.238058 0.732667i
\(675\) −0.309017 0.951057i −0.0118941 0.0366062i
\(676\) 31.5517 22.9236i 1.21353 0.881678i
\(677\) −25.3262 + 18.4006i −0.973366 + 0.707192i −0.956216 0.292661i \(-0.905459\pi\)
−0.0171501 + 0.999853i \(0.505459\pi\)
\(678\) −4.14590 12.7598i −0.159222 0.490036i
\(679\) 2.76393 8.50651i 0.106070 0.326450i
\(680\) −16.1803 11.7557i −0.620488 0.450811i
\(681\) −8.94427 −0.342745
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) −10.8541 7.88597i −0.415017 0.301527i
\(685\) 13.5967 41.8465i 0.519505 1.59887i
\(686\) −18.5410 57.0634i −0.707899 2.17869i
\(687\) −8.09017 + 5.87785i −0.308659 + 0.224254i
\(688\) −3.61803 + 2.62866i −0.137936 + 0.100217i
\(689\) 0 0
\(690\) 5.52786 17.0130i 0.210442 0.647674i
\(691\) −9.70820 7.05342i −0.369317 0.268325i 0.387610 0.921823i \(-0.373301\pi\)
−0.756928 + 0.653498i \(0.773301\pi\)
\(692\) 40.2492 1.53005
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) 21.7082 + 15.7719i 0.823439 + 0.598264i
\(696\) 3.09017 9.51057i 0.117133 0.360497i
\(697\) −6.18034 19.0211i −0.234097 0.720477i
\(698\) 48.5410 35.2671i 1.83730 1.33488i
\(699\) −3.61803 + 2.62866i −0.136847 + 0.0994249i
\(700\) −4.14590 12.7598i −0.156700 0.482274i
\(701\) 6.90983 21.2663i 0.260981 0.803216i −0.731611 0.681722i \(-0.761231\pi\)
0.992592 0.121494i \(-0.0387686\pi\)
\(702\) 0 0
\(703\) 8.94427 0.337340
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) −25.3262 18.4006i −0.953166 0.692515i
\(707\) −6.18034 + 19.0211i −0.232436 + 0.715363i
\(708\) 0 0
\(709\) 4.85410 3.52671i 0.182300 0.132448i −0.492893 0.870090i \(-0.664061\pi\)
0.675192 + 0.737642i \(0.264061\pi\)
\(710\) −28.9443 + 21.0292i −1.08626 + 0.789213i
\(711\) −4.14590 12.7598i −0.155483 0.478528i
\(712\) 9.67376 29.7728i 0.362540 1.11578i
\(713\) 0 0
\(714\) 44.7214 1.67365
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 7.23607 + 5.25731i 0.270236 + 0.196338i
\(718\) 0 0
\(719\) −7.41641 22.8254i −0.276585 0.851242i −0.988796 0.149276i \(-0.952306\pi\)
0.712210 0.701966i \(-0.247694\pi\)
\(720\) 1.61803 1.17557i 0.0603006 0.0438109i
\(721\) −57.8885 + 42.0585i −2.15588 + 1.56634i
\(722\) −0.690983 2.12663i −0.0257157 0.0791449i
\(723\) −2.76393 + 8.50651i −0.102792 + 0.316360i
\(724\) 24.2705 + 17.6336i 0.902006 + 0.655346i
\(725\) 4.47214 0.166091
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −12.3607 38.0423i −0.457489 1.40801i
\(731\) −16.1803 + 11.7557i −0.598451 + 0.434800i
\(732\) 21.7082 15.7719i 0.802358 0.582947i
\(733\) 5.52786 + 17.0130i 0.204176 + 0.628390i 0.999746 + 0.0225283i \(0.00717158\pi\)
−0.795570 + 0.605862i \(0.792828\pi\)
