Properties

Label 363.2.e.i.124.1
Level $363$
Weight $2$
Character 363.124
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 124.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.124
Dual form 363.2.e.i.202.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 - 1.17557i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.618034 - 1.90211i) q^{4} +(-3.23607 - 2.35114i) q^{5} +(-1.61803 - 1.17557i) q^{6} +(0.309017 - 0.951057i) q^{7} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(1.61803 - 1.17557i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.618034 - 1.90211i) q^{4} +(-3.23607 - 2.35114i) q^{5} +(-1.61803 - 1.17557i) q^{6} +(0.309017 - 0.951057i) q^{7} +(-0.809017 + 0.587785i) q^{9} -8.00000 q^{10} -2.00000 q^{12} +(1.61803 - 1.17557i) q^{13} +(-0.618034 - 1.90211i) q^{14} +(-1.23607 + 3.80423i) q^{15} +(3.23607 + 2.35114i) q^{16} +(-3.23607 - 2.35114i) q^{17} +(-0.618034 + 1.90211i) q^{18} +(-0.927051 - 2.85317i) q^{19} +(-6.47214 + 4.70228i) q^{20} -1.00000 q^{21} +2.00000 q^{23} +(3.39919 + 10.4616i) q^{25} +(1.23607 - 3.80423i) q^{26} +(0.809017 + 0.587785i) q^{27} +(-1.61803 - 1.17557i) q^{28} +(1.85410 - 5.70634i) q^{29} +(2.47214 + 7.60845i) q^{30} +(4.04508 - 2.93893i) q^{31} +8.00000 q^{32} -8.00000 q^{34} +(-3.23607 + 2.35114i) q^{35} +(0.618034 + 1.90211i) q^{36} +(0.927051 - 2.85317i) q^{37} +(-4.85410 - 3.52671i) q^{38} +(-1.61803 - 1.17557i) q^{39} +(-0.618034 - 1.90211i) q^{41} +(-1.61803 + 1.17557i) q^{42} +12.0000 q^{43} +4.00000 q^{45} +(3.23607 - 2.35114i) q^{46} +(0.618034 + 1.90211i) q^{47} +(1.23607 - 3.80423i) q^{48} +(4.85410 + 3.52671i) q^{49} +(17.7984 + 12.9313i) q^{50} +(-1.23607 + 3.80423i) q^{51} +(-1.23607 - 3.80423i) q^{52} +(-4.85410 + 3.52671i) q^{53} +2.00000 q^{54} +(-2.42705 + 1.76336i) q^{57} +(-3.70820 - 11.4127i) q^{58} +(-3.09017 + 9.51057i) q^{59} +(6.47214 + 4.70228i) q^{60} +(-2.42705 - 1.76336i) q^{61} +(3.09017 - 9.51057i) q^{62} +(0.309017 + 0.951057i) q^{63} +(6.47214 - 4.70228i) q^{64} -8.00000 q^{65} -1.00000 q^{67} +(-6.47214 + 4.70228i) q^{68} +(-0.618034 - 1.90211i) q^{69} +(-2.47214 + 7.60845i) q^{70} +(-3.39919 + 10.4616i) q^{73} +(-1.85410 - 5.70634i) q^{74} +(8.89919 - 6.46564i) q^{75} -6.00000 q^{76} -4.00000 q^{78} +(-8.89919 + 6.46564i) q^{79} +(-4.94427 - 15.2169i) q^{80} +(0.309017 - 0.951057i) q^{81} +(-3.23607 - 2.35114i) q^{82} +(-4.85410 - 3.52671i) q^{83} +(-0.618034 + 1.90211i) q^{84} +(4.94427 + 15.2169i) q^{85} +(19.4164 - 14.1068i) q^{86} -6.00000 q^{87} +12.0000 q^{89} +(6.47214 - 4.70228i) q^{90} +(-0.618034 - 1.90211i) q^{91} +(1.23607 - 3.80423i) q^{92} +(-4.04508 - 2.93893i) q^{93} +(3.23607 + 2.35114i) q^{94} +(-3.70820 + 11.4127i) q^{95} +(-2.47214 - 7.60845i) q^{96} +(-4.04508 + 2.93893i) q^{97} +12.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + q^{3} - 2 q^{4} - 4 q^{5} - 2 q^{6} - q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + q^{3} - 2 q^{4} - 4 q^{5} - 2 q^{6} - q^{7} - q^{9} - 32 q^{10} - 8 q^{12} + 2 q^{13} + 2 q^{14} + 4 q^{15} + 4 q^{16} - 4 q^{17} + 2 q^{18} + 3 q^{19} - 8 q^{20} - 4 q^{21} + 8 q^{23} - 11 q^{25} - 4 q^{26} + q^{27} - 2 q^{28} - 6 q^{29} - 8 q^{30} + 5 q^{31} + 32 q^{32} - 32 q^{34} - 4 q^{35} - 2 q^{36} - 3 q^{37} - 6 q^{38} - 2 q^{39} + 2 q^{41} - 2 q^{42} + 48 q^{43} + 16 q^{45} + 4 q^{46} - 2 q^{47} - 4 q^{48} + 6 q^{49} + 22 q^{50} + 4 q^{51} + 4 q^{52} - 6 q^{53} + 8 q^{54} - 3 q^{57} + 12 q^{58} + 10 q^{59} + 8 q^{60} - 3 q^{61} - 10 q^{62} - q^{63} + 8 q^{64} - 32 q^{65} - 4 q^{67} - 8 q^{68} + 2 q^{69} + 8 q^{70} + 11 q^{73} + 6 q^{74} + 11 q^{75} - 24 q^{76} - 16 q^{78} - 11 q^{79} + 16 q^{80} - q^{81} - 4 q^{82} - 6 q^{83} + 2 q^{84} - 16 q^{85} + 24 q^{86} - 24 q^{87} + 48 q^{89} + 8 q^{90} + 2 q^{91} - 4 q^{92} - 5 q^{93} + 4 q^{94} + 12 q^{95} + 8 q^{96} - 5 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.17557i 1.14412 0.831254i 0.156434 0.987688i \(-0.450000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) 0.618034 1.90211i 0.309017 0.951057i
\(5\) −3.23607 2.35114i −1.44721 1.05146i −0.986472 0.163928i \(-0.947584\pi\)
−0.460741 0.887535i \(-0.652416\pi\)
\(6\) −1.61803 1.17557i −0.660560 0.479925i
\(7\) 0.309017 0.951057i 0.116797 0.359466i −0.875520 0.483181i \(-0.839481\pi\)
0.992318 + 0.123716i \(0.0394811\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −8.00000 −2.52982
\(11\) 0 0
\(12\) −2.00000 −0.577350
\(13\) 1.61803 1.17557i 0.448762 0.326045i −0.340345 0.940301i \(-0.610544\pi\)
0.789107 + 0.614256i \(0.210544\pi\)
\(14\) −0.618034 1.90211i −0.165177 0.508361i
\(15\) −1.23607 + 3.80423i −0.319151 + 0.982247i
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) −3.23607 2.35114i −0.784862 0.570235i 0.121572 0.992583i \(-0.461206\pi\)
−0.906434 + 0.422347i \(0.861206\pi\)
\(18\) −0.618034 + 1.90211i −0.145672 + 0.448332i
\(19\) −0.927051 2.85317i −0.212680 0.654562i −0.999310 0.0371374i \(-0.988176\pi\)
0.786630 0.617425i \(-0.211824\pi\)
\(20\) −6.47214 + 4.70228i −1.44721 + 1.05146i
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) 3.39919 + 10.4616i 0.679837 + 2.09232i
\(26\) 1.23607 3.80423i 0.242413 0.746070i
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) −1.61803 1.17557i −0.305780 0.222162i
