Properties

Label 363.2.e.j.202.1
Level $363$
Weight $2$
Character 363.202
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 202.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.202
Dual form 363.2.e.j.124.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 + 0.951057i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.190983 + 0.587785i) q^{4} +(0.309017 - 0.224514i) q^{5} +(1.30902 - 0.951057i) q^{6} +(-0.927051 - 2.85317i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(1.30902 + 0.951057i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.190983 + 0.587785i) q^{4} +(0.309017 - 0.224514i) q^{5} +(1.30902 - 0.951057i) q^{6} +(-0.927051 - 2.85317i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-0.809017 - 0.587785i) q^{9} +0.618034 q^{10} +0.618034 q^{12} +(5.04508 + 3.66547i) q^{13} +(1.50000 - 4.61653i) q^{14} +(-0.118034 - 0.363271i) q^{15} +(3.92705 - 2.85317i) q^{16} +(-0.500000 + 0.363271i) q^{17} +(-0.500000 - 1.53884i) q^{18} +(0.263932 - 0.812299i) q^{19} +(0.190983 + 0.138757i) q^{20} -3.00000 q^{21} -5.47214 q^{23} +(-1.80902 - 1.31433i) q^{24} +(-1.50000 + 4.61653i) q^{25} +(3.11803 + 9.59632i) q^{26} +(-0.809017 + 0.587785i) q^{27} +(1.50000 - 1.08981i) q^{28} +(1.38197 + 4.25325i) q^{29} +(0.190983 - 0.587785i) q^{30} +(3.11803 + 2.26538i) q^{31} +3.38197 q^{32} -1.00000 q^{34} +(-0.927051 - 0.673542i) q^{35} +(0.190983 - 0.587785i) q^{36} +(-1.30902 - 4.02874i) q^{37} +(1.11803 - 0.812299i) q^{38} +(5.04508 - 3.66547i) q^{39} +(-0.263932 - 0.812299i) q^{40} +(-1.83688 + 5.65334i) q^{41} +(-3.92705 - 2.85317i) q^{42} -1.76393 q^{43} -0.381966 q^{45} +(-7.16312 - 5.20431i) q^{46} +(-0.190983 + 0.587785i) q^{47} +(-1.50000 - 4.61653i) q^{48} +(-1.61803 + 1.17557i) q^{49} +(-6.35410 + 4.61653i) q^{50} +(0.190983 + 0.587785i) q^{51} +(-1.19098 + 3.66547i) q^{52} +(5.97214 + 4.33901i) q^{53} -1.61803 q^{54} -6.70820 q^{56} +(-0.690983 - 0.502029i) q^{57} +(-2.23607 + 6.88191i) q^{58} +(-1.64590 - 5.06555i) q^{59} +(0.190983 - 0.138757i) q^{60} +(0.927051 - 0.673542i) q^{61} +(1.92705 + 5.93085i) q^{62} +(-0.927051 + 2.85317i) q^{63} +(-3.42705 - 2.48990i) q^{64} +2.38197 q^{65} +10.5623 q^{67} +(-0.309017 - 0.224514i) q^{68} +(-1.69098 + 5.20431i) q^{69} +(-0.572949 - 1.76336i) q^{70} +(-11.7812 + 8.55951i) q^{71} +(-1.80902 + 1.31433i) q^{72} +(-0.381966 - 1.17557i) q^{73} +(2.11803 - 6.51864i) q^{74} +(3.92705 + 2.85317i) q^{75} +0.527864 q^{76} +10.0902 q^{78} +(0.427051 + 0.310271i) q^{79} +(0.572949 - 1.76336i) q^{80} +(0.309017 + 0.951057i) q^{81} +(-7.78115 + 5.65334i) q^{82} +(-10.2812 + 7.46969i) q^{83} +(-0.572949 - 1.76336i) q^{84} +(-0.0729490 + 0.224514i) q^{85} +(-2.30902 - 1.67760i) q^{86} +4.47214 q^{87} +9.47214 q^{89} +(-0.500000 - 0.363271i) q^{90} +(5.78115 - 17.7926i) q^{91} +(-1.04508 - 3.21644i) q^{92} +(3.11803 - 2.26538i) q^{93} +(-0.809017 + 0.587785i) q^{94} +(-0.100813 - 0.310271i) q^{95} +(1.04508 - 3.21644i) q^{96} +(-12.1631 - 8.83702i) q^{97} -3.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 3 q^{7} + 5 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} - q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 3 q^{7} + 5 q^{8} - q^{9} - 2 q^{10} - 2 q^{12} + 9 q^{13} + 6 q^{14} + 4 q^{15} + 9 q^{16} - 2 q^{17} - 2 q^{18} + 10 q^{19} + 3 q^{20} - 12 q^{21} - 4 q^{23} - 5 q^{24} - 6 q^{25} + 8 q^{26} - q^{27} + 6 q^{28} + 10 q^{29} + 3 q^{30} + 8 q^{31} + 18 q^{32} - 4 q^{34} + 3 q^{35} + 3 q^{36} - 3 q^{37} + 9 q^{39} - 10 q^{40} - 23 q^{41} - 9 q^{42} - 16 q^{43} - 6 q^{45} - 13 q^{46} - 3 q^{47} - 6 q^{48} - 2 q^{49} - 12 q^{50} + 3 q^{51} - 7 q^{52} + 6 q^{53} - 2 q^{54} - 5 q^{57} - 20 q^{59} + 3 q^{60} - 3 q^{61} + q^{62} + 3 q^{63} - 7 q^{64} + 14 q^{65} + 2 q^{67} + q^{68} - 9 q^{69} - 9 q^{70} - 27 q^{71} - 5 q^{72} - 6 q^{73} + 4 q^{74} + 9 q^{75} + 20 q^{76} + 18 q^{78} - 5 q^{79} + 9 q^{80} - q^{81} - 11 q^{82} - 21 q^{83} - 9 q^{84} - 7 q^{85} - 7 q^{86} + 20 q^{89} - 2 q^{90} + 3 q^{91} + 7 q^{92} + 8 q^{93} - q^{94} - 25 q^{95} - 7 q^{96} - 33 q^{97} - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
</
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30902 + 0.951057i 0.925615 + 0.672499i 0.944915 0.327315i \(-0.106144\pi\)
−0.0193004 + 0.999814i \(0.506144\pi\)
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0.190983 + 0.587785i 0.0954915 + 0.293893i
\(5\) 0.309017 0.224514i 0.138197 0.100406i −0.516539 0.856264i \(-0.672780\pi\)
0.654736 + 0.755858i \(0.272780\pi\)
\(6\) 1.30902 0.951057i 0.534404 0.388267i
\(7\) −0.927051 2.85317i −0.350392 1.07840i −0.958633 0.284644i \(-0.908125\pi\)
0.608241 0.793752i \(-0.291875\pi\)
\(8\) 0.690983 2.12663i 0.244299 0.751876i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0.618034 0.195440
\(11\) 0 0
\(12\) 0.618034 0.178411
\(13\) 5.04508 + 3.66547i 1.39925 + 1.01662i 0.994777 + 0.102070i \(0.0325466\pi\)
0.404478 + 0.914548i \(0.367453\pi\)
\(14\) 1.50000 4.61653i 0.400892 1.23382i
\(15\) −0.118034 0.363271i −0.0304762 0.0937962i
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) −0.500000 + 0.363271i −0.121268 + 0.0881062i −0.646766 0.762688i \(-0.723879\pi\)
0.525498 + 0.850795i \(0.323879\pi\)
\(18\) −0.500000 1.53884i −0.117851 0.362708i
\(19\) 0.263932 0.812299i 0.0605502 0.186354i −0.916206 0.400707i \(-0.868764\pi\)
0.976756 + 0.214353i \(0.0687644\pi\)
\(20\) 0.190983 + 0.138757i 0.0427051 + 0.0310271i
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −5.47214 −1.14102 −0.570510 0.821291i \(-0.693254\pi\)
−0.570510 + 0.821291i \(0.693254\pi\)
\(24\) −1.80902 1.31433i −0.369264 0.268286i
\(25\) −1.50000 + 4.61653i −0.300000 + 0.923305i
\(26\) 3.11803 + 9.59632i 0.611497 + 1.88199i