\(734\) −5.52786 + 17.0130i −0.204037 + 0.627962i
\(735\) −21.0344 15.2824i −0.775867 0.563700i
\(736\) −26.8328 −0.989071
\(737\) 0 0
\(738\) −10.0000 −0.368105
\(739\) 3.61803 + 2.62866i 0.133092 + 0.0966967i 0.652339 0.757927i \(-0.273788\pi\)
−0.519248 + 0.854624i \(0.673788\pi\)
\(740\) 3.70820 11.4127i 0.136316 0.419538i
\(741\) 0 0
\(742\) 48.5410 35.2671i 1.78200 1.29470i
\(743\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(744\) 0 0
\(745\) 13.8197 42.5325i 0.506313 1.55827i
\(746\) 48.5410 + 35.2671i 1.77721 + 1.29122i
\(747\) 8.94427 0.327254
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) −21.7082 15.7719i −0.792672 0.575910i
\(751\) 9.88854 30.4338i 0.360838 1.11055i −0.591708 0.806152i \(-0.701546\pi\)
0.952546 0.304393i \(-0.0984537\pi\)
\(752\) −2.47214 7.60845i −0.0901495 0.277452i
\(753\) 9.70820 7.05342i 0.353787 0.257041i
\(754\) 0 0
\(755\) −8.29180 25.5195i −0.301769 0.928751i
\(756\) 4.14590 12.7598i 0.150785 0.464068i
\(757\) −33.9787 24.6870i −1.23498 0.897264i −0.237724 0.971333i \(-0.576401\pi\)
−0.997253 + 0.0740691i \(0.976401\pi\)
\(758\) 44.7214 1.62435
\(759\) 0 0
\(760\) −20.0000 −0.725476
\(761\) −25.3262 18.4006i −0.918075 0.667021i 0.0249688 0.999688i \(-0.492051\pi\)
−0.943044 + 0.332667i \(0.892051\pi\)
\(762\) 9.27051 28.5317i 0.335835 1.03359i
\(763\) 0 0
\(764\) 0 0
\(765\) 7.23607 5.25731i 0.261621 0.190078i
\(766\) 24.8754 + 76.5586i 0.898784 + 2.76617i
\(767\) 0 0
\(768\) 7.28115 + 5.29007i 0.262736 + 0.190889i
\(769\) −35.7771 −1.29015 −0.645077 0.764117i \(-0.723175\pi\)
−0.645077 + 0.764117i \(0.723175\pi\)
\(770\) 0 0
\(771\) −22.0000 −0.792311
\(772\) −43.4164 31.5439i −1.56259 1.13529i
\(773\) 4.32624 13.3148i 0.155604 0.478900i −0.842618 0.538512i \(-0.818987\pi\)
0.998222 + 0.0596126i \(0.0189865\pi\)
\(774\) 3.09017 + 9.51057i 0.111074 + 0.341850i
\(775\) 0 0
\(776\) 3.61803 2.62866i 0.129880 0.0943632i
\(777\) 2.76393 + 8.50651i 0.0991555 + 0.305169i
\(778\) −6.90983 + 21.2663i −0.247729 + 0.762433i
\(779\) −16.1803 11.7557i −0.579721 0.421192i
\(780\) 0 0
\(781\) 0 0
\(782\) −40.0000 −1.43040
\(783\) 3.61803 + 2.62866i 0.129298 + 0.0939405i
\(784\) −4.01722 + 12.3637i −0.143472 + 0.441562i
\(785\) 1.23607 + 3.80423i 0.0441172 + 0.135779i
\(786\) 32.3607 23.5114i 1.15427 0.838624i
\(787\) 32.5623 23.6579i 1.16072 0.843313i 0.170852 0.985297i \(-0.445348\pi\)
0.989869 + 0.141984i \(0.0453480\pi\)
\(788\) −20.7295 63.7988i −0.738458 2.27274i
\(789\) −2.76393 + 8.50651i −0.0983986 + 0.302840i
\(790\) −48.5410 35.2671i −1.72701 1.25475i
\(791\) 26.8328 0.954065
\(792\) 0 0
\(793\) 0 0
