Properties

Label 363.2.e.h.130.1
Level $363$
Weight $2$
Character 363.130
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 130.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 363.130
Dual form 363.2.e.h.148.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 1.53884i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-0.500000 - 0.363271i) q^{4} +(-0.118034 - 0.363271i) q^{5} +(0.500000 + 1.53884i) q^{6} +(-2.42705 - 1.76336i) q^{7} +(1.80902 - 1.31433i) q^{8} +(0.309017 - 0.951057i) q^{9} -0.618034 q^{10} +0.618034 q^{12} +(1.92705 - 5.93085i) q^{13} +(-3.92705 + 2.85317i) q^{14} +(0.309017 + 0.224514i) q^{15} +(-1.50000 - 4.61653i) q^{16} +(-0.190983 - 0.587785i) q^{17} +(-1.30902 - 0.951057i) q^{18} +(0.690983 - 0.502029i) q^{19} +(-0.0729490 + 0.224514i) q^{20} +3.00000 q^{21} -5.47214 q^{23} +(-0.690983 + 2.12663i) q^{24} +(3.92705 - 2.85317i) q^{25} +(-8.16312 - 5.93085i) q^{26} +(0.309017 + 0.951057i) q^{27} +(0.572949 + 1.76336i) q^{28} +(3.61803 + 2.62866i) q^{29} +(0.500000 - 0.363271i) q^{30} +(-1.19098 + 3.66547i) q^{31} -3.38197 q^{32} -1.00000 q^{34} +(-0.354102 + 1.08981i) q^{35} +(-0.500000 + 0.363271i) q^{36} +(3.42705 + 2.48990i) q^{37} +(-0.427051 - 1.31433i) q^{38} +(1.92705 + 5.93085i) q^{39} +(-0.690983 - 0.502029i) q^{40} +(-4.80902 + 3.49396i) q^{41} +(1.50000 - 4.61653i) q^{42} +1.76393 q^{43} -0.381966 q^{45} +(-2.73607 + 8.42075i) q^{46} +(0.500000 - 0.363271i) q^{47} +(3.92705 + 2.85317i) q^{48} +(0.618034 + 1.90211i) q^{49} +(-2.42705 - 7.46969i) q^{50} +(0.500000 + 0.363271i) q^{51} +(-3.11803 + 2.26538i) q^{52} +(-2.28115 + 7.02067i) q^{53} +1.61803 q^{54} -6.70820 q^{56} +(-0.263932 + 0.812299i) q^{57} +(5.85410 - 4.25325i) q^{58} +(4.30902 + 3.13068i) q^{59} +(-0.0729490 - 0.224514i) q^{60} +(0.354102 + 1.08981i) q^{61} +(5.04508 + 3.66547i) q^{62} +(-2.42705 + 1.76336i) q^{63} +(1.30902 - 4.02874i) q^{64} -2.38197 q^{65} +10.5623 q^{67} +(-0.118034 + 0.363271i) q^{68} +(4.42705 - 3.21644i) q^{69} +(1.50000 + 1.08981i) q^{70} +(4.50000 + 13.8496i) q^{71} +(-0.690983 - 2.12663i) q^{72} +(-1.00000 - 0.726543i) q^{73} +(5.54508 - 4.02874i) q^{74} +(-1.50000 + 4.61653i) q^{75} -0.527864 q^{76} +10.0902 q^{78} +(0.163119 - 0.502029i) q^{79} +(-1.50000 + 1.08981i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(2.97214 + 9.14729i) q^{82} +(-3.92705 - 12.0862i) q^{83} +(-1.50000 - 1.08981i) q^{84} +(-0.190983 + 0.138757i) q^{85} +(0.881966 - 2.71441i) q^{86} -4.47214 q^{87} +9.47214 q^{89} +(-0.190983 + 0.587785i) q^{90} +(-15.1353 + 10.9964i) q^{91} +(2.73607 + 1.98787i) q^{92} +(-1.19098 - 3.66547i) q^{93} +(-0.309017 - 0.951057i) q^{94} +(-0.263932 - 0.191758i) q^{95} +(2.73607 - 1.98787i) q^{96} +(4.64590 - 14.2986i) q^{97} +3.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - q^{3} - 2 q^{4} + 4 q^{5} + 2 q^{6} - 3 q^{7} + 5 q^{8} - q^{9} + 2 q^{10} - 2 q^{12} + q^{13} - 9 q^{14} - q^{15} - 6 q^{16} - 3 q^{17} - 3 q^{18} + 5 q^{19} - 7 q^{20} + 12 q^{21}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 1.53884i 0.353553 1.08813i −0.603290 0.797522i \(-0.706144\pi\)