\(29\) 1.85410 5.70634i 0.344298 1.05964i −0.617660 0.786445i \(-0.711919\pi\)
0.961958 0.273196i \(-0.0880806\pi\)
\(30\) 2.47214 + 7.60845i 0.451348 + 1.38911i
\(31\) 4.04508 2.93893i 0.726519 0.527847i −0.161942 0.986800i \(-0.551776\pi\)
0.888460 + 0.458954i \(0.151776\pi\)
\(32\) 8.00000 1.41421
\(33\) 0 0
\(34\) −8.00000 −1.37199
\(35\) −3.23607 + 2.35114i −0.546995 + 0.397415i
\(36\) 0.618034 + 1.90211i 0.103006 + 0.317019i
\(37\) 0.927051 2.85317i 0.152406 0.469058i −0.845483 0.534003i \(-0.820687\pi\)
0.997889 + 0.0649448i \(0.0206871\pi\)
\(38\) −4.85410 3.52671i −0.787439 0.572108i
\(39\) −1.61803 1.17557i −0.259093 0.188242i
\(40\) 0 0
\(41\) −0.618034 1.90211i −0.0965207 0.297060i 0.891126 0.453755i \(-0.149916\pi\)
−0.987647 + 0.156695i \(0.949916\pi\)
\(42\) −1.61803 + 1.17557i −0.249668 + 0.181394i
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) 4.00000 0.596285
\(46\) 3.23607 2.35114i 0.477132 0.346657i
\(47\) 0.618034 + 1.90211i 0.0901495 + 0.277452i 0.985959 0.166986i \(-0.0534035\pi\)
−0.895810 + 0.444438i \(0.853403\pi\)
\(48\) 1.23607 3.80423i 0.178411 0.549093i
\(49\) 4.85410 + 3.52671i 0.693443 + 0.503816i
\(50\) 17.7984 + 12.9313i 2.51707 + 1.82876i
\(51\) −1.23607 + 3.80423i −0.173084 + 0.532698i
\(52\) −1.23607 3.80423i −0.171412 0.527551i
\(53\) −4.85410 + 3.52671i −0.666762 + 0.484431i −0.868940 0.494918i \(-0.835198\pi\)
0.202178 + 0.979349i \(0.435198\pi\)
\(54\) 2.00000 0.272166
\(55\) 0 0
\(56\) 0 0
\(57\) −2.42705 + 1.76336i −0.321471 + 0.233562i
\(58\) −3.70820 11.4127i −0.486911 1.49856i
\(59\) −3.09017 + 9.51057i −0.402306 + 1.23817i 0.520818 + 0.853668i \(0.325627\pi\)
−0.923124 + 0.384502i \(0.874373\pi\)
\(60\) 6.47214 + 4.70228i 0.835549 + 0.607062i
\(61\) −2.42705 1.76336i −0.310752 0.225775i 0.421467 0.906844i \(-0.361515\pi\)
−0.732219 + 0.681069i \(0.761515\pi\)
\(62\) 3.09017 9.51057i 0.392452 1.20784i
\(63\) 0.309017 + 0.951057i 0.0389325 + 0.119822i
\(64\) 6.47214 4.70228i 0.809017 0.587785i
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) −1.00000 −0.122169 −0.0610847 0.998133i \(-0.519456\pi\)
−0.0610847 + 0.998133i \(0.519456\pi\)
\(68\) −6.47214 + 4.70228i −0.784862 + 0.570235i
\(69\) −0.618034 1.90211i −0.0744025 0.228988i
\(70\) −2.47214 + 7.60845i −0.295477 + 0.909384i
\(71\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(72\) 0 0
\(73\) −3.39919 + 10.4616i −0.397845 + 1.22444i 0.528879 + 0.848697i \(0.322612\pi\)
−0.926724 + 0.375743i \(0.877388\pi\)
\(74\) −1.85410 5.70634i −0.215535 0.663348i
\(75\) 8.89919 6.46564i 1.02759 0.746588i
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) −4.00000 −0.452911
\(79\) −8.89919 + 6.46564i −1.00124 + 0.727441i −0.962353 0.271803i \(-0.912380\pi\)
−0.0388837 + 0.999244i \(0.512380\pi\)
\(80\) −4.94427 15.2169i −0.552786 1.70130i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −3.23607 2.35114i −0.357364 0.259640i
\(83\) −4.85410 3.52671i −0.532807 0.387107i 0.288600 0.957450i \(-0.406810\pi\)
−0.821407 + 0.570343i \(0.806810\pi\)
\(84\) −0.618034 + 1.90211i −0.0674330 + 0.207538i
\(85\) 4.94427 + 15.2169i 0.536282 + 1.65051i
\(86\) 19.4164 14.1068i 2.09373 1.52118i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 6.47214 4.70228i 0.682223 0.495664i
\(91\) −0.618034 1.90211i −0.0647876 0.199396i
\(92\) 1.23607 3.80423i 0.128869 0.396618i
\(93\) −4.04508 2.93893i −0.419456 0.304752i
\(94\) 3.23607 + 2.35114i 0.333775 + 0.242502i
\(95\) −3.70820 + 11.4127i −0.380454 + 1.17092i
\(96\) −2.47214 7.60845i −0.252311 0.776534i
\(97\) −4.04508 + 2.93893i −0.410716 + 0.298403i −0.773892 0.633318i \(-0.781693\pi\)
0.363176 + 0.931721i \(0.381693\pi\)
\(98\) 12.0000 1.21218
\(99\) 0 0
\(100\) 22.0000 2.20000
\(101\) 8.09017 5.87785i 0.805002 0.584868i −0.107375 0.994219i \(-0.534245\pi\)
0.912377 + 0.409350i \(0.134245\pi\)
\(102\) 2.47214 + 7.60845i 0.244778 + 0.753349i
\(103\) −2.16312 + 6.65740i −0.213138 + 0.655973i 0.786142 + 0.618046i \(0.212075\pi\)
−0.999281 + 0.0379269i \(0.987925\pi\)
\(104\) 0 0
\(105\) 3.23607 + 2.35114i 0.315808 + 0.229448i
\(106\) −3.70820 + 11.4127i −0.360173 + 1.10850i
\(107\) −5.56231 17.1190i −0.537728 1.65496i −0.737679 0.675152i \(-0.764078\pi\)
0.199950 0.979806i \(-0.435922\pi\)
\(108\) 1.61803 1.17557i 0.155695 0.113119i
\(109\) 1.00000 0.0957826 0.0478913 0.998853i \(-0.484750\pi\)
0.0478913 + 0.998853i \(0.484750\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 3.23607 2.35114i 0.305780 0.222162i
\(113\) 1.85410 + 5.70634i 0.174419 + 0.536807i 0.999606 0.0280521i \(-0.00893043\pi\)
−0.825187 + 0.564859i \(0.808930\pi\)
\(114\) −1.85410 + 5.70634i −0.173653 + 0.534448i
\(115\) −6.47214 4.70228i −0.603530 0.438490i
\(116\) −9.70820 7.05342i −0.901384 0.654894i
\(117\) −0.618034 + 1.90211i −0.0571373 + 0.175850i
\(118\) 6.18034 + 19.0211i 0.568946 + 1.75104i
\(119\) −3.23607 + 2.35114i −0.296650 + 0.215529i
\(120\) 0 0
\(121\) 0 0
\(122\) −6.00000 −0.543214
\(123\) −1.61803 + 1.17557i −0.145893 + 0.105998i
\(124\) −3.09017 9.51057i −0.277505 0.854074i
\(125\) 7.41641 22.8254i 0.663344 2.04156i
\(126\) 1.61803 + 1.17557i 0.144146 + 0.104728i
\(127\) 10.5172 + 7.64121i 0.933252 + 0.678048i 0.946787 0.321861i \(-0.104308\pi\)