\(794\) 39.7984 + 28.9152i 1.41239 + 1.02616i
\(795\) 3.70820 11.4127i 0.131516 0.404766i
\(796\) 0 0
\(797\) −33.9787 + 24.6870i −1.20359 + 0.874458i −0.994633 0.103468i \(-0.967006\pi\)
−0.208955 + 0.977925i \(0.567006\pi\)
\(798\) 36.1803 26.2866i 1.28077 0.930534i
\(799\) −11.0557 34.0260i −0.391124 1.20375i
\(800\) −2.07295 + 6.37988i −0.0732898 + 0.225563i
\(801\) 11.3262 + 8.22899i 0.400193 + 0.290757i
\(802\) −67.0820 −2.36875
\(803\) 0 0
\(804\) −36.0000 −1.26962
\(805\) 28.9443 + 21.0292i 1.02015 + 0.741183i
\(806\) 0 0
\(807\) −3.09017 9.51057i −0.108779 0.334788i
\(808\) −8.09017 + 5.87785i −0.284611 + 0.206782i
\(809\) −10.8541 + 7.88597i −0.381610 + 0.277256i −0.762009 0.647567i \(-0.775787\pi\)
0.380399 + 0.924823i \(0.375787\pi\)
\(810\) −1.38197 4.25325i −0.0485573 0.149444i
\(811\) 1.38197 4.25325i 0.0485274 0.149352i −0.923857 0.382739i \(-0.874981\pi\)
0.972384 + 0.233387i \(0.0749809\pi\)
\(812\) 48.5410 + 35.2671i 1.70346 + 1.23763i
\(813\) 13.4164 0.470534
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) −3.61803 2.62866i −0.126657 0.0920214i
\(817\) −6.18034 + 19.0211i −0.216223 + 0.665465i
\(818\) −18.5410 57.0634i −0.648272 1.99517i
\(819\) 0 0
\(820\) −21.7082 + 15.7719i −0.758083 + 0.550780i
\(821\) −6.90983 21.2663i −0.241155 0.742198i −0.996245 0.0865773i \(-0.972407\pi\)
0.755090 0.655621i \(-0.227593\pi\)
\(822\) −15.2016 + 46.7858i −0.530218 + 1.63184i
\(823\) −12.9443 9.40456i −0.451209 0.327822i 0.338864 0.940835i \(-0.389957\pi\)
−0.790073 + 0.613013i \(0.789957\pi\)
\(824\) −35.7771 −1.24635
\(825\) 0 0
\(826\) 0 0
\(827\) 36.1803 + 26.2866i 1.25811 + 0.914073i 0.998664 0.0516834i \(-0.0164587\pi\)
0.259450 + 0.965756i \(0.416459\pi\)
\(828\) −3.70820 + 11.4127i −0.128869 + 0.396618i
\(829\) 4.32624 + 13.3148i 0.150256 + 0.462442i 0.997649 0.0685244i \(-0.0218291\pi\)
−0.847393 + 0.530966i \(0.821829\pi\)
\(830\) 32.3607 23.5114i 1.12326 0.816093i
\(831\) 0 0
\(832\) 0 0
\(833\) −17.9656 + 55.2923i −0.622470 + 1.91576i
\(834\) −24.2705 17.6336i −0.840419 0.610600i
\(835\) −17.8885 −0.619059
\(836\) 0 0
\(837\) 0 0
\(838\) 7.23607 + 5.25731i 0.249966 + 0.181611i
\(839\) −6.18034 + 19.0211i −0.213369 + 0.656682i 0.785896 + 0.618358i \(0.212202\pi\)
−0.999265 + 0.0383241i \(0.987798\pi\)
\(840\) −6.18034 19.0211i −0.213242 0.656291i
\(841\) 7.28115 5.29007i 0.251074 0.182416i
\(842\) 18.0902 13.1433i 0.623428 0.452947i
\(843\) −9.67376 29.7728i −0.333182 1.02543i
\(844\) 4.14590 12.7598i 0.142708 0.439209i
\(845\) 21.0344 + 15.2824i 0.723607 + 0.525731i
\(846\) −17.8885 −0.615021