0.956844 0.290604i \(-0.0938561\pi\)
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) −0.500000 0.363271i −0.250000 0.181636i
\(5\) −0.118034 0.363271i −0.0527864 0.162460i 0.921188 0.389118i \(-0.127220\pi\)
−0.973974 + 0.226658i \(0.927220\pi\)
\(6\) 0.500000 + 1.53884i 0.204124 + 0.628230i
\(7\) −2.42705 1.76336i −0.917339 0.666486i 0.0255212 0.999674i \(-0.491875\pi\)
−0.942860 + 0.333188i \(0.891875\pi\)
\(8\) 1.80902 1.31433i 0.639584 0.464685i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −0.618034 −0.195440
\(11\) 0 0
\(12\) 0.618034 0.178411
\(13\) 1.92705 5.93085i 0.534468 1.64492i −0.210329 0.977631i \(-0.567453\pi\)
0.744796 0.667292i \(-0.232547\pi\)
\(14\) −3.92705 + 2.85317i −1.04955 + 0.762542i
\(15\) 0.309017 + 0.224514i 0.0797878 + 0.0579693i
\(16\) −1.50000 4.61653i −0.375000 1.15413i
\(17\) −0.190983 0.587785i −0.0463202 0.142559i 0.925222 0.379427i \(-0.123879\pi\)
−0.971542 + 0.236868i \(0.923879\pi\)
\(18\) −1.30902 0.951057i −0.308538 0.224166i
\(19\) 0.690983 0.502029i 0.158522 0.115173i −0.505696 0.862712i \(-0.668764\pi\)
0.664219 + 0.747538i \(0.268764\pi\)
\(20\) −0.0729490 + 0.224514i −0.0163119 + 0.0502029i
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) −5.47214 −1.14102 −0.570510 0.821291i \(-0.693254\pi\)
−0.570510 + 0.821291i \(0.693254\pi\)
\(24\) −0.690983 + 2.12663i −0.141046 + 0.434096i
\(25\) 3.92705 2.85317i 0.785410 0.570634i
\(26\) −8.16312 5.93085i −1.60092 1.16314i
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0.572949 + 1.76336i 0.108277 + 0.333243i
\(29\) 3.61803 + 2.62866i 0.671852 + 0.488129i 0.870645 0.491912i \(-0.163702\pi\)
−0.198793 + 0.980042i \(0.563702\pi\)
\(30\) 0.500000 0.363271i 0.0912871 0.0663240i
\(31\) −1.19098 + 3.66547i −0.213907 + 0.658338i 0.785323 + 0.619087i \(0.212497\pi\)
−0.999229 + 0.0392508i \(0.987503\pi\)
\(32\) −3.38197 −0.597853
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) −0.354102 + 1.08981i −0.0598542 + 0.184212i
\(36\) −0.500000 + 0.363271i −0.0833333 + 0.0605452i
\(37\) 3.42705 + 2.48990i 0.563404 + 0.409337i 0.832703 0.553720i \(-0.186792\pi\)
−0.269299 + 0.963057i \(0.586792\pi\)
\(38\) −0.427051 1.31433i −0.0692768 0.213212i
\(39\) 1.92705 + 5.93085i 0.308575 + 0.949697i
\(40\) −0.690983 0.502029i −0.109254 0.0793777i
\(41\) −4.80902 + 3.49396i −0.751042 + 0.545664i −0.896150 0.443752i \(-0.853647\pi\)
0.145107 + 0.989416i \(0.453647\pi\)
\(42\) 1.50000 4.61653i 0.231455 0.712345i
\(43\) 1.76393 0.268997 0.134499 0.990914i \(-0.457058\pi\)
0.134499 + 0.990914i \(0.457058\pi\)
\(44\) 0 0
\(45\) −0.381966 −0.0569401
\(46\) −2.73607 + 8.42075i −0.403411 + 1.24157i
\(47\) 0.500000 0.363271i 0.0729325 0.0529886i −0.550722 0.834689i \(-0.685647\pi\)
0.623654 + 0.781700i \(0.285647\pi\)
\(48\) 3.92705 + 2.85317i 0.566821 + 0.411820i
\(49\) 0.618034 + 1.90211i 0.0882906 + 0.271730i
\(50\) −2.42705 7.46969i −0.343237 1.05637i
