Properties

Label 363.2.e.i.130.1
Level $363$
Weight $2$
Character 363.130
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 130.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 363.130
Dual form 363.2.e.i.148.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.618034 + 1.90211i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-1.61803 - 1.17557i) q^{4} +(1.23607 + 3.80423i) q^{5} +(0.618034 + 1.90211i) q^{6} +(-0.809017 - 0.587785i) q^{7} +(0.309017 - 0.951057i) q^{9} +O(q^{10})\) \(q+(-0.618034 + 1.90211i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-1.61803 - 1.17557i) q^{4} +(1.23607 + 3.80423i) q^{5} +(0.618034 + 1.90211i) q^{6} +(-0.809017 - 0.587785i) q^{7} +(0.309017 - 0.951057i) q^{9} -8.00000 q^{10} -2.00000 q^{12} +(-0.618034 + 1.90211i) q^{13} +(1.61803 - 1.17557i) q^{14} +(3.23607 + 2.35114i) q^{15} +(-1.23607 - 3.80423i) q^{16} +(1.23607 + 3.80423i) q^{17} +(1.61803 + 1.17557i) q^{18} +(2.42705 - 1.76336i) q^{19} +(2.47214 - 7.60845i) q^{20} -1.00000 q^{21} +2.00000 q^{23} +(-8.89919 + 6.46564i) q^{25} +(-3.23607 - 2.35114i) q^{26} +(-0.309017 - 0.951057i) q^{27} +(0.618034 + 1.90211i) q^{28} +(-4.85410 - 3.52671i) q^{29} +(-6.47214 + 4.70228i) q^{30} +(-1.54508 + 4.75528i) q^{31} +8.00000 q^{32} -8.00000 q^{34} +(1.23607 - 3.80423i) q^{35} +(-1.61803 + 1.17557i) q^{36} +(-2.42705 - 1.76336i) q^{37} +(1.85410 + 5.70634i) q^{38} +(0.618034 + 1.90211i) q^{39} +(1.61803 - 1.17557i) q^{41} +(0.618034 - 1.90211i) q^{42} +12.0000 q^{43} +4.00000 q^{45} +(-1.23607 + 3.80423i) q^{46} +(-1.61803 + 1.17557i) q^{47} +(-3.23607 - 2.35114i) q^{48} +(-1.85410 - 5.70634i) q^{49} +(-6.79837 - 20.9232i) q^{50} +(3.23607 + 2.35114i) q^{51} +(3.23607 - 2.35114i) q^{52} +(1.85410 - 5.70634i) q^{53} +2.00000 q^{54} +(0.927051 - 2.85317i) q^{57} +(9.70820 - 7.05342i) q^{58} +(8.09017 + 5.87785i) q^{59} +(-2.47214 - 7.60845i) q^{60} +(0.927051 + 2.85317i) q^{61} +(-8.09017 - 5.87785i) q^{62} +(-0.809017 + 0.587785i) q^{63} +(-2.47214 + 7.60845i) q^{64} -8.00000 q^{65} -1.00000 q^{67} +(2.47214 - 7.60845i) q^{68} +(1.61803 - 1.17557i) q^{69} +(6.47214 + 4.70228i) q^{70} +(8.89919 + 6.46564i) q^{73} +(4.85410 - 3.52671i) q^{74} +(-3.39919 + 10.4616i) q^{75} -6.00000 q^{76} -4.00000 q^{78} +(3.39919 - 10.4616i) q^{79} +(12.9443 - 9.40456i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(1.23607 + 3.80423i) q^{82} +(1.85410 + 5.70634i) q^{83} +(1.61803 + 1.17557i) q^{84} +(-12.9443 + 9.40456i) q^{85} +(-7.41641 + 22.8254i) q^{86} -6.00000 q^{87} +12.0000 q^{89} +(-2.47214 + 7.60845i) q^{90} +(1.61803 - 1.17557i) q^{91} +(-3.23607 - 2.35114i) q^{92} +(1.54508 + 4.75528i) q^{93} +(-1.23607 - 3.80423i) q^{94} +(9.70820 + 7.05342i) q^{95} +(6.47214 - 4.70228i) q^{96} +(1.54508 - 4.75528i) q^{97} +12.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + q^{3} - 2 q^{4} - 4 q^{5} - 2 q^{6} - q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + q^{3} - 2 q^{4} - 4 q^{5} - 2 q^{6} - q^{7} - q^{9} - 32 q^{10} - 8 q^{12} + 2 q^{13} + 2 q^{14} + 4 q^{15} + 4 q^{16} - 4 q^{17} + 2 q^{18} + 3 q^{19} - 8 q^{20} - 4 q^{21} + 8 q^{23} - 11 q^{25} - 4 q^{26} + q^{27} - 2 q^{28} - 6 q^{29} - 8 q^{30} + 5 q^{31} + 32 q^{32} - 32 q^{34} - 4 q^{35} - 2 q^{36} - 3 q^{37} - 6 q^{38} - 2 q^{39} + 2 q^{41} - 2 q^{42} + 48 q^{43} + 16 q^{45} + 4 q^{46} - 2 q^{47} - 4 q^{48} + 6 q^{49} + 22 q^{50} + 4 q^{51} + 4 q^{52} - 6 q^{53} + 8 q^{54} - 3 q^{57} + 12 q^{58} + 10 q^{59} + 8 q^{60} - 3 q^{61} - 10 q^{62} - q^{63} + 8 q^{64} - 32 q^{65} - 4 q^{67} - 8 q^{68} + 2 q^{69} + 8 q^{70} + 11 q^{73} + 6 q^{74} + 11 q^{75} - 24 q^{76} - 16 q^{78} - 11 q^{79} + 16 q^{80} - q^{81} - 4 q^{82} - 6 q^{83} + 2 q^{84} - 16 q^{85} + 24 q^{86} - 24 q^{87} + 48 q^{89} + 8 q^{90} + 2 q^{91} - 4 q^{92} - 5 q^{93} + 4 q^{94} + 12 q^{95} + 8 q^{96} - 5 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 + 1.90211i −0.437016 + 1.34500i 0.453990 + 0.891007i \(0.350000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) −1.61803 1.17557i −0.809017 0.587785i
\(5\) 1.23607 + 3.80423i 0.552786 + 1.70130i 0.701719 + 0.712454i \(0.252416\pi\)
−0.148932 + 0.988847i \(0.547584\pi\)
\(6\) 0.618034 + 1.90211i 0.252311 + 0.776534i
\(7\) −0.809017 0.587785i −0.305780 0.222162i 0.424304 0.905520i \(-0.360519\pi\)
−0.730084 + 0.683358i \(0.760519\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −8.00000 −2.52982
\(11\) 0 0
\(12\) −2.00000 −0.577350
\(13\) −0.618034 + 1.90211i −0.171412 + 0.527551i −0.999451 0.0331183i \(-0.989456\pi\)
0.828040 + 0.560670i \(0.189456\pi\)
\(14\) 1.61803 1.17557i 0.432438 0.314184i
\(15\) 3.23607 + 2.35114i 0.835549 + 0.607062i
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 1.23607 + 3.80423i 0.299791 + 0.922660i 0.981570 + 0.191103i \(0.0612063\pi\)
−0.681780 + 0.731558i \(0.738794\pi\)
\(18\) 1.61803 + 1.17557i 0.381374 + 0.277085i
\(19\) 2.42705 1.76336i 0.556804 0.404542i −0.273484 0.961877i \(-0.588176\pi\)
0.830288 + 0.557335i \(0.188176\pi\)
\(20\) 2.47214 7.60845i 0.552786 1.70130i
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) −8.89919 + 6.46564i −1.77984 + 1.29313i
\(26\) −3.23607 2.35114i −0.634645 0.461097i
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 0.618034 + 1.90211i 0.116797 + 0.359466i