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) −10.8541 7.88597i −0.372512 0.270646i
\(850\) −3.09017 + 9.51057i −0.105992 + 0.326210i
\(851\) −2.47214 7.60845i −0.0847437 0.260814i
\(852\) 19.4164 14.1068i 0.665195 0.483293i
\(853\) 7.23607 5.25731i 0.247758 0.180007i −0.456974 0.889480i \(-0.651067\pi\)
0.704733 + 0.709473i \(0.251067\pi\)
\(854\) 27.6393 + 85.0651i 0.945798 + 2.91087i
\(855\) 2.76393 8.50651i 0.0945245 0.290916i
\(856\) −16.1803 11.7557i −0.553033 0.401802i
\(857\) −40.2492 −1.37489 −0.687444 0.726238i \(-0.741267\pi\)
−0.687444 + 0.726238i \(0.741267\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 21.7082 + 15.7719i 0.740244 + 0.537818i
\(861\) 6.18034 19.0211i 0.210625 0.648238i
\(862\) −6.18034 19.0211i −0.210503 0.647862i
\(863\) −3.23607 + 2.35114i −0.110157 + 0.0800338i −0.641500 0.767123i \(-0.721688\pi\)
0.531343 + 0.847157i \(0.321688\pi\)
\(864\) −5.42705 + 3.94298i −0.184632 + 0.134143i
\(865\) 8.29180 + 25.5195i 0.281930 + 0.867690i
\(866\) 4.14590 12.7598i 0.140883 0.433594i
\(867\) −2.42705 1.76336i −0.0824270 0.0598867i
\(868\) 0 0
\(869\) 0 0
\(870\) 20.0000 0.678064
\(871\) 0 0
\(872\) 0 0
\(873\) 0.618034 + 1.90211i 0.0209173 + 0.0643768i
\(874\) −32.3607 + 23.5114i −1.09462 + 0.795285i
\(875\) 43.4164 31.5439i 1.46774 1.06638i
\(876\) 8.29180 + 25.5195i 0.280154 + 0.862225i
\(877\) 2.76393 8.50651i 0.0933314 0.287244i −0.893484 0.449095i \(-0.851746\pi\)
0.986815 + 0.161851i \(0.0517464\pi\)
\(878\) 24.2705 + 17.6336i 0.819090 + 0.595104i
\(879\) 22.3607 0.754207
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 23.5172 + 17.0863i 0.791866 + 0.575324i
\(883\) 13.5967 41.8465i 0.457567 1.40825i −0.410528 0.911848i \(-0.634656\pi\)
0.868095 0.496398i \(-0.165344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −43.4164 + 31.5439i −1.45860 + 1.05974i
\(887\) 16.5836 + 51.0390i 0.556823 + 1.71372i 0.691081 + 0.722777i \(0.257135\pi\)
−0.134259 + 0.990946i \(0.542865\pi\)
\(888\) −1.38197 + 4.25325i −0.0463757 + 0.142730i
\(889\) 48.5410 + 35.2671i 1.62801 + 1.18282i
\(890\) 62.6099 2.09869
\(891\) 0 0
\(892\) −48.0000 −1.60716
\(893\) −28.9443 21.0292i −0.968583 0.703717i
\(894\) −15.4508 + 47.5528i −0.516754 + 1.59040i
\(895\) −2.47214 7.60845i −0.0826344 0.254323i
\(896\) −56.6312 + 41.1450i −1.89192 + 1.37456i
\(897\) 0 0
\(898\) 4.14590 + 12.7598i 0.138350 + 0.425799i
\(899\) 0 0
\(900\) 2.42705 + 1.76336i 0.0809017 + 0.0587785i
\(901\) −26.8328 −0.893931
\(902\) 0 0
\(903\) −20.0000 −0.665558
\(904\) 10.8541 + 7.88597i 0.361002 + 0.262283i
\(905\) −6.18034 + 19.0211i −0.205441 + 0.632284i
\(906\) 9.27051 + 28.5317i 0.307992 + 0.947902i
