Properties

Label 363.2.e.k.202.1
Level $363$
Weight $2$
Character 363.202
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 202.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.202
Dual form 363.2.e.k.124.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.11803 + 1.53884i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(1.50000 + 4.61653i) q^{4} +(0.500000 - 0.363271i) q^{5} +(-2.11803 + 1.53884i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(-2.30902 + 7.10642i) q^{8} +(-0.809017 - 0.587785i) q^{9} +1.61803 q^{10} -4.85410 q^{12} +(-0.190983 - 0.138757i) q^{13} +(0.809017 - 2.48990i) q^{14} +(0.190983 + 0.587785i) q^{15} +(-7.97214 + 5.79210i) q^{16} +(0.927051 - 0.673542i) q^{17} +(-0.809017 - 2.48990i) q^{18} +(1.80902 - 5.56758i) q^{19} +(2.42705 + 1.76336i) q^{20} +1.00000 q^{21} +0.236068 q^{23} +(-6.04508 - 4.39201i) q^{24} +(-1.42705 + 4.39201i) q^{25} +(-0.190983 - 0.587785i) q^{26} +(0.809017 - 0.587785i) q^{27} +(3.92705 - 2.85317i) q^{28} +(-1.85410 - 5.70634i) q^{29} +(-0.500000 + 1.53884i) q^{30} +(4.92705 + 3.57971i) q^{31} -10.8541 q^{32} +3.00000 q^{34} +(-0.500000 - 0.363271i) q^{35} +(1.50000 - 4.61653i) q^{36} +(-1.92705 - 5.93085i) q^{37} +(12.3992 - 9.00854i) q^{38} +(0.190983 - 0.138757i) q^{39} +(1.42705 + 4.39201i) q^{40} +(0.0729490 - 0.224514i) q^{41} +(2.11803 + 1.53884i) q^{42} -6.70820 q^{43} -0.618034 q^{45} +(0.500000 + 0.363271i) q^{46} +(-3.11803 + 9.59632i) q^{47} +(-3.04508 - 9.37181i) q^{48} +(4.85410 - 3.52671i) q^{49} +(-9.78115 + 7.10642i) q^{50} +(0.354102 + 1.08981i) q^{51} +(0.354102 - 1.08981i) q^{52} +(0.309017 + 0.224514i) q^{53} +2.61803 q^{54} +7.47214 q^{56} +(4.73607 + 3.44095i) q^{57} +(4.85410 - 14.9394i) q^{58} +(2.28115 + 7.02067i) q^{59} +(-2.42705 + 1.76336i) q^{60} +(9.35410 - 6.79615i) q^{61} +(4.92705 + 15.1639i) q^{62} +(-0.309017 + 0.951057i) q^{63} +(-7.04508 - 5.11855i) q^{64} -0.145898 q^{65} +1.85410 q^{67} +(4.50000 + 3.26944i) q^{68} +(-0.0729490 + 0.224514i) q^{69} +(-0.500000 - 1.53884i) q^{70} +(-8.35410 + 6.06961i) q^{71} +(6.04508 - 4.39201i) q^{72} +(-1.76393 - 5.42882i) q^{73} +(5.04508 - 15.5272i) q^{74} +(-3.73607 - 2.71441i) q^{75} +28.4164 q^{76} +0.618034 q^{78} +(-8.89919 - 6.46564i) q^{79} +(-1.88197 + 5.79210i) q^{80} +(0.309017 + 0.951057i) q^{81} +(0.500000 - 0.363271i) q^{82} +(-1.19098 + 0.865300i) q^{83} +(1.50000 + 4.61653i) q^{84} +(0.218847 - 0.673542i) q^{85} +(-14.2082 - 10.3229i) q^{86} +6.00000 q^{87} -8.23607 q^{89} +(-1.30902 - 0.951057i) q^{90} +(-0.0729490 + 0.224514i) q^{91} +(0.354102 + 1.08981i) q^{92} +(-4.92705 + 3.57971i) q^{93} +(-21.3713 + 15.5272i) q^{94} +(-1.11803 - 3.44095i) q^{95} +(3.35410 - 10.3229i) q^{96} +(-6.35410 - 4.61653i) q^{97} +15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} + 2 q^{5} - 4 q^{6} + q^{7} - 7 q^{8} - q^{9} + 2 q^{10} - 6 q^{12} - 3 q^{13} + q^{14} + 3 q^{15} - 14 q^{16} - 3 q^{17} - q^{18} + 5 q^{19} + 3 q^{20} + 4 q^{21} - 8 q^{23}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11803 + 1.53884i 1.49768 + 1.08813i 0.971295 + 0.237877i \(0.0764514\pi\)
0.526381 + 0.850249i \(0.323549\pi\)
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 1.50000 + 4.61653i 0.750000 + 2.30826i
\(5\) 0.500000 0.363271i 0.223607 0.162460i −0.470342 0.882484i \(-0.655869\pi\)
0.693949 + 0.720024i \(0.255869\pi\)
\(6\) −2.11803 + 1.53884i −0.864684 + 0.628230i
\(7\) −0.309017 0.951057i −0.116797 0.359466i 0.875520 0.483181i \(-0.160519\pi\)
−0.992318 + 0.123716i \(0.960519\pi\)
\(8\) −2.30902 + 7.10642i −0.816361 + 2.51250i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 1.61803 0.511667
\(11\) 0 0
\(12\) −4.85410 −1.40126
\(13\) −0.190983 0.138757i −0.0529692 0.0384843i 0.560986 0.827826i \(-0.310422\pi\)
−0.613955 + 0.789341i \(0.710422\pi\)
\(14\) 0.809017 2.48990i 0.216219 0.665453i
\(15\) 0.190983 + 0.587785i 0.0493116 + 0.151765i
\(16\) −7.97214 + 5.79210i −1.99303 + 1.44802i
\(17\) 0.927051 0.673542i 0.224843 0.163358i −0.469661 0.882847i \(-0.655624\pi\)
0.694504 + 0.719489i \(0.255624\pi\)
\(18\) −0.809017 2.48990i −0.190687 0.586875i
\(19\) 1.80902 5.56758i 0.415017 1.27729i −0.497219 0.867625i \(-0.665645\pi\)
0.912236 0.409666i \(-0.134355\pi\)
\(20\) 2.42705 + 1.76336i 0.542705 + 0.394298i
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) −6.04508 4.39201i −1.23395 0.896516i
\(25\) −1.42705 + 4.39201i −0.285410 + 0.878402i
\(26\) −0.190983 0.587785i −0.0374548 0.115274i
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 3.92705 2.85317i 0.742143 0.539198i
\(29\) −1.85410 5.70634i −0.344298 1.05964i −0.961958 0.273196i \(-0.911919\pi\)
0.617660 0.786445i \(-0.288081\pi\)
\(30\) −0.500000 + 1.53884i −0.0912871 + 0.280953i
\(31\) 4.92705 + 3.57971i 0.884924 + 0.642935i 0.934550 0.355833i \(-0.115803\pi\)
−0.0496252 + 0.998768i \(0.515803\pi\)
\(32\) −10.8541 −1.91875
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −0.500000 0.363271i −0.0845154 0.0614041i
\(36\) 1.50000 4.61653i 0.250000 0.769421i
\(37\) −1.92705 5.93085i −0.316805 0.975026i −0.975005 0.222183i \(-0.928682\pi\)
0.658200 0.752843i \(-0.271318\pi\)
\(38\) 12.3992 9.00854i 2.01141 1.46138i
\(39\) 0.190983 0.138757i 0.0305818 0.0222189i
\(40\) 1.42705 + 4.39201i 0.225637 + 0.694438i
\(41\) 0.0729490 0.224514i 0.0113927 0.0350632i −0.945199 0.326496i \(-0.894132\pi\)
0.956591 + 0.291433i \(0.0941320\pi\)
\(42\) 2.11803 + 1.53884i 0.326820 + 0.237448i
\(43\) −6.70820 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(44\) 0 0
\(45\) −0.618034 −0.0921311
\(46\) 0.500000 + 0.363271i 0.0737210 + 0.0535614i
\(47\) −3.11803 + 9.59632i −0.454812 + 1.39977i 0.416544 + 0.909116i \(0.363241\pi\)
−0.871356 + 0.490652i \(0.836759\pi\)
\(48\) −3.04508 9.37181i −0.439520 1.35270i
\(49\) 4.85410 3.52671i 0.693443 0.503816i
\(50\) −9.78115 + 7.10642i −1.38326 + 1.00500i
\(51\) 0.354102 + 1.08981i 0.0495842 + 0.152604i
\(52\) 0.354102 1.08981i 0.0491051 0.151130i
\(53\) 0.309017 + 0.224514i 0.0424467 + 0.0308394i 0.608806 0.793319i \(-0.291649\pi\)
−0.566360 + 0.824158i \(0.691649\pi\)
\(54\) 2.61803 0.356269
\(55\) 0 0
\(56\) 7.47214 0.998506
\(57\) 4.73607 + 3.44095i 0.627308 + 0.455766i
\(58\) 4.85410 14.9394i 0.637375 1.96164i
\(59\) 2.28115 + 7.02067i 0.296981 + 0.914013i 0.982549 + 0.186004i \(0.0595539\pi\)
−0.685568 + 0.728009i \(0.740446\pi\)
\(60\) −2.42705 + 1.76336i −0.313331 + 0.227648i
\(61\) 9.35410 6.79615i 1.19767 0.870158i 0.203617 0.979051i \(-0.434730\pi\)
0.994054 + 0.108893i \(0.0347304\pi\)
\(62\) 4.92705 + 15.1639i 0.625736 + 1.92582i
\(63\) −0.309017 + 0.951057i −0.0389325 + 0.119822i
\(64\) −7.04508 5.11855i −0.880636 0.639819i
\(65\) −0.145898 −0.0180964
\(66\) 0 0
\(67\) 1.85410 0.226515 0.113257 0.993566i \(-0.463872\pi\)
0.113257 + 0.993566i \(0.463872\pi\)
\(68\) 4.50000 + 3.26944i 0.545705 + 0.396478i
\(69\) −0.0729490 + 0.224514i −0.00878203 + 0.0270283i
\(70\) −0.500000 1.53884i −0.0597614 0.183927i
\(71\) −8.35410 + 6.06961i −0.991449 + 0.720330i −0.960238 0.279183i \(-0.909937\pi\)
−0.0312115 + 0.999513i \(0.509937\pi\)
\(72\) 6.04508 4.39201i 0.712420 0.517603i
\(73\) −1.76393 5.42882i −0.206453 0.635396i −0.999651 0.0264320i \(-0.991585\pi\)