\(29\) −4.85410 3.52671i −0.901384 0.654894i 0.0374370 0.999299i \(-0.488081\pi\)
−0.938821 + 0.344405i \(0.888081\pi\)
\(30\) −6.47214 + 4.70228i −1.18164 + 0.858515i
\(31\) −1.54508 + 4.75528i −0.277505 + 0.854074i 0.711040 + 0.703151i \(0.248224\pi\)
−0.988546 + 0.150923i \(0.951776\pi\)
\(32\) 8.00000 1.41421
\(33\) 0 0
\(34\) −8.00000 −1.37199
\(35\) 1.23607 3.80423i 0.208934 0.643032i
\(36\) −1.61803 + 1.17557i −0.269672 + 0.195928i
\(37\) −2.42705 1.76336i −0.399005 0.289894i 0.370131 0.928980i \(-0.379313\pi\)
−0.769135 + 0.639086i \(0.779313\pi\)
\(38\) 1.85410 + 5.70634i 0.300775 + 0.925690i
\(39\) 0.618034 + 1.90211i 0.0989646 + 0.304582i
\(40\) 0 0
\(41\) 1.61803 1.17557i 0.252694 0.183593i −0.454226 0.890887i \(-0.650084\pi\)
0.706920 + 0.707293i \(0.250084\pi\)
\(42\) 0.618034 1.90211i 0.0953647 0.293502i
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) 4.00000 0.596285
\(46\) −1.23607 + 3.80423i −0.182248 + 0.560903i
\(47\) −1.61803 + 1.17557i −0.236015 + 0.171475i −0.699506 0.714627i \(-0.746597\pi\)
0.463491 + 0.886101i \(0.346597\pi\)
\(48\) −3.23607 2.35114i −0.467086 0.339358i
\(49\) −1.85410 5.70634i −0.264872 0.815191i
\(50\) −6.79837 20.9232i −0.961435 2.95899i
\(51\) 3.23607 + 2.35114i 0.453140 + 0.329226i
\(52\) 3.23607 2.35114i 0.448762 0.326045i
\(53\) 1.85410 5.70634i 0.254680 0.783826i −0.739212 0.673473i \(-0.764802\pi\)
0.993892 0.110353i \(-0.0351982\pi\)
\(54\) 2.00000 0.272166
\(55\) 0 0
\(56\) 0 0
\(57\) 0.927051 2.85317i 0.122791 0.377912i
\(58\) 9.70820 7.05342i 1.27475 0.926160i
\(59\) 8.09017 + 5.87785i 1.05325 + 0.765231i 0.972828 0.231530i \(-0.0743730\pi\)
0.0804226 + 0.996761i \(0.474373\pi\)
\(60\) −2.47214 7.60845i −0.319151 0.982247i
\(61\) 0.927051 + 2.85317i 0.118697 + 0.365311i 0.992700 0.120609i \(-0.0384847\pi\)
−0.874003 + 0.485920i \(0.838485\pi\)
\(62\) −8.09017 5.87785i −1.02745 0.746488i
\(63\) −0.809017 + 0.587785i −0.101927 + 0.0740540i
\(64\) −2.47214 + 7.60845i −0.309017 + 0.951057i
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) −1.00000 −0.122169 −0.0610847 0.998133i \(-0.519456\pi\)
−0.0610847 + 0.998133i \(0.519456\pi\)
\(68\) 2.47214 7.60845i 0.299791 0.922660i
\(69\) 1.61803 1.17557i 0.194788 0.141522i
\(70\) 6.47214 + 4.70228i 0.773568 + 0.562030i
\(71\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(72\) 0 0
\(73\) 8.89919 + 6.46564i 1.04157 + 0.756746i 0.970592 0.240732i \(-0.0773875\pi\)
0.0709795 + 0.997478i \(0.477388\pi\)
\(74\) 4.85410 3.52671i 0.564278 0.409972i
\(75\) −3.39919 + 10.4616i −0.392504 + 1.20800i
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) −4.00000 −0.452911
\(79\) 3.39919 10.4616i 0.382438 1.17702i −0.555883 0.831260i \(-0.687620\pi\)
0.938322 0.345764i \(-0.112380\pi\)
\(80\) 12.9443 9.40456i 1.44721 1.05146i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 1.23607 + 3.80423i 0.136501 + 0.420106i
\(83\) 1.85410 + 5.70634i 0.203514 + 0.626352i 0.999771 + 0.0213936i \(0.00681031\pi\)
−0.796257 + 0.604959i \(0.793190\pi\)
\(84\) 1.61803 + 1.17557i 0.176542 + 0.128265i
\(85\) −12.9443 + 9.40456i −1.40400 + 1.02007i
\(86\) −7.41641 + 22.8254i −0.799732 + 2.46132i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) −2.47214 + 7.60845i −0.260586 + 0.802001i
\(91\) 1.61803 1.17557i 0.169616 0.123233i
\(92\) −3.23607 2.35114i −0.337383 0.245123i
\(93\) 1.54508 + 4.75528i 0.160218 + 0.493100i
\(94\) −1.23607 3.80423i −0.127491 0.392376i
\(95\) 9.70820 + 7.05342i 0.996041 + 0.723666i
\(96\) 6.47214 4.70228i 0.660560 0.479925i
\(97\) 1.54508 4.75528i 0.156880 0.482826i −0.841467 0.540309i \(-0.818307\pi\)
0.998346 + 0.0574829i \(0.0183075\pi\)
\(98\) 12.0000 1.21218
\(99\) 0 0
\(100\) 22.0000 2.20000
\(101\) −3.09017 + 9.51057i −0.307483 + 0.946337i 0.671255 + 0.741226i \(0.265755\pi\)
−0.978739 + 0.205110i \(0.934245\pi\)
\(102\) −6.47214 + 4.70228i −0.640837 + 0.465595i
\(103\) 5.66312 + 4.11450i 0.558004 + 0.405413i 0.830728 0.556679i \(-0.187925\pi\)
−0.272724 + 0.962092i \(0.587925\pi\)
\(104\) 0 0
\(105\) −1.23607 3.80423i −0.120628 0.371254i
\(106\) 9.70820 + 7.05342i 0.942944 + 0.685089i
\(107\) 14.5623 10.5801i 1.40779 1.02282i 0.414152 0.910208i \(-0.364078\pi\)
0.993639 0.112613i \(-0.0359219\pi\)
\(108\) −0.618034 + 1.90211i −0.0594703 + 0.183031i
\(109\) 1.00000 0.0957826 0.0478913 0.998853i \(-0.484750\pi\)
0.0478913 + 0.998853i \(0.484750\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) −1.23607 + 3.80423i −0.116797 + 0.359466i
\(113\) −4.85410 + 3.52671i −0.456636 + 0.331765i −0.792210 0.610249i \(-0.791070\pi\)
0.335575 + 0.942014i \(0.391070\pi\)
\(114\) 4.85410 + 3.52671i 0.454628 + 0.330307i
\(115\) 2.47214 + 7.60845i 0.230528 + 0.709492i
\(116\) 3.70820 + 11.4127i 0.344298 + 1.05964i
\(117\) 1.61803 + 1.17557i 0.149587 + 0.108682i
\(118\) −16.1803 + 11.7557i −1.48952 + 1.08220i
\(119\) 1.23607 3.80423i 0.113310 0.348733i
\(120\) 0 0
\(121\) 0 0
\(122\) −6.00000 −0.543214
\(123\) 0.618034 1.90211i 0.0557262 0.171508i
\(124\) 8.09017 5.87785i 0.726519 0.527847i
\(125\) −19.4164 14.1068i −1.73666 1.26175i
\(126\) −0.618034 1.90211i −0.0550588 0.169454i
\(127\) −4.01722 12.3637i −0.356471 1.09710i −0.955152 0.296117i \(-0.904308\pi\)