−0.0135346 + 0.999908i \(0.504308\pi\)
\(128\) 0 0
\(129\) −3.70820 11.4127i −0.326489 1.00483i
\(130\) −12.9443 + 9.40456i −1.13529 + 0.824835i
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) −1.61803 + 1.17557i −0.139777 + 0.101554i
\(135\) −1.23607 3.80423i −0.106384 0.327416i
\(136\) 0 0
\(137\) −6.47214 4.70228i −0.552952 0.401743i 0.275921 0.961180i \(-0.411017\pi\)
−0.828873 + 0.559437i \(0.811017\pi\)
\(138\) −3.23607 2.35114i −0.275472 0.200142i
\(139\) 4.94427 15.2169i 0.419368 1.29068i −0.488918 0.872330i \(-0.662608\pi\)
0.908285 0.418351i \(-0.137392\pi\)
\(140\) 2.47214 + 7.60845i 0.208934 + 0.643032i
\(141\) 1.61803 1.17557i 0.136263 0.0990009i
\(142\) 0 0
\(143\) 0 0
\(144\) −4.00000 −0.333333
\(145\) −19.4164 + 14.1068i −1.61244 + 1.17151i
\(146\) 6.79837 + 20.9232i 0.562637 + 1.73162i
\(147\) 1.85410 5.70634i 0.152924 0.470651i
\(148\) −4.85410 3.52671i −0.399005 0.289894i
\(149\) 12.9443 + 9.40456i 1.06044 + 0.770452i 0.974169 0.225820i \(-0.0725062\pi\)
0.0862671 + 0.996272i \(0.472506\pi\)
\(150\) 6.79837 20.9232i 0.555085 1.70838i
\(151\) −4.94427 15.2169i −0.402359 1.23833i −0.923080 0.384607i \(-0.874337\pi\)
0.520721 0.853727i \(-0.325663\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) −3.23607 + 2.35114i −0.259093 + 0.188242i
\(157\) −0.309017 0.951057i −0.0246622 0.0759026i 0.937968 0.346722i \(-0.112705\pi\)
−0.962630 + 0.270820i \(0.912705\pi\)
\(158\) −6.79837 + 20.9232i −0.540850 + 1.66456i
\(159\) 4.85410 + 3.52671i 0.384955 + 0.279686i
\(160\) −25.8885 18.8091i −2.04667 1.48699i
\(161\) 0.618034 1.90211i 0.0487079 0.149908i
\(162\) −0.618034 1.90211i −0.0485573 0.149444i
\(163\) −20.2254 + 14.6946i −1.58418 + 1.15097i −0.672476 + 0.740119i \(0.734769\pi\)
−0.911701 + 0.410854i \(0.865231\pi\)
\(164\) −4.00000 −0.312348
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 14.5623 10.5801i 1.12687 0.818715i 0.141630 0.989920i \(-0.454766\pi\)
0.985236 + 0.171204i \(0.0547658\pi\)
\(168\) 0 0
\(169\) −2.78115 + 8.55951i −0.213935 + 0.658424i
\(170\) 25.8885 + 18.8091i 1.98556 + 1.44259i
\(171\) 2.42705 + 1.76336i 0.185601 + 0.134847i
\(172\) 7.41641 22.8254i 0.565496 1.74042i
\(173\) 7.41641 + 22.8254i 0.563859 + 1.73538i 0.671317 + 0.741170i \(0.265729\pi\)
−0.107458 + 0.994210i \(0.534271\pi\)
\(174\) −9.70820 + 7.05342i −0.735977 + 0.534719i
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) 10.0000 0.751646
\(178\) 19.4164 14.1068i 1.45532 1.05735i
\(179\) 1.85410 + 5.70634i 0.138582 + 0.426512i 0.996130 0.0878923i \(-0.0280131\pi\)
−0.857548 + 0.514404i \(0.828013\pi\)
\(180\) 2.47214 7.60845i 0.184262 0.567101i
\(181\) 18.6074 + 13.5191i 1.38308 + 1.00486i 0.996585 + 0.0825708i \(0.0263131\pi\)
0.386491 + 0.922293i \(0.373687\pi\)
\(182\) −3.23607 2.35114i −0.239873 0.174278i
\(183\) −0.927051 + 2.85317i −0.0685296 + 0.210912i
\(184\) 0 0
\(185\) −9.70820 + 7.05342i −0.713761 + 0.518578i
\(186\) −10.0000 −0.733236
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) 0.809017 0.587785i 0.0588473 0.0427551i
\(190\) 7.41641 + 22.8254i 0.538043 + 1.65593i
\(191\) 2.47214 7.60845i 0.178877 0.550528i −0.820912 0.571055i \(-0.806534\pi\)
0.999789 + 0.0205267i \(0.00653431\pi\)
\(192\) −6.47214 4.70228i −0.467086 0.339358i
\(193\) 4.04508 + 2.93893i 0.291172 + 0.211549i 0.723775 0.690036i \(-0.242405\pi\)
−0.432604 + 0.901584i \(0.642405\pi\)
\(194\) −3.09017 + 9.51057i −0.221861 + 0.682819i
\(195\) 2.47214 + 7.60845i 0.177033 + 0.544853i
\(196\) 9.70820 7.05342i 0.693443 0.503816i
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −21.0000 −1.48865 −0.744325 0.667817i \(-0.767229\pi\)
−0.744325 + 0.667817i \(0.767229\pi\)
\(200\) 0 0
\(201\) 0.309017 + 0.951057i 0.0217964 + 0.0670824i
\(202\) 6.18034 19.0211i 0.434847 1.33832i
\(203\) −4.85410 3.52671i −0.340691 0.247527i
\(204\) 6.47214 + 4.70228i 0.453140 + 0.329226i
\(205\) −2.47214 + 7.60845i −0.172661 + 0.531397i
\(206\) 4.32624 + 13.3148i 0.301423 + 0.927685i
\(207\) −1.61803 + 1.17557i −0.112461 + 0.0817078i
\(208\) 8.00000 0.554700
\(209\) 0 0
\(210\) 8.00000 0.552052
\(211\) 16.9894 12.3435i 1.16960 0.849761i 0.178635 0.983915i \(-0.442832\pi\)
0.990960 + 0.134154i \(0.0428318\pi\)
\(212\) 3.70820 + 11.4127i 0.254680 + 0.783826i
\(213\) 0 0
\(214\) −29.1246 21.1603i −1.99092 1.44649i
\(215\) −38.8328 28.2137i −2.64838 1.92416i
\(216\) 0 0
\(217\) −1.54508 4.75528i −0.104887 0.322810i
\(218\) 1.61803 1.17557i 0.109587 0.0796197i
\(219\) 11.0000 0.743311
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) −4.85410 + 3.52671i −0.325786 + 0.236697i
\(223\) −5.25329 16.1680i −0.351786 1.08269i −0.957850 0.287270i \(-0.907252\pi\)
0.606063 0.795416i \(-0.292748\pi\)
\(224\) 2.47214 7.60845i 0.165177 0.508361i
\(225\) −8.89919 6.46564i −0.593279 0.431043i
\(226\) 9.70820 + 7.05342i 0.645780 + 0.469187i
\(227\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(228\) 1.85410 + 5.70634i 0.122791 + 0.377912i
\(229\) 14.5623 10.5801i 0.962304 0.699155i 0.00861950 0.999963i \(-0.497256\pi\)
0.953685 + 0.300808i \(0.0972563\pi\)
\(230\) −16.0000 −1.05501
\(231\) 0 0
\(232\) 0 0
\(233\) −14.5623 + 10.5801i −0.954008 + 0.693128i −0.951752 0.306870i \(-0.900718\pi\)