0.793198 0.608964i \(-0.208415\pi\)
\(74\) 5.04508 15.5272i 0.586479 1.80500i
\(75\) −3.73607 2.71441i −0.431404 0.313433i
\(76\) 28.4164 3.25959
\(77\) 0 0
\(78\) 0.618034 0.0699786
\(79\) −8.89919 6.46564i −1.00124 0.727441i −0.0388837 0.999244i \(-0.512380\pi\)
−0.962353 + 0.271803i \(0.912380\pi\)
\(80\) −1.88197 + 5.79210i −0.210410 + 0.647576i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0.500000 0.363271i 0.0552158 0.0401166i
\(83\) −1.19098 + 0.865300i −0.130727 + 0.0949790i −0.651227 0.758883i \(-0.725746\pi\)
0.520500 + 0.853862i \(0.325746\pi\)
\(84\) 1.50000 + 4.61653i 0.163663 + 0.503704i
\(85\) 0.218847 0.673542i 0.0237373 0.0730559i
\(86\) −14.2082 10.3229i −1.53211 1.11314i
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) −1.30902 0.951057i −0.137983 0.100250i
\(91\) −0.0729490 + 0.224514i −0.00764713 + 0.0235355i
\(92\) 0.354102 + 1.08981i 0.0369177 + 0.113621i
\(93\) −4.92705 + 3.57971i −0.510911 + 0.371199i
\(94\) −21.3713 + 15.5272i −2.20428 + 1.60151i
\(95\) −1.11803 3.44095i −0.114708 0.353035i
\(96\) 3.35410 10.3229i 0.342327 1.05357i
\(97\) −6.35410 4.61653i −0.645161 0.468737i 0.216458 0.976292i \(-0.430549\pi\)
−0.861620 + 0.507555i \(0.830549\pi\)
\(98\) 15.7082 1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) 8.28115 + 6.01661i 0.824006 + 0.598675i 0.917857 0.396911i \(-0.129918\pi\)
−0.0938515 + 0.995586i \(0.529918\pi\)
\(102\) −0.927051 + 2.85317i −0.0917917 + 0.282506i
\(103\) −3.38197 10.4086i −0.333235 1.02559i −0.967585 0.252546i \(-0.918732\pi\)
0.634350 0.773046i \(-0.281268\pi\)
\(104\) 1.42705 1.03681i 0.139934 0.101668i
\(105\) 0.500000 0.363271i 0.0487950 0.0354516i
\(106\) 0.309017 + 0.951057i 0.0300144 + 0.0923748i
\(107\) −3.54508 + 10.9106i −0.342716 + 1.05477i 0.620079 + 0.784540i \(0.287101\pi\)
−0.962795 + 0.270233i \(0.912899\pi\)
\(108\) 3.92705 + 2.85317i 0.377881 + 0.274546i
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 6.23607 0.591901
\(112\) 7.97214 + 5.79210i 0.753296 + 0.547302i
\(113\) 4.16312 12.8128i 0.391633 1.20532i −0.539919 0.841717i \(-0.681545\pi\)
0.931553 0.363607i \(-0.118455\pi\)
\(114\) 4.73607 + 14.5761i 0.443573 + 1.36518i
\(115\) 0.118034 0.0857567i 0.0110067 0.00799685i
\(116\) 23.5623 17.1190i 2.18771 1.58946i
\(117\) 0.0729490 + 0.224514i 0.00674414 + 0.0207563i
\(118\) −5.97214 + 18.3803i −0.549780 + 1.69205i
\(119\) −0.927051 0.673542i −0.0849826 0.0617435i
\(120\) −4.61803 −0.421567
\(121\) 0 0
\(122\) 30.2705 2.74056
\(123\) 0.190983 + 0.138757i 0.0172204 + 0.0125113i
\(124\) −9.13525 + 28.1154i −0.820370 + 2.52484i
\(125\) 1.83688 + 5.65334i 0.164296 + 0.505650i
\(126\) −2.11803 + 1.53884i −0.188689 + 0.137091i
\(127\) −6.23607 + 4.53077i −0.553362 + 0.402041i −0.829023 0.559214i \(-0.811103\pi\)
0.275662 + 0.961255i \(0.411103\pi\)
\(128\) −0.336881 1.03681i −0.0297764 0.0916422i
\(129\) 2.07295 6.37988i 0.182513 0.561717i
\(130\) −0.309017 0.224514i −0.0271026 0.0196912i
\(131\) −11.7984 −1.03083 −0.515414 0.856941i \(-0.672362\pi\)
−0.515414 + 0.856941i \(0.672362\pi\)
\(132\) 0 0
\(133\) −5.85410 −0.507615
\(134\) 3.92705 + 2.85317i 0.339246 + 0.246476i
\(135\) 0.190983 0.587785i 0.0164372 0.0505885i
\(136\) 2.64590 + 8.14324i 0.226884 + 0.698277i
\(137\) −7.89919 + 5.73910i −0.674873 + 0.490324i −0.871653 0.490124i \(-0.836952\pi\)
0.196780 + 0.980448i \(0.436952\pi\)
\(138\) −0.500000 + 0.363271i −0.0425628 + 0.0309237i
\(139\) 4.50000 + 13.8496i 0.381685 + 1.17471i 0.938857 + 0.344308i \(0.111887\pi\)
−0.557172 + 0.830397i \(0.688113\pi\)
\(140\) 0.927051 2.85317i 0.0783501 0.241137i
\(141\) −8.16312 5.93085i −0.687459 0.499468i
\(142\) −27.0344 −2.26868
\(143\) 0 0
\(144\) 9.85410 0.821175
\(145\) −3.00000 2.17963i −0.249136 0.181008i
\(146\) 4.61803 14.2128i 0.382191 1.17626i
\(147\) 1.85410 + 5.70634i 0.152924 + 0.470651i
\(148\) 24.4894 17.7926i 2.01301 1.46254i
\(149\) 3.42705 2.48990i 0.280755 0.203980i −0.438492 0.898735i \(-0.644487\pi\)
0.719247 + 0.694755i \(0.244487\pi\)
\(150\) −3.73607 11.4984i −0.305049 0.938843i
\(151\) 0.326238 1.00406i 0.0265489 0.0817090i −0.936904 0.349586i \(-0.886322\pi\)
0.963453 + 0.267877i \(0.0863222\pi\)
\(152\) 35.3885 + 25.7113i 2.87039 + 2.08546i
\(153\) −1.14590 −0.0926404
\(154\) 0 0
\(155\) 3.76393 0.302326
\(156\) 0.927051 + 0.673542i 0.0742235 + 0.0539265i
\(157\) 4.85410 14.9394i 0.387400 1.19229i −0.547325 0.836920i \(-0.684354\pi\)
0.934725 0.355373i \(-0.115646\pi\)
\(158\) −8.89919 27.3889i −0.707981 2.17894i
\(159\) −0.309017 + 0.224514i −0.0245066 + 0.0178051i
\(160\) −5.42705 + 3.94298i −0.429046 + 0.311720i
\(161\) −0.0729490 0.224514i −0.00574919 0.0176942i
\(162\) −0.809017 + 2.48990i −0.0635624 + 0.195625i
\(163\) 4.16312 + 3.02468i 0.326081 + 0.236911i 0.738766 0.673962i \(-0.235409\pi\)
−0.412685 + 0.910874i \(0.635409\pi\)
\(164\) 1.14590 0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) −9.73607 7.07367i −0.753400 0.547377i 0.143479 0.989653i \(-0.454171\pi\)
−0.896879 + 0.442277i \(0.854171\pi\)
\(168\) −2.30902 + 7.10642i −0.178145 + 0.548272i
\(169\) −4.00000 12.3107i −0.307692 0.946980i
\(170\) 1.50000 1.08981i 0.115045 0.0835849i
\(171\) −4.73607 + 3.44095i −0.362176 + 0.263136i
\(172\) −10.0623 30.9686i −0.767244 2.36133i
\(173\) −5.57295 + 17.1518i −0.423703 + 1.30403i 0.480527 + 0.876980i \(0.340445\pi\)
−0.904230 + 0.427045i \(0.859555\pi\)
\(174\) 12.7082 + 9.23305i 0.963406 + 0.699956i
\(175\) 4.61803 0.349091
\(176\) 0 0
\(177\) −7.38197 −0.554863
\(178\) −17.4443 12.6740i −1.30750 0.949957i
\(179\) −2.63525 + 8.11048i −0.196968 + 0.606206i 0.802980 + 0.596006i \(0.203247\pi\)
−0.999948 + 0.0101995i \(0.996753\pi\)
\(180\) −0.927051 2.85317i −0.0690983 0.212663i
\(181\) −2.04508 + 1.48584i −0.152010 + 0.110442i −0.661191 0.750218i \(-0.729949\pi\)
0.509181 + 0.860660i \(0.329949\pi\)
\(182\) −0.500000 + 0.363271i −0.0370625 + 0.0269275i
\(183\) 3.57295 + 10.9964i 0.264120 + 0.812878i
\(184\) −0.545085 + 1.67760i −0.0401842 + 0.123674i
\(185\) −3.11803 2.26538i −0.229242 0.166554i
\(186\) −15.9443 −1.16909
\(187\) 0 0
\(188\) −48.9787 −3.57214
\(189\) −0.809017 0.587785i −0.0588473 0.0427551i
\(190\) 2.92705 9.00854i 0.212351 0.653548i
\(191\) −0.253289 0.779543i −0.0183273 0.0564058i 0.941475 0.337084i \(-0.109441\pi\)
−0.959802 + 0.280678i \(0.909441\pi\)
\(192\) 7.04508 5.11855i 0.508435 0.369400i
\(193\) 2.54508 1.84911i 0.183199 0.133102i −0.492406 0.870366i \(-0.663882\pi\)
0.675605 + 0.737264i \(0.263882\pi\)
\(194\) −6.35410 19.5559i −0.456198 1.40403i
\(195\) 0.0450850 0.138757i 0.00322860 0.00993661i
\(196\) 23.5623 + 17.1190i 1.68302 + 1.22279i
\(197\) 13.0344 0.928666 0.464333 0.885661i \(-0.346294\pi\)
0.464333 + 0.885661i \(0.346294\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) −27.9164 20.2825i −1.97399 1.43419i
\(201\) −0.572949 + 1.76336i −0.0404127 + 0.124378i
\(202\) 8.28115 + 25.4868i 0.582660 + 1.79324i
\(203\) −4.85410 + 3.52671i −0.340691 + 0.247527i
\(204\) −4.50000 + 3.26944i −0.315063 + 0.228907i
\(205\) −0.0450850 0.138757i −0.00314887 0.00969123i
\(206\) 8.85410 27.2501i 0.616895 1.89861i
\(207\) −0.190983 0.138757i −0.0132742 0.00964430i
\(208\) 2.32624 0.161296