0.598681 0.800987i \(-0.295692\pi\)
\(128\) 0 0
\(129\) 9.70820 7.05342i 0.854760 0.621019i
\(130\) 4.94427 15.2169i 0.433641 1.33461i
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 0.618034 1.90211i 0.0533900 0.164318i
\(135\) 3.23607 2.35114i 0.278516 0.202354i
\(136\) 0 0
\(137\) 2.47214 + 7.60845i 0.211209 + 0.650034i 0.999401 + 0.0346048i \(0.0110173\pi\)
−0.788192 + 0.615429i \(0.788983\pi\)
\(138\) 1.23607 + 3.80423i 0.105221 + 0.323837i
\(139\) −12.9443 9.40456i −1.09792 0.797685i −0.117200 0.993108i \(-0.537392\pi\)
−0.980719 + 0.195424i \(0.937392\pi\)
\(140\) −6.47214 + 4.70228i −0.546995 + 0.397415i
\(141\) −0.618034 + 1.90211i −0.0520479 + 0.160187i
\(142\) 0 0
\(143\) 0 0
\(144\) −4.00000 −0.333333
\(145\) 7.41641 22.8254i 0.615899 1.89554i
\(146\) −17.7984 + 12.9313i −1.47300 + 1.07020i
\(147\) −4.85410 3.52671i −0.400360 0.290878i
\(148\) 1.85410 + 5.70634i 0.152406 + 0.469058i
\(149\) −4.94427 15.2169i −0.405051 1.24662i −0.920853 0.389910i \(-0.872506\pi\)
0.515802 0.856708i \(-0.327494\pi\)
\(150\) −17.7984 12.9313i −1.45323 1.05583i
\(151\) 12.9443 9.40456i 1.05339 0.765333i 0.0805358 0.996752i \(-0.474337\pi\)
0.972854 + 0.231419i \(0.0743369\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 1.23607 3.80423i 0.0989646 0.304582i
\(157\) 0.809017 0.587785i 0.0645666 0.0469104i −0.555034 0.831828i \(-0.687295\pi\)
0.619600 + 0.784917i \(0.287295\pi\)
\(158\) 17.7984 + 12.9313i 1.41596 + 1.02876i
\(159\) −1.85410 5.70634i −0.147040 0.452542i
\(160\) 9.88854 + 30.4338i 0.781758 + 2.40600i
\(161\) −1.61803 1.17557i −0.127519 0.0926479i
\(162\) 1.61803 1.17557i 0.127125 0.0923615i
\(163\) 7.72542 23.7764i 0.605102 1.86231i 0.109014 0.994040i \(-0.465231\pi\)
0.496088 0.868272i \(-0.334769\pi\)
\(164\) −4.00000 −0.312348
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −5.56231 + 17.1190i −0.430424 + 1.32471i 0.467280 + 0.884110i \(0.345234\pi\)
−0.897704 + 0.440600i \(0.854766\pi\)
\(168\) 0 0
\(169\) 7.28115 + 5.29007i 0.560089 + 0.406928i
\(170\) −9.88854 30.4338i −0.758417 2.33417i
\(171\) −0.927051 2.85317i −0.0708934 0.218187i
\(172\) −19.4164 14.1068i −1.48049 1.07564i
\(173\) −19.4164 + 14.1068i −1.47620 + 1.07252i −0.497446 + 0.867495i \(0.665729\pi\)
−0.978756 + 0.205029i \(0.934271\pi\)
\(174\) 3.70820 11.4127i 0.281118 0.865193i
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) 10.0000 0.751646
\(178\) −7.41641 + 22.8254i −0.555883 + 1.71083i
\(179\) −4.85410 + 3.52671i −0.362813 + 0.263599i −0.754224 0.656617i \(-0.771987\pi\)
0.391412 + 0.920216i \(0.371987\pi\)
\(180\) −6.47214 4.70228i −0.482405 0.350487i
\(181\) −7.10739 21.8743i −0.528288 1.62590i −0.757720 0.652579i \(-0.773687\pi\)
0.229432 0.973325i \(-0.426313\pi\)
\(182\) 1.23607 + 3.80423i 0.0916235 + 0.281988i
\(183\) 2.42705 + 1.76336i 0.179413 + 0.130351i
\(184\) 0 0
\(185\) 3.70820 11.4127i 0.272633 0.839077i
\(186\) −10.0000 −0.733236
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) −0.309017 + 0.951057i −0.0224777 + 0.0691792i
\(190\) −19.4164 + 14.1068i −1.40861 + 1.02342i
\(191\) −6.47214 4.70228i −0.468307 0.340245i 0.328474 0.944513i \(-0.393466\pi\)
−0.796781 + 0.604268i \(0.793466\pi\)
\(192\) 2.47214 + 7.60845i 0.178411 + 0.549093i
\(193\) −1.54508 4.75528i −0.111218 0.342293i 0.879922 0.475119i \(-0.157595\pi\)
−0.991139 + 0.132826i \(0.957595\pi\)
\(194\) 8.09017 + 5.87785i 0.580840 + 0.422005i
\(195\) −6.47214 + 4.70228i −0.463479 + 0.336737i
\(196\) −3.70820 + 11.4127i −0.264872 + 0.815191i
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −21.0000 −1.48865 −0.744325 0.667817i \(-0.767229\pi\)
−0.744325 + 0.667817i \(0.767229\pi\)
\(200\) 0 0
\(201\) −0.809017 + 0.587785i −0.0570637 + 0.0414592i
\(202\) −16.1803 11.7557i −1.13844 0.827129i
\(203\) 1.85410 + 5.70634i 0.130132 + 0.400506i
\(204\) −2.47214 7.60845i −0.173084 0.532698i
\(205\) 6.47214 + 4.70228i 0.452034 + 0.328422i
\(206\) −11.3262 + 8.22899i −0.789136 + 0.573341i
\(207\) 0.618034 1.90211i 0.0429563 0.132206i
\(208\) 8.00000 0.554700
\(209\) 0 0
\(210\) 8.00000 0.552052
\(211\) −6.48936 + 19.9722i −0.446746 + 1.37494i 0.433812 + 0.901003i \(0.357168\pi\)
−0.880558 + 0.473939i \(0.842832\pi\)
\(212\) −9.70820 + 7.05342i −0.666762 + 0.484431i
\(213\) 0 0
\(214\) 11.1246 + 34.2380i 0.760463 + 2.34046i
\(215\) 14.8328 + 45.6507i 1.01159 + 3.11335i
\(216\) 0 0
\(217\) 4.04508 2.93893i 0.274598 0.199507i
\(218\) −0.618034 + 1.90211i −0.0418585 + 0.128827i
\(219\) 11.0000 0.743311
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 1.85410 5.70634i 0.124439 0.382984i
\(223\) 13.7533 9.99235i 0.920988 0.669137i −0.0227815 0.999740i \(-0.507252\pi\)
0.943770 + 0.330603i \(0.107252\pi\)
\(224\) −6.47214 4.70228i −0.432438 0.314184i
\(225\) 3.39919 + 10.4616i 0.226612 + 0.697441i
\(226\) −3.70820 11.4127i −0.246666 0.759160i
\(227\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(228\) −4.85410 + 3.52671i −0.321471 + 0.233562i
\(229\) −5.56231 + 17.1190i −0.367568 + 1.13126i 0.580790 + 0.814053i \(0.302744\pi\)
−0.948358 + 0.317203i \(0.897256\pi\)
\(230\) −16.0000 −1.05501
\(231\) 0 0
\(232\) 0 0
\(233\) 5.56231 17.1190i 0.364399 1.12150i −0.585958 0.810341i \(-0.699282\pi\)