−0.00225687 + 0.999997i \(0.500718\pi\)
\(234\) 1.23607 + 3.80423i 0.0808043 + 0.248690i
\(235\) 2.47214 7.60845i 0.161264 0.496321i
\(236\) 16.1803 + 11.7557i 1.05325 + 0.765231i
\(237\) 8.89919 + 6.46564i 0.578064 + 0.419988i
\(238\) −2.47214 + 7.60845i −0.160245 + 0.493183i
\(239\) 1.85410 + 5.70634i 0.119932 + 0.369112i 0.992944 0.118587i \(-0.0378363\pi\)
−0.873012 + 0.487699i \(0.837836\pi\)
\(240\) −12.9443 + 9.40456i −0.835549 + 0.607062i
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −4.85410 + 3.52671i −0.310752 + 0.225775i
\(245\) −7.41641 22.8254i −0.473817 1.45826i
\(246\) −1.23607 + 3.80423i −0.0788088 + 0.242549i
\(247\) −4.85410 3.52671i −0.308859 0.224399i
\(248\) 0 0
\(249\) −1.85410 + 5.70634i −0.117499 + 0.361625i
\(250\) −14.8328 45.6507i −0.938110 2.88720i
\(251\) 1.61803 1.17557i 0.102129 0.0742014i −0.535548 0.844504i \(-0.679895\pi\)
0.637678 + 0.770303i \(0.279895\pi\)
\(252\) 2.00000 0.125988
\(253\) 0 0
\(254\) 26.0000 1.63139
\(255\) 12.9443 9.40456i 0.810602 0.588937i
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) −4.32624 + 13.3148i −0.269863 + 0.830554i 0.720670 + 0.693279i \(0.243834\pi\)
−0.990533 + 0.137275i \(0.956166\pi\)
\(258\) −19.4164 14.1068i −1.20881 0.878254i
\(259\) −2.42705 1.76336i −0.150810 0.109570i
\(260\) −4.94427 + 15.2169i −0.306631 + 0.943712i
\(261\) 1.85410 + 5.70634i 0.114766 + 0.353214i
\(262\) −9.70820 + 7.05342i −0.599775 + 0.435762i
\(263\) −10.0000 −0.616626 −0.308313 0.951285i \(-0.599764\pi\)
−0.308313 + 0.951285i \(0.599764\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) −4.85410 + 3.52671i −0.297624 + 0.216237i
\(267\) −3.70820 11.4127i −0.226938 0.698445i
\(268\) −0.618034 + 1.90211i −0.0377524 + 0.116190i
\(269\) 11.3262 + 8.22899i 0.690573 + 0.501731i 0.876848 0.480767i \(-0.159642\pi\)
−0.186275 + 0.982498i \(0.559642\pi\)
\(270\) −6.47214 4.70228i −0.393882 0.286172i
\(271\) 2.47214 7.60845i 0.150172 0.462181i −0.847468 0.530846i \(-0.821874\pi\)
0.997640 + 0.0686657i \(0.0218742\pi\)
\(272\) −4.94427 15.2169i −0.299791 0.922660i
\(273\) −1.61803 + 1.17557i −0.0979279 + 0.0711488i
\(274\) −16.0000 −0.966595
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) 8.89919 6.46564i 0.534700 0.388483i −0.287413 0.957807i \(-0.592795\pi\)
0.822113 + 0.569324i \(0.192795\pi\)
\(278\) −9.88854 30.4338i −0.593075 1.82530i
\(279\) −1.54508 + 4.75528i −0.0925018 + 0.284691i
\(280\) 0 0
\(281\) 9.70820 + 7.05342i 0.579143 + 0.420772i 0.838415 0.545032i \(-0.183483\pi\)
−0.259272 + 0.965804i \(0.583483\pi\)
\(282\) 1.23607 3.80423i 0.0736068 0.226538i
\(283\) −3.39919 10.4616i −0.202061 0.621879i −0.999821 0.0189045i \(-0.993982\pi\)
0.797761 0.602974i \(-0.206018\pi\)
\(284\) 0 0
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) −6.47214 + 4.70228i −0.381374 + 0.277085i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) −14.8328 + 45.6507i −0.871013 + 2.68070i
\(291\) 4.04508 + 2.93893i 0.237127 + 0.172283i
\(292\) 17.7984 + 12.9313i 1.04157 + 0.756746i
\(293\) 3.70820 11.4127i 0.216636 0.666736i −0.782398 0.622779i \(-0.786004\pi\)
0.999033 0.0439568i \(-0.0139964\pi\)
\(294\) −3.70820 11.4127i −0.216267 0.665601i
\(295\) 32.3607 23.5114i 1.88411 1.36889i
\(296\) 0 0
\(297\) 0 0
\(298\) 32.0000 1.85371
\(299\) 3.23607 2.35114i 0.187147 0.135970i
\(300\) −6.79837 20.9232i −0.392504 1.20800i
\(301\) 3.70820 11.4127i 0.213737 0.657816i
\(302\) −25.8885 18.8091i −1.48972 1.08234i
\(303\) −8.09017 5.87785i −0.464768 0.337674i
\(304\) 3.70820 11.4127i 0.212680 0.654562i
\(305\) 3.70820 + 11.4127i 0.212331 + 0.653488i
\(306\) 6.47214 4.70228i 0.369987 0.268812i
\(307\) −19.0000 −1.08439 −0.542194 0.840254i \(-0.682406\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) −32.3607 + 23.5114i −1.83796 + 1.33536i
\(311\) 7.41641 + 22.8254i 0.420546 + 1.29431i 0.907195 + 0.420710i \(0.138219\pi\)
−0.486649 + 0.873597i \(0.661781\pi\)
\(312\) 0 0
\(313\) 8.09017 + 5.87785i 0.457283 + 0.332236i 0.792465 0.609918i \(-0.208798\pi\)
−0.335181 + 0.942154i \(0.608798\pi\)
\(314\) −1.61803 1.17557i −0.0913109 0.0663413i
\(315\) 1.23607 3.80423i 0.0696445 0.214344i
\(316\) 6.79837 + 20.9232i 0.382438 + 1.17702i
\(317\) 16.1803 11.7557i 0.908778 0.660266i −0.0319272 0.999490i \(-0.510164\pi\)
0.940706 + 0.339224i \(0.110164\pi\)
\(318\) 12.0000 0.672927
\(319\) 0 0
\(320\) −32.0000 −1.78885
\(321\) −14.5623 + 10.5801i −0.812789 + 0.590526i
\(322\) −1.23607 3.80423i −0.0688834 0.212001i
\(323\) −3.70820 + 11.4127i −0.206330 + 0.635018i
\(324\) −1.61803 1.17557i −0.0898908 0.0653095i
\(325\) 17.7984 + 12.9313i 0.987276 + 0.717298i
\(326\) −15.4508 + 47.5528i −0.855743 + 2.63371i
\(327\) −0.309017 0.951057i −0.0170887 0.0525935i
\(328\) 0 0
\(329\) 2.00000 0.110264
\(330\) 0 0
\(331\) −11.0000 −0.604615 −0.302307 0.953211i \(-0.597757\pi\)
−0.302307 + 0.953211i \(0.597757\pi\)
\(332\) −9.70820 + 7.05342i −0.532807 + 0.387107i
\(333\) 0.927051 + 2.85317i 0.0508021 + 0.156353i
\(334\) 11.1246 34.2380i 0.608712 1.87342i
\(335\) 3.23607 + 2.35114i 0.176805 + 0.128457i
\(336\) −3.23607 2.35114i −0.176542 0.128265i
\(337\) 1.54508 4.75528i 0.0841661 0.259037i −0.900113 0.435656i \(-0.856516\pi\)
0.984279 + 0.176620i \(0.0565163\pi\)