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) 1.50000 1.08981i 0.283473 0.205955i
\(29\) 1.38197 + 4.25325i 0.256625 + 0.789809i 0.993505 + 0.113787i \(0.0362980\pi\)
−0.736881 + 0.676023i \(0.763702\pi\)
\(30\) 0.190983 0.587785i 0.0348686 0.107314i
\(31\) 3.11803 + 2.26538i 0.560015 + 0.406875i 0.831465 0.555578i \(-0.187503\pi\)
−0.271449 + 0.962453i \(0.587503\pi\)
\(32\) 3.38197 0.597853
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) −0.927051 0.673542i −0.156700 0.113849i
\(36\) 0.190983 0.587785i 0.0318305 0.0979642i
\(37\) −1.30902 4.02874i −0.215201 0.662321i −0.999139 0.0414819i \(-0.986792\pi\)
0.783938 0.620839i \(-0.213208\pi\)
\(38\) 1.11803 0.812299i 0.181369 0.131772i
\(39\) 5.04508 3.66547i 0.807860 0.586945i
\(40\) −0.263932 0.812299i −0.0417313 0.128436i
\(41\) −1.83688 + 5.65334i −0.286873 + 0.882903i 0.698958 + 0.715162i \(0.253647\pi\)
−0.985831 + 0.167741i \(0.946353\pi\)
\(42\) −3.92705 2.85317i −0.605957 0.440254i
\(43\) −1.76393 −0.268997 −0.134499 0.990914i \(-0.542942\pi\)
−0.134499 + 0.990914i \(0.542942\pi\)
\(44\) 0 0
\(45\) −0.381966 −0.0569401
\(46\) −7.16312 5.20431i −1.05614 0.767334i
\(47\) −0.190983 + 0.587785i −0.0278577 + 0.0857373i −0.964019 0.265834i \(-0.914353\pi\)
0.936161 + 0.351572i \(0.114353\pi\)
\(48\) −1.50000 4.61653i −0.216506 0.666338i
\(49\) −1.61803 + 1.17557i −0.231148 + 0.167939i
\(50\) −6.35410 + 4.61653i −0.898606 + 0.652875i
\(51\) 0.190983 + 0.587785i 0.0267430 + 0.0823064i
\(52\) −1.19098 + 3.66547i −0.165160 + 0.508309i
\(53\) 5.97214 + 4.33901i 0.820336 + 0.596009i 0.916809 0.399327i \(-0.130756\pi\)
−0.0964728 + 0.995336i \(0.530756\pi\)
\(54\) −1.61803 −0.220187
\(55\) 0 0
\(56\) −6.70820 −0.896421
\(57\) −0.690983 0.502029i −0.0915229 0.0664953i
\(58\) −2.23607 + 6.88191i −0.293610 + 0.903639i
\(59\) −1.64590 5.06555i −0.214278 0.659479i −0.999204 0.0398899i \(-0.987299\pi\)
0.784926 0.619589i \(-0.212701\pi\)
\(60\) 0.190983 0.138757i 0.0246558 0.0179135i
\(61\) 0.927051 0.673542i 0.118697 0.0862382i −0.526853 0.849956i \(-0.676628\pi\)
0.645550 + 0.763718i \(0.276628\pi\)
\(62\) 1.92705 + 5.93085i 0.244736 + 0.753219i
\(63\) −0.927051 + 2.85317i −0.116797 + 0.359466i
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) 2.38197 0.295447
\(66\) 0 0
\(67\) 10.5623 1.29039 0.645196 0.764017i \(-0.276776\pi\)
0.645196 + 0.764017i \(0.276776\pi\)
\(68\) −0.309017 0.224514i −0.0374738 0.0272263i
\(69\) −1.69098 + 5.20431i −0.203570 + 0.626525i
\(70\) −0.572949 1.76336i −0.0684805 0.210761i
\(71\) −11.7812 + 8.55951i −1.39817 + 1.01583i −0.403253 + 0.915089i \(0.632120\pi\)
−0.994913 + 0.100738i \(0.967880\pi\)
\(72\) −1.80902 + 1.31433i −0.213195 + 0.154895i
\(73\) −0.381966 1.17557i −0.0447057 0.137590i 0.926212 0.377003i \(-0.123045\pi\)
−0.970918 + 0.239412i \(0.923045\pi\)
\(74\) 2.11803 6.51864i 0.246216 0.757776i
\(75\) 3.92705 + 2.85317i 0.453457 + 0.329456i
\(76\) 0.527864 0.0605502
\(77\) 0 0
\(78\) 10.0902 1.14249
\(79\) 0.427051 + 0.310271i 0.0480470 + 0.0349082i 0.611550 0.791206i \(-0.290547\pi\)
−0.563503 + 0.826114i \(0.690547\pi\)
\(80\) 0.572949 1.76336i 0.0640576 0.197149i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −7.78115 + 5.65334i −0.859285 + 0.624307i
\(83\) −10.2812 + 7.46969i −1.12850 + 0.819906i −0.985476 0.169813i \(-0.945684\pi\)
−0.143027 + 0.989719i \(0.545684\pi\)
\(84\) −0.572949 1.76336i −0.0625139 0.192398i
\(85\) −0.0729490 + 0.224514i −0.00791243 + 0.0243520i
\(86\) −2.30902 1.67760i −0.248988 0.180900i
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 9.47214 1.00404 0.502022 0.864855i \(-0.332590\pi\)
0.502022 + 0.864855i \(0.332590\pi\)
\(90\) −0.500000 0.363271i −0.0527046 0.0382922i
\(91\) 5.78115 17.7926i 0.606029 1.86517i
\(92\) −1.04508 3.21644i −0.108958 0.335337i
\(93\) 3.11803 2.26538i 0.323325 0.234909i
\(94\) −0.809017 + 0.587785i −0.0834437 + 0.0606254i
\(95\) −0.100813 0.310271i −0.0103432 0.0318331i
\(96\) 1.04508 3.21644i 0.106664 0.328277i
\(97\) −12.1631 8.83702i −1.23498 0.897264i −0.237724 0.971333i \(-0.576402\pi\)
−0.997253 + 0.0740689i \(0.976402\pi\)
\(98\) −3.23607 −0.326892
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) −2.42705 1.76336i −0.241501 0.175460i 0.460451 0.887685i \(-0.347688\pi\)
−0.701952 + 0.712225i \(0.747688\pi\)
\(102\) −0.309017 + 0.951057i −0.0305972 + 0.0941686i
\(103\) −1.85410 5.70634i −0.182690 0.562262i 0.817211 0.576339i \(-0.195519\pi\)
−0.999901 + 0.0140765i \(0.995519\pi\)
\(104\) 11.2812 8.19624i 1.10621 0.803707i
\(105\) −0.927051 + 0.673542i −0.0904709 + 0.0657310i
\(106\) 3.69098 + 11.3597i 0.358500 + 1.10335i
\(107\) −0.0729490 + 0.224514i −0.00705225 + 0.0217046i −0.954521 0.298145i \(-0.903632\pi\)
0.947468 + 0.319849i \(0.103632\pi\)
\(108\) −0.500000 0.363271i −0.0481125 0.0349558i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −4.23607 −0.402070
\(112\) −11.7812 8.55951i −1.11321 0.808798i
\(113\) −3.92705 + 12.0862i −0.369426 + 1.13698i 0.577737 + 0.816223i \(0.303936\pi\)
−0.947163 + 0.320753i \(0.896064\pi\)
\(114\) −0.427051 1.31433i −0.0399970 0.123098i
\(115\) −1.69098 + 1.22857i −0.157685 + 0.114565i
\(116\) −2.23607 + 1.62460i −0.207614 + 0.150840i
\(117\) −1.92705 5.93085i −0.178156 0.548308i
\(118\) 2.66312 8.19624i 0.245160 0.754525i
\(119\) 1.50000 + 1.08981i 0.137505 + 0.0999031i
\(120\) −0.854102 −0.0779685
\(121\) 0 0
\(122\) 1.85410 0.167863
\(123\) 4.80902 + 3.49396i 0.433614 + 0.315039i
\(124\) −0.736068 + 2.26538i −0.0661009 + 0.203438i
\(125\) 1.16312 + 3.57971i 0.104033 + 0.320179i
\(126\) −3.92705 + 2.85317i −0.349850 + 0.254181i
\(127\) 7.85410 5.70634i 0.696939 0.506356i −0.181995 0.983299i \(-0.558255\pi\)