0.950357 0.311163i \(-0.100718\pi\)
\(234\) −3.23607 + 2.35114i −0.211548 + 0.153699i
\(235\) −6.47214 4.70228i −0.422196 0.306743i
\(236\) −6.18034 19.0211i −0.402306 1.23817i
\(237\) −3.39919 10.4616i −0.220801 0.679555i
\(238\) 6.47214 + 4.70228i 0.419526 + 0.304804i
\(239\) −4.85410 + 3.52671i −0.313986 + 0.228124i −0.733605 0.679576i \(-0.762164\pi\)
0.419619 + 0.907700i \(0.362164\pi\)
\(240\) 4.94427 15.2169i 0.319151 0.982247i
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 1.85410 5.70634i 0.118697 0.365311i
\(245\) 19.4164 14.1068i 1.24047 0.901253i
\(246\) 3.23607 + 2.35114i 0.206324 + 0.149903i
\(247\) 1.85410 + 5.70634i 0.117974 + 0.363086i
\(248\) 0 0
\(249\) 4.85410 + 3.52671i 0.307616 + 0.223496i
\(250\) 38.8328 28.2137i 2.45600 1.78439i
\(251\) −0.618034 + 1.90211i −0.0390100 + 0.120060i −0.968665 0.248371i \(-0.920105\pi\)
0.929655 + 0.368431i \(0.120105\pi\)
\(252\) 2.00000 0.125988
\(253\) 0 0
\(254\) 26.0000 1.63139
\(255\) −4.94427 + 15.2169i −0.309622 + 0.952920i
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 11.3262 + 8.22899i 0.706511 + 0.513311i 0.882046 0.471163i \(-0.156166\pi\)
−0.175535 + 0.984473i \(0.556166\pi\)
\(258\) 7.41641 + 22.8254i 0.461725 + 1.42104i
\(259\) 0.927051 + 2.85317i 0.0576041 + 0.177287i
\(260\) 12.9443 + 9.40456i 0.802770 + 0.583246i
\(261\) −4.85410 + 3.52671i −0.300461 + 0.218298i
\(262\) 3.70820 11.4127i 0.229094 0.705078i
\(263\) −10.0000 −0.616626 −0.308313 0.951285i \(-0.599764\pi\)
−0.308313 + 0.951285i \(0.599764\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) 1.85410 5.70634i 0.113682 0.349878i
\(267\) 9.70820 7.05342i 0.594132 0.431662i
\(268\) 1.61803 + 1.17557i 0.0988372 + 0.0718094i
\(269\) −4.32624 13.3148i −0.263775 0.811817i −0.991973 0.126450i \(-0.959642\pi\)
0.728198 0.685367i \(-0.240358\pi\)
\(270\) 2.47214 + 7.60845i 0.150449 + 0.463036i
\(271\) −6.47214 4.70228i −0.393154 0.285643i 0.373593 0.927593i \(-0.378126\pi\)
−0.766747 + 0.641950i \(0.778126\pi\)
\(272\) 12.9443 9.40456i 0.784862 0.570235i
\(273\) 0.618034 1.90211i 0.0374051 0.115121i
\(274\) −16.0000 −0.966595
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) −3.39919 + 10.4616i −0.204237 + 0.628578i 0.795506 + 0.605945i \(0.207205\pi\)
−0.999744 + 0.0226329i \(0.992795\pi\)
\(278\) 25.8885 18.8091i 1.55269 1.12810i
\(279\) 4.04508 + 2.93893i 0.242173 + 0.175949i
\(280\) 0 0
\(281\) −3.70820 11.4127i −0.221213 0.680823i −0.998654 0.0518675i \(-0.983483\pi\)
0.777441 0.628956i \(-0.216517\pi\)
\(282\) −3.23607 2.35114i −0.192705 0.140008i
\(283\) 8.89919 6.46564i 0.529002 0.384342i −0.290982 0.956728i \(-0.593982\pi\)
0.819984 + 0.572386i \(0.193982\pi\)
\(284\) 0 0
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) 2.47214 7.60845i 0.145672 0.448332i
\(289\) 0.809017 0.587785i 0.0475892 0.0345756i
\(290\) 38.8328 + 28.2137i 2.28034 + 1.65677i
\(291\) −1.54508 4.75528i −0.0905745 0.278760i
\(292\) −6.79837 20.9232i −0.397845 1.22444i
\(293\) −9.70820 7.05342i −0.567159 0.412065i 0.266913 0.963721i \(-0.413996\pi\)
−0.834072 + 0.551655i \(0.813996\pi\)
\(294\) 9.70820 7.05342i 0.566194 0.411364i
\(295\) −12.3607 + 38.0423i −0.719667 + 2.21491i
\(296\) 0 0
\(297\) 0 0
\(298\) 32.0000 1.85371
\(299\) −1.23607 + 3.80423i −0.0714837 + 0.220004i
\(300\) 17.7984 12.9313i 1.02759 0.746588i
\(301\) −9.70820 7.05342i −0.559572 0.406553i
\(302\) 9.88854 + 30.4338i 0.569022 + 1.75127i
\(303\) 3.09017 + 9.51057i 0.177526 + 0.546368i
\(304\) −9.70820 7.05342i −0.556804 0.404542i
\(305\) −9.70820 + 7.05342i −0.555890 + 0.403878i
\(306\) −2.47214 + 7.60845i −0.141323 + 0.434946i
\(307\) −19.0000 −1.08439 −0.542194 0.840254i \(-0.682406\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) 12.3607 38.0423i 0.702039 2.16066i
\(311\) −19.4164 + 14.1068i −1.10100 + 0.799926i −0.981223 0.192875i \(-0.938219\pi\)
−0.119780 + 0.992800i \(0.538219\pi\)
\(312\) 0 0
\(313\) −3.09017 9.51057i −0.174667 0.537569i 0.824951 0.565204i \(-0.191202\pi\)
−0.999618 + 0.0276348i \(0.991202\pi\)
\(314\) 0.618034 + 1.90211i 0.0348777 + 0.107342i
\(315\) −3.23607 2.35114i −0.182332 0.132472i
\(316\) −17.7984 + 12.9313i −1.00124 + 0.727441i
\(317\) −6.18034 + 19.0211i −0.347122 + 1.06833i 0.613315 + 0.789838i \(0.289836\pi\)
−0.960438 + 0.278495i \(0.910164\pi\)
\(318\) 12.0000 0.672927
\(319\) 0 0
\(320\) −32.0000 −1.78885
\(321\) 5.56231 17.1190i 0.310458 0.955490i
\(322\) 3.23607 2.35114i 0.180339 0.131024i
\(323\) 9.70820 + 7.05342i 0.540179 + 0.392463i
\(324\) 0.618034 + 1.90211i 0.0343352 + 0.105673i
\(325\) −6.79837 20.9232i −0.377106 1.16061i
\(326\) 40.4508 + 29.3893i 2.24037 + 1.62772i
\(327\) 0.809017 0.587785i 0.0447387 0.0325046i
\(328\) 0 0
\(329\) 2.00000 0.110264
\(330\) 0 0
\(331\) −11.0000 −0.604615 −0.302307 0.953211i \(-0.597757\pi\)
−0.302307 + 0.953211i \(0.597757\pi\)
\(332\) 3.70820 11.4127i 0.203514 0.626352i
\(333\) −2.42705 + 1.76336i −0.133002 + 0.0966313i
\(334\) −29.1246 21.1603i −1.59363 1.15784i
\(335\) −1.23607 3.80423i −0.0675336 0.207847i
\(336\) 1.23607 + 3.80423i 0.0674330 + 0.207538i
\(337\) −4.04508 2.93893i −0.220350 0.160094i 0.472134 0.881527i \(-0.343484\pi\)
−0.692484 + 0.721433i \(0.743484\pi\)