\(338\) 5.56231 + 17.1190i 0.302550 + 0.931152i
\(339\) 4.85410 3.52671i 0.263639 0.191545i
\(340\) 32.0000 1.73544
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) 10.5172 7.64121i 0.567877 0.412586i
\(344\) 0 0
\(345\) −2.47214 + 7.60845i −0.133095 + 0.409625i
\(346\) 38.8328 + 28.2137i 2.08767 + 1.51678i
\(347\) 1.61803 + 1.17557i 0.0868606 + 0.0631079i 0.630368 0.776296i \(-0.282904\pi\)
−0.543507 + 0.839404i \(0.682904\pi\)
\(348\) −3.70820 + 11.4127i −0.198781 + 0.611784i
\(349\) 4.63525 + 14.2658i 0.248120 + 0.763633i 0.995108 + 0.0987960i \(0.0314991\pi\)
−0.746988 + 0.664837i \(0.768501\pi\)
\(350\) 17.7984 12.9313i 0.951363 0.691206i
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 16.1803 11.7557i 0.859975 0.624809i
\(355\) 0 0
\(356\) 7.41641 22.8254i 0.393069 1.20974i
\(357\) 3.23607 + 2.35114i 0.171271 + 0.124436i
\(358\) 9.70820 + 7.05342i 0.513095 + 0.372785i
\(359\) 1.23607 3.80423i 0.0652372 0.200779i −0.913125 0.407680i \(-0.866338\pi\)
0.978362 + 0.206901i \(0.0663378\pi\)
\(360\) 0 0
\(361\) 8.09017 5.87785i 0.425798 0.309361i
\(362\) 46.0000 2.41771
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) 35.5967 25.8626i 1.86322 1.35371i
\(366\) 1.85410 + 5.70634i 0.0969155 + 0.298275i
\(367\) −2.47214 + 7.60845i −0.129044 + 0.397158i −0.994616 0.103627i \(-0.966955\pi\)
0.865572 + 0.500785i \(0.166955\pi\)
\(368\) 6.47214 + 4.70228i 0.337383 + 0.245123i
\(369\) 1.61803 + 1.17557i 0.0842315 + 0.0611978i
\(370\) −7.41641 + 22.8254i −0.385561 + 1.18663i
\(371\) 1.85410 + 5.70634i 0.0962602 + 0.296258i
\(372\) −8.09017 + 5.87785i −0.419456 + 0.304752i
\(373\) 7.00000 0.362446 0.181223 0.983442i \(-0.441994\pi\)
0.181223 + 0.983442i \(0.441994\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) −3.70820 11.4127i −0.190982 0.587783i
\(378\) 0.618034 1.90211i 0.0317882 0.0978341i
\(379\) −12.9443 9.40456i −0.664903 0.483080i 0.203412 0.979093i \(-0.434797\pi\)
−0.868315 + 0.496013i \(0.834797\pi\)
\(380\) 19.4164 + 14.1068i 0.996041 + 0.723666i
\(381\) 4.01722 12.3637i 0.205808 0.633413i
\(382\) −4.94427 15.2169i −0.252971 0.778565i
\(383\) −21.0344 + 15.2824i −1.07481 + 0.780895i −0.976771 0.214288i \(-0.931257\pi\)
−0.0980391 + 0.995183i \(0.531257\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) −9.70820 + 7.05342i −0.493496 + 0.358546i
\(388\) 3.09017 + 9.51057i 0.156880 + 0.482826i
\(389\) 5.56231 17.1190i 0.282020 0.867969i −0.705256 0.708953i \(-0.749168\pi\)
0.987276 0.159016i \(-0.0508321\pi\)
\(390\) 12.9443 + 9.40456i 0.655459 + 0.476219i
\(391\) −6.47214 4.70228i −0.327310 0.237805i
\(392\) 0 0
\(393\) 1.85410 + 5.70634i 0.0935271 + 0.287847i
\(394\) −12.9443 + 9.40456i −0.652123 + 0.473795i
\(395\) 44.0000 2.21388
\(396\) 0 0
\(397\) 31.0000 1.55585 0.777923 0.628360i \(-0.216273\pi\)
0.777923 + 0.628360i \(0.216273\pi\)
\(398\) −33.9787 + 24.6870i −1.70320 + 1.23745i
\(399\) 0.927051 + 2.85317i 0.0464106 + 0.142837i
\(400\) −13.5967 + 41.8465i −0.679837 + 2.09232i
\(401\) 22.6525 + 16.4580i 1.13121 + 0.821873i 0.985871 0.167509i \(-0.0535724\pi\)
0.145340 + 0.989382i \(0.453572\pi\)
\(402\) 1.61803 + 1.17557i 0.0807002 + 0.0586321i
\(403\) 3.09017 9.51057i 0.153932 0.473755i
\(404\) −6.18034 19.0211i −0.307483 0.946337i
\(405\) −3.23607 + 2.35114i −0.160802 + 0.116829i
\(406\) −12.0000 −0.595550
\(407\) 0 0
\(408\) 0 0
\(409\) −16.9894 + 12.3435i −0.840070 + 0.610346i −0.922390 0.386260i \(-0.873767\pi\)
0.0823205 + 0.996606i \(0.473767\pi\)
\(410\) 4.94427 + 15.2169i 0.244180 + 0.751509i
\(411\) −2.47214 + 7.60845i −0.121941 + 0.375297i
\(412\) 11.3262 + 8.22899i 0.558004 + 0.405413i
\(413\) 8.09017 + 5.87785i 0.398091 + 0.289230i
\(414\) −1.23607 + 3.80423i −0.0607494 + 0.186968i
\(415\) 7.41641 + 22.8254i 0.364057 + 1.12045i
\(416\) 12.9443 9.40456i 0.634645 0.461097i
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 6.47214 4.70228i 0.315808 0.229448i
\(421\) −0.618034 1.90211i −0.0301211 0.0927033i 0.934866 0.355001i \(-0.115520\pi\)
−0.964987 + 0.262298i \(0.915520\pi\)
\(422\) 12.9787 39.9444i 0.631794 1.94446i
\(423\) −1.61803 1.17557i −0.0786715 0.0571582i
\(424\) 0 0
\(425\) 13.5967 41.8465i 0.659539 2.02985i
\(426\) 0 0
\(427\) −2.42705 + 1.76336i −0.117453 + 0.0853348i
\(428\) −36.0000 −1.74013
\(429\) 0 0
\(430\) −96.0000 −4.62953
\(431\) −14.5623 + 10.5801i −0.701442 + 0.509627i −0.880401 0.474229i \(-0.842727\pi\)
0.178960 + 0.983856i \(0.442727\pi\)
\(432\) 1.23607 + 3.80423i 0.0594703 + 0.183031i
\(433\) −5.25329 + 16.1680i −0.252457 + 0.776983i 0.741863 + 0.670551i \(0.233942\pi\)
−0.994320 + 0.106431i \(0.966058\pi\)
\(434\) −8.09017 5.87785i −0.388341 0.282146i
\(435\) 19.4164 + 14.1068i 0.930946 + 0.676371i
\(436\) 0.618034 1.90211i 0.0295985 0.0910947i
\(437\) −1.85410 5.70634i −0.0886937 0.272971i
\(438\) 17.7984 12.9313i 0.850439 0.617880i
\(439\) 37.0000 1.76591 0.882957 0.469454i \(-0.155549\pi\)
0.882957 + 0.469454i \(0.155549\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −12.9443 + 9.40456i −0.615696 + 0.447329i
\(443\) 1.23607 + 3.80423i 0.0587274 + 0.180744i 0.976117 0.217247i \(-0.0697076\pi\)
−0.917389 + 0.397991i \(0.869708\pi\)
\(444\) −1.85410 + 5.70634i −0.0879918 + 0.270811i