\(51\) 0.500000 + 0.363271i 0.0700140 + 0.0508682i
\(52\) −3.11803 + 2.26538i −0.432394 + 0.314152i
\(53\) −2.28115 + 7.02067i −0.313340 + 0.964363i 0.663092 + 0.748538i \(0.269244\pi\)
−0.976432 + 0.215825i \(0.930756\pi\)
\(54\) 1.61803 0.220187
\(55\) 0 0
\(56\) −6.70820 −0.896421
\(57\) −0.263932 + 0.812299i −0.0349587 + 0.107592i
\(58\) 5.85410 4.25325i 0.768681 0.558480i
\(59\) 4.30902 + 3.13068i 0.560986 + 0.407580i 0.831820 0.555046i \(-0.187299\pi\)
−0.270834 + 0.962626i \(0.587299\pi\)
\(60\) −0.0729490 0.224514i −0.00941768 0.0289846i
\(61\) 0.354102 + 1.08981i 0.0453381 + 0.139536i 0.971163 0.238416i \(-0.0766282\pi\)
−0.925825 + 0.377953i \(0.876628\pi\)
\(62\) 5.04508 + 3.66547i 0.640726 + 0.465515i
\(63\) −2.42705 + 1.76336i −0.305780 + 0.222162i
\(64\) 1.30902 4.02874i 0.163627 0.503593i
\(65\) −2.38197 −0.295447
\(66\) 0 0
\(67\) 10.5623 1.29039 0.645196 0.764017i \(-0.276776\pi\)
0.645196 + 0.764017i \(0.276776\pi\)
\(68\) −0.118034 + 0.363271i −0.0143137 + 0.0440531i
\(69\) 4.42705 3.21644i 0.532954 0.387214i
\(70\) 1.50000 + 1.08981i 0.179284 + 0.130258i
\(71\) 4.50000 + 13.8496i 0.534052 + 1.64364i 0.745689 + 0.666294i \(0.232120\pi\)
−0.211637 + 0.977348i \(0.567880\pi\)
\(72\) −0.690983 2.12663i −0.0814331 0.250625i
\(73\) −1.00000 0.726543i −0.117041 0.0850354i 0.527725 0.849415i \(-0.323045\pi\)
−0.644766 + 0.764380i \(0.723045\pi\)
\(74\) 5.54508 4.02874i 0.644603 0.468332i
\(75\) −1.50000 + 4.61653i −0.173205 + 0.533070i
\(76\) −0.527864 −0.0605502
\(77\) 0 0
\(78\) 10.0902 1.14249
\(79\) 0.163119 0.502029i 0.0183523 0.0564826i −0.941461 0.337122i \(-0.890547\pi\)
0.959813 + 0.280639i \(0.0905465\pi\)
\(80\) −1.50000 + 1.08981i −0.167705 + 0.121845i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 2.97214 + 9.14729i 0.328218 + 1.01015i
\(83\) −3.92705 12.0862i −0.431050 1.32664i −0.897081 0.441867i \(-0.854316\pi\)
0.466031 0.884768i \(-0.345684\pi\)
\(84\) −1.50000 1.08981i −0.163663 0.118908i
\(85\) −0.190983 + 0.138757i −0.0207150 + 0.0150503i
\(86\) 0.881966 2.71441i 0.0951048 0.292703i
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) 9.47214 1.00404 0.502022 0.864855i \(-0.332590\pi\)
0.502022 + 0.864855i \(0.332590\pi\)
\(90\) −0.190983 + 0.587785i −0.0201314 + 0.0619580i
\(91\) −15.1353 + 10.9964i −1.58661 + 1.15274i
\(92\) 2.73607 + 1.98787i 0.285255 + 0.207250i
\(93\) −1.19098 3.66547i −0.123499 0.380091i
\(94\) −0.309017 0.951057i −0.0318727 0.0980940i
\(95\) −0.263932 0.191758i −0.0270789 0.0196739i
\(96\) 2.73607 1.98787i 0.279249 0.202886i
\(97\) 4.64590 14.2986i 0.471719 1.45180i −0.378612 0.925556i \(-0.623598\pi\)
0.850331 0.526248i \(-0.176402\pi\)
\(98\) 3.23607 0.326892
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) −0.927051 + 2.85317i −0.0922450 + 0.283901i −0.986526 0.163605i \(-0.947688\pi\)
0.894281 + 0.447506i \(0.147688\pi\)
\(102\) 0.809017 0.587785i 0.0801046 0.0581994i
\(103\) 4.85410 + 3.52671i 0.478289 + 0.347497i 0.800663 0.599115i \(-0.204481\pi\)
−0.322374 + 0.946612i \(0.604481\pi\)