\(907\) 9.70820 7.05342i 0.322356 0.234205i −0.414824 0.909902i \(-0.636157\pi\)
0.737180 + 0.675696i \(0.236157\pi\)
\(908\) 21.7082 15.7719i 0.720412 0.523410i
\(909\) −1.38197 4.25325i −0.0458369 0.141072i
\(910\) 0 0
\(911\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(912\) −4.47214 −0.148087
\(913\) 0 0
\(914\) 60.0000 1.98462
\(915\) 14.4721 + 10.5146i 0.478434 + 0.347603i
\(916\) 9.27051 28.5317i 0.306306 0.942714i
\(917\) 24.7214 + 76.0845i 0.816371 + 2.51253i
\(918\) −8.09017 + 5.87785i −0.267015 + 0.193998i
\(919\) 18.0902 13.1433i 0.596740 0.433557i −0.247980 0.968765i \(-0.579767\pi\)
0.844720 + 0.535208i \(0.179767\pi\)
\(920\) 5.52786 + 17.0130i 0.182248 + 0.560903i
\(921\) 1.38197 4.25325i 0.0455373 0.140149i
\(922\) −24.2705 17.6336i −0.799307 0.580730i
\(923\) 0 0
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 43.4164 + 31.5439i 1.42675 + 1.03660i
\(927\) 4.94427 15.2169i 0.162391 0.499789i
\(928\) −9.27051 28.5317i −0.304319 0.936599i
\(929\) −24.2705 + 17.6336i −0.796290 + 0.578538i −0.909823 0.414996i \(-0.863783\pi\)
0.113534 + 0.993534i \(0.463783\pi\)
\(930\) 0 0
\(931\) 17.9656 + 55.2923i 0.588797 + 1.81213i
\(932\) 4.14590 12.7598i 0.135803 0.417960i
\(933\) 9.70820 + 7.05342i 0.317832 + 0.230919i
\(934\) 17.8885 0.585331
\(935\) 0 0
\(936\) 0 0
\(937\) 43.4164 + 31.5439i 1.41835 + 1.03049i 0.992041 + 0.125917i \(0.0401872\pi\)
0.426311 + 0.904576i \(0.359813\pi\)
\(938\) 37.0820 114.127i 1.21077 3.72637i
\(939\) 4.32624 + 13.3148i 0.141181 + 0.434512i
\(940\) −38.8328 + 28.2137i −1.26659 + 0.920229i
\(941\) 18.0902 13.1433i 0.589723 0.428459i −0.252493 0.967599i \(-0.581251\pi\)
0.842216 + 0.539140i \(0.181251\pi\)
\(942\) −1.38197 4.25325i −0.0450269 0.138579i
\(943\) −5.52786 + 17.0130i −0.180012 + 0.554020i
\(944\) 0 0
\(945\) 8.94427 0.290957
\(946\) 0 0
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) 32.5623 + 23.6579i 1.05757 + 0.768373i
\(949\) 0 0
\(950\) 3.09017 + 9.51057i 0.100258 + 0.308563i
\(951\) −14.5623 + 10.5801i −0.472215 + 0.343084i
\(952\) −36.1803 + 26.2866i −1.17261 + 0.851952i
\(953\) −6.90983 21.2663i −0.223831 0.688882i −0.998408 0.0564022i \(-0.982037\pi\)
0.774577 0.632480i \(-0.217963\pi\)
\(954\) −4.14590 + 12.7598i −0.134228 + 0.413113i
\(955\) 0 0
\(956\) −26.8328 −0.867835
\(957\) 0 0
\(958\) −20.0000 −0.646171
\(959\) −79.5967 57.8304i −2.57031 1.86744i
\(960\) −8.03444 + 24.7275i −0.259310 + 0.798076i
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) 0 0
\(963\) 7.23607 5.25731i 0.233179 0.169414i
\(964\) −8.29180 25.5195i −0.267061 0.821929i