0.878934 + 0.476944i \(0.158255\pi\)
\(128\) −4.20820 12.9515i −0.371956 1.14476i
\(129\) −0.545085 + 1.67760i −0.0479921 + 0.147704i
\(130\) 3.11803 + 2.26538i 0.273470 + 0.198687i
\(131\) 13.8541 1.21044 0.605219 0.796059i \(-0.293085\pi\)
0.605219 + 0.796059i \(0.293085\pi\)
\(132\) 0 0
\(133\) −2.56231 −0.222180
\(134\) 13.8262 + 10.0453i 1.19441 + 0.867786i
\(135\) −0.118034 + 0.363271i −0.0101587 + 0.0312654i
\(136\) 0.427051 + 1.31433i 0.0366193 + 0.112703i
\(137\) 1.19098 0.865300i 0.101753 0.0739276i −0.535746 0.844379i \(-0.679969\pi\)
0.637498 + 0.770452i \(0.279969\pi\)
\(138\) −7.16312 + 5.20431i −0.609765 + 0.443020i
\(139\) −1.80902 5.56758i −0.153439 0.472236i 0.844561 0.535460i \(-0.179862\pi\)
−0.997999 + 0.0632239i \(0.979862\pi\)
\(140\) 0.218847 0.673542i 0.0184960 0.0569247i
\(141\) 0.500000 + 0.363271i 0.0421076 + 0.0305930i
\(142\) −23.5623 −1.97730
\(143\) 0 0
\(144\) −4.85410 −0.404508
\(145\) 1.38197 + 1.00406i 0.114766 + 0.0833824i
\(146\) 0.618034 1.90211i 0.0511489 0.157420i
\(147\) 0.618034 + 1.90211i 0.0509746 + 0.156884i
\(148\) 2.11803 1.53884i 0.174101 0.126492i
\(149\) 12.1353 8.81678i 0.994159 0.722299i 0.0333309 0.999444i \(-0.489388\pi\)
0.960828 + 0.277146i \(0.0893885\pi\)
\(150\) 2.42705 + 7.46969i 0.198168 + 0.609898i
\(151\) −0.618034 + 1.90211i −0.0502949 + 0.154792i −0.973050 0.230596i \(-0.925932\pi\)
0.922755 + 0.385388i \(0.125932\pi\)
\(152\) −1.54508 1.12257i −0.125323 0.0910524i
\(153\) 0.618034 0.0499651
\(154\) 0 0
\(155\) 1.47214 0.118245
\(156\) 3.11803 + 2.26538i 0.249643 + 0.181376i
\(157\) 3.00000 9.23305i 0.239426 0.736878i −0.757077 0.653325i \(-0.773373\pi\)
0.996503 0.0835524i \(-0.0266266\pi\)
\(158\) 0.263932 + 0.812299i 0.0209973 + 0.0646231i
\(159\) 5.97214 4.33901i 0.473621 0.344106i
\(160\) 1.04508 0.759299i 0.0826212 0.0600278i
\(161\) 5.07295 + 15.6129i 0.399804 + 1.23047i
\(162\) −0.500000 + 1.53884i −0.0392837 + 0.120903i
\(163\) 12.3541 + 8.97578i 0.967648 + 0.703037i 0.954914 0.296882i \(-0.0959467\pi\)
0.0127336 + 0.999919i \(0.495947\pi\)
\(164\) −3.67376 −0.286873
\(165\) 0 0
\(166\) −20.5623 −1.59594
\(167\) −15.3992 11.1882i −1.19162 0.865766i −0.198190 0.980164i \(-0.563506\pi\)
−0.993435 + 0.114398i \(0.963506\pi\)
\(168\) −2.07295 + 6.37988i −0.159931 + 0.492219i
\(169\) 8.00000 + 24.6215i 0.615385 + 1.89396i
\(170\) −0.309017 + 0.224514i −0.0237005 + 0.0172194i
\(171\) −0.690983 + 0.502029i −0.0528408 + 0.0383911i
\(172\) −0.336881 1.03681i −0.0256869 0.0790563i
\(173\) −5.44427 + 16.7557i −0.413920 + 1.27392i 0.499293 + 0.866433i \(0.333593\pi\)
−0.913213 + 0.407482i \(0.866407\pi\)
\(174\) 5.85410 + 4.25325i 0.443798 + 0.322438i
\(175\) 14.5623 1.10081
\(176\) 0 0
\(177\) −5.32624 −0.400345
\(178\) 12.3992 + 9.00854i 0.929358 + 0.675218i
\(179\) 0.690983 2.12663i 0.0516465 0.158952i −0.921907 0.387412i \(-0.873369\pi\)
0.973553 + 0.228460i \(0.0733691\pi\)
\(180\) −0.0729490 0.224514i −0.00543730 0.0167343i
\(181\) 6.89919 5.01255i 0.512813 0.372580i −0.301077 0.953600i \(-0.597346\pi\)
0.813889 + 0.581020i \(0.197346\pi\)
\(182\) 24.4894 17.7926i 1.81527 1.31887i
\(183\) −0.354102 1.08981i −0.0261760 0.0805614i
\(184\) −3.78115 + 11.6372i −0.278750 + 0.857905i
\(185\) −1.30902 0.951057i −0.0962408 0.0699231i
\(186\) 6.23607 0.457251
\(187\) 0 0
\(188\) −0.381966 −0.0278577
\(189\) 2.42705 + 1.76336i 0.176542 + 0.128265i
\(190\) 0.163119 0.502029i 0.0118339 0.0364210i
\(191\) 0.454915 + 1.40008i 0.0329165 + 0.101307i 0.966165 0.257925i \(-0.0830388\pi\)
−0.933248 + 0.359232i \(0.883039\pi\)
\(192\) −3.42705 + 2.48990i −0.247326 + 0.179693i
\(193\) 1.26393 0.918300i 0.0909798 0.0661007i −0.541365 0.840787i \(-0.682092\pi\)
0.632345 + 0.774687i \(0.282092\pi\)
\(194\) −7.51722 23.1356i −0.539705 1.66104i
\(195\) 0.736068 2.26538i 0.0527109 0.162228i
\(196\) −1.00000 0.726543i −0.0714286 0.0518959i
\(197\) −26.6180 −1.89646 −0.948228 0.317590i \(-0.897127\pi\)
−0.948228 + 0.317590i \(0.897127\pi\)
\(198\) 0 0
\(199\) −3.29180 −0.233349 −0.116675 0.993170i \(-0.537223\pi\)
−0.116675 + 0.993170i \(0.537223\pi\)
\(200\) 8.78115 + 6.37988i 0.620921 + 0.451126i
\(201\) 3.26393 10.0453i 0.230220 0.708544i
\(202\) −1.50000 4.61653i −0.105540 0.324818i
\(203\) 10.8541 7.88597i 0.761809 0.553486i
\(204\) −0.309017 + 0.224514i −0.0216355 + 0.0157191i
\(205\) 0.701626 + 2.15938i 0.0490037 + 0.150818i
\(206\) 3.00000 9.23305i 0.209020 0.643297i
\(207\) 4.42705 + 3.21644i 0.307701 + 0.223558i
\(208\) 30.2705 2.09888
\(209\) 0 0
\(210\) −1.85410 −0.127945
\(211\) 9.11803 + 6.62464i 0.627711 + 0.456059i 0.855607 0.517627i \(-0.173184\pi\)
−0.227895 + 0.973686i \(0.573184\pi\)
\(212\) −1.40983 + 4.33901i −0.0968275 + 0.298004i
\(213\) 4.50000 + 13.8496i 0.308335 + 0.948957i
\(214\) −0.309017 + 0.224514i −0.0211240 + 0.0153475i
\(215\) −0.545085 + 0.396027i −0.0371745 + 0.0270088i
\(216\) 0.690983 + 2.12663i 0.0470154 + 0.144699i
\(217\) 3.57295 10.9964i 0.242548 0.746485i
\(218\) 0 0
\(219\) −1.23607 −0.0835257
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) −5.54508 4.02874i −0.372162 0.270391i
\(223\) −3.92705 + 12.0862i −0.262975 + 0.809353i 0.729178 + 0.684324i \(0.239903\pi\)
−0.992153 + 0.125029i \(0.960097\pi\)
\(224\) −3.13525 9.64932i −0.209483 0.644722i
\(225\) 3.92705 2.85317i 0.261803 0.190211i
\(226\) −16.6353 + 12.0862i −1.10656 + 0.803963i
\(227\) −3.36475 10.3556i −0.223326 0.687327i −0.998457 0.0555264i \(-0.982316\pi\)
0.775131 0.631800i \(-0.217684\pi\)
\(228\) 0.163119 0.502029i 0.0108028 0.0332477i
\(229\) −8.09017 5.87785i −0.534613 0.388419i 0.287467 0.957790i \(-0.407187\pi\)
−0.822081 + 0.569371i \(0.807187\pi\)