\(338\) −14.5623 + 10.5801i −0.792085 + 0.575483i
\(339\) −1.85410 + 5.70634i −0.100701 + 0.309926i
\(340\) 32.0000 1.73544
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) −4.01722 + 12.3637i −0.216910 + 0.667579i
\(344\) 0 0
\(345\) 6.47214 + 4.70228i 0.348448 + 0.253162i
\(346\) −14.8328 45.6507i −0.797417 2.45420i
\(347\) −0.618034 1.90211i −0.0331778 0.102111i 0.933096 0.359627i \(-0.117096\pi\)
−0.966274 + 0.257516i \(0.917096\pi\)
\(348\) 9.70820 + 7.05342i 0.520414 + 0.378103i
\(349\) −12.1353 + 8.81678i −0.649585 + 0.471951i −0.863130 0.504982i \(-0.831499\pi\)
0.213545 + 0.976933i \(0.431499\pi\)
\(350\) −6.79837 + 20.9232i −0.363388 + 1.11839i
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) −6.18034 + 19.0211i −0.328481 + 1.01096i
\(355\) 0 0
\(356\) −19.4164 14.1068i −1.02907 0.747661i
\(357\) −1.23607 3.80423i −0.0654197 0.201341i
\(358\) −3.70820 11.4127i −0.195985 0.603179i
\(359\) −3.23607 2.35114i −0.170793 0.124088i 0.499105 0.866542i \(-0.333662\pi\)
−0.669898 + 0.742453i \(0.733662\pi\)
\(360\) 0 0
\(361\) −3.09017 + 9.51057i −0.162641 + 0.500556i
\(362\) 46.0000 2.41771
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) −13.5967 + 41.8465i −0.711686 + 2.19035i
\(366\) −4.85410 + 3.52671i −0.253728 + 0.184344i
\(367\) 6.47214 + 4.70228i 0.337843 + 0.245457i 0.743751 0.668457i \(-0.233045\pi\)
−0.405908 + 0.913914i \(0.633045\pi\)
\(368\) −2.47214 7.60845i −0.128869 0.396618i
\(369\) −0.618034 1.90211i −0.0321736 0.0990200i
\(370\) 19.4164 + 14.1068i 1.00941 + 0.733380i
\(371\) −4.85410 + 3.52671i −0.252012 + 0.183098i
\(372\) 3.09017 9.51057i 0.160218 0.493100i
\(373\) 7.00000 0.362446 0.181223 0.983442i \(-0.441994\pi\)
0.181223 + 0.983442i \(0.441994\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) 9.70820 7.05342i 0.499998 0.363270i
\(378\) −1.61803 1.17557i −0.0832227 0.0604648i
\(379\) 4.94427 + 15.2169i 0.253970 + 0.781640i 0.994031 + 0.109100i \(0.0347968\pi\)
−0.740061 + 0.672540i \(0.765203\pi\)
\(380\) −7.41641 22.8254i −0.380454 1.17092i
\(381\) −10.5172 7.64121i −0.538814 0.391471i
\(382\) 12.9443 9.40456i 0.662287 0.481179i
\(383\) 8.03444 24.7275i 0.410541 1.26351i −0.505638 0.862746i \(-0.668743\pi\)
0.916179 0.400769i \(-0.131257\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) 3.70820 11.4127i 0.188499 0.580139i
\(388\) −8.09017 + 5.87785i −0.410716 + 0.298403i
\(389\) −14.5623 10.5801i −0.738338 0.536434i 0.153852 0.988094i \(-0.450832\pi\)
−0.892190 + 0.451660i \(0.850832\pi\)
\(390\) −4.94427 15.2169i −0.250363 0.770538i
\(391\) 2.47214 + 7.60845i 0.125021 + 0.384776i
\(392\) 0 0
\(393\) −4.85410 + 3.52671i −0.244857 + 0.177899i
\(394\) 4.94427 15.2169i 0.249089 0.766617i
\(395\) 44.0000 2.21388
\(396\) 0 0
\(397\) 31.0000 1.55585 0.777923 0.628360i \(-0.216273\pi\)
0.777923 + 0.628360i \(0.216273\pi\)
\(398\) 12.9787 39.9444i 0.650564 2.00223i
\(399\) −2.42705 + 1.76336i −0.121505 + 0.0882782i
\(400\) 35.5967 + 25.8626i 1.77984 + 1.29313i
\(401\) −8.65248 26.6296i −0.432084 1.32982i −0.896045 0.443962i \(-0.853572\pi\)
0.463961 0.885855i \(-0.346428\pi\)
\(402\) −0.618034 1.90211i −0.0308247 0.0948688i
\(403\) −8.09017 5.87785i −0.403000 0.292797i
\(404\) 16.1803 11.7557i 0.805002 0.584868i
\(405\) 1.23607 3.80423i 0.0614207 0.189034i
\(406\) −12.0000 −0.595550
\(407\) 0 0
\(408\) 0 0
\(409\) 6.48936 19.9722i 0.320878 0.987561i −0.652389 0.757884i \(-0.726233\pi\)
0.973267 0.229677i \(-0.0737669\pi\)
\(410\) −12.9443 + 9.40456i −0.639272 + 0.464458i
\(411\) 6.47214 + 4.70228i 0.319247 + 0.231946i
\(412\) −4.32624 13.3148i −0.213138 0.655973i
\(413\) −3.09017 9.51057i −0.152057 0.467984i
\(414\) 3.23607 + 2.35114i 0.159044 + 0.115552i
\(415\) −19.4164 + 14.1068i −0.953114 + 0.692478i
\(416\) −4.94427 + 15.2169i −0.242413 + 0.746070i
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) −2.47214 + 7.60845i −0.120628 + 0.371254i
\(421\) 1.61803 1.17557i 0.0788582 0.0572938i −0.547658 0.836702i \(-0.684480\pi\)
0.626516 + 0.779409i \(0.284480\pi\)
\(422\) −33.9787 24.6870i −1.65406 1.20174i
\(423\) 0.618034 + 1.90211i 0.0300498 + 0.0924839i
\(424\) 0 0
\(425\) −35.5967 25.8626i −1.72670 1.25452i
\(426\) 0 0
\(427\) 0.927051 2.85317i 0.0448631 0.138075i
\(428\) −36.0000 −1.74013
\(429\) 0 0
\(430\) −96.0000 −4.62953
\(431\) 5.56231 17.1190i 0.267927 0.824594i −0.723078 0.690767i \(-0.757273\pi\)
0.991005 0.133827i \(-0.0427268\pi\)
\(432\) −3.23607 + 2.35114i −0.155695 + 0.113119i
\(433\) 13.7533 + 9.99235i 0.660941 + 0.480202i 0.866981 0.498342i \(-0.166058\pi\)
−0.206040 + 0.978544i \(0.566058\pi\)
\(434\) 3.09017 + 9.51057i 0.148333 + 0.456522i
\(435\) −7.41641 22.8254i −0.355590 1.09439i
\(436\) −1.61803 1.17557i −0.0774898 0.0562996i
\(437\) 4.85410 3.52671i 0.232203 0.168705i
\(438\) −6.79837 + 20.9232i −0.324839 + 0.999751i
\(439\) 37.0000 1.76591 0.882957 0.469454i \(-0.155549\pi\)
0.882957 + 0.469454i \(0.155549\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 4.94427 15.2169i 0.235175 0.723794i
\(443\) −3.23607 + 2.35114i −0.153750 + 0.111706i −0.662001 0.749503i \(-0.730292\pi\)
0.508250 + 0.861209i \(0.330292\pi\)
\(444\) 4.85410 + 3.52671i 0.230365 + 0.167370i
\(445\) 14.8328 + 45.6507i 0.703143 + 2.16405i