\(445\) −38.8328 28.2137i −1.84085 1.33746i
\(446\) −27.5066 19.9847i −1.30247 0.946303i
\(447\) 4.94427 15.2169i 0.233856 0.719735i
\(448\) −2.47214 7.60845i −0.116797 0.359466i
\(449\) −16.1803 + 11.7557i −0.763597 + 0.554786i −0.900012 0.435866i \(-0.856442\pi\)
0.136414 + 0.990652i \(0.456442\pi\)
\(450\) −22.0000 −1.03709
\(451\) 0 0
\(452\) 12.0000 0.564433
\(453\) −12.9443 + 9.40456i −0.608175 + 0.441865i
\(454\) 0 0
\(455\) −2.47214 + 7.60845i −0.115896 + 0.356690i
\(456\) 0 0
\(457\) −14.5623 10.5801i −0.681196 0.494918i 0.192558 0.981286i \(-0.438322\pi\)
−0.873754 + 0.486368i \(0.838322\pi\)
\(458\) 11.1246 34.2380i 0.519819 1.59984i
\(459\) −1.23607 3.80423i −0.0576947 0.177566i
\(460\) −12.9443 + 9.40456i −0.603530 + 0.438490i
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 19.4164 14.1068i 0.901384 0.654894i
\(465\) 6.18034 + 19.0211i 0.286606 + 0.882084i
\(466\) −11.1246 + 34.2380i −0.515338 + 1.58605i
\(467\) −19.4164 14.1068i −0.898484 0.652787i 0.0395920 0.999216i \(-0.487394\pi\)
−0.938076 + 0.346429i \(0.887394\pi\)
\(468\) 3.23607 + 2.35114i 0.149587 + 0.108682i
\(469\) −0.309017 + 0.951057i −0.0142691 + 0.0439157i
\(470\) −4.94427 15.2169i −0.228062 0.701903i
\(471\) −0.809017 + 0.587785i −0.0372775 + 0.0270837i
\(472\) 0 0
\(473\) 0 0
\(474\) 22.0000 1.01049
\(475\) 26.6976 19.3969i 1.22497 0.889991i
\(476\) 2.47214 + 7.60845i 0.113310 + 0.348733i
\(477\) 1.85410 5.70634i 0.0848935 0.261275i
\(478\) 9.70820 + 7.05342i 0.444043 + 0.322616i
\(479\) 17.7984 + 12.9313i 0.813228 + 0.590845i 0.914765 0.403987i \(-0.132376\pi\)
−0.101536 + 0.994832i \(0.532376\pi\)
\(480\) −9.88854 + 30.4338i −0.451348 + 1.38911i
\(481\) −1.85410 5.70634i −0.0845398 0.260187i
\(482\) −22.6525 + 16.4580i −1.03179 + 0.749641i
\(483\) −2.00000 −0.0910032
\(484\) 0 0
\(485\) 20.0000 0.908153
\(486\) −1.61803 + 1.17557i −0.0733955 + 0.0533250i
\(487\) −12.3607 38.0423i −0.560116 1.72386i −0.682035 0.731319i \(-0.738905\pi\)
0.121919 0.992540i \(-0.461095\pi\)
\(488\) 0 0
\(489\) 20.2254 + 14.6946i 0.914625 + 0.664514i
\(490\) −38.8328 28.2137i −1.75429 1.27456i
\(491\) −4.32624 + 13.3148i −0.195240 + 0.600888i 0.804733 + 0.593636i \(0.202308\pi\)
−0.999974 + 0.00725163i \(0.997692\pi\)
\(492\) 1.23607 + 3.80423i 0.0557262 + 0.171508i
\(493\) −19.4164 + 14.1068i −0.874471 + 0.635340i
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) 20.0000 0.898027
\(497\) 0 0
\(498\) 3.70820 + 11.4127i 0.166169 + 0.511414i
\(499\) 7.10739 21.8743i 0.318171 0.979228i −0.656259 0.754536i \(-0.727862\pi\)
0.974430 0.224693i \(-0.0721378\pi\)
\(500\) −38.8328 28.2137i −1.73666 1.26175i
\(501\) −14.5623 10.5801i −0.650596 0.472686i
\(502\) 1.23607 3.80423i 0.0551684 0.169791i
\(503\) −9.88854 30.4338i −0.440908 1.35698i −0.886909 0.461944i \(-0.847152\pi\)
0.446001 0.895033i \(-0.352848\pi\)
\(504\) 0 0
\(505\) −40.0000 −1.77998
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 21.0344 15.2824i 0.933252 0.678048i
\(509\) 1.85410 + 5.70634i 0.0821816 + 0.252929i 0.983702 0.179808i \(-0.0575477\pi\)
−0.901520 + 0.432737i \(0.857548\pi\)
\(510\) 9.88854 30.4338i 0.437872 1.34763i
\(511\) 8.89919 + 6.46564i 0.393677 + 0.286023i
\(512\) 25.8885 + 18.8091i 1.14412 + 0.831254i
\(513\) 0.927051 2.85317i 0.0409303 0.125971i
\(514\) 8.65248 + 26.6296i 0.381644 + 1.17458i
\(515\) 22.6525 16.4580i 0.998187 0.725226i
\(516\) −24.0000 −1.05654
\(517\) 0 0
\(518\) −6.00000 −0.263625
\(519\) 19.4164 14.1068i 0.852286 0.619222i
\(520\) 0 0
\(521\) −1.85410 + 5.70634i −0.0812297 + 0.249999i −0.983421 0.181337i \(-0.941958\pi\)
0.902191 + 0.431336i \(0.141958\pi\)
\(522\) 9.70820 + 7.05342i 0.424917 + 0.308720i
\(523\) −23.4615 17.0458i −1.02590 0.745360i −0.0584156 0.998292i \(-0.518605\pi\)
−0.967484 + 0.252933i \(0.918605\pi\)
\(524\) −3.70820 + 11.4127i −0.161994 + 0.498565i
\(525\) −3.39919 10.4616i −0.148353 0.456583i
\(526\) −16.1803 + 11.7557i −0.705496 + 0.512573i
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 38.8328 28.2137i 1.68679 1.22552i
\(531\) −3.09017 9.51057i −0.134102 0.412723i
\(532\) −1.85410 + 5.70634i −0.0803855 + 0.247401i
\(533\) −3.23607 2.35114i −0.140170 0.101839i
\(534\) −19.4164 14.1068i −0.840230 0.610463i
\(535\) −22.2492 + 68.4761i −0.961918 + 2.96048i
\(536\) 0 0
\(537\) 4.85410 3.52671i 0.209470 0.152189i
\(538\) 28.0000 1.20717
\(539\) 0 0
\(540\) −8.00000 −0.344265
\(541\) 1.61803 1.17557i 0.0695647 0.0505417i −0.552459 0.833540i \(-0.686311\pi\)
0.622024 + 0.782998i \(0.286311\pi\)
\(542\) −4.94427 15.2169i −0.212375 0.653622i
\(543\) 7.10739 21.8743i 0.305007 0.938716i
\(544\) −25.8885 18.8091i −1.10996 0.806435i
\(545\) −3.23607 2.35114i −0.138618 0.100712i
\(546\) −1.23607 + 3.80423i −0.0528988 + 0.162806i
\(547\) 6.18034 + 19.0211i 0.264252 + 0.813285i 0.991865 + 0.127296i \(0.0406299\pi\)
−0.727612 + 0.685988i \(0.759370\pi\)
\(548\) −12.9443 + 9.40456i −0.552952 + 0.401743i
\(549\) 3.00000 0.128037
\(550\) 0 0
\(551\) −18.0000 −0.766826
\(552\) 0 0
\(553\) 3.39919 + 10.4616i 0.144548 + 0.444873i
\(554\) 6.79837 20.9232i 0.288835 0.888943i
\(555\) 9.70820 + 7.05342i 0.412090 + 0.299401i
\(556\) −25.8885 18.8091i −1.09792 0.797685i
\(557\) −2.47214 + 7.60845i −0.104748 + 0.322380i −0.989671 0.143356i \(-0.954211\pi\)