\(230\) −3.38197 −0.223000
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) 7.01722 + 5.09831i 0.459713 + 0.334001i 0.793419 0.608676i \(-0.208299\pi\)
−0.333705 + 0.942677i \(0.608299\pi\)
\(234\) 3.11803 9.59632i 0.203832 0.627331i
\(235\) 0.0729490 + 0.224514i 0.00475867 + 0.0146457i
\(236\) 2.66312 1.93487i 0.173354 0.125949i
\(237\) 0.427051 0.310271i 0.0277399 0.0201542i
\(238\) 0.927051 + 2.85317i 0.0600918 + 0.184944i
\(239\) 5.42705 16.7027i 0.351047 1.08041i −0.607220 0.794534i \(-0.707715\pi\)
0.958266 0.285877i \(-0.0922848\pi\)
\(240\) −1.50000 1.08981i −0.0968246 0.0703472i
\(241\) −17.1246 −1.10309 −0.551547 0.834144i \(-0.685962\pi\)
−0.551547 + 0.834144i \(0.685962\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0.572949 + 0.416272i 0.0366793 + 0.0266491i
\(245\) −0.236068 + 0.726543i −0.0150818 + 0.0464171i
\(246\) 2.97214 + 9.14729i 0.189496 + 0.583210i
\(247\) 4.30902 3.13068i 0.274176 0.199201i
\(248\) 6.97214 5.06555i 0.442731 0.321663i
\(249\) 3.92705 + 12.0862i 0.248867 + 0.765933i
\(250\) −1.88197 + 5.79210i −0.119026 + 0.366324i
\(251\) −13.5902 9.87384i −0.857804 0.623231i 0.0694827 0.997583i \(-0.477865\pi\)
−0.927287 + 0.374352i \(0.877865\pi\)
\(252\) −1.85410 −0.116797
\(253\) 0 0
\(254\) 15.7082 0.985620
\(255\) 0.190983 + 0.138757i 0.0119598 + 0.00868932i
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) −8.44427 25.9888i −0.526739 1.62114i −0.760851 0.648927i \(-0.775218\pi\)
0.234112 0.972210i \(-0.424782\pi\)
\(258\) −2.30902 + 1.67760i −0.143753 + 0.104443i
\(259\) −10.2812 + 7.46969i −0.638840 + 0.464144i
\(260\) 0.454915 + 1.40008i 0.0282126 + 0.0868296i
\(261\) 1.38197 4.25325i 0.0855415 0.263270i
\(262\) 18.1353 + 13.1760i 1.12040 + 0.814018i
\(263\) 0.673762 0.0415459 0.0207730 0.999784i \(-0.493387\pi\)
0.0207730 + 0.999784i \(0.493387\pi\)
\(264\) 0 0
\(265\) 2.81966 0.173210
\(266\) −3.35410 2.43690i −0.205653 0.149416i
\(267\) 2.92705 9.00854i 0.179133 0.551313i
\(268\) 2.01722 + 6.20837i 0.123221 + 0.379236i
\(269\) −19.7984 + 14.3844i −1.20713 + 0.877030i −0.994967 0.100205i \(-0.968050\pi\)
−0.212161 + 0.977235i \(0.568050\pi\)
\(270\) −0.500000 + 0.363271i −0.0304290 + 0.0221080i
\(271\) −1.93769 5.96361i −0.117707 0.362263i 0.874795 0.484493i \(-0.160996\pi\)
−0.992502 + 0.122229i \(0.960996\pi\)
\(272\) −0.927051 + 2.85317i −0.0562107 + 0.172999i
\(273\) −15.1353 10.9964i −0.916027 0.665533i
\(274\) 2.38197 0.143900
\(275\) 0 0
\(276\) −3.38197 −0.203570
\(277\) 8.44427 + 6.13512i 0.507367 + 0.368624i 0.811824 0.583902i \(-0.198475\pi\)
−0.304457 + 0.952526i \(0.598475\pi\)
\(278\) 2.92705 9.00854i 0.175553 0.540296i
\(279\) −1.19098 3.66547i −0.0713023 0.219446i
\(280\) −2.07295 + 1.50609i −0.123882 + 0.0900058i
\(281\) −4.23607 + 3.07768i −0.252703 + 0.183599i −0.706924 0.707290i \(-0.749918\pi\)
0.454221 + 0.890889i \(0.349918\pi\)
\(282\) 0.309017 + 0.951057i 0.0184017 + 0.0566346i
\(283\) 6.85410 21.0948i 0.407434 1.25395i −0.511412 0.859336i \(-0.670877\pi\)
0.918846 0.394617i \(-0.129123\pi\)
\(284\) −7.28115 5.29007i −0.432057 0.313908i
\(285\) −0.326238 −0.0193247
\(286\) 0 0
\(287\) 17.8328 1.05264
\(288\) −2.73607 1.98787i −0.161224 0.117136i
\(289\) −5.13525 + 15.8047i −0.302074 + 0.929688i
\(290\) 0.854102 + 2.62866i 0.0501546 + 0.154360i
\(291\) −12.1631 + 8.83702i −0.713015 + 0.518035i
\(292\) 0.618034 0.449028i 0.0361677 0.0262774i
\(293\) −5.54508 17.0660i −0.323947 0.997007i −0.971914 0.235338i \(-0.924380\pi\)
0.647966 0.761669i \(-0.275620\pi\)
\(294\) −1.00000 + 3.07768i −0.0583212 + 0.179494i
\(295\) −1.64590 1.19581i −0.0958279 0.0696230i
\(296\) −9.47214 −0.550557
\(297\) 0 0
\(298\) 24.2705 1.40595
\(299\) −27.6074 20.0579i −1.59658 1.15998i
\(300\) −0.927051 + 2.85317i −0.0535233 + 0.164728i
\(301\) 1.63525 + 5.03280i 0.0942545 + 0.290086i
\(302\) −2.61803 + 1.90211i −0.150651 + 0.109454i
\(303\) −2.42705 + 1.76336i −0.139430 + 0.101302i
\(304\) −1.28115 3.94298i −0.0734792 0.226146i
\(305\) 0.135255 0.416272i 0.00774467 0.0238357i
\(306\) 0.809017 + 0.587785i 0.0462484 + 0.0336014i
\(307\) 19.5623 1.11648 0.558240 0.829680i \(-0.311477\pi\)
0.558240 + 0.829680i \(0.311477\pi\)
\(308\) 0 0
\(309\) −6.00000 −0.341328
\(310\) 1.92705 + 1.40008i 0.109449 + 0.0795195i
\(311\) 3.54508 10.9106i 0.201023 0.618686i −0.798830 0.601557i \(-0.794547\pi\)
0.999853 0.0171293i \(-0.00545269\pi\)
\(312\) −4.30902 13.2618i −0.243950 0.750801i
\(313\) 22.5172 16.3597i 1.27275 0.924706i 0.273440 0.961889i \(-0.411838\pi\)
0.999308 + 0.0371831i \(0.0118385\pi\)
\(314\) 12.7082 9.23305i 0.717165 0.521051i
\(315\) 0.354102 + 1.08981i 0.0199514 + 0.0614041i
\(316\) −0.100813 + 0.310271i −0.00567118 + 0.0174541i
\(317\) −20.5172 14.9066i −1.15236 0.837240i −0.163569 0.986532i \(-0.552301\pi\)
−0.988793 + 0.149292i \(0.952301\pi\)
\(318\) 11.9443 0.669802
\(319\) 0 0
\(320\) −1.61803 −0.0904508
\(321\) 0.190983 + 0.138757i 0.0106596 + 0.00774468i
\(322\) −8.20820 + 25.2623i −0.457425 + 1.40781i
\(323\) 0.163119 + 0.502029i 0.00907618 + 0.0279336i
\(324\) −0.500000 + 0.363271i −0.0277778 + 0.0201817i
\(325\) −24.4894 + 17.7926i −1.35843 + 0.986954i
\(326\) 7.63525 + 23.4989i 0.422878 + 1.30148i
\(327\) 0 0
\(328\) 10.7533 + 7.81272i 0.593751 + 0.431385i
\(329\) 1.85410 0.102220
\(330\) 0 0
\(331\) −22.5967 −1.24203 −0.621015 0.783799i \(-0.713279\pi\)
−0.621015 + 0.783799i \(0.713279\pi\)
\(332\) −6.35410 4.61653i −0.348727 0.253365i
\(333\) −1.30902 + 4.02874i −0.0717337 + 0.220774i
\(334\) −9.51722 29.2910i −0.520759 1.60273i
\(335\) 3.26393 2.37139i 0.178328 0.129563i
\(336\) −11.7812 + 8.55951i −0.642715 + 0.466959i
\(337\) 4.23607 + 13.0373i 0.230753 + 0.710186i 0.997656 + 0.0684228i \(0.0217967\pi\)