\(209\) 0 0
\(210\) 1.61803 0.111655
\(211\) −2.92705 2.12663i −0.201506 0.146403i 0.482456 0.875920i \(-0.339745\pi\)
−0.683963 + 0.729517i \(0.739745\pi\)
\(212\) −0.572949 + 1.76336i −0.0393503 + 0.121108i
\(213\) −3.19098 9.82084i −0.218643 0.672913i
\(214\) −24.2984 + 17.6538i −1.66100 + 1.20679i
\(215\) −3.35410 + 2.43690i −0.228748 + 0.166195i
\(216\) 2.30902 + 7.10642i 0.157109 + 0.483531i
\(217\) 1.88197 5.79210i 0.127756 0.393193i
\(218\) −25.4164 18.4661i −1.72142 1.25068i
\(219\) 5.70820 0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) 13.2082 + 9.59632i 0.886477 + 0.644063i
\(223\) 2.21885 6.82891i 0.148585 0.457298i −0.848870 0.528602i \(-0.822716\pi\)
0.997455 + 0.0713048i \(0.0227163\pi\)
\(224\) 3.35410 + 10.3229i 0.224105 + 0.689725i
\(225\) 3.73607 2.71441i 0.249071 0.180961i
\(226\) 28.5344 20.7315i 1.89808 1.37904i
\(227\) 4.07295 + 12.5352i 0.270331 + 0.831994i 0.990417 + 0.138109i \(0.0441024\pi\)
−0.720086 + 0.693885i \(0.755898\pi\)
\(228\) −8.78115 + 27.0256i −0.581546 + 1.78981i
\(229\) −0.381966 0.277515i −0.0252410 0.0183387i 0.575093 0.818088i \(-0.304966\pi\)
−0.600334 + 0.799749i \(0.704966\pi\)
\(230\) 0.381966 0.0251861
\(231\) 0 0
\(232\) 44.8328 2.94342
\(233\) 3.35410 + 2.43690i 0.219735 + 0.159646i 0.692207 0.721699i \(-0.256638\pi\)
−0.472473 + 0.881345i \(0.656638\pi\)
\(234\) −0.190983 + 0.587785i −0.0124849 + 0.0384247i
\(235\) 1.92705 + 5.93085i 0.125707 + 0.386886i
\(236\) −28.9894 + 21.0620i −1.88705 + 1.37102i
\(237\) 8.89919 6.46564i 0.578064 0.419988i
\(238\) −0.927051 2.85317i −0.0600918 0.184944i
\(239\) 0.118034 0.363271i 0.00763498 0.0234981i −0.947166 0.320742i \(-0.896068\pi\)
0.954801 + 0.297244i \(0.0960676\pi\)
\(240\) −4.92705 3.57971i −0.318040 0.231069i
\(241\) 8.29180 0.534122 0.267061 0.963680i \(-0.413948\pi\)
0.267061 + 0.963680i \(0.413948\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 45.4058 + 32.9892i 2.90681 + 2.11192i
\(245\) 1.14590 3.52671i 0.0732087 0.225313i
\(246\) 0.190983 + 0.587785i 0.0121766 + 0.0374758i
\(247\) −1.11803 + 0.812299i −0.0711388 + 0.0516854i
\(248\) −36.8156 + 26.7481i −2.33779 + 1.69851i
\(249\) −0.454915 1.40008i −0.0288291 0.0887267i
\(250\) −4.80902 + 14.8006i −0.304149 + 0.936074i
\(251\) 17.7812 + 12.9188i 1.12234 + 0.815425i 0.984562 0.175038i \(-0.0560050\pi\)
0.137775 + 0.990464i \(0.456005\pi\)
\(252\) −4.85410 −0.305780
\(253\) 0 0
\(254\) −20.1803 −1.26623
\(255\) 0.572949 + 0.416272i 0.0358795 + 0.0260680i
\(256\) −4.50000 + 13.8496i −0.281250 + 0.865598i
\(257\) 9.19098 + 28.2869i 0.573318 + 1.76449i 0.641837 + 0.766841i \(0.278172\pi\)
−0.0685195 + 0.997650i \(0.521828\pi\)
\(258\) 14.2082 10.3229i 0.884564 0.642673i
\(259\) −5.04508 + 3.66547i −0.313486 + 0.227761i
\(260\) −0.218847 0.673542i −0.0135723 0.0417713i
\(261\) −1.85410 + 5.70634i −0.114766 + 0.353214i
\(262\) −24.9894 18.1558i −1.54385 1.12167i
\(263\) −15.2705 −0.941620 −0.470810 0.882235i \(-0.656038\pi\)
−0.470810 + 0.882235i \(0.656038\pi\)
\(264\) 0 0
\(265\) 0.236068 0.0145015
\(266\) −12.3992 9.00854i −0.760243 0.552349i
\(267\) 2.54508 7.83297i 0.155757 0.479370i
\(268\) 2.78115 + 8.55951i 0.169886 + 0.522855i
\(269\) 20.5623 14.9394i 1.25371 0.910871i 0.255275 0.966868i \(-0.417834\pi\)
0.998431 + 0.0559978i \(0.0178340\pi\)
\(270\) 1.30902 0.951057i 0.0796642 0.0578795i
\(271\) 5.75329 + 17.7068i 0.349487 + 1.07561i 0.959137 + 0.282941i \(0.0913100\pi\)
−0.609650 + 0.792671i \(0.708690\pi\)
\(272\) −3.48936 + 10.7391i −0.211573 + 0.651156i
\(273\) −0.190983 0.138757i −0.0115588 0.00839797i
\(274\) −25.5623 −1.54428
\(275\) 0 0
\(276\) −1.14590 −0.0689750
\(277\) 23.6353 + 17.1720i 1.42010 + 1.03177i 0.991754 + 0.128154i \(0.0409051\pi\)
0.428351 + 0.903613i \(0.359095\pi\)
\(278\) −11.7812 + 36.2587i −0.706587 + 2.17465i
\(279\) −1.88197 5.79210i −0.112670 0.346764i
\(280\) 3.73607 2.71441i 0.223273 0.162217i
\(281\) −20.0344 + 14.5559i −1.19515 + 0.868331i −0.993799 0.111188i \(-0.964535\pi\)
−0.201355 + 0.979518i \(0.564535\pi\)
\(282\) −8.16312 25.1235i −0.486107 1.49608i
\(283\) −1.76393 + 5.42882i −0.104855 + 0.322710i −0.989696 0.143182i \(-0.954267\pi\)
0.884841 + 0.465892i \(0.154267\pi\)
\(284\) −40.5517 29.4625i −2.40630 1.74828i
\(285\) 3.61803 0.214314
\(286\) 0 0
\(287\) −0.236068 −0.0139347
\(288\) 8.78115 + 6.37988i 0.517434 + 0.375938i
\(289\) −4.84752 + 14.9191i −0.285148 + 0.877597i
\(290\) −3.00000 9.23305i −0.176166 0.542183i
\(291\) 6.35410 4.61653i 0.372484 0.270626i
\(292\) 22.4164 16.2865i 1.31182 0.953094i
\(293\) −6.69098 20.5927i −0.390891 1.20304i −0.932115 0.362162i \(-0.882039\pi\)
0.541224 0.840878i \(-0.317961\pi\)
\(294\) −4.85410 + 14.9394i −0.283097 + 0.871283i
\(295\) 3.69098 + 2.68166i 0.214897 + 0.156132i
\(296\) 46.5967 2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) −0.0450850 0.0327561i −0.00260733 0.00189434i
\(300\) 6.92705 21.3193i 0.399933 1.23087i
\(301\) 2.07295 + 6.37988i 0.119483 + 0.367730i
\(302\) 2.23607 1.62460i 0.128671 0.0934851i
\(303\) −8.28115 + 6.01661i −0.475740 + 0.345645i
\(304\) 17.8262 + 54.8635i 1.02240 + 3.14664i
\(305\) 2.20820 6.79615i 0.126441 0.389147i
\(306\) −2.42705 1.76336i −0.138745 0.100804i
\(307\) 27.9787 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(308\) 0 0
\(309\) 10.9443 0.622598
\(310\) 7.97214 + 5.79210i 0.452787 + 0.328969i
\(311\) 3.60081 11.0822i 0.204183 0.628412i −0.795563 0.605871i \(-0.792825\pi\)
0.999746 0.0225404i \(-0.00717543\pi\)
\(312\) 0.545085 + 1.67760i 0.0308594 + 0.0949753i
\(313\) 2.04508 1.48584i 0.115595 0.0839847i −0.528486 0.848942i \(-0.677240\pi\)
0.644081 + 0.764957i \(0.277240\pi\)
\(314\) 33.2705 24.1724i 1.87756 1.36413i
\(315\) 0.190983 + 0.587785i 0.0107607 + 0.0331179i
\(316\) 16.5000 50.7818i 0.928198 2.85670i
\(317\) 5.51722 + 4.00850i 0.309878 + 0.225140i 0.731844 0.681472i \(-0.238660\pi\)
−0.421966 + 0.906612i \(0.638660\pi\)
\(318\) −1.00000 −0.0560772
\(319\) 0 0
\(320\) −5.38197 −0.300861
\(321\) −9.28115 6.74315i −0.518023 0.376366i
\(322\) 0.190983 0.587785i 0.0106431 0.0327560i
\(323\) −2.07295 6.37988i −0.115342 0.354986i
\(324\) −3.92705 + 2.85317i −0.218169 + 0.158509i
\(325\) 0.881966 0.640786i 0.0489227 0.0355444i
\(326\) 4.16312 + 12.8128i 0.230574 + 0.709633i
\(327\) 3.70820 11.4127i 0.205064 0.631123i
\(328\) 1.42705 + 1.03681i 0.0787957 + 0.0572484i
\(329\) 10.0902 0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) −5.78115 4.20025i −0.317282 0.230519i
\(333\) −1.92705 + 5.93085i −0.105602 + 0.325009i
\(334\) −9.73607 29.9645i −0.532734 1.63959i
\(335\) 0.927051 0.673542i 0.0506502 0.0367995i
\(336\) −7.97214 + 5.79210i −0.434916 + 0.315985i
\(337\) −5.61803 17.2905i −0.306034 0.941875i −0.979289 0.202465i \(-0.935105\pi\)
0.673256 0.739410i \(-0.264895\pi\)
\(338\) 10.4721 32.2299i 0.569609 1.75308i
\(339\) 10.8992 + 7.91872i 0.591963 + 0.430086i
\(340\) 3.43769 0.186435
\(341\) 0 0
\(342\) −15.3262 −0.828748
\(343\) −10.5172 7.64121i −0.567877 0.412586i
\(344\) 15.4894 47.6713i 0.835130 2.57027i
\(345\) 0.0450850 + 0.138757i 0.00242729 + 0.00747044i
\(346\) −38.1976 + 27.7522i −2.05351 + 1.49196i
\(347\) 1.23607 0.898056i 0.0663556 0.0482102i −0.554113 0.832441i \(-0.686942\pi\)