\(446\) 10.5066 + 32.3359i 0.497501 + 1.53115i
\(447\) −12.9443 9.40456i −0.612243 0.444821i
\(448\) 6.47214 4.70228i 0.305780 0.222162i
\(449\) 6.18034 19.0211i 0.291668 0.897663i −0.692652 0.721272i \(-0.743558\pi\)
0.984320 0.176391i \(-0.0564422\pi\)
\(450\) −22.0000 −1.03709
\(451\) 0 0
\(452\) 12.0000 0.564433
\(453\) 4.94427 15.2169i 0.232302 0.714953i
\(454\) 0 0
\(455\) 6.47214 + 4.70228i 0.303418 + 0.220446i
\(456\) 0 0
\(457\) 5.56231 + 17.1190i 0.260194 + 0.800794i 0.992762 + 0.120100i \(0.0383216\pi\)
−0.732568 + 0.680694i \(0.761678\pi\)
\(458\) −29.1246 21.1603i −1.36090 0.988754i
\(459\) 3.23607 2.35114i 0.151047 0.109742i
\(460\) 4.94427 15.2169i 0.230528 0.709492i
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) −7.41641 + 22.8254i −0.344298 + 1.05964i
\(465\) −16.1803 + 11.7557i −0.750345 + 0.545158i
\(466\) 29.1246 + 21.1603i 1.34917 + 0.980231i
\(467\) 7.41641 + 22.8254i 0.343190 + 1.05623i 0.962545 + 0.271120i \(0.0873942\pi\)
−0.619355 + 0.785111i \(0.712606\pi\)
\(468\) −1.23607 3.80423i −0.0571373 0.175850i
\(469\) 0.809017 + 0.587785i 0.0373569 + 0.0271414i
\(470\) 12.9443 9.40456i 0.597075 0.433800i
\(471\) 0.309017 0.951057i 0.0142388 0.0438224i
\(472\) 0 0
\(473\) 0 0
\(474\) 22.0000 1.01049
\(475\) −10.1976 + 31.3849i −0.467896 + 1.44004i
\(476\) −6.47214 + 4.70228i −0.296650 + 0.215529i
\(477\) −4.85410 3.52671i −0.222254 0.161477i
\(478\) −3.70820 11.4127i −0.169609 0.522004i
\(479\) −6.79837 20.9232i −0.310626 0.956007i −0.977518 0.210853i \(-0.932376\pi\)
0.666892 0.745154i \(-0.267624\pi\)
\(480\) 25.8885 + 18.8091i 1.18164 + 0.858515i
\(481\) 4.85410 3.52671i 0.221328 0.160804i
\(482\) 8.65248 26.6296i 0.394109 1.21294i
\(483\) −2.00000 −0.0910032
\(484\) 0 0
\(485\) 20.0000 0.908153
\(486\) 0.618034 1.90211i 0.0280346 0.0862816i
\(487\) 32.3607 23.5114i 1.46640 1.06540i 0.484766 0.874644i \(-0.338905\pi\)
0.981637 0.190760i \(-0.0610951\pi\)
\(488\) 0 0
\(489\) −7.72542 23.7764i −0.349356 1.07521i
\(490\) 14.8328 + 45.6507i 0.670078 + 2.06229i
\(491\) 11.3262 + 8.22899i 0.511146 + 0.371369i 0.813258 0.581903i \(-0.197692\pi\)
−0.302112 + 0.953272i \(0.597692\pi\)
\(492\) −3.23607 + 2.35114i −0.145893 + 0.105998i
\(493\) 7.41641 22.8254i 0.334018 1.02800i
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) 20.0000 0.898027
\(497\) 0 0
\(498\) −9.70820 + 7.05342i −0.435035 + 0.316071i
\(499\) −18.6074 13.5191i −0.832981 0.605196i 0.0874200 0.996172i \(-0.472138\pi\)
−0.920401 + 0.390975i \(0.872138\pi\)
\(500\) 14.8328 + 45.6507i 0.663344 + 2.04156i
\(501\) 5.56231 + 17.1190i 0.248506 + 0.764821i
\(502\) −3.23607 2.35114i −0.144433 0.104937i
\(503\) 25.8885 18.8091i 1.15431 0.838658i 0.165265 0.986249i \(-0.447152\pi\)
0.989048 + 0.147592i \(0.0471521\pi\)
\(504\) 0 0
\(505\) −40.0000 −1.77998
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) −8.03444 + 24.7275i −0.356471 + 1.09710i
\(509\) −4.85410 + 3.52671i −0.215154 + 0.156319i −0.690143 0.723673i \(-0.742452\pi\)
0.474988 + 0.879992i \(0.342452\pi\)
\(510\) −25.8885 18.8091i −1.14636 0.832882i
\(511\) −3.39919 10.4616i −0.150371 0.462795i
\(512\) −9.88854 30.4338i −0.437016 1.34500i
\(513\) −2.42705 1.76336i −0.107157 0.0778541i
\(514\) −22.6525 + 16.4580i −0.999158 + 0.725931i
\(515\) −8.65248 + 26.6296i −0.381274 + 1.17344i
\(516\) −24.0000 −1.05654
\(517\) 0 0
\(518\) −6.00000 −0.263625
\(519\) −7.41641 + 22.8254i −0.325544 + 1.00192i
\(520\) 0 0
\(521\) 4.85410 + 3.52671i 0.212662 + 0.154508i 0.689017 0.724745i \(-0.258042\pi\)
−0.476355 + 0.879253i \(0.658042\pi\)
\(522\) −3.70820 11.4127i −0.162304 0.499519i
\(523\) 8.96149 + 27.5806i 0.391859 + 1.20602i 0.931381 + 0.364046i \(0.118605\pi\)
−0.539522 + 0.841971i \(0.681395\pi\)
\(524\) 9.70820 + 7.05342i 0.424105 + 0.308130i
\(525\) 8.89919 6.46564i 0.388392 0.282184i
\(526\) 6.18034 19.0211i 0.269476 0.829361i
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) −14.8328 + 45.6507i −0.644296 + 1.98294i
\(531\) 8.09017 5.87785i 0.351083 0.255077i
\(532\) 4.85410 + 3.52671i 0.210452 + 0.152902i
\(533\) 1.23607 + 3.80423i 0.0535400 + 0.164779i
\(534\) 7.41641 + 22.8254i 0.320939 + 0.987750i
\(535\) 58.2492 + 42.3205i 2.51833 + 1.82968i
\(536\) 0 0
\(537\) −1.85410 + 5.70634i −0.0800104 + 0.246247i
\(538\) 28.0000 1.20717
\(539\) 0 0
\(540\) −8.00000 −0.344265
\(541\) −0.618034 + 1.90211i −0.0265714 + 0.0817782i −0.963463 0.267842i \(-0.913689\pi\)
0.936891 + 0.349620i \(0.113689\pi\)
\(542\) 12.9443 9.40456i 0.556004 0.403961i
\(543\) −18.6074 13.5191i −0.798520 0.580158i
\(544\) 9.88854 + 30.4338i 0.423968 + 1.30484i
\(545\) 1.23607 + 3.80423i 0.0529473 + 0.162955i
\(546\) 3.23607 + 2.35114i 0.138491 + 0.100620i
\(547\) −16.1803 + 11.7557i −0.691821 + 0.502638i −0.877258 0.480019i \(-0.840630\pi\)
0.185437 + 0.982656i \(0.440630\pi\)
\(548\) 4.94427 15.2169i 0.211209 0.650034i
\(549\) 3.00000 0.128037
\(550\) 0 0
\(551\) −18.0000 −0.766826
\(552\) 0 0
\(553\) −8.89919 + 6.46564i −0.378432 + 0.274947i
\(554\) −17.7984 12.9313i −0.756180 0.549397i
\(555\) −3.70820 11.4127i −0.157404 0.484441i
\(556\) 9.88854 + 30.4338i 0.419368 + 1.29068i
\(557\) 6.47214 + 4.70228i 0.274233 + 0.199242i 0.716398 0.697692i \(-0.245789\pi\)