−0.766903 + 0.641763i \(0.778203\pi\)
\(338\) −12.9443 + 39.8384i −0.704076 + 2.16692i
\(339\) 10.2812 + 7.46969i 0.558396 + 0.405698i
\(340\) −0.145898 −0.00791243
\(341\) 0 0
\(342\) −1.38197 −0.0747282
\(343\) −12.1353 8.81678i −0.655242 0.476061i
\(344\) −1.21885 + 3.75123i −0.0657158 + 0.202253i
\(345\) 0.645898 + 1.98787i 0.0347740 + 0.107023i
\(346\) −23.0623 + 16.7557i −1.23984 + 0.900794i
\(347\) −2.47214 + 1.79611i −0.132711 + 0.0964203i −0.652160 0.758081i \(-0.726137\pi\)
0.519449 + 0.854501i \(0.326137\pi\)
\(348\) 0.854102 + 2.62866i 0.0457847 + 0.140911i
\(349\) −9.30902 + 28.6502i −0.498300 + 1.53361i 0.313449 + 0.949605i \(0.398515\pi\)
−0.811750 + 0.584006i \(0.801485\pi\)
\(350\) 19.0623 + 13.8496i 1.01892 + 0.740291i
\(351\) −6.23607 −0.332857
\(352\) 0 0
\(353\) −1.52786 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(354\) −6.97214 5.06555i −0.370565 0.269231i
\(355\) −1.71885 + 5.29007i −0.0912269 + 0.280768i
\(356\) 1.80902 + 5.56758i 0.0958777 + 0.295081i
\(357\) 1.50000 1.08981i 0.0793884 0.0576791i
\(358\) 2.92705 2.12663i 0.154699 0.112396i
\(359\) 5.32624 + 16.3925i 0.281108 + 0.865162i 0.987538 + 0.157379i \(0.0503044\pi\)
−0.706430 + 0.707783i \(0.749696\pi\)
\(360\) −0.263932 + 0.812299i −0.0139104 + 0.0428119i
\(361\) 14.7812 + 10.7391i 0.777955 + 0.565218i
\(362\) 13.7984 0.725226
\(363\) 0 0
\(364\) 11.5623 0.606029
\(365\) −0.381966 0.277515i −0.0199930 0.0145258i
\(366\) 0.572949 1.76336i 0.0299485 0.0921721i
\(367\) −4.50000 13.8496i −0.234898 0.722942i −0.997135 0.0756437i \(-0.975899\pi\)
0.762237 0.647298i \(-0.224101\pi\)
\(368\) −21.4894 + 15.6129i −1.12021 + 0.813880i
\(369\) 4.80902 3.49396i 0.250347 0.181888i
\(370\) −0.809017 2.48990i −0.0420588 0.129444i
\(371\) 6.84346 21.0620i 0.355295 1.09348i
\(372\) 1.92705 + 1.40008i 0.0999129 + 0.0725910i
\(373\) −22.4164 −1.16068 −0.580339 0.814375i \(-0.697080\pi\)
−0.580339 + 0.814375i \(0.697080\pi\)
\(374\) 0 0
\(375\) 3.76393 0.194369
\(376\) 1.11803 + 0.812299i 0.0576582 + 0.0418911i
\(377\) −8.61803 + 26.5236i −0.443851 + 1.36603i
\(378\) 1.50000 + 4.61653i 0.0771517 + 0.237448i
\(379\) −22.9894 + 16.7027i −1.18088 + 0.857962i −0.992271 0.124089i \(-0.960399\pi\)
−0.188613 + 0.982052i \(0.560399\pi\)
\(380\) 0.163119 0.118513i 0.00836783 0.00607958i
\(381\) −3.00000 9.23305i −0.153695 0.473024i
\(382\) −0.736068 + 2.26538i −0.0376605 + 0.115907i
\(383\) 7.19098 + 5.22455i 0.367442 + 0.266962i 0.756149 0.654399i \(-0.227078\pi\)
−0.388707 + 0.921361i \(0.627078\pi\)
\(384\) −13.6180 −0.694942
\(385\) 0 0
\(386\) 2.52786 0.128665
\(387\) 1.42705 + 1.03681i 0.0725411 + 0.0527042i
\(388\) 2.87132 8.83702i 0.145769 0.448632i
\(389\) −2.86475 8.81678i −0.145248 0.447028i 0.851795 0.523876i \(-0.175515\pi\)
−0.997043 + 0.0768476i \(0.975515\pi\)
\(390\) 3.11803 2.26538i 0.157888 0.114712i
\(391\) 2.73607 1.98787i 0.138369 0.100531i
\(392\) 1.38197 + 4.25325i 0.0697998 + 0.214822i
\(393\) 4.28115 13.1760i 0.215956 0.664643i
\(394\) −34.8435 25.3153i −1.75539 1.27536i
\(395\) 0.201626 0.0101449
\(396\) 0 0
\(397\) −25.2918 −1.26936 −0.634679 0.772776i \(-0.718868\pi\)
−0.634679 + 0.772776i \(0.718868\pi\)
\(398\) −4.30902 3.13068i −0.215992 0.156927i
\(399\) −0.791796 + 2.43690i −0.0396394 + 0.121997i
\(400\) 7.28115 + 22.4091i 0.364058 + 1.12045i
\(401\) 12.0623 8.76378i 0.602363 0.437642i −0.244354 0.969686i \(-0.578576\pi\)
0.846717 + 0.532044i \(0.178576\pi\)
\(402\) 13.8262 10.0453i 0.689590 0.501017i
\(403\) 7.42705 + 22.8581i 0.369968 + 1.13864i
\(404\) 0.572949 1.76336i 0.0285053 0.0877302i
\(405\) 0.309017 + 0.224514i 0.0153552 + 0.0111562i
\(406\) 21.7082 1.07736
\(407\) 0 0
\(408\) 1.38197 0.0684175
\(409\) −23.4164 17.0130i −1.15787 0.841240i −0.168360 0.985726i \(-0.553847\pi\)
−0.989507 + 0.144486i \(0.953847\pi\)
\(410\) −1.13525 + 3.49396i −0.0560662 + 0.172554i
\(411\) −0.454915 1.40008i −0.0224393 0.0690611i
\(412\) 3.00000 2.17963i 0.147799 0.107383i
\(413\) −12.9271 + 9.39205i −0.636099 + 0.462153i
\(414\) 2.73607 + 8.42075i 0.134470 + 0.413857i
\(415\) −1.50000 + 4.61653i −0.0736321 + 0.226616i
\(416\) 17.0623 + 12.3965i 0.836548 + 0.607788i
\(417\) −5.85410 −0.286677
\(418\) 0 0
\(419\) −21.5066 −1.05067 −0.525333 0.850897i \(-0.676059\pi\)
−0.525333 + 0.850897i \(0.676059\pi\)
\(420\) −0.572949 0.416272i −0.0279570 0.0203120i
\(421\) −1.15248 + 3.54696i −0.0561682 + 0.172868i −0.975205 0.221304i \(-0.928969\pi\)
0.919037 + 0.394172i \(0.128969\pi\)
\(422\) 5.63525 + 17.3435i 0.274320 + 0.844270i
\(423\) 0.500000 0.363271i 0.0243108 0.0176629i
\(424\) 13.3541 9.70232i 0.648533 0.471186i
\(425\) −0.927051 2.85317i −0.0449686 0.138399i
\(426\) −7.28115 + 22.4091i −0.352773 + 1.08572i
\(427\) −2.78115 2.02063i −0.134589 0.0977849i
\(428\) −0.145898 −0.00705225
\(429\) 0 0
\(430\) −1.09017 −0.0525727
\(431\) −1.20820 0.877812i −0.0581971 0.0422827i 0.558306 0.829635i \(-0.311451\pi\)
−0.616503 + 0.787352i \(0.711451\pi\)
\(432\) −1.50000 + 4.61653i −0.0721688 + 0.222113i
\(433\) −1.85410 5.70634i −0.0891025 0.274229i 0.896569 0.442903i \(-0.146051\pi\)
−0.985672 + 0.168674i \(0.946051\pi\)
\(434\) 15.1353 10.9964i 0.726515 0.527844i
\(435\) 1.38197 1.00406i 0.0662602 0.0481409i
\(436\) 0 0
\(437\) −1.44427 + 4.44501i −0.0690889 + 0.212634i
\(438\) −1.61803 1.17557i −0.0773127 0.0561709i
\(439\) −16.7082 −0.797439 −0.398720 0.917073i \(-0.630545\pi\)
−0.398720 + 0.917073i \(0.630545\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) −5.04508 3.66547i −0.239970 0.174349i
\(443\) −0.270510 + 0.832544i −0.0128523 + 0.0395553i −0.957277 0.289172i \(-0.906620\pi\)
0.944425 + 0.328728i \(0.106620\pi\)