0.620469 + 0.784231i \(0.286942\pi\)
\(348\) 9.00000 + 27.6992i 0.482451 + 1.48483i
\(349\) 3.92705 12.0862i 0.210210 0.646961i −0.789249 0.614073i \(-0.789530\pi\)
0.999459 0.0328870i \(-0.0104702\pi\)
\(350\) 9.78115 + 7.10642i 0.522825 + 0.379854i
\(351\) −0.236068 −0.0126004
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) −15.6353 11.3597i −0.831004 0.603760i
\(355\) −1.97214 + 6.06961i −0.104670 + 0.322141i
\(356\) −12.3541 38.0220i −0.654766 2.01516i
\(357\) 0.927051 0.673542i 0.0490647 0.0356476i
\(358\) −18.0623 + 13.1230i −0.954623 + 0.693574i
\(359\) −3.00000 9.23305i −0.158334 0.487302i 0.840149 0.542355i \(-0.182467\pi\)
−0.998483 + 0.0550531i \(0.982467\pi\)
\(360\) 1.42705 4.39201i 0.0752122 0.231479i
\(361\) −12.3541 8.97578i −0.650216 0.472409i
\(362\) −6.61803 −0.347836
\(363\) 0 0
\(364\) −1.14590 −0.0600614
\(365\) −2.85410 2.07363i −0.149391 0.108539i
\(366\) −9.35410 + 28.7890i −0.488947 + 1.50482i
\(367\) 6.84346 + 21.0620i 0.357226 + 1.09943i 0.954708 + 0.297545i \(0.0961679\pi\)
−0.597482 + 0.801882i \(0.703832\pi\)
\(368\) −1.88197 + 1.36733i −0.0981043 + 0.0712769i
\(369\) −0.190983 + 0.138757i −0.00994218 + 0.00722342i
\(370\) −3.11803 9.59632i −0.162099 0.498889i
\(371\) 0.118034 0.363271i 0.00612802 0.0188601i
\(372\) −23.9164 17.3763i −1.24001 0.900919i
\(373\) 0.888544 0.0460071 0.0230035 0.999735i \(-0.492677\pi\)
0.0230035 + 0.999735i \(0.492677\pi\)
\(374\) 0 0
\(375\) −5.94427 −0.306961
\(376\) −60.9959 44.3161i −3.14563 2.28543i
\(377\) −0.437694 + 1.34708i −0.0225424 + 0.0693784i
\(378\) −0.809017 2.48990i −0.0416113 0.128067i
\(379\) 20.1353 14.6291i 1.03428 0.751447i 0.0651180 0.997878i \(-0.479258\pi\)
0.969161 + 0.246430i \(0.0792576\pi\)
\(380\) 14.2082 10.3229i 0.728865 0.529552i
\(381\) −2.38197 7.33094i −0.122032 0.375575i
\(382\) 0.663119 2.04087i 0.0339281 0.104420i
\(383\) 10.2812 + 7.46969i 0.525342 + 0.381684i 0.818613 0.574346i \(-0.194744\pi\)
−0.293270 + 0.956030i \(0.594744\pi\)
\(384\) 1.09017 0.0556325
\(385\) 0 0
\(386\) 8.23607 0.419205
\(387\) 5.42705 + 3.94298i 0.275873 + 0.200433i
\(388\) 11.7812 36.2587i 0.598097 1.84075i
\(389\) −11.3541 34.9443i −0.575676 1.77175i −0.633866 0.773443i \(-0.718533\pi\)
0.0581906 0.998305i \(-0.481467\pi\)
\(390\) 0.309017 0.224514i 0.0156477 0.0113687i
\(391\) 0.218847 0.159002i 0.0110676 0.00804106i
\(392\) 13.8541 + 42.6385i 0.699738 + 2.15357i
\(393\) 3.64590 11.2209i 0.183911 0.566021i
\(394\) 27.6074 + 20.0579i 1.39084 + 1.01050i
\(395\) −6.79837 −0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 14.2082 + 10.3229i 0.712193 + 0.517438i
\(399\) 1.80902 5.56758i 0.0905641 0.278728i
\(400\) −14.0623 43.2793i −0.703115 2.16397i
\(401\) 25.6353 18.6251i 1.28016 0.930093i 0.280606 0.959823i \(-0.409465\pi\)
0.999558 + 0.0297299i \(0.00946472\pi\)
\(402\) −3.92705 + 2.85317i −0.195864 + 0.142303i
\(403\) −0.444272 1.36733i −0.0221308 0.0681115i
\(404\) −15.3541 + 47.2551i −0.763895 + 2.35103i
\(405\) 0.500000 + 0.363271i 0.0248452 + 0.0180511i
\(406\) −15.7082 −0.779585
\(407\) 0 0
\(408\) −8.56231 −0.423897
\(409\) 5.23607 + 3.80423i 0.258907 + 0.188107i 0.709665 0.704539i \(-0.248846\pi\)
−0.450758 + 0.892646i \(0.648846\pi\)
\(410\) 0.118034 0.363271i 0.00582928 0.0179407i
\(411\) −3.01722 9.28605i −0.148829 0.458047i
\(412\) 42.9787 31.2259i 2.11741 1.53839i
\(413\) 5.97214 4.33901i 0.293870 0.213509i
\(414\) −0.190983 0.587785i −0.00938630 0.0288881i
\(415\) −0.281153 + 0.865300i −0.0138013 + 0.0424759i
\(416\) 2.07295 + 1.50609i 0.101635 + 0.0738419i
\(417\) −14.5623 −0.713119
\(418\) 0 0
\(419\) 31.4508 1.53647 0.768237 0.640165i \(-0.221134\pi\)
0.768237 + 0.640165i \(0.221134\pi\)
\(420\) 2.42705 + 1.76336i 0.118428 + 0.0860430i
\(421\) 3.24671 9.99235i 0.158235 0.486997i −0.840239 0.542216i \(-0.817586\pi\)
0.998474 + 0.0552185i \(0.0175855\pi\)
\(422\) −2.92705 9.00854i −0.142487 0.438529i
\(423\) 8.16312 5.93085i 0.396904 0.288368i
\(424\) −2.30902 + 1.67760i −0.112136 + 0.0814714i
\(425\) 1.63525 + 5.03280i 0.0793215 + 0.244127i
\(426\) 8.35410 25.7113i 0.404758 1.24572i
\(427\) −9.35410 6.79615i −0.452677 0.328889i
\(428\) −55.6869 −2.69173
\(429\) 0 0
\(430\) −10.8541 −0.523431
\(431\) 4.78115 + 3.47371i 0.230300 + 0.167323i 0.696951 0.717119i \(-0.254540\pi\)
−0.466651 + 0.884442i \(0.654540\pi\)
\(432\) −3.04508 + 9.37181i −0.146507 + 0.450901i
\(433\) 10.9098 + 33.5770i 0.524293 + 1.61361i 0.765710 + 0.643186i \(0.222388\pi\)
−0.241417 + 0.970422i \(0.577612\pi\)
\(434\) 12.8992 9.37181i 0.619181 0.449861i
\(435\) 3.00000 2.17963i 0.143839 0.104505i
\(436\) −18.0000 55.3983i −0.862044 2.65310i
\(437\) 0.427051 1.31433i 0.0204286 0.0628728i
\(438\) 12.0902 + 8.78402i 0.577691 + 0.419717i
\(439\) 23.2918 1.11166 0.555828 0.831297i \(-0.312401\pi\)
0.555828 + 0.831297i \(0.312401\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −0.572949 0.416272i −0.0272524 0.0198000i
\(443\) −9.76393 + 30.0503i −0.463898 + 1.42773i 0.396464 + 0.918050i \(0.370237\pi\)
−0.860363 + 0.509682i \(0.829763\pi\)
\(444\) 9.35410 + 28.7890i 0.443926 + 1.36626i
\(445\) −4.11803 + 2.99193i −0.195214 + 0.141831i
\(446\) 15.2082 11.0494i 0.720129 0.523205i
\(447\) 1.30902 + 4.02874i 0.0619144 + 0.190553i
\(448\) −2.69098 + 8.28199i −0.127137 + 0.391287i
\(449\) 7.32624 + 5.32282i 0.345747 + 0.251200i 0.747082 0.664731i \(-0.231454\pi\)
−0.401336 + 0.915931i \(0.631454\pi\)
\(450\) 12.0902 0.569936
\(451\) 0 0
\(452\) 65.3951 3.07593
\(453\) 0.854102 + 0.620541i 0.0401292 + 0.0291556i
\(454\) −10.6631 + 32.8177i −0.500445 + 1.54021i
\(455\) 0.0450850 + 0.138757i 0.00211362 + 0.00650504i
\(456\) −35.3885 + 25.7113i −1.65722 + 1.20404i
\(457\) −19.3992 + 14.0943i −0.907456 + 0.659305i −0.940370 0.340153i \(-0.889521\pi\)
0.0329144 + 0.999458i \(0.489521\pi\)
\(458\) −0.381966 1.17557i −0.0178481 0.0549308i
\(459\) 0.354102 1.08981i 0.0165281 0.0508682i
\(460\) 0.572949 + 0.416272i 0.0267139 + 0.0194088i
\(461\) 9.27051 0.431771 0.215885 0.976419i \(-0.430736\pi\)
0.215885 + 0.976419i \(0.430736\pi\)
\(462\) 0 0
\(463\) 1.72949 0.0803762 0.0401881 0.999192i \(-0.487204\pi\)
0.0401881 + 0.999192i \(0.487204\pi\)
\(464\) 47.8328 + 34.7526i 2.22058 + 1.61335i
\(465\) −1.16312 + 3.57971i −0.0539384 + 0.166005i
\(466\) 3.35410 + 10.3229i 0.155376 + 0.478197i
\(467\) −16.8992 + 12.2780i −0.782001 + 0.568157i −0.905579 0.424178i \(-0.860563\pi\)
0.123578 + 0.992335i \(0.460563\pi\)
\(468\) −0.927051 + 0.673542i −0.0428529 + 0.0311345i
\(469\) −0.572949 1.76336i −0.0264563 0.0814242i
\(470\) −5.04508 + 15.5272i −0.232712 + 0.716215i
\(471\) 12.7082 + 9.23305i 0.585563 + 0.425437i
\(472\) −55.1591 −2.53890
\(473\) 0 0
\(474\) 28.7984 1.32275
\(475\) 21.8713 + 15.8904i 1.00353 + 0.729104i
\(476\) 1.71885 5.29007i 0.0787832 0.242470i
\(477\) −0.118034 0.363271i −0.00540441 0.0166330i
\(478\) 0.809017 0.587785i 0.0370036 0.0268847i
\(479\) 22.9615 16.6825i 1.04914 0.762243i 0.0770892 0.997024i \(-0.475437\pi\)
0.972048 + 0.234781i \(0.0754374\pi\)
\(480\) −2.07295 6.37988i −0.0946167 0.291200i
\(481\) −0.454915 + 1.40008i −0.0207423 + 0.0638384i
\(482\) 17.5623 + 12.7598i 0.799941 + 0.581191i