\(965\) 11.0557 34.0260i 0.355896 1.09534i
\(966\) −32.3607 23.5114i −1.04119 0.756467i
\(967\) −13.4164 −0.431443 −0.215721 0.976455i \(-0.569210\pi\)
−0.215721 + 0.976455i \(0.569210\pi\)
\(968\) 0 0
\(969\) −20.0000 −0.642493
\(970\) 7.23607 + 5.25731i 0.232336 + 0.168802i
\(971\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(972\) 0.927051 + 2.85317i 0.0297352 + 0.0915155i
\(973\) 48.5410 35.2671i 1.55615 1.13061i
\(974\) 14.4721 10.5146i 0.463717 0.336910i
\(975\) 0 0
\(976\) 2.76393 8.50651i 0.0884713 0.272287i
\(977\) 33.9787 + 24.6870i 1.08708 + 0.789806i 0.978903 0.204326i \(-0.0655002\pi\)
0.108172 + 0.994132i \(0.465500\pi\)
\(978\) −8.94427 −0.286006
\(979\) 0 0
\(980\) 78.0000 2.49162
\(981\) 0 0
\(982\) −18.5410 + 57.0634i −0.591668 + 1.82097i
\(983\) 11.1246 + 34.2380i 0.354820 + 1.09202i 0.956114 + 0.292996i \(0.0946522\pi\)
−0.601294 + 0.799028i \(0.705348\pi\)
\(984\) 8.09017 5.87785i 0.257905 0.187379i
\(985\) 36.1803 26.2866i 1.15280 0.837559i
\(986\) −13.8197 42.5325i −0.440108 1.35451i
\(987\) 11.0557 34.0260i 0.351908 1.08306i
\(988\) 0 0
\(989\) 17.8885 0.568823
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) −6.18034 + 19.0211i −0.196127 + 0.603617i
\(994\) 24.7214 + 76.0845i 0.784114 + 2.41325i
\(995\) 0 0
\(996\) −21.7082 + 15.7719i −0.687851 + 0.499753i
\(997\) 8.29180 + 25.5195i 0.262604 + 0.808211i 0.992236 + 0.124371i \(0.0396914\pi\)
−0.729632 + 0.683840i \(0.760309\pi\)
\(998\) 13.8197 42.5325i 0.437454 1.34634i
\(999\) −1.61803 1.17557i −0.0511923 0.0371934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.e.l.202.1 4
11.2 odd 10 inner 363.2.e.l.148.1 4
11.3 even 5 inner 363.2.e.l.124.1 4
11.4 even 5 363.2.e.a.130.1 4
11.5 even 5 363.2.a.g.1.1 2
11.6 odd 10 363.2.a.g.1.2 yes 2
11.7 odd 10 inner 363.2.e.l.130.1 4
11.8 odd 10 363.2.e.a.124.1 4
11.9 even 5 363.2.e.a.148.1 4
11.10 odd 2 363.2.e.a.202.1 4
33.5 odd 10 1089.2.a.p.1.2 2
33.17 even 10 1089.2.a.p.1.1 2
44.27 odd 10 5808.2.a.bx.1.1 2
44.39 even 10 5808.2.a.bx.1.2 2
55.39 odd 10 9075.2.a.bi.1.1 2
55.49 even 10 9075.2.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.g.1.1 2 11.5 even 5
363.2.a.g.1.2 yes 2 11.6 odd 10
363.2.e.a.124.1 4 11.8 odd 10
363.2.e.a.130.1 4 11.4 even 5
363.2.e.a.148.1 4 11.9 even 5
363.2.e.a.202.1 4 11.10 odd 2
363.2.e.l.124.1 4 11.3 even 5 inner
363.2.e.l.130.1 4 11.7 odd 10 inner
363.2.e.l.148.1 4 11.2 odd 10 inner
363.2.e.l.202.1 4 1.1 even 1 trivial
1089.2.a.p.1.1 2 33.17 even 10
1089.2.a.p.1.2 2 33.5 odd 10
5808.2.a.bx.1.1 2 44.27 odd 10
5808.2.a.bx.1.2 2 44.39 even 10
9075.2.a.bi.1.1 2 55.39 odd 10
9075.2.a.bi.1.2 2 55.49 even 10