\(444\) −0.809017 2.48990i −0.0383942 0.118165i
\(445\) 2.92705 2.12663i 0.138756 0.100812i
\(446\) −16.6353 + 12.0862i −0.787702 + 0.572299i
\(447\) −4.63525 14.2658i −0.219240 0.674751i
\(448\) −3.92705 + 12.0862i −0.185536 + 0.571020i
\(449\) 12.5623 + 9.12705i 0.592852 + 0.430732i 0.843334 0.537389i \(-0.180589\pi\)
−0.250483 + 0.968121i \(0.580589\pi\)
\(450\) 7.85410 0.370246
\(451\) 0 0
\(452\) −7.85410 −0.369426
\(453\) 1.61803 + 1.17557i 0.0760219 + 0.0552331i
\(454\) 5.44427 16.7557i 0.255512 0.786386i
\(455\) −2.20820 6.79615i −0.103522 0.318609i
\(456\) −1.54508 + 1.12257i −0.0723552 + 0.0525692i
\(457\) 26.5344 19.2784i 1.24123 0.901806i 0.243549 0.969889i \(-0.421688\pi\)
0.997680 + 0.0680830i \(0.0216883\pi\)
\(458\) −5.00000 15.3884i −0.233635 0.719054i
\(459\) 0.190983 0.587785i 0.00891432 0.0274355i
\(460\) −1.04508 0.759299i −0.0487273 0.0354025i
\(461\) 9.90983 0.461547 0.230773 0.973008i \(-0.425874\pi\)
0.230773 + 0.973008i \(0.425874\pi\)
\(462\) 0 0
\(463\) 8.79837 0.408895 0.204448 0.978878i \(-0.434460\pi\)
0.204448 + 0.978878i \(0.434460\pi\)
\(464\) 17.5623 + 12.7598i 0.815310 + 0.592357i
\(465\) 0.454915 1.40008i 0.0210962 0.0649274i
\(466\) 4.33688 + 13.3475i 0.200902 + 0.618313i
\(467\) 11.5172 8.36775i 0.532953 0.387213i −0.288508 0.957478i \(-0.593159\pi\)
0.821461 + 0.570264i \(0.193159\pi\)
\(468\) 3.11803 2.26538i 0.144131 0.104717i
\(469\) −9.79180 30.1360i −0.452143 1.39155i
\(470\) −0.118034 + 0.363271i −0.00544450 + 0.0167565i
\(471\) −7.85410 5.70634i −0.361898 0.262934i
\(472\) −11.9098 −0.548194
\(473\) 0 0
\(474\) 0.854102 0.0392302
\(475\) 3.35410 + 2.43690i 0.153897 + 0.111813i
\(476\) −0.354102 + 1.08981i −0.0162302 + 0.0499515i
\(477\) −2.28115 7.02067i −0.104447 0.321454i
\(478\) 22.9894 16.7027i 1.05151 0.763966i
\(479\) −13.6803 + 9.93935i −0.625071 + 0.454140i −0.854689 0.519140i \(-0.826252\pi\)
0.229618 + 0.973281i \(0.426252\pi\)
\(480\) −0.399187 1.22857i −0.0182203 0.0560763i
\(481\) 8.16312 25.1235i 0.372206 1.14553i
\(482\) −22.4164 16.2865i −1.02104 0.741829i
\(483\) 16.4164 0.746972
\(484\) 0 0
\(485\) −5.74265 −0.260760
\(486\) 1.30902 + 0.951057i 0.0593782 + 0.0431408i
\(487\) 12.1074 37.2627i 0.548638 1.68853i −0.163540 0.986537i \(-0.552291\pi\)
0.712179 0.701998i \(-0.247709\pi\)
\(488\) −0.791796 2.43690i −0.0358429 0.110313i
\(489\) 12.3541 8.97578i 0.558672 0.405899i
\(490\) −1.00000 + 0.726543i −0.0451754 + 0.0328218i
\(491\) 8.10081 + 24.9317i 0.365585 + 1.12515i 0.949614 + 0.313421i \(0.101475\pi\)
−0.584030 + 0.811732i \(0.698525\pi\)
\(492\) −1.13525 + 3.49396i −0.0511812 + 0.157520i
\(493\) −2.23607 1.62460i −0.100707 0.0731682i
\(494\) 8.61803 0.387744
\(495\) 0 0
\(496\) 18.7082 0.840023
\(497\) 35.3435 + 25.6785i 1.58537 + 1.15184i
\(498\) −6.35410 + 19.5559i −0.284734 + 0.876322i
\(499\) 0.791796 + 2.43690i 0.0354457 + 0.109091i 0.967214 0.253963i \(-0.0817342\pi\)
−0.931768 + 0.363054i \(0.881734\pi\)
\(500\) −1.88197 + 1.36733i −0.0841641 + 0.0611488i
\(501\) −15.3992 + 11.1882i −0.687985 + 0.499850i
\(502\) −8.39919 25.8500i −0.374874 1.15374i
\(503\) 9.29180 28.5972i 0.414301 1.27509i −0.498574 0.866847i \(-0.666143\pi\)
0.912875 0.408239i \(-0.133857\pi\)
\(504\) 5.42705 + 3.94298i 0.241740 + 0.175634i
\(505\) −1.14590 −0.0509918
\(506\) 0 0
\(507\) 25.8885 1.14975
\(508\) 4.85410 + 3.52671i 0.215366 + 0.156473i
\(509\) 6.60739 20.3355i 0.292867 0.901353i −0.691062 0.722796i \(-0.742857\pi\)
0.983929 0.178558i \(-0.0571432\pi\)
\(510\) 0.118034 + 0.363271i 0.00522663 + 0.0160859i
\(511\) −3.00000 + 2.17963i −0.132712 + 0.0964210i
\(512\) −4.28115 + 3.11044i −0.189202 + 0.137463i
\(513\) 0.263932 + 0.812299i 0.0116529 + 0.0358639i
\(514\) 13.6631 42.0508i 0.602654 1.85478i
\(515\) −1.85410 1.34708i −0.0817015 0.0593596i
\(516\) −1.09017 −0.0479921
\(517\) 0 0
\(518\) −20.5623 −0.903456
\(519\) 14.2533 + 10.3556i 0.625650 + 0.454561i
\(520\) 1.64590 5.06555i 0.0721774 0.222139i
\(521\) 12.0000 + 36.9322i 0.525730 + 1.61803i 0.762869 + 0.646553i \(0.223790\pi\)
−0.237139 + 0.971476i \(0.576210\pi\)
\(522\) 5.85410 4.25325i 0.256227 0.186160i
\(523\) 28.2984 20.5600i 1.23740 0.899025i 0.239979 0.970778i \(-0.422859\pi\)
0.997422 + 0.0717533i \(0.0228594\pi\)
\(524\) 2.64590 + 8.14324i 0.115587 + 0.355739i
\(525\) 4.50000 13.8496i 0.196396 0.604445i
\(526\) 0.881966 + 0.640786i 0.0384555 + 0.0279396i
\(527\) −2.38197 −0.103760
\(528\) 0 0
\(529\) 6.94427 0.301925
\(530\) 3.69098 + 2.68166i 0.160326 + 0.116484i
\(531\) −1.64590 + 5.06555i −0.0714259 + 0.219826i
\(532\) −0.489357 1.50609i −0.0212163 0.0652971i
\(533\) −29.9894 + 21.7885i −1.29898 + 0.943767i
\(534\) 12.3992 9.00854i 0.536565 0.389838i
\(535\) 0.0278640 + 0.0857567i 0.00120467 + 0.00370759i
\(536\) 7.29837 22.4621i 0.315242 0.970214i
\(537\) −1.80902 1.31433i −0.0780648 0.0567174i
\(538\) −39.5967 −1.70714
\(539\) 0 0
\(540\) −0.236068 −0.0101587
\(541\) −0.454915 0.330515i −0.0195583 0.0142100i 0.577963 0.816063i \(-0.303848\pi\)
−0.597521 + 0.801853i \(0.703848\pi\)
\(542\) 3.13525 9.64932i 0.134671 0.414474i
\(543\) −2.63525 8.11048i −0.113090 0.348054i
\(544\) −1.69098 + 1.22857i −0.0725003 + 0.0526745i
\(545\) 0 0
\(546\) −9.35410 28.7890i −0.400319 1.23205i
\(547\) −5.98936 + 18.4333i −0.256086 + 0.788153i 0.737527 + 0.675317i \(0.235993\pi\)
−0.993614 + 0.112836i \(0.964007\pi\)
\(548\) 0.736068 + 0.534785i 0.0314433 + 0.0228449i
\(549\) −1.14590 −0.0489057
\(550\) 0 0
\(551\) 3.81966 0.162723
\(552\) 9.89919 + 7.19218i 0.421337 + 0.306120i
\(553\) 0.489357 1.50609i 0.0208096 0.0640453i
\(554\) 5.21885 + 16.0620i 0.221728 + 0.682407i
\(555\) −1.30902 + 0.951057i −0.0555647 + 0.0403701i