\(483\) 0.236068 0.0107415
\(484\) 0 0
\(485\) −4.85410 −0.220413
\(486\) −2.11803 1.53884i −0.0960760 0.0698033i
\(487\) −3.92705 + 12.0862i −0.177952 + 0.547679i −0.999756 0.0220909i \(-0.992968\pi\)
0.821804 + 0.569770i \(0.192968\pi\)
\(488\) 26.6976 + 82.1666i 1.20854 + 3.71951i
\(489\) −4.16312 + 3.02468i −0.188263 + 0.136781i
\(490\) 7.85410 5.70634i 0.354812 0.257786i
\(491\) −5.53444 17.0333i −0.249766 0.768700i −0.994816 0.101692i \(-0.967574\pi\)
0.745050 0.667009i \(-0.232426\pi\)
\(492\) −0.354102 + 1.08981i −0.0159641 + 0.0491326i
\(493\) −5.56231 4.04125i −0.250514 0.182009i
\(494\) −3.61803 −0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 8.35410 + 6.06961i 0.374733 + 0.272259i
\(498\) 1.19098 3.66547i 0.0533692 0.164254i
\(499\) −5.60739 17.2578i −0.251021 0.772564i −0.994588 0.103902i \(-0.966867\pi\)
0.743566 0.668662i \(-0.233133\pi\)
\(500\) −23.3435 + 16.9600i −1.04395 + 0.758475i
\(501\) 9.73607 7.07367i 0.434975 0.316028i
\(502\) 17.7812 + 54.7248i 0.793612 + 2.44249i
\(503\) 2.67376 8.22899i 0.119217 0.366913i −0.873586 0.486670i \(-0.838212\pi\)
0.992803 + 0.119757i \(0.0382115\pi\)
\(504\) −6.04508 4.39201i −0.269269 0.195636i
\(505\) 6.32624 0.281514
\(506\) 0 0
\(507\) 12.9443 0.574875
\(508\) −30.2705 21.9928i −1.34304 0.975773i
\(509\) 11.9721 36.8464i 0.530656 1.63319i −0.222198 0.975002i \(-0.571323\pi\)
0.752853 0.658188i \(-0.228677\pi\)
\(510\) 0.572949 + 1.76336i 0.0253706 + 0.0780827i
\(511\) −4.61803 + 3.35520i −0.204290 + 0.148425i
\(512\) −32.6074 + 23.6907i −1.44106 + 1.04699i
\(513\) −1.80902 5.56758i −0.0798701 0.245815i
\(514\) −24.0623 + 74.0562i −1.06134 + 3.26648i
\(515\) −5.47214 3.97574i −0.241131 0.175192i
\(516\) 32.5623 1.43348
\(517\) 0 0
\(518\) −16.3262 −0.717334
\(519\) −14.5902 10.6004i −0.640437 0.465305i
\(520\) 0.336881 1.03681i 0.0147732 0.0454673i
\(521\) 2.76393 + 8.50651i 0.121090 + 0.372677i 0.993168 0.116689i \(-0.0372282\pi\)
−0.872078 + 0.489366i \(0.837228\pi\)
\(522\) −12.7082 + 9.23305i −0.556223 + 0.404120i
\(523\) −14.7812 + 10.7391i −0.646335 + 0.469590i −0.862021 0.506873i \(-0.830801\pi\)
0.215686 + 0.976463i \(0.430801\pi\)
\(524\) −17.6976 54.4675i −0.773122 2.37942i
\(525\) −1.42705 + 4.39201i −0.0622816 + 0.191683i
\(526\) −32.3435 23.4989i −1.41024 1.02460i
\(527\) 6.97871 0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0.500000 + 0.363271i 0.0217186 + 0.0157795i
\(531\) 2.28115 7.02067i 0.0989936 0.304671i
\(532\) −8.78115 27.0256i −0.380711 1.17171i
\(533\) −0.0450850 + 0.0327561i −0.00195285 + 0.00141883i
\(534\) 17.4443 12.6740i 0.754887 0.548458i
\(535\) 2.19098 + 6.74315i 0.0947245 + 0.291532i
\(536\) −4.28115 + 13.1760i −0.184918 + 0.569118i
\(537\) −6.89919 5.01255i −0.297722 0.216308i
\(538\) 66.5410 2.86879
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) 6.06231 + 4.40452i 0.260639 + 0.189365i 0.710429 0.703769i \(-0.248501\pi\)
−0.449790 + 0.893134i \(0.648501\pi\)
\(542\) −15.0623 + 46.3570i −0.646981 + 1.99120i
\(543\) −0.781153 2.40414i −0.0335225 0.103172i
\(544\) −10.0623 + 7.31069i −0.431418 + 0.313443i
\(545\) −6.00000 + 4.35926i −0.257012 + 0.186730i
\(546\) −0.190983 0.587785i −0.00817332 0.0251549i
\(547\) −9.50000 + 29.2380i −0.406191 + 1.25013i 0.513706 + 0.857966i \(0.328272\pi\)
−0.919897 + 0.392160i \(0.871728\pi\)
\(548\) −38.3435 27.8582i −1.63795 1.19004i
\(549\) −11.5623 −0.493467
\(550\) 0 0
\(551\) −35.1246 −1.49636
\(552\) −1.42705 1.03681i −0.0607393 0.0441297i
\(553\) −3.39919 + 10.4616i −0.144548 + 0.444873i
\(554\) 23.6353 + 72.7418i 1.00417 + 3.09050i
\(555\) 3.11803 2.26538i 0.132353 0.0961602i
\(556\) −57.1869 + 41.5487i −2.42527 + 1.76206i
\(557\) 11.6287 + 35.7894i 0.492723 + 1.51645i 0.820476 + 0.571682i \(0.193709\pi\)
−0.327753 + 0.944764i \(0.606291\pi\)
\(558\) 4.92705 15.1639i 0.208579 0.641939i
\(559\) 1.28115 + 0.930812i 0.0541870 + 0.0393692i
\(560\) 6.09017 0.257357
\(561\) 0 0
\(562\) −64.8328 −2.73481
\(563\) −32.8435 23.8622i −1.38419 1.00567i −0.996475 0.0838899i \(-0.973266\pi\)
−0.387712 0.921781i \(-0.626734\pi\)
\(564\) 15.1353 46.5815i 0.637309 1.96144i
\(565\) −2.57295 7.91872i −0.108245 0.333143i
\(566\) −12.0902 + 8.78402i −0.508188 + 0.369220i
\(567\) 0.809017 0.587785i 0.0339755 0.0246847i
\(568\) −23.8435 73.3826i −1.00045 3.07907i
\(569\) 10.5623 32.5074i 0.442795 1.36278i −0.442089 0.896971i \(-0.645763\pi\)
0.884884 0.465811i \(-0.154237\pi\)
\(570\) 7.66312 + 5.56758i 0.320973 + 0.233200i
\(571\) −9.09017 −0.380412 −0.190206 0.981744i \(-0.560916\pi\)
−0.190206 + 0.981744i \(0.560916\pi\)
\(572\) 0 0
\(573\) 0.819660 0.0342418
\(574\) −0.500000 0.363271i −0.0208696 0.0151626i
\(575\) −0.336881 + 1.03681i −0.0140489 + 0.0432381i
\(576\) 2.69098 + 8.28199i 0.112124 + 0.345083i
\(577\) −25.6525 + 18.6376i −1.06793 + 0.775894i −0.975538 0.219829i \(-0.929450\pi\)
−0.0923881 + 0.995723i \(0.529450\pi\)
\(578\) −33.2254 + 24.1397i −1.38200 + 1.00408i
\(579\) 0.972136 + 2.99193i 0.0404006 + 0.124340i
\(580\) 5.56231 17.1190i 0.230962 0.710829i
\(581\) 1.19098 + 0.865300i 0.0494103 + 0.0358987i
\(582\) 20.5623 0.852335
\(583\) 0 0
\(584\) 42.6525 1.76497
\(585\) 0.118034 + 0.0857567i 0.00488010 + 0.00354560i
\(586\) 17.5172 53.9125i 0.723630 2.22710i
\(587\) −0.656541 2.02063i −0.0270984 0.0834002i 0.936593 0.350420i \(-0.113961\pi\)
−0.963691 + 0.267020i \(0.913961\pi\)
\(588\) −23.5623 + 17.1190i −0.971693 + 0.705976i
\(589\) 28.8435 20.9560i 1.18847 0.863477i
\(590\) 3.69098 + 11.3597i 0.151955 + 0.467671i
\(591\) −4.02786 + 12.3965i −0.165684 + 0.509923i
\(592\) 49.7148 + 36.1199i 2.04326 + 1.48452i
\(593\) −14.0344 −0.576325 −0.288163 0.957581i \(-0.593044\pi\)
−0.288163 + 0.957581i \(0.593044\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) 16.6353 + 12.0862i 0.681407 + 0.495071i
\(597\) −2.07295 + 6.37988i −0.0848402 + 0.261111i
\(598\) −0.0450850 0.138757i −0.00184366 0.00567421i
\(599\) −10.2361 + 7.43694i −0.418234 + 0.303865i −0.776927 0.629591i \(-0.783223\pi\)
0.358693 + 0.933456i \(0.383223\pi\)
\(600\) 27.9164 20.2825i 1.13968 0.828028i
\(601\) −2.12868 6.55139i −0.0868306 0.267237i 0.898208 0.439570i \(-0.144869\pi\)
−0.985039 + 0.172334i \(0.944869\pi\)
\(602\) −5.42705 + 16.7027i −0.221190 + 0.680753i
\(603\) −1.50000 1.08981i −0.0610847 0.0443806i
\(604\) 5.12461 0.208517
\(605\) 0 0
\(606\) −26.7984 −1.08861
\(607\) 13.3992 + 9.73508i 0.543856 + 0.395135i 0.825515 0.564380i \(-0.190885\pi\)
−0.281659 + 0.959515i \(0.590885\pi\)
\(608\) −19.6353 + 60.4311i −0.796315 + 2.45080i
\(609\) −1.85410 5.70634i −0.0751320 0.231233i
\(610\) 15.1353 10.9964i 0.612809 0.445231i
\(611\) 1.92705 1.40008i 0.0779601 0.0566414i
\(612\) −1.71885 5.29007i −0.0694803 0.213838i
\(613\) −4.41641 + 13.5923i −0.178377 + 0.548988i −0.999772 0.0213723i \(-0.993196\pi\)
0.821395 + 0.570360i \(0.193196\pi\)
\(614\) 59.2599 + 43.0548i 2.39153 + 1.73755i
\(615\) 0.145898 0.00588318
\(616\) 0 0
\(617\) 11.1803 0.450104 0.225052 0.974347i \(-0.427745\pi\)
0.225052 + 0.974347i \(0.427745\pi\)
\(618\) 23.1803 + 16.8415i 0.932450 + 0.677465i
\(619\) 7.45492 22.9439i 0.299638 0.922192i −0.681985 0.731366i \(-0.738883\pi\)
0.981624 0.190826i \(-0.0611167\pi\)