−0.442165 + 0.896934i \(0.645789\pi\)
\(558\) −8.09017 + 5.87785i −0.342484 + 0.248829i
\(559\) −7.41641 + 22.8254i −0.313681 + 0.965410i
\(560\) −16.0000 −0.676123
\(561\) 0 0
\(562\) 24.0000 1.01238
\(563\) 8.65248 26.6296i 0.364658 1.12230i −0.585536 0.810646i \(-0.699116\pi\)
0.950195 0.311657i \(-0.100884\pi\)
\(564\) 3.23607 2.35114i 0.136263 0.0990009i
\(565\) −19.4164 14.1068i −0.816854 0.593479i
\(566\) 6.79837 + 20.9232i 0.285757 + 0.879470i
\(567\) 0.309017 + 0.951057i 0.0129775 + 0.0399406i
\(568\) 0 0
\(569\) −9.70820 + 7.05342i −0.406989 + 0.295695i −0.772382 0.635159i \(-0.780935\pi\)
0.365393 + 0.930853i \(0.380935\pi\)
\(570\) −7.41641 + 22.8254i −0.310639 + 0.956049i
\(571\) −25.0000 −1.04622 −0.523109 0.852266i \(-0.675228\pi\)
−0.523109 + 0.852266i \(0.675228\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) 1.23607 3.80423i 0.0515925 0.158785i
\(575\) −17.7984 + 12.9313i −0.742243 + 0.539271i
\(576\) 6.47214 + 4.70228i 0.269672 + 0.195928i
\(577\) 4.63525 + 14.2658i 0.192968 + 0.593895i 0.999994 + 0.00337925i \(0.00107565\pi\)
−0.807026 + 0.590516i \(0.798924\pi\)
\(578\) 0.618034 + 1.90211i 0.0257068 + 0.0791175i
\(579\) −4.04508 2.93893i −0.168108 0.122138i
\(580\) −38.8328 + 28.2137i −1.61244 + 1.17151i
\(581\) 1.85410 5.70634i 0.0769211 0.236739i
\(582\) 10.0000 0.414513
\(583\) 0 0
\(584\) 0 0
\(585\) −2.47214 + 7.60845i −0.102210 + 0.314571i
\(586\) 19.4164 14.1068i 0.802084 0.582748i
\(587\) −3.23607 2.35114i −0.133567 0.0970420i 0.518996 0.854777i \(-0.326306\pi\)
−0.652563 + 0.757735i \(0.726306\pi\)
\(588\) 3.70820 + 11.4127i 0.152924 + 0.470651i
\(589\) 4.63525 + 14.2658i 0.190992 + 0.587814i
\(590\) −64.7214 47.0228i −2.66454 1.93590i
\(591\) −6.47214 + 4.70228i −0.266228 + 0.193426i
\(592\) −3.70820 + 11.4127i −0.152406 + 0.469058i
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) −9.88854 + 30.4338i −0.405051 + 1.24662i
\(597\) −16.9894 + 12.3435i −0.695328 + 0.505185i
\(598\) −6.47214 4.70228i −0.264665 0.192291i
\(599\) −2.47214 7.60845i −0.101009 0.310873i 0.887764 0.460298i \(-0.152258\pi\)
−0.988773 + 0.149425i \(0.952258\pi\)
\(600\) 0 0
\(601\) 0.809017 + 0.587785i 0.0330005 + 0.0239763i 0.604163 0.796861i \(-0.293507\pi\)
−0.571163 + 0.820837i \(0.693507\pi\)
\(602\) 19.4164 14.1068i 0.791354 0.574952i
\(603\) −0.309017 + 0.951057i −0.0125841 + 0.0387300i
\(604\) −32.0000 −1.30206
\(605\) 0 0
\(606\) −20.0000 −0.812444
\(607\) 2.47214 7.60845i 0.100341 0.308818i −0.888268 0.459326i \(-0.848091\pi\)
0.988609 + 0.150508i \(0.0480910\pi\)
\(608\) 19.4164 14.1068i 0.787439 0.572108i
\(609\) 4.85410 + 3.52671i 0.196698 + 0.142910i
\(610\) −7.41641 22.8254i −0.300282 0.924172i
\(611\) −1.23607 3.80423i −0.0500060 0.153903i
\(612\) −6.47214 4.70228i −0.261621 0.190078i
\(613\) 10.5172 7.64121i 0.424787 0.308625i −0.354774 0.934952i \(-0.615442\pi\)
0.779561 + 0.626326i \(0.215442\pi\)
\(614\) 11.7426 36.1401i 0.473895 1.45850i
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) −24.0000 −0.966204 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(618\) −4.32624 + 13.3148i −0.174027 + 0.535599i
\(619\) 3.23607 2.35114i 0.130069 0.0945003i −0.520849 0.853649i \(-0.674384\pi\)
0.650917 + 0.759149i \(0.274384\pi\)
\(620\) 32.3607 + 23.5114i 1.29964 + 0.944241i
\(621\) −0.618034 1.90211i −0.0248008 0.0763292i
\(622\) −14.8328 45.6507i −0.594742 1.83043i
\(623\) −9.70820 7.05342i −0.388951 0.282589i
\(624\) 6.47214 4.70228i 0.259093 0.188242i
\(625\) 12.6697 38.9933i 0.506788 1.55973i
\(626\) 20.0000 0.799361
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 3.70820 11.4127i 0.147856 0.455053i
\(630\) 6.47214 4.70228i 0.257856 0.187343i
\(631\) 25.8885 + 18.8091i 1.03061 + 0.748780i 0.968430 0.249286i \(-0.0801958\pi\)
0.0621766 + 0.998065i \(0.480196\pi\)
\(632\) 0 0
\(633\) 6.48936 + 19.9722i 0.257929 + 0.793823i
\(634\) −32.3607 23.5114i −1.28521 0.933757i
\(635\) 42.0689 30.5648i 1.66945 1.21293i
\(636\) −3.70820 + 11.4127i −0.147040 + 0.452542i
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.4164 14.1068i 0.766902 0.557187i −0.134118 0.990965i \(-0.542820\pi\)
0.901020 + 0.433779i \(0.142820\pi\)
\(642\) 29.1246 + 21.1603i 1.14946 + 0.835129i
\(643\) −11.4336 35.1891i −0.450898 1.38772i −0.875884 0.482522i \(-0.839721\pi\)
0.424985 0.905200i \(-0.360279\pi\)
\(644\) 1.23607 + 3.80423i 0.0487079 + 0.149908i
\(645\) 38.8328 + 28.2137i 1.52904 + 1.11091i
\(646\) −19.4164 + 14.1068i −0.763928 + 0.555026i
\(647\) −1.23607 + 3.80423i −0.0485948 + 0.149560i −0.972409 0.233281i \(-0.925054\pi\)
0.923815 + 0.382840i \(0.125054\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 44.0000 1.72582
\(651\) 1.54508 4.75528i 0.0605567 0.186374i
\(652\) −40.4508 + 29.3893i −1.58418 + 1.15097i
\(653\) −8.09017 5.87785i −0.316593 0.230018i 0.418127 0.908388i \(-0.362687\pi\)
−0.734720 + 0.678370i \(0.762687\pi\)
\(654\) 0.618034 + 1.90211i 0.0241670 + 0.0743785i
\(655\) −7.41641 22.8254i −0.289783 0.891860i
\(656\) −6.47214 4.70228i −0.252694 0.183593i
\(657\) 8.89919 6.46564i 0.347190 0.252249i
\(658\) −1.23607 + 3.80423i −0.0481869 + 0.148304i
\(659\) 46.0000 1.79191 0.895953 0.444149i \(-0.146494\pi\)