\(556\) 2.92705 2.12663i 0.124135 0.0901891i
\(557\) −8.06231 24.8132i −0.341611 1.05137i −0.963373 0.268164i \(-0.913583\pi\)
0.621762 0.783206i \(-0.286417\pi\)
\(558\) 1.92705 5.93085i 0.0815786 0.251073i
\(559\) −8.89919 6.46564i −0.376396 0.273467i
\(560\) −5.56231 −0.235050
\(561\) 0 0
\(562\) −8.47214 −0.357375
\(563\) 21.7533 + 15.8047i 0.916792 + 0.666088i 0.942723 0.333575i \(-0.108255\pi\)
−0.0259316 + 0.999664i \(0.508255\pi\)
\(564\) −0.118034 + 0.363271i −0.00497013 + 0.0152965i
\(565\) 1.50000 + 4.61653i 0.0631055 + 0.194219i
\(566\) 29.0344 21.0948i 1.22041 0.886679i
\(567\) 2.42705 1.76336i 0.101927 0.0740540i
\(568\) 10.0623 + 30.9686i 0.422205 + 1.29941i
\(569\) −10.5279 + 32.4014i −0.441351 + 1.35834i 0.445085 + 0.895488i \(0.353173\pi\)
−0.886436 + 0.462851i \(0.846827\pi\)
\(570\) −0.427051 0.310271i −0.0178872 0.0129958i
\(571\) 25.6869 1.07496 0.537482 0.843275i \(-0.319376\pi\)
0.537482 + 0.843275i \(0.319376\pi\)
\(572\) 0 0
\(573\) 1.47214 0.0614994
\(574\) 23.3435 + 16.9600i 0.974337 + 0.707897i
\(575\) 8.20820 25.2623i 0.342306 1.05351i
\(576\) 1.30902 + 4.02874i 0.0545424 + 0.167864i
\(577\) −12.3262 + 8.95554i −0.513148 + 0.372824i −0.814016 0.580842i \(-0.802723\pi\)
0.300868 + 0.953666i \(0.402723\pi\)
\(578\) −21.7533 + 15.8047i −0.904818 + 0.657388i
\(579\) −0.482779 1.48584i −0.0200636 0.0617495i
\(580\) −0.326238 + 1.00406i −0.0135463 + 0.0416912i
\(581\) 30.8435 + 22.4091i 1.27960 + 0.929685i
\(582\) −24.3262 −1.00836
\(583\) 0 0
\(584\) −2.76393 −0.114372
\(585\) −1.92705 1.40008i −0.0796738 0.0578864i
\(586\) 8.97214 27.6134i 0.370636 1.14070i
\(587\) 7.51064 + 23.1154i 0.309997 + 0.954074i 0.977765 + 0.209704i \(0.0672500\pi\)
−0.667767 + 0.744370i \(0.732750\pi\)
\(588\) −1.00000 + 0.726543i −0.0412393 + 0.0299621i
\(589\) 2.66312 1.93487i 0.109732 0.0797249i
\(590\) −1.01722 3.13068i −0.0418783 0.128888i
\(591\) −8.22542 + 25.3153i −0.338349 + 1.04133i
\(592\) −16.6353 12.0862i −0.683705 0.496741i
\(593\) 29.2148 1.19971 0.599854 0.800110i \(-0.295225\pi\)
0.599854 + 0.800110i \(0.295225\pi\)
\(594\) 0 0
\(595\) 0.708204 0.0290335
\(596\) 7.50000 + 5.44907i 0.307212 + 0.223203i
\(597\) −1.01722 + 3.13068i −0.0416321 + 0.128130i
\(598\) −17.0623 52.5124i −0.697730 2.14739i
\(599\) 17.5623 12.7598i 0.717576 0.521350i −0.168033 0.985781i \(-0.553741\pi\)
0.885609 + 0.464432i \(0.153741\pi\)
\(600\) 8.78115 6.37988i 0.358489 0.260458i
\(601\) 6.12868 + 18.8621i 0.249994 + 0.769402i 0.994775 + 0.102093i \(0.0325540\pi\)
−0.744781 + 0.667309i \(0.767446\pi\)
\(602\) −2.64590 + 8.14324i −0.107839 + 0.331894i
\(603\) −8.54508 6.20837i −0.347983 0.252824i
\(604\) −1.23607 −0.0502949
\(605\) 0 0
\(606\) −4.85410 −0.197184
\(607\) −1.88197 1.36733i −0.0763866 0.0554981i 0.548937 0.835864i \(-0.315033\pi\)
−0.625323 + 0.780366i \(0.715033\pi\)
\(608\) 0.892609 2.74717i 0.0362001 0.111412i
\(609\) −4.14590 12.7598i −0.168000 0.517052i
\(610\) 0.572949 0.416272i 0.0231980 0.0168544i
\(611\) −3.11803 + 2.26538i −0.126142 + 0.0916476i
\(612\) 0.118034 + 0.363271i 0.00477124 + 0.0146844i
\(613\) −1.03444 + 3.18368i −0.0417807 + 0.128588i −0.969771 0.244016i \(-0.921535\pi\)
0.927990 + 0.372604i \(0.121535\pi\)
\(614\) 25.6074 + 18.6049i 1.03343 + 0.750831i
\(615\) 2.27051 0.0915558
\(616\) 0 0
\(617\) 46.4164 1.86865 0.934327 0.356417i \(-0.116002\pi\)
0.934327 + 0.356417i \(0.116002\pi\)
\(618\) −7.85410 5.70634i −0.315938 0.229543i
\(619\) −9.63525 + 29.6543i −0.387274 + 1.19191i 0.547544 + 0.836777i \(0.315563\pi\)
−0.934817 + 0.355129i \(0.884437\pi\)
\(620\) 0.281153 + 0.865300i 0.0112914 + 0.0347513i
\(621\) 4.42705 3.21644i 0.177651 0.129071i
\(622\) 15.0172 10.9106i 0.602136 0.437477i
\(623\) −8.78115 27.0256i −0.351809 1.08276i
\(624\) 9.35410 28.7890i 0.374464 1.15248i
\(625\) −18.4721 13.4208i −0.738885 0.536832i
\(626\) 45.0344 1.79994
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 2.11803 + 1.53884i 0.0844515 + 0.0613576i
\(630\) −0.572949 + 1.76336i −0.0228268 + 0.0702538i
\(631\) 3.93363 + 12.1065i 0.156595 + 0.481951i 0.998319 0.0579577i \(-0.0184589\pi\)
−0.841724 + 0.539908i \(0.818459\pi\)
\(632\) 0.954915 0.693786i 0.0379845 0.0275973i
\(633\) 9.11803 6.62464i 0.362409 0.263306i
\(634\) −12.6803 39.0261i −0.503601 1.54992i
\(635\) 1.14590 3.52671i 0.0454736 0.139953i
\(636\) 3.69098 + 2.68166i 0.146357 + 0.106335i
\(637\) −12.4721 −0.494164
\(638\) 0 0
\(639\) 14.5623 0.576076
\(640\) −4.20820 3.05744i −0.166344 0.120856i
\(641\) −2.08359 + 6.41264i −0.0822969 + 0.253284i −0.983736 0.179623i \(-0.942512\pi\)
0.901439 + 0.432907i \(0.142512\pi\)
\(642\) 0.118034 + 0.363271i 0.00465843 + 0.0143372i
\(643\) 14.9164 10.8374i 0.588246 0.427386i −0.253442 0.967351i \(-0.581563\pi\)
0.841687 + 0.539965i \(0.181563\pi\)
\(644\) −8.20820 + 5.96361i −0.323449 + 0.234999i
\(645\) 0.208204 + 0.640786i 0.00819802 + 0.0252309i
\(646\) −0.263932 + 0.812299i −0.0103843 + 0.0319595i
\(647\) −2.59017 1.88187i −0.101830 0.0739839i 0.535705 0.844405i \(-0.320046\pi\)
−0.637535 + 0.770421i \(0.720046\pi\)
\(648\) 2.23607 0.0878410
\(649\) 0 0
\(650\) −48.9787 −1.92110
\(651\) −9.35410 6.79615i −0.366616 0.266362i
\(652\) −2.91641 + 8.97578i −0.114215 + 0.351519i
\(653\) 6.78773 + 20.8905i 0.265624 + 0.817508i 0.991549 + 0.129734i \(0.0414122\pi\)
−0.725924 + 0.687774i \(0.758588\pi\)
\(654\) 0 0
\(655\) 4.28115 3.11044i 0.167278 0.121535i
\(656\) 8.91641 + 27.4419i 0.348127 + 1.07143i
\(657\) −0.381966 + 1.17557i −0.0149019 + 0.0458634i
\(658\) 2.42705 + 1.76336i 0.0946163 + 0.0687428i
\(659\) −20.6525 −0.804506 −0.402253 0.915528i \(-0.631773\pi\)
−0.402253 + 0.915528i \(0.631773\pi\)
\(660\) 0 0