\(620\) 5.64590 + 17.3763i 0.226745 + 0.697848i
\(621\) 0.190983 0.138757i 0.00766388 0.00556814i
\(622\) 24.6803 17.9313i 0.989591 0.718980i
\(623\) 2.54508 + 7.83297i 0.101967 + 0.313821i
\(624\) −0.718847 + 2.21238i −0.0287769 + 0.0885662i
\(625\) −15.7082 11.4127i −0.628328 0.456507i
\(626\) 6.61803 0.264510
\(627\) 0 0
\(628\) 76.2492 3.04268
\(629\) −5.78115 4.20025i −0.230510 0.167475i
\(630\) −0.500000 + 1.53884i −0.0199205 + 0.0613089i
\(631\) 5.93769 + 18.2743i 0.236376 + 0.727490i 0.996936 + 0.0782225i \(0.0249245\pi\)
−0.760560 + 0.649268i \(0.775076\pi\)
\(632\) 66.4959 48.3121i 2.64507 1.92175i
\(633\) 2.92705 2.12663i 0.116340 0.0845258i
\(634\) 5.51722 + 16.9803i 0.219117 + 0.674372i
\(635\) −1.47214 + 4.53077i −0.0584199 + 0.179798i
\(636\) −1.50000 1.08981i −0.0594789 0.0432139i
\(637\) −1.41641 −0.0561201
\(638\) 0 0
\(639\) 10.3262 0.408500
\(640\) −0.545085 0.396027i −0.0215464 0.0156544i
\(641\) −7.75329 + 23.8622i −0.306236 + 0.942499i 0.672976 + 0.739664i \(0.265016\pi\)
−0.979213 + 0.202835i \(0.934984\pi\)
\(642\) −9.28115 28.5645i −0.366298 1.12735i
\(643\) −16.8713 + 12.2577i −0.665340 + 0.483398i −0.868462 0.495756i \(-0.834891\pi\)
0.203122 + 0.979153i \(0.434891\pi\)
\(644\) 0.927051 0.673542i 0.0365309 0.0265413i
\(645\) −1.28115 3.94298i −0.0504453 0.155255i
\(646\) 5.42705 16.7027i 0.213524 0.657161i
\(647\) −36.4336 26.4706i −1.43235 1.04067i −0.989572 0.144036i \(-0.953992\pi\)
−0.442781 0.896630i \(-0.646008\pi\)
\(648\) −7.47214 −0.293533
\(649\) 0 0
\(650\) 2.85410 0.111947
\(651\) 4.92705 + 3.57971i 0.193106 + 0.140300i
\(652\) −7.71885 + 23.7562i −0.302293 + 0.930363i
\(653\) −1.73607 5.34307i −0.0679376 0.209090i 0.911324 0.411690i \(-0.135061\pi\)
−0.979262 + 0.202599i \(0.935061\pi\)
\(654\) 25.4164 18.4661i 0.993860 0.722082i
\(655\) −5.89919 + 4.28601i −0.230500 + 0.167468i
\(656\) 0.718847 + 2.21238i 0.0280663 + 0.0863791i
\(657\) −1.76393 + 5.42882i −0.0688175 + 0.211799i
\(658\) 21.3713 + 15.5272i 0.833141 + 0.605312i
\(659\) −41.1246 −1.60199 −0.800994 0.598673i \(-0.795695\pi\)
−0.800994 + 0.598673i \(0.795695\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) 35.3885 + 25.7113i 1.37541 + 0.999297i
\(663\) 0.0835921 0.257270i 0.00324645 0.00999154i
\(664\) −3.39919 10.4616i −0.131914 0.405990i
\(665\) −2.92705 + 2.12663i −0.113506 + 0.0824671i
\(666\) −13.2082 + 9.59632i −0.511808 + 0.371850i
\(667\) −0.437694 1.34708i −0.0169476 0.0521593i
\(668\) 18.0517 55.5573i 0.698440 2.14958i
\(669\) 5.80902 + 4.22050i 0.224590 + 0.163174i
\(670\) 3.00000 0.115900
\(671\) 0 0
\(672\) −10.8541 −0.418706
\(673\) −28.9894 21.0620i −1.11746 0.811880i −0.133636 0.991031i \(-0.542665\pi\)
−0.983822 + 0.179150i \(0.942665\pi\)
\(674\) 14.7082 45.2672i 0.566539 1.74363i
\(675\) 1.42705 + 4.39201i 0.0549272 + 0.169049i
\(676\) 50.8328 36.9322i 1.95511 1.42047i
\(677\) −10.9443 + 7.95148i −0.420623 + 0.305600i −0.777888 0.628403i \(-0.783709\pi\)
0.357266 + 0.934003i \(0.383709\pi\)
\(678\) 10.8992 + 33.5442i 0.418581 + 1.28826i
\(679\) −2.42705 + 7.46969i −0.0931417 + 0.286661i
\(680\) 4.28115 + 3.11044i 0.164175 + 0.119280i
\(681\) −13.1803 −0.505072
\(682\) 0 0
\(683\) 9.06888 0.347011 0.173506 0.984833i \(-0.444491\pi\)
0.173506 + 0.984833i \(0.444491\pi\)
\(684\) −22.9894 16.7027i −0.879020 0.638645i
\(685\) −1.86475 + 5.73910i −0.0712482 + 0.219280i
\(686\) −10.5172 32.3687i −0.401549 1.23584i
\(687\) 0.381966 0.277515i 0.0145729 0.0105878i
\(688\) 53.4787 38.8546i 2.03886 1.48132i
\(689\) −0.0278640 0.0857567i −0.00106154 0.00326707i
\(690\) −0.118034 + 0.363271i −0.00449348 + 0.0138295i
\(691\) −1.09017 0.792055i −0.0414720 0.0301312i 0.566856 0.823817i \(-0.308160\pi\)
−0.608328 + 0.793686i \(0.708160\pi\)
\(692\) −87.5410 −3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 7.28115 + 5.29007i 0.276190 + 0.200664i
\(696\) −13.8541 + 42.6385i −0.525138 + 1.61621i
\(697\) −0.0835921 0.257270i −0.00316628 0.00974480i
\(698\) 26.9164 19.5559i 1.01880 0.740202i
\(699\) −3.35410 + 2.43690i −0.126864 + 0.0921719i
\(700\) 6.92705 + 21.3193i 0.261818 + 0.805793i
\(701\) −10.7533 + 33.0952i −0.406146 + 1.24999i 0.513788 + 0.857917i \(0.328242\pi\)
−0.919934 + 0.392072i \(0.871758\pi\)
\(702\) −0.500000 0.363271i −0.0188713 0.0137108i
\(703\) −36.5066 −1.37687
\(704\) 0 0
\(705\) −6.23607 −0.234864
\(706\) −25.4164 18.4661i −0.956559 0.694981i
\(707\) 3.16312 9.73508i 0.118961 0.366125i
\(708\) −11.0729 34.0790i −0.416147 1.28077i
\(709\) −9.07295 + 6.59188i −0.340742 + 0.247563i −0.744975 0.667093i \(-0.767538\pi\)
0.404233 + 0.914656i \(0.367538\pi\)
\(710\) −13.5172 + 9.82084i −0.507292 + 0.368569i
\(711\) 3.39919 + 10.4616i 0.127479 + 0.392341i
\(712\) 19.0172 58.5290i 0.712700 2.19347i
\(713\) 1.16312 + 0.845055i 0.0435591 + 0.0316476i
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) −41.3951 −1.54701
\(717\) 0.309017 + 0.224514i 0.0115405 + 0.00838463i
\(718\) 7.85410 24.1724i 0.293112 0.902107i
\(719\) −11.8926 36.6017i −0.443519 1.36501i −0.884099 0.467299i \(-0.845227\pi\)
0.440580 0.897713i \(-0.354773\pi\)
\(720\) 4.92705 3.57971i 0.183620 0.133408i
\(721\) −8.85410 + 6.43288i −0.329744 + 0.239573i
\(722\) −12.3541 38.0220i −0.459772 1.41503i
\(723\) −2.56231 + 7.88597i −0.0952932 + 0.293282i
\(724\) −9.92705 7.21242i −0.368936 0.268048i
\(725\) 27.7082 1.02906
\(726\) 0 0
\(727\) −9.14590 −0.339203 −0.169601 0.985513i \(-0.554248\pi\)
−0.169601 + 0.985513i \(0.554248\pi\)
\(728\) −1.42705 1.03681i −0.0528900 0.0384269i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −2.85410 8.78402i −0.105635 0.325111i
\(731\) −6.21885 + 4.51826i −0.230012 + 0.167114i
\(732\) −45.4058 + 32.9892i −1.67825 + 1.21932i
\(733\) −0.124612 0.383516i −0.00460264 0.0141655i 0.948729 0.316091i \(-0.102371\pi\)
−0.953331 + 0.301926i \(0.902371\pi\)
\(734\) −17.9164 + 55.1410i −0.661307 + 2.03529i
\(735\) 3.00000 + 2.17963i 0.110657 + 0.0803968i
\(736\) −2.56231 −0.0944478
\(737\) 0 0
\(738\) −0.618034 −0.0227501
\(739\) −2.42705 1.76336i −0.0892805 0.0648661i 0.542250 0.840218i \(-0.317573\pi\)
−0.631530 + 0.775351i \(0.717573\pi\)
\(740\) 5.78115 17.7926i 0.212519 0.654067i
\(741\) −0.427051 1.31433i −0.0156881 0.0482830i
\(742\) 0.809017 0.587785i 0.0296999 0.0215783i
\(743\) 34.6976 25.2093i 1.27293 0.924838i 0.273615 0.961839i \(-0.411781\pi\)
0.999315 + 0.0370015i \(0.0117806\pi\)
\(744\) −14.0623 43.2793i −0.515549 1.58670i
\(745\) 0.809017 2.48990i 0.0296401 0.0912228i
\(746\) 1.88197 + 1.36733i 0.0689037 + 0.0500614i
\(747\) 1.47214 0.0538626
\(748\) 0 0
\(749\) 11.4721 0.419183
\(750\) −12.5902 9.14729i −0.459728 0.334012i
\(751\) 4.98936 15.3557i 0.182064 0.560336i −0.817821 0.575472i \(-0.804818\pi\)
0.999885 + 0.0151363i \(0.00481823\pi\)
\(752\) −30.7254 94.5631i −1.12044 3.44836i
\(753\) −17.7812 + 12.9188i −0.647981 + 0.470786i
\(754\) −3.00000 + 2.17963i −0.109254 + 0.0793774i
\(755\) −0.201626 0.620541i −0.00733793 0.0225838i
\(756\) 1.50000 4.61653i 0.0545545 0.167901i
\(757\) −4.04508 2.93893i −0.147021 0.106817i 0.511843 0.859079i \(-0.328963\pi\)
−0.658864 + 0.752262i \(0.728963\pi\)
\(758\) 65.1591 2.36668
\(759\) 0 0
\(760\) 27.0344 0.980642