0.884923 + 0.465737i \(0.154211\pi\)
\(558\) 3.09017 + 9.51057i 0.130817 + 0.402614i
\(559\) 19.4164 14.1068i 0.821227 0.596656i
\(560\) −16.0000 −0.676123
\(561\) 0 0
\(562\) 24.0000 1.01238
\(563\) −22.6525 + 16.4580i −0.954688 + 0.693621i −0.951911 0.306375i \(-0.900884\pi\)
−0.00277703 + 0.999996i \(0.500884\pi\)
\(564\) −1.23607 3.80423i −0.0520479 0.160187i
\(565\) 7.41641 22.8254i 0.312011 0.960270i
\(566\) −17.7984 12.9313i −0.748121 0.543542i
\(567\) −0.809017 0.587785i −0.0339755 0.0246847i
\(568\) 0 0
\(569\) 3.70820 + 11.4127i 0.155456 + 0.478444i 0.998207 0.0598595i \(-0.0190653\pi\)
−0.842751 + 0.538304i \(0.819065\pi\)
\(570\) 19.4164 14.1068i 0.813264 0.590871i
\(571\) −25.0000 −1.04622 −0.523109 0.852266i \(-0.675228\pi\)
−0.523109 + 0.852266i \(0.675228\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) −3.23607 + 2.35114i −0.135071 + 0.0981347i
\(575\) 6.79837 + 20.9232i 0.283512 + 0.872560i
\(576\) −2.47214 + 7.60845i −0.103006 + 0.317019i
\(577\) −12.1353 8.81678i −0.505197 0.367047i 0.305801 0.952095i \(-0.401076\pi\)
−0.810999 + 0.585048i \(0.801076\pi\)
\(578\) −1.61803 1.17557i −0.0673013 0.0488973i
\(579\) 1.54508 4.75528i 0.0642115 0.197623i
\(580\) 14.8328 + 45.6507i 0.615899 + 1.89554i
\(581\) −4.85410 + 3.52671i −0.201382 + 0.146313i
\(582\) 10.0000 0.414513
\(583\) 0 0
\(584\) 0 0
\(585\) 6.47214 4.70228i 0.267590 0.194415i
\(586\) −7.41641 22.8254i −0.306369 0.942907i
\(587\) 1.23607 3.80423i 0.0510180 0.157017i −0.922302 0.386471i \(-0.873694\pi\)
0.973320 + 0.229454i \(0.0736940\pi\)
\(588\) −9.70820 7.05342i −0.400360 0.290878i
\(589\) −12.1353 8.81678i −0.500024 0.363289i
\(590\) 24.7214 76.0845i 1.01776 3.13235i
\(591\) 2.47214 + 7.60845i 0.101690 + 0.312970i
\(592\) 9.70820 7.05342i 0.399005 0.289894i
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) 25.8885 18.8091i 1.06044 0.770452i
\(597\) 6.48936 + 19.9722i 0.265592 + 0.817407i
\(598\) 2.47214 7.60845i 0.101093 0.311133i
\(599\) 6.47214 + 4.70228i 0.264444 + 0.192130i 0.712104 0.702074i \(-0.247742\pi\)
−0.447660 + 0.894204i \(0.647742\pi\)
\(600\) 0 0
\(601\) −0.309017 + 0.951057i −0.0126051 + 0.0387944i −0.957161 0.289556i \(-0.906493\pi\)
0.944556 + 0.328350i \(0.106493\pi\)
\(602\) −7.41641 22.8254i −0.302270 0.930292i
\(603\) 0.809017 0.587785i 0.0329457 0.0239365i
\(604\) −32.0000 −1.30206
\(605\) 0 0
\(606\) −20.0000 −0.812444
\(607\) −6.47214 + 4.70228i −0.262696 + 0.190860i −0.711335 0.702853i \(-0.751909\pi\)
0.448639 + 0.893713i \(0.351909\pi\)
\(608\) −7.41641 22.8254i −0.300775 0.925690i
\(609\) −1.85410 + 5.70634i −0.0751320 + 0.231233i
\(610\) 19.4164 + 14.1068i 0.786147 + 0.571170i
\(611\) 3.23607 + 2.35114i 0.130917 + 0.0951170i
\(612\) 2.47214 7.60845i 0.0999302 0.307553i
\(613\) −4.01722 12.3637i −0.162254 0.499367i 0.836569 0.547861i \(-0.184558\pi\)
−0.998823 + 0.0484944i \(0.984558\pi\)
\(614\) −30.7426 + 22.3358i −1.24067 + 0.901401i
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) −24.0000 −0.966204 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(618\) 11.3262 8.22899i 0.455608 0.331019i
\(619\) −1.23607 3.80423i −0.0496818 0.152905i 0.923138 0.384469i \(-0.125616\pi\)
−0.972820 + 0.231565i \(0.925616\pi\)
\(620\) −12.3607 + 38.0423i −0.496417 + 1.52781i
\(621\) 1.61803 + 1.17557i 0.0649295 + 0.0471740i
\(622\) 38.8328 + 28.2137i 1.55705 + 1.13127i
\(623\) 3.70820 11.4127i 0.148566 0.457239i
\(624\) −2.47214 7.60845i −0.0989646 0.304582i
\(625\) −33.1697 + 24.0992i −1.32679 + 0.963968i
\(626\) 20.0000 0.799361
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −9.70820 + 7.05342i −0.387091 + 0.281238i
\(630\) −2.47214 7.60845i −0.0984923 0.303128i
\(631\) −9.88854 + 30.4338i −0.393657 + 1.21155i 0.536346 + 0.843998i \(0.319804\pi\)
−0.930003 + 0.367553i \(0.880196\pi\)
\(632\) 0 0
\(633\) −16.9894 12.3435i −0.675266 0.490610i
\(634\) 12.3607 38.0423i 0.490905 1.51085i
\(635\) −16.0689 49.4549i −0.637674 1.96256i
\(636\) 9.70820 7.05342i 0.384955 0.279686i
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.41641 22.8254i −0.292930 0.901547i −0.983909 0.178672i \(-0.942820\pi\)
0.690978 0.722876i \(-0.257180\pi\)
\(642\) −11.1246 + 34.2380i −0.439053 + 1.35127i
\(643\) 29.9336 + 21.7481i 1.18047 + 0.857660i 0.992224 0.124463i \(-0.0397208\pi\)
0.188243 + 0.982123i \(0.439721\pi\)
\(644\) −3.23607 2.35114i −0.127519 0.0926479i
\(645\) −14.8328 + 45.6507i −0.584042 + 1.79750i
\(646\) 7.41641 + 22.8254i 0.291795 + 0.898052i
\(647\) 3.23607 2.35114i 0.127223 0.0924329i −0.522354 0.852729i \(-0.674946\pi\)
0.649577 + 0.760296i \(0.274946\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 44.0000 1.72582
\(651\) −4.04508 + 2.93893i −0.158539 + 0.115186i
\(652\) 15.4508 + 47.5528i 0.605102 + 1.86231i
\(653\) 3.09017 9.51057i 0.120928 0.372177i −0.872209 0.489133i \(-0.837313\pi\)
0.993137 + 0.116955i \(0.0373134\pi\)
\(654\) −1.61803 1.17557i −0.0632701 0.0459684i
\(655\) 19.4164 + 14.1068i 0.758662 + 0.551200i
\(656\) 2.47214 7.60845i 0.0965207 0.297060i
\(657\) −3.39919 10.4616i −0.132615 0.408147i
\(658\) 3.23607 2.35114i 0.126155 0.0916570i
\(659\) 46.0000 1.79191 0.895953 0.444149i \(-0.146494\pi\)