0.895953 + 0.444149i \(0.146494\pi\)
\(660\) 0 0
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) 6.79837 20.9232i 0.264226 0.813205i
\(663\) −6.47214 + 4.70228i −0.251357 + 0.182622i
\(664\) 0 0
\(665\) −3.70820 11.4127i −0.143798 0.442565i
\(666\) −1.85410 5.70634i −0.0718450 0.221116i
\(667\) −9.70820 7.05342i −0.375903 0.273110i
\(668\) 29.1246 21.1603i 1.12687 0.818715i
\(669\) 5.25329 16.1680i 0.203104 0.625089i
\(670\) 8.00000 0.309067
\(671\) 0 0
\(672\) −8.00000 −0.308607
\(673\) −4.01722 + 12.3637i −0.154852 + 0.476587i −0.998146 0.0608665i \(-0.980614\pi\)
0.843293 + 0.537453i \(0.180614\pi\)
\(674\) 8.09017 5.87785i 0.311622 0.226406i
\(675\) 8.89919 + 6.46564i 0.342530 + 0.248863i
\(676\) −5.56231 17.1190i −0.213935 0.658424i
\(677\) 3.70820 + 11.4127i 0.142518 + 0.438625i 0.996683 0.0813762i \(-0.0259315\pi\)
−0.854166 + 0.520001i \(0.825932\pi\)
\(678\) −9.70820 7.05342i −0.372841 0.270885i
\(679\) −4.04508 + 2.93893i −0.155236 + 0.112786i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −34.0000 −1.30097 −0.650487 0.759517i \(-0.725435\pi\)
−0.650487 + 0.759517i \(0.725435\pi\)
\(684\) −1.85410 + 5.70634i −0.0708934 + 0.218187i
\(685\) −25.8885 + 18.8091i −0.989150 + 0.718660i
\(686\) −21.0344 15.2824i −0.803099 0.583485i
\(687\) 5.56231 + 17.1190i 0.212215 + 0.653131i
\(688\) −14.8328 45.6507i −0.565496 1.74042i
\(689\) 9.70820 + 7.05342i 0.369853 + 0.268714i
\(690\) −12.9443 + 9.40456i −0.492780 + 0.358026i
\(691\) 3.39919 10.4616i 0.129311 0.397979i −0.865351 0.501167i \(-0.832904\pi\)
0.994662 + 0.103188i \(0.0329043\pi\)
\(692\) 48.0000 1.82469
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 19.7771 60.8676i 0.750188 2.30884i
\(696\) 0 0
\(697\) 6.47214 + 4.70228i 0.245150 + 0.178112i
\(698\) −9.27051 28.5317i −0.350894 1.07994i
\(699\) −5.56231 17.1190i −0.210386 0.647501i
\(700\) −17.7984 12.9313i −0.672715 0.488756i
\(701\) −40.4508 + 29.3893i −1.52781 + 1.11002i −0.570366 + 0.821391i \(0.693198\pi\)
−0.957442 + 0.288626i \(0.906802\pi\)
\(702\) −1.23607 + 3.80423i −0.0466524 + 0.143581i
\(703\) −9.00000 −0.339441
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 7.41641 22.8254i 0.279120 0.859044i
\(707\) 8.09017 5.87785i 0.304262 0.221059i
\(708\) −16.1803 11.7557i −0.608094 0.441806i
\(709\) 8.03444 + 24.7275i 0.301740 + 0.928660i 0.980874 + 0.194645i \(0.0623555\pi\)
−0.679134 + 0.734014i \(0.737644\pi\)
\(710\) 0 0
\(711\) −8.89919 6.46564i −0.333746 0.242480i
\(712\) 0 0
\(713\) −3.09017 + 9.51057i −0.115728 + 0.356173i
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −1.85410 + 5.70634i −0.0692427 + 0.213107i
\(718\) 6.47214 4.70228i 0.241538 0.175488i
\(719\) 4.85410 + 3.52671i 0.181027 + 0.131524i 0.674609 0.738176i \(-0.264312\pi\)
−0.493581 + 0.869700i \(0.664312\pi\)
\(720\) −4.94427 15.2169i −0.184262 0.567101i
\(721\) −2.16312 6.65740i −0.0805588 0.247934i
\(722\) −16.1803 11.7557i −0.602170 0.437502i
\(723\) −11.3262 + 8.22899i −0.421227 + 0.306040i
\(724\) −14.2148 + 43.7486i −0.528288 + 1.62590i
\(725\) 66.0000 2.45118
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) −71.1935 51.7251i −2.63499 1.91443i
\(731\) 14.8328 + 45.6507i 0.548612 + 1.68845i
\(732\) −1.85410 5.70634i −0.0685296 0.210912i
\(733\) 24.2705 + 17.6336i 0.896452 + 0.651310i 0.937552 0.347845i \(-0.113086\pi\)
−0.0411004 + 0.999155i \(0.513086\pi\)
\(734\) −12.9443 + 9.40456i −0.477782 + 0.347129i
\(735\) 7.41641 22.8254i 0.273558 0.841926i
\(736\) 16.0000 0.589768
\(737\) 0 0
\(738\) 4.00000 0.147242
\(739\) 12.6697 38.9933i 0.466062 1.43439i −0.391579 0.920144i \(-0.628071\pi\)
0.857642 0.514248i \(-0.171929\pi\)
\(740\) −19.4164 + 14.1068i −0.713761 + 0.518578i
\(741\) 4.85410 + 3.52671i 0.178320 + 0.129557i
\(742\) −3.70820 11.4127i −0.136132 0.418973i
\(743\) −6.18034 19.0211i −0.226735 0.697818i −0.998111 0.0614382i \(-0.980431\pi\)
0.771376 0.636379i \(-0.219569\pi\)
\(744\) 0 0
\(745\) 51.7771 37.6183i 1.89697 1.37823i
\(746\) −4.32624 + 13.3148i −0.158395 + 0.487489i
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) 14.8328 45.6507i 0.541618 1.66693i
\(751\) −15.3713 + 11.1679i −0.560908 + 0.407523i −0.831791 0.555089i \(-0.812684\pi\)
0.270883 + 0.962612i \(0.412684\pi\)
\(752\) 6.47214 + 4.70228i 0.236015 + 0.171475i
\(753\) 0.618034 + 1.90211i 0.0225224 + 0.0693169i
\(754\) 7.41641 + 22.8254i 0.270090 + 0.831250i
\(755\) 51.7771 + 37.6183i 1.88436 + 1.36907i
\(756\) 1.61803 1.17557i 0.0588473 0.0427551i
\(757\) 1.54508 4.75528i 0.0561571 0.172834i −0.919044 0.394156i \(-0.871037\pi\)
0.975201 + 0.221322i \(0.0710371\pi\)
\(758\) −32.0000 −1.16229
\(759\) 0 0
\(760\) 0 0
\(761\) −7.41641 + 22.8254i −0.268845 + 0.827419i 0.721938 + 0.691958i \(0.243252\pi\)
−0.990783 + 0.135461i \(0.956748\pi\)
\(762\) 21.0344 15.2824i 0.761997 0.553624i
\(763\) −0.809017 0.587785i −0.0292884 0.0212793i
\(764\) 4.94427 + 15.2169i 0.178877 + 0.550528i
\(765\) 4.94427 + 15.2169i 0.178761 + 0.550168i
\(766\) 42.0689 + 30.5648i 1.52001 + 1.10435i
\(767\) −16.1803 + 11.7557i −0.584238 + 0.424474i
\(768\) −4.94427 + 15.2169i −0.178411 + 0.549093i
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) −3.09017 + 9.51057i −0.111218 + 0.342293i
\(773\) −29.1246 + 21.1603i