\(761\) −23.6976 17.2173i −0.859036 0.624126i 0.0685866 0.997645i \(-0.478151\pi\)
−0.927623 + 0.373519i \(0.878151\pi\)
\(762\) 6.23607 19.1926i 0.225909 0.695276i
\(763\) 3.70820 + 11.4127i 0.134246 + 0.413167i
\(764\) 3.21885 2.33863i 0.116454 0.0846086i
\(765\) −0.572949 + 0.416272i −0.0207150 + 0.0150503i
\(766\) 10.2812 + 31.6421i 0.371473 + 1.14328i
\(767\) 0.538507 1.65735i 0.0194444 0.0598436i
\(768\) −11.7812 8.55951i −0.425116 0.308865i
\(769\) −34.5066 −1.24434 −0.622170 0.782883i \(-0.713749\pi\)
−0.622170 + 0.782883i \(0.713749\pi\)
\(770\) 0 0
\(771\) −29.7426 −1.07116
\(772\) 12.3541 + 8.97578i 0.444634 + 0.323045i
\(773\) 8.39919 25.8500i 0.302098 0.929761i −0.678647 0.734465i \(-0.737433\pi\)
0.980744 0.195296i \(-0.0625668\pi\)
\(774\) 5.42705 + 16.7027i 0.195071 + 0.600368i
\(775\) −22.7533 + 16.5312i −0.817322 + 0.593819i
\(776\) 47.4787 34.4953i 1.70439 1.23831i
\(777\) −1.92705 5.93085i −0.0691326 0.212768i
\(778\) 29.7254 91.4855i 1.06571 3.27991i
\(779\) −1.11803 0.812299i −0.0400577 0.0291036i
\(780\) 0.708204 0.0253578
\(781\) 0 0
\(782\) 0.708204 0.0253253
\(783\) −4.85410 3.52671i −0.173471 0.126034i
\(784\) −18.2705 + 56.2308i −0.652518 + 2.00824i
\(785\) −3.00000 9.23305i −0.107075 0.329542i
\(786\) 24.9894 18.1558i 0.891341 0.647597i
\(787\) 7.85410 5.70634i 0.279968 0.203409i −0.438935 0.898519i \(-0.644644\pi\)
0.718904 + 0.695110i \(0.244644\pi\)
\(788\) 19.5517 + 60.1738i 0.696499 + 2.14360i
\(789\) 4.71885 14.5231i 0.167995 0.517037i
\(790\) −14.3992 10.4616i −0.512300 0.372208i
\(791\) −13.4721 −0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) −39.6246 28.7890i −1.40622 1.02168i
\(795\) −0.0729490 + 0.224514i −0.00258724 + 0.00796269i
\(796\) 10.0623 + 30.9686i 0.356649 + 1.09765i
\(797\) −15.0000 + 10.8981i −0.531327 + 0.386032i −0.820854 0.571138i \(-0.806502\pi\)
0.289527 + 0.957170i \(0.406502\pi\)
\(798\) 12.3992 9.00854i 0.438926 0.318899i
\(799\) 3.57295 + 10.9964i 0.126402 + 0.389025i
\(800\) 15.4894 47.6713i 0.547631 1.68544i
\(801\) 6.66312 + 4.84104i 0.235430 + 0.171050i
\(802\) 82.9574 2.92933
\(803\) 0 0
\(804\) −9.00000 −0.317406
\(805\) −0.118034 0.0857567i −0.00416015 0.00302253i
\(806\) 1.16312 3.57971i 0.0409691 0.126090i
\(807\) 7.85410 + 24.1724i 0.276477 + 0.850910i
\(808\) −61.8779 + 44.9569i −2.17686 + 1.58158i
\(809\) −21.9164 + 15.9232i −0.770540 + 0.559830i −0.902125 0.431475i \(-0.857993\pi\)
0.131585 + 0.991305i \(0.457993\pi\)
\(810\) 0.500000 + 1.53884i 0.0175682 + 0.0540694i
\(811\) 11.2984 34.7728i 0.396740 1.22104i −0.530859 0.847460i \(-0.678131\pi\)
0.927599 0.373579i \(-0.121869\pi\)
\(812\) −23.5623 17.1190i −0.826875 0.600760i
\(813\) −18.6180 −0.652963
\(814\) 0 0
\(815\) 3.18034 0.111402
\(816\) −9.13525 6.63715i −0.319798 0.232347i
\(817\) −12.1353 + 37.3485i −0.424559 + 1.30666i
\(818\) 5.23607 + 16.1150i 0.183075 + 0.563446i
\(819\) 0.190983 0.138757i 0.00667349 0.00484857i
\(820\) 0.572949 0.416272i 0.0200082 0.0145368i
\(821\) 12.5451 + 38.6098i 0.437826 + 1.34749i 0.890162 + 0.455644i \(0.150591\pi\)
−0.452336 + 0.891848i \(0.649409\pi\)
\(822\) 7.89919 24.3112i 0.275516 0.847950i
\(823\) 22.5172 + 16.3597i 0.784901 + 0.570264i 0.906446 0.422322i \(-0.138785\pi\)
−0.121545 + 0.992586i \(0.538785\pi\)
\(824\) 81.7771 2.84884
\(825\) 0 0
\(826\) 19.3262 0.672446
\(827\) 8.61803 + 6.26137i 0.299678 + 0.217729i 0.727455 0.686155i \(-0.240703\pi\)
−0.427777 + 0.903884i \(0.640703\pi\)
\(828\) 0.354102 1.08981i 0.0123059 0.0378736i
\(829\) −9.70163 29.8585i −0.336951 1.03703i −0.965753 0.259464i \(-0.916454\pi\)
0.628801 0.777566i \(-0.283546\pi\)
\(830\) −1.92705 + 1.40008i −0.0668889 + 0.0485976i
\(831\) −23.6353 + 17.1720i −0.819898 + 0.595691i
\(832\) 0.635255 + 1.95511i 0.0220235 + 0.0677814i
\(833\) 2.12461 6.53888i 0.0736134 0.226559i
\(834\) −30.8435 22.4091i −1.06802 0.775963i
\(835\) −7.43769 −0.257392
\(836\) 0 0
\(837\) 6.09017 0.210507
\(838\) 66.6140 + 48.3979i 2.30114 + 1.67188i
\(839\) −5.51064 + 16.9600i −0.190249 + 0.585525i −0.999999 0.00124931i \(-0.999602\pi\)
0.809751 + 0.586774i \(0.199602\pi\)
\(840\) 1.42705 + 4.39201i 0.0492379 + 0.151539i
\(841\) −5.66312 + 4.11450i −0.195280 + 0.141879i
\(842\) 22.2533 16.1680i 0.766899 0.557185i
\(843\) −7.65248 23.5519i −0.263565 0.811170i
\(844\) 5.42705 16.7027i 0.186807 0.574932i
\(845\) −6.47214 4.70228i −0.222648 0.161763i
\(846\) 26.4164 0.908215
\(847\) 0 0
\(848\) −3.76393 −0.129254
\(849\) −4.61803 3.35520i −0.158491 0.115150i
\(850\) −4.28115 + 13.1760i −0.146842 + 0.451934i
\(851\) −0.454915 1.40008i −0.0155943 0.0479943i
\(852\) 40.5517 29.4625i 1.38928 1.00937i
\(853\) 45.1697 32.8177i 1.54658 1.12366i 0.600547 0.799589i \(-0.294950\pi\)
0.946034 0.324067i \(-0.105050\pi\)
\(854\) −9.35410 28.7890i −0.320091 0.985138i
\(855\) −1.11803 + 3.44095i −0.0382360 + 0.117678i
\(856\) −69.3500 50.3858i −2.37034 1.72215i
\(857\) 27.7639 0.948398 0.474199 0.880418i \(-0.342738\pi\)
0.474199 + 0.880418i \(0.342738\pi\)
\(858\) 0 0
\(859\) −34.4164 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(860\) −16.2812 11.8290i −0.555183 0.403364i
\(861\) 0.0729490 0.224514i 0.00248610 0.00765142i
\(862\) 4.78115 + 14.7149i 0.162847 + 0.501191i
\(863\) −0.0901699 + 0.0655123i −0.00306942 + 0.00223006i −0.589319 0.807901i \(-0.700604\pi\)
0.586249 + 0.810131i \(0.300604\pi\)
\(864\) −8.78115 + 6.37988i −0.298741 + 0.217048i
\(865\) 3.44427 + 10.6004i 0.117109 + 0.360424i
\(866\) −28.5623 + 87.9057i −0.970587 + 2.98716i
\(867\) −12.6910 9.22054i −0.431008 0.313146i
\(868\) 29.5623 1.00341
\(869\) 0 0
\(870\) 9.70820 0.329139
\(871\) −0.354102 0.257270i −0.0119983 0.00871727i
\(872\) 27.7082 85.2771i 0.938318 2.88785i
\(873\) 2.42705 + 7.46969i 0.0821432 + 0.252811i
\(874\) 2.92705 2.12663i 0.0990090 0.0719342i
\(875\) 4.80902 3.49396i 0.162574 0.118117i
\(876\) 8.56231 + 26.3521i 0.289294 + 0.890354i
\(877\) −17.9058 + 55.1083i −0.604635 + 1.86087i −0.105352 + 0.994435i \(0.533597\pi\)
−0.499282 + 0.866439i \(0.666403\pi\)
\(878\) 49.3328 + 35.8424i 1.66490 + 1.20962i
\(879\) 21.6525 0.730320
\(880\) 0 0
\(881\) 6.20163 0.208938 0.104469 0.994528i \(-0.466686\pi\)
0.104469 + 0.994528i \(0.466686\pi\)
\(882\) −12.7082 9.23305i −0.427907 0.310893i
\(883\) 0.326238 1.00406i 0.0109788 0.0337892i −0.945417 0.325863i \(-0.894345\pi\)
0.956396 + 0.292074i \(0.0943452\pi\)
\(884\) −0.405765 1.24882i −0.0136473 0.0420022i
\(885\) −3.69098 + 2.68166i −0.124071 + 0.0901429i
\(886\) −66.9230 + 48.6224i −2.24832 + 1.63350i
\(887\) −16.8369 51.8186i −0.565327 1.73990i −0.666978 0.745078i \(-0.732412\pi\)
0.101650 0.994820i \(-0.467588\pi\)
\(888\) −14.3992 + 44.3161i −0.483205 + 1.48715i
\(889\) 6.23607 + 4.53077i 0.209151 + 0.151957i
\(890\) −13.3262 −0.446697
\(891\) 0 0
\(892\) 34.8541 1.16700
\(893\) 47.7877 + 34.7198i 1.59916 + 1.16185i
\(894\) −3.42705 + 10.5474i −0.114618 + 0.352757i
\(895\) 1.62868 + 5.01255i 0.0544407 + 0.167551i
\(896\) −0.881966 + 0.640786i −0.0294644 + 0.0214072i
\(897\) 0.0450850 0.0327561i 0.00150534 0.00109370i
\(898\) 7.32624 + 22.5478i 0.244480 + 0.752431i
\(899\) 11.2918 34.7526i 0.376602 1.15906i
\(900\) 18.1353 + 13.1760i 0.604508 + 0.439201i
\(901\) 0.437694 0.0145817