0.895953 + 0.444149i \(0.146494\pi\)
\(660\) 0 0
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) −17.7984 + 12.9313i −0.691753 + 0.502588i
\(663\) 2.47214 + 7.60845i 0.0960098 + 0.295488i
\(664\) 0 0
\(665\) 9.70820 + 7.05342i 0.376468 + 0.273520i
\(666\) 4.85410 + 3.52671i 0.188093 + 0.136657i
\(667\) 3.70820 11.4127i 0.143582 0.441901i
\(668\) −11.1246 34.2380i −0.430424 1.32471i
\(669\) −13.7533 + 9.99235i −0.531733 + 0.386327i
\(670\) 8.00000 0.309067
\(671\) 0 0
\(672\) −8.00000 −0.308607
\(673\) 10.5172 7.64121i 0.405409 0.294547i −0.366332 0.930484i \(-0.619386\pi\)
0.771741 + 0.635937i \(0.219386\pi\)
\(674\) −3.09017 9.51057i −0.119029 0.366333i
\(675\) −3.39919 + 10.4616i −0.130835 + 0.402668i
\(676\) 14.5623 + 10.5801i 0.560089 + 0.406928i
\(677\) −9.70820 7.05342i −0.373117 0.271085i 0.385386 0.922756i \(-0.374068\pi\)
−0.758502 + 0.651671i \(0.774068\pi\)
\(678\) 3.70820 11.4127i 0.142413 0.438301i
\(679\) 1.54508 + 4.75528i 0.0592949 + 0.182491i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −34.0000 −1.30097 −0.650487 0.759517i \(-0.725435\pi\)
−0.650487 + 0.759517i \(0.725435\pi\)
\(684\) 4.85410 3.52671i 0.185601 0.134847i
\(685\) 9.88854 + 30.4338i 0.377822 + 1.16282i
\(686\) 8.03444 24.7275i 0.306756 0.944099i
\(687\) −14.5623 10.5801i −0.555587 0.403657i
\(688\) 38.8328 + 28.2137i 1.48049 + 1.07564i
\(689\) −3.70820 + 11.4127i −0.141271 + 0.434788i
\(690\) 4.94427 + 15.2169i 0.188225 + 0.579298i
\(691\) −8.89919 + 6.46564i −0.338541 + 0.245964i −0.744046 0.668128i \(-0.767096\pi\)
0.405505 + 0.914093i \(0.367096\pi\)
\(692\) 48.0000 1.82469
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −51.7771 + 37.6183i −1.96402 + 1.42694i
\(696\) 0 0
\(697\) −2.47214 + 7.60845i −0.0936388 + 0.288191i
\(698\) 24.2705 + 17.6336i 0.918652 + 0.667440i
\(699\) 14.5623 + 10.5801i 0.550797 + 0.400177i
\(700\) 6.79837 20.9232i 0.256954 0.790824i
\(701\) 15.4508 + 47.5528i 0.583571 + 1.79605i 0.604936 + 0.796274i \(0.293198\pi\)
−0.0213660 + 0.999772i \(0.506802\pi\)
\(702\) 3.23607 2.35114i 0.122138 0.0887381i
\(703\) −9.00000 −0.339441
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) −19.4164 + 14.1068i −0.730746 + 0.530918i
\(707\) −3.09017 9.51057i −0.116218 0.357682i
\(708\) 6.18034 19.0211i 0.232271 0.714858i
\(709\) −21.0344 15.2824i −0.789965 0.573943i 0.117988 0.993015i \(-0.462356\pi\)
−0.907953 + 0.419072i \(0.862356\pi\)
\(710\) 0 0
\(711\) 3.39919 10.4616i 0.127479 0.392341i
\(712\) 0 0
\(713\) 8.09017 5.87785i 0.302979 0.220127i
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 4.85410 3.52671i 0.181280 0.131707i
\(718\) −2.47214 7.60845i −0.0922593 0.283945i
\(719\) −1.85410 + 5.70634i −0.0691463 + 0.212811i −0.979659 0.200672i \(-0.935688\pi\)
0.910512 + 0.413482i \(0.135688\pi\)
\(720\) 12.9443 + 9.40456i 0.482405 + 0.350487i
\(721\) 5.66312 + 4.11450i 0.210906 + 0.153232i
\(722\) 6.18034 19.0211i 0.230008 0.707893i
\(723\) 4.32624 + 13.3148i 0.160895 + 0.495182i
\(724\) 37.2148 27.0381i 1.38308 1.00486i
\(725\) 66.0000 2.45118
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 27.1935 83.6930i 1.00648 3.09762i
\(731\) −38.8328 28.2137i −1.43628 1.04352i
\(732\) 4.85410 + 3.52671i 0.179413 + 0.130351i
\(733\) −9.27051 + 28.5317i −0.342414 + 1.05384i 0.620540 + 0.784175i \(0.286914\pi\)
−0.962954 + 0.269667i \(0.913086\pi\)
\(734\) 4.94427 + 15.2169i 0.182496 + 0.561666i
\(735\) −19.4164 + 14.1068i −0.716185 + 0.520339i
\(736\) 16.0000 0.589768
\(737\) 0 0
\(738\) 4.00000 0.147242
\(739\) −33.1697 + 24.0992i −1.22017 + 0.886503i −0.996114 0.0880737i \(-0.971929\pi\)
−0.224053 + 0.974577i \(0.571929\pi\)
\(740\) 7.41641 + 22.8254i 0.272633 + 0.839077i
\(741\) −1.85410 + 5.70634i −0.0681121 + 0.209628i
\(742\) 9.70820 + 7.05342i 0.356399 + 0.258939i
\(743\) 16.1803 + 11.7557i 0.593599 + 0.431275i 0.843601 0.536970i \(-0.180431\pi\)
−0.250002 + 0.968245i \(0.580431\pi\)
\(744\) 0 0
\(745\) −19.7771 60.8676i −0.724576 2.23002i
\(746\) 11.3262 8.22899i 0.414683 0.301285i
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) −38.8328 + 28.2137i −1.41797 + 1.03022i
\(751\) 5.87132 + 18.0701i 0.214248 + 0.659386i 0.999206 + 0.0398381i \(0.0126842\pi\)
−0.784959 + 0.619548i \(0.787316\pi\)
\(752\) −2.47214 + 7.60845i −0.0901495 + 0.277452i
\(753\) −1.61803 1.17557i −0.0589644 0.0428402i
\(754\) −19.4164 14.1068i −0.707104 0.513741i
\(755\) −19.7771 + 60.8676i −0.719762 + 2.21520i
\(756\) −0.618034 1.90211i −0.0224777 0.0691792i
\(757\) −4.04508 + 2.93893i −0.147021 + 0.106817i −0.658864 0.752262i \(-0.728963\pi\)
0.511843 + 0.859079i \(0.328963\pi\)
\(758\) −32.0000 −1.16229
\(759\) 0 0
\(760\) 0 0
\(761\) 19.4164 14.1068i 0.703844 0.511373i −0.177338 0.984150i \(-0.556748\pi\)
0.881182 + 0.472777i \(0.156748\pi\)
\(762\) −8.03444 24.7275i −0.291057 0.895782i
\(763\) 0.309017 0.951057i 0.0111872 0.0344306i
\(764\) −12.9443 9.40456i −0.468307 0.340245i
\(765\) −12.9443 9.40456i −0.468001 0.340023i
\(766\) −16.0689 + 49.4549i −0.580592 + 1.78688i
\(767\) 6.18034 + 19.0211i 0.223159 + 0.686813i
\(768\) 12.9443 9.40456i 0.467086 0.339358i
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) 8.09017 5.87785i 0.291172 0.211549i
\(773\) 11.1246 + 34.2380