\(661\) −21.0902 −0.820313 −0.410156 0.912015i \(-0.634526\pi\)
−0.410156 + 0.912015i \(0.634526\pi\)
\(662\) −29.5795 21.4908i −1.14964 0.835263i
\(663\) −1.19098 + 3.66547i −0.0462539 + 0.142355i
\(664\) 8.78115 + 27.0256i 0.340775 + 1.04880i
\(665\) −0.791796 + 0.575274i −0.0307045 + 0.0223082i
\(666\) −5.54508 + 4.02874i −0.214868 + 0.156111i
\(667\) −7.56231 23.2744i −0.292814 0.901188i
\(668\) 3.63525 11.1882i 0.140652 0.432883i
\(669\) 10.2812 + 7.46969i 0.397492 + 0.288795i
\(670\) 6.52786 0.252193
\(671\) 0 0
\(672\) −10.1459 −0.391387
\(673\) −11.6631 8.47375i −0.449580 0.326639i 0.339850 0.940480i \(-0.389624\pi\)
−0.789430 + 0.613841i \(0.789624\pi\)
\(674\) −6.85410 + 21.0948i −0.264010 + 0.812540i
\(675\) −1.50000 4.61653i −0.0577350 0.177690i
\(676\) −12.9443 + 9.40456i −0.497857 + 0.361714i
\(677\) 18.1803 13.2088i 0.698727 0.507655i −0.180790 0.983522i \(-0.557866\pi\)
0.879517 + 0.475867i \(0.157866\pi\)
\(678\) 6.35410 + 19.5559i 0.244028 + 0.751040i
\(679\) −13.9377 + 42.8958i −0.534880 + 1.64619i
\(680\) 0.427051 + 0.310271i 0.0163767 + 0.0118983i
\(681\) −10.8885 −0.417250
\(682\) 0 0
\(683\) −38.8885 −1.48803 −0.744014 0.668164i \(-0.767081\pi\)
−0.744014 + 0.668164i \(0.767081\pi\)
\(684\) −0.427051 0.310271i −0.0163287 0.0118635i
\(685\) 0.173762 0.534785i 0.00663911 0.0204331i
\(686\) −7.50000 23.0826i −0.286351 0.881299i
\(687\) −8.09017 + 5.87785i −0.308659 + 0.224254i
\(688\) −6.92705 + 5.03280i −0.264091 + 0.191874i
\(689\) 14.2254 + 43.7814i 0.541946 + 1.66794i
\(690\) −1.04508 + 3.21644i −0.0397857 + 0.122448i
\(691\) 32.1246 + 23.3399i 1.22208 + 0.887892i 0.996271 0.0862806i \(-0.0274981\pi\)
0.225807 + 0.974172i \(0.427498\pi\)
\(692\) −10.8885 −0.413920
\(693\) 0 0
\(694\) −4.94427 −0.187682
\(695\) −1.80902 1.31433i −0.0686199 0.0498553i
\(696\) 3.09017 9.51057i 0.117133 0.360497i
\(697\) −1.13525 3.49396i −0.0430008 0.132343i
\(698\) −39.4336 + 28.6502i −1.49258 + 1.08443i
\(699\) 7.01722 5.09831i 0.265416 0.192836i
\(700\) 2.78115 + 8.55951i 0.105118 + 0.323519i
\(701\) −15.3541 + 47.2551i −0.579916 + 1.78480i 0.0388752 + 0.999244i \(0.487623\pi\)
−0.618792 + 0.785555i \(0.712377\pi\)
\(702\) −8.16312 5.93085i −0.308097 0.223846i
\(703\) −3.61803 −0.136457
\(704\) 0 0
\(705\) 0.236068 0.00889083
\(706\) −2.00000 1.45309i −0.0752710 0.0546876i
\(707\) −2.78115 + 8.55951i −0.104596 + 0.321913i
\(708\) −1.01722 3.13068i −0.0382295 0.117658i
\(709\) −5.06231 + 3.67798i −0.190119 + 0.138129i −0.678773 0.734348i \(-0.737488\pi\)
0.488654 + 0.872478i \(0.337488\pi\)
\(710\) −7.28115 + 5.29007i −0.273257 + 0.198533i
\(711\) −0.163119 0.502029i −0.00611744 0.0188275i
\(712\) 6.54508 20.1437i 0.245287 0.754917i
\(713\) −17.0623 12.3965i −0.638988 0.464252i
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 1.38197 0.0516465
\(717\) −14.2082 10.3229i −0.530615 0.385514i
\(718\) −8.61803 + 26.5236i −0.321622 + 0.989851i
\(719\) −8.78115 27.0256i −0.327482 1.00789i −0.970308 0.241873i \(-0.922238\pi\)
0.642826 0.766012i \(-0.277762\pi\)
\(720\) −1.50000 + 1.08981i −0.0559017 + 0.0406150i
\(721\) −14.5623 + 10.5801i −0.542329 + 0.394025i
\(722\) 9.13525 + 28.1154i 0.339979 + 1.04635i
\(723\) −5.29180 + 16.2865i −0.196804 + 0.605700i
\(724\) 4.26393 + 3.09793i 0.158468 + 0.115134i
\(725\) −21.7082 −0.806222
\(726\) 0 0
\(727\) 32.1459 1.19223 0.596113 0.802901i \(-0.296711\pi\)
0.596113 + 0.802901i \(0.296711\pi\)
\(728\) −33.8435 24.5887i −1.25432 0.911318i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −0.236068 0.726543i −0.00873727 0.0268905i
\(731\) 0.881966 0.640786i 0.0326207 0.0237003i
\(732\) 0.572949 0.416272i 0.0211768 0.0153858i
\(733\) 7.50658 + 23.1029i 0.277262 + 0.853324i 0.988612 + 0.150486i \(0.0480840\pi\)
−0.711350 + 0.702838i \(0.751916\pi\)
\(734\) 7.28115 22.4091i 0.268752 0.827134i
\(735\) 0.618034 + 0.449028i 0.0227965 + 0.0165626i
\(736\) −18.5066 −0.682162
\(737\) 0 0
\(738\) 9.61803 0.354045
\(739\) −20.2254 14.6946i −0.744004 0.540551i 0.149958 0.988692i \(-0.452086\pi\)
−0.893963 + 0.448142i \(0.852086\pi\)
\(740\) 0.309017 0.951057i 0.0113597 0.0349615i
\(741\) −1.64590 5.06555i −0.0604636 0.186088i
\(742\) 28.9894 21.0620i 1.06423 0.773210i
\(743\) 10.3713 7.53521i 0.380487 0.276440i −0.381059 0.924551i \(-0.624441\pi\)
0.761546 + 0.648111i \(0.224441\pi\)
\(744\) −2.66312 8.19624i −0.0976347 0.300489i
\(745\) 1.77051 5.44907i 0.0648665 0.199638i
\(746\) −29.3435 21.3193i −1.07434 0.780554i
\(747\) 12.7082 0.464969
\(748\) 0 0
\(749\) 0.708204 0.0258772
\(750\) 4.92705 + 3.57971i 0.179910 + 0.130713i
\(751\) −16.3541 + 50.3328i −0.596770 + 1.83667i −0.0510571 + 0.998696i \(0.516259\pi\)
−0.545713 + 0.837972i \(0.683741\pi\)
\(752\) 0.927051 + 2.85317i 0.0338061 + 0.104044i
\(753\) −13.5902 + 9.87384i −0.495253 + 0.359823i
\(754\) −36.5066 + 26.5236i −1.32949 + 0.965932i
\(755\) 0.236068 + 0.726543i 0.00859139 + 0.0264416i
\(756\) −0.572949 + 1.76336i −0.0208380 + 0.0641326i
\(757\) 12.8992 + 9.37181i 0.468829 + 0.340624i 0.796985 0.603999i \(-0.206427\pi\)
−0.328156 + 0.944624i \(0.606427\pi\)
\(758\) −45.9787 −1.67002
\(759\) 0 0
\(760\) −0.729490 −0.0264614
\(761\) 3.95492 + 2.87341i 0.143366 + 0.104161i 0.657156 0.753754i \(-0.271759\pi\)
−0.513791 + 0.857916i \(0.671759\pi\)
\(762\) 4.85410 14.9394i 0.175846 0.541197i
\(763\) 0 0
\(764\) −0.736068 + 0.534785i −0.0266300 + 0.0193478i
\(765\) 0.190983 0.138757i 0.00690501 0.00501678i
\(766\) 4.44427 + 13.6781i 0.160578 + 0.494208i
\(767\) 10.2639 31.5891i 0.370609 1.14062i
\(768\) −10.9721 7.97172i −0.395923 0.287655i
\(769\) 47.6869 1.71963 0.859817 0.510602i \(-0.170577\pi\)
0.859817 + 0.510602i \(0.170577\pi\)
\(770\) 0 0