\(902\) 0 0
\(903\) −6.70820 −0.223235
\(904\) 81.4402 + 59.1698i 2.70866 + 1.96796i
\(905\) −0.482779 + 1.48584i −0.0160481 + 0.0493910i
\(906\) 0.854102 + 2.62866i 0.0283756 + 0.0873312i
\(907\) 34.2984 24.9192i 1.13886 0.827429i 0.151899 0.988396i \(-0.451461\pi\)
0.986960 + 0.160967i \(0.0514612\pi\)
\(908\) −51.7599 + 37.6057i −1.71771 + 1.24799i
\(909\) −3.16312 9.73508i −0.104914 0.322892i
\(910\) −0.118034 + 0.363271i −0.00391279 + 0.0120423i
\(911\) −31.2254 22.6866i −1.03454 0.751641i −0.0653313 0.997864i \(-0.520810\pi\)
−0.969213 + 0.246223i \(0.920810\pi\)
\(912\) −57.6869 −1.91020
\(913\) 0 0
\(914\) −62.7771 −2.07648
\(915\) 5.78115 + 4.20025i 0.191119 + 0.138856i
\(916\) 0.708204 2.17963i 0.0233997 0.0720169i
\(917\) 3.64590 + 11.2209i 0.120398 + 0.370547i
\(918\) 2.42705 1.76336i 0.0801046 0.0581994i
\(919\) −20.7533 + 15.0781i −0.684588 + 0.497382i −0.874877 0.484346i \(-0.839058\pi\)
0.190289 + 0.981728i \(0.439058\pi\)
\(920\) 0.336881 + 1.03681i 0.0111066 + 0.0341827i
\(921\) −8.64590 + 26.6093i −0.284892 + 0.876807i
\(922\) 19.6353 + 14.2658i 0.646653 + 0.469821i
\(923\) 2.43769 0.0802377
\(924\) 0 0
\(925\) 28.7984 0.946885
\(926\) 3.66312 + 2.66141i 0.120378 + 0.0874594i
\(927\) −3.38197 + 10.4086i −0.111078 + 0.341864i
\(928\) 20.1246 + 61.9372i 0.660623 + 2.03319i
\(929\) 10.2812 7.46969i 0.337314 0.245073i −0.406214 0.913778i \(-0.633151\pi\)
0.743528 + 0.668705i \(0.233151\pi\)
\(930\) −7.97214 + 5.79210i −0.261417 + 0.189930i
\(931\) −10.8541 33.4055i −0.355729 1.09482i
\(932\) −6.21885 + 19.1396i −0.203705 + 0.626940i
\(933\) 9.42705 + 6.84915i 0.308628 + 0.224231i
\(934\) −54.6869 −1.78941
\(935\) 0 0
\(936\) −1.76393 −0.0576559
\(937\) −33.6976 24.4827i −1.10085 0.799815i −0.119653 0.992816i \(-0.538178\pi\)
−0.981199 + 0.193001i \(0.938178\pi\)
\(938\) 1.50000 4.61653i 0.0489767 0.150735i
\(939\) 0.781153 + 2.40414i 0.0254920 + 0.0784562i
\(940\) −24.4894 + 17.7926i −0.798755 + 0.580329i
\(941\) 11.6910 8.49400i 0.381115 0.276896i −0.380690 0.924703i \(-0.624313\pi\)
0.761805 + 0.647806i \(0.224313\pi\)
\(942\) 12.7082 + 39.1118i 0.414056 + 1.27433i
\(943\) 0.0172209 0.0530006i 0.000560791 0.00172594i
\(944\) −58.8500 42.7571i −1.91541 1.39162i
\(945\) −0.618034 −0.0201046
\(946\) 0 0
\(947\) −32.3951 −1.05270 −0.526350 0.850268i \(-0.676440\pi\)
−0.526350 + 0.850268i \(0.676440\pi\)
\(948\) 43.1976 + 31.3849i 1.40299 + 1.01933i
\(949\) −0.416408 + 1.28157i −0.0135172 + 0.0416016i
\(950\) 21.8713 + 67.3130i 0.709599 + 2.18392i
\(951\) −5.51722 + 4.00850i −0.178908 + 0.129984i
\(952\) 6.92705 5.03280i 0.224507 0.163114i
\(953\) 3.50658 + 10.7921i 0.113589 + 0.349592i 0.991650 0.128957i \(-0.0411630\pi\)
−0.878061 + 0.478549i \(0.841163\pi\)
\(954\) 0.309017 0.951057i 0.0100048 0.0307916i
\(955\) −0.409830 0.297759i −0.0132618 0.00963525i
\(956\) 1.85410 0.0599659
\(957\) 0 0
\(958\) 74.3050 2.40068
\(959\) 7.89919 + 5.73910i 0.255078 + 0.185325i
\(960\) 1.66312 5.11855i 0.0536769 0.165201i
\(961\) 1.88197 + 5.79210i 0.0607086 + 0.186842i
\(962\) −3.11803 + 2.26538i −0.100529 + 0.0730389i
\(963\) 9.28115 6.74315i 0.299081 0.217295i
\(964\) 12.4377 + 38.2793i 0.400591 + 1.23289i
\(965\) 0.600813 1.84911i 0.0193409 0.0595250i
\(966\) 0.500000 + 0.363271i 0.0160872 + 0.0116881i
\(967\) 43.9230 1.41247 0.706234 0.707978i \(-0.250393\pi\)
0.706234 + 0.707978i \(0.250393\pi\)
\(968\) 0 0
\(969\) 6.70820 0.215499
\(970\) −10.2812 7.46969i −0.330108 0.239837i
\(971\) −12.9787 + 39.9444i −0.416507 + 1.28188i 0.494389 + 0.869240i \(0.335392\pi\)
−0.910896 + 0.412635i \(0.864608\pi\)
\(972\) −1.50000 4.61653i −0.0481125 0.148075i
\(973\) 11.7812 8.55951i 0.377686 0.274405i
\(974\) −26.9164 + 19.5559i −0.862457 + 0.626612i
\(975\) 0.336881 + 1.03681i 0.0107888 + 0.0332046i
\(976\) −35.2082 + 108.360i −1.12699 + 3.46851i
\(977\) 0.482779 + 0.350760i 0.0154455 + 0.0112218i 0.595481 0.803369i \(-0.296961\pi\)
−0.580036 + 0.814591i \(0.696961\pi\)
\(978\) −13.4721 −0.430791
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) 9.70820 + 7.05342i 0.309959 + 0.225198i
\(982\) 14.4894 44.5937i 0.462374 1.42304i
\(983\) −2.50658 7.71445i −0.0799474 0.246053i 0.903092 0.429447i \(-0.141292\pi\)
−0.983039 + 0.183394i \(0.941292\pi\)
\(984\) −1.42705 + 1.03681i −0.0454927 + 0.0330524i
\(985\) 6.51722 4.73504i 0.207656 0.150871i
\(986\) −5.56231 17.1190i −0.177140 0.545181i
\(987\) −3.11803 + 9.59632i −0.0992481 + 0.305454i
\(988\) −5.42705 3.94298i −0.172657 0.125443i
\(989\) −1.58359 −0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −53.4787 38.8546i −1.69795 1.23363i
\(993\) −5.16312 + 15.8904i −0.163847 + 0.504268i
\(994\) 8.35410 + 25.7113i 0.264976 + 0.815512i
\(995\) 3.35410 2.43690i 0.106332 0.0772549i
\(996\) 5.78115 4.20025i 0.183183 0.133090i
\(997\) −6.55166 20.1639i −0.207493 0.638599i −0.999602 0.0282183i \(-0.991017\pi\)
0.792109 0.610380i \(-0.208983\pi\)
\(998\) 14.6803 45.1814i 0.464698 1.43019i
\(999\) −5.04508 3.66547i −0.159619 0.115970i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.e.k.202.1 4
11.2 odd 10 363.2.e.f.148.1 4
11.3 even 5 inner 363.2.e.k.124.1 4
11.4 even 5 33.2.e.b.31.1 yes 4
11.5 even 5 363.2.a.d.1.1 2
11.6 odd 10 363.2.a.i.1.2 2
11.7 odd 10 363.2.e.f.130.1 4
11.8 odd 10 363.2.e.b.124.1 4
11.9 even 5 33.2.e.b.16.1 4
11.10 odd 2 363.2.e.b.202.1 4
33.5 odd 10 1089.2.a.t.1.2 2
33.17 even 10 1089.2.a.l.1.1 2
33.20 odd 10 99.2.f.a.82.1 4
33.26 odd 10 99.2.f.a.64.1 4
44.15 odd 10 528.2.y.b.97.1 4
44.27 odd 10 5808.2.a.cj.1.1 2
44.31 odd 10 528.2.y.b.49.1 4
44.39 even 10 5808.2.a.ci.1.1 2
55.4 even 10 825.2.n.c.526.1 4
55.9 even 10 825.2.n.c.676.1 4
55.37 odd 20 825.2.bx.d.724.1 8
55.39 odd 10 9075.2.a.u.1.1 2
55.42 odd 20 825.2.bx.d.49.2 8
55.48 odd 20 825.2.bx.d.724.2 8
55.49 even 10 9075.2.a.cb.1.2 2
55.53 odd 20 825.2.bx.d.49.1 8
99.4 even 15 891.2.n.c.460.1 8
99.20 odd 30 891.2.n.b.676.1 8
99.31 even 15 891.2.n.c.379.1 8
99.59 odd 30 891.2.n.b.460.1 8
99.70 even 15 891.2.n.c.757.1 8
99.86 odd 30 891.2.n.b.379.1 8
99.92 odd 30 891.2.n.b.757.1 8
99.97 even 15 891.2.n.c.676.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 11.9 even 5
33.2.e.b.31.1 yes 4 11.4 even 5
99.2.f.a.64.1 4 33.26 odd 10
99.2.f.a.82.1 4 33.20 odd 10
363.2.a.d.1.1 2 11.5 even 5
363.2.a.i.1.2 2 11.6 odd 10
363.2.e.b.124.1 4 11.8 odd 10
363.2.e.b.202.1 4 11.10 odd 2
363.2.e.f.130.1 4 11.7 odd 10
363.2.e.f.148.1 4 11.2 odd 10
363.2.e.k.124.1 4 11.3 even 5 inner
363.2.e.k.202.1 4 1.1 even 1 trivial
528.2.y.b.49.1 4 44.31 odd 10
528.2.y.b.97.1 4 44.15 odd 10
825.2.n.c.526.1 4 55.4 even 10
825.2.n.c.676.1 4 55.9 even 10
825.2.bx.d.49.1 8 55.53 odd 20
825.2.bx.d.49.2 8 55.42 odd 20
825.2.bx.d.724.1 8 55.37 odd 20
825.2.bx.d.724.2 8 55.48 odd 20
891.2.n.b.379.1 8 99.86 odd 30
891.2.n.b.460.1 8 99.59 odd 30
891.2.n.b.676.1 8 99.20 odd 30
891.2.n.b.757.1 8 99.92 odd 30
891.2.n.c.379.1 8 99.31 even 15
891.2.n.c.460.1 8 99.4 even 15
891.2.n.c.676.1 8 99.97 even 15
891.2.n.c.757.1 8 99.70 even 15
1089.2.a.l.1.1 2 33.17 even 10
1089.2.a.t.1.2 2 33.5 odd 10
5808.2.a.ci.1.1 2 44.39 even 10
5808.2.a.cj.1.1 2 44.27 odd 10
9075.2.a.u.1.1 2 55.39 odd 10
9075.2.a.cb.1.2 2 55.49 even 10