\(104\) −4.30902 13.2618i −0.422534 1.30043i
\(105\) −0.354102 1.08981i −0.0345568 0.106355i
\(106\) 9.66312 + 7.02067i 0.938565 + 0.681907i
\(107\) −0.190983 + 0.138757i −0.0184630 + 0.0134142i −0.596978 0.802257i \(-0.703632\pi\)
0.578515 + 0.815671i \(0.303632\pi\)
\(108\) 0.190983 0.587785i 0.0183773 0.0565597i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −4.23607 −0.402070
\(112\) −4.50000 + 13.8496i −0.425210 + 1.30866i
\(113\) 10.2812 7.46969i 0.967170 0.702690i 0.0123648 0.999924i \(-0.496064\pi\)
0.954805 + 0.297234i \(0.0960641\pi\)
\(114\) 1.11803 + 0.812299i 0.104713 + 0.0760788i
\(115\) 0.645898 + 1.98787i 0.0602303 + 0.185370i
\(116\) −0.854102 2.62866i −0.0793014 0.244065i
\(117\) −5.04508 3.66547i −0.466418 0.338873i
\(118\) 6.97214 5.06555i 0.641837 0.466322i
\(119\) −0.572949 + 1.76336i −0.0525222 + 0.161647i
\(120\) 0.854102 0.0779685
\(121\) 0 0
\(122\) 1.85410 0.167863
\(123\) 1.83688 5.65334i 0.165626 0.509744i
\(124\) 1.92705 1.40008i 0.173054 0.125731i
\(125\) −3.04508 2.21238i −0.272361 0.197882i
\(126\) 1.50000 + 4.61653i 0.133631 + 0.411273i
\(127\) 3.00000 + 9.23305i 0.266207 + 0.819301i 0.991413 + 0.130769i \(0.0417445\pi\)
−0.725206 + 0.688532i \(0.758255\pi\)
\(128\) −11.0172 8.00448i −0.973794 0.707503i
\(129\) −1.42705 + 1.03681i −0.125645 + 0.0912863i
\(130\) −1.19098 + 3.66547i −0.104456 + 0.321483i
\(131\) −13.8541 −1.21044 −0.605219 0.796059i \(-0.706915\pi\)
−0.605219 + 0.796059i \(0.706915\pi\)
\(132\) 0 0
\(133\) −2.56231 −0.222180
\(134\) 5.28115 16.2537i 0.456222 1.40411i
\(135\) 0.309017 0.224514i 0.0265959 0.0193231i
\(136\) −1.11803 0.812299i −0.0958706 0.0696541i
\(137\) −0.454915 1.40008i −0.0388660 0.119617i 0.929741 0.368214i \(-0.120031\pi\)
−0.968607 + 0.248597i \(0.920031\pi\)
\(138\) −2.73607 8.42075i −0.232910 0.716822i
\(139\) −4.73607 3.44095i −0.401708 0.291858i 0.368528 0.929617i \(-0.379862\pi\)
−0.770236 + 0.637759i \(0.779862\pi\)
\(140\) 0.572949 0.416272i 0.0484230 0.0351814i
\(141\) −0.190983 + 0.587785i −0.0160837 + 0.0495004i
\(142\) 23.5623 1.97730
\(143\) 0 0
\(144\) −4.85410 −0.404508
\(145\) 0.527864 1.62460i 0.0438367 0.134916i
\(146\) −1.61803 + 1.17557i −0.133909 + 0.0972909i
\(147\) −1.61803 1.17557i −0.133453 0.0969594i
\(148\) −0.809017 2.48990i −0.0665008 0.204668i
\(149\) 4.63525 + 14.2658i 0.379735 + 1.16870i 0.940228 + 0.340545i \(0.110612\pi\)
−0.560493 + 0.828159i \(0.689388\pi\)
\(150\) 6.35410 + 4.61653i 0.518810 + 0.376938i
\(151\) −1.61803 + 1.17557i −0.131674 + 0.0956666i −0.651673 0.758500i \(-0.725932\pi\)
0.519999 + 0.854167i \(0.325932\pi\)
\(152\) 0.590170 1.81636i 0.0478691 0.147326i
\(153\) −0.618034 −0.0499651
\(154\) 0 0
\(155\) 1.47214 0.118245
\(156\) 1.19098 3.66547i 0.0953550 0.293472i
\(157\) −7.85410 + 5.70634i −0.626826 + 0.455415i −0.855299 0.518135i \(-0.826627\pi\)
0.228473 + 0.973550i \(0.426627\pi\)
\(158\) −0.690983 0.502029i −0.0549717 0.0399392i
\(159\) −2.28115 7.02067i −0.180907 0.556775i
\(160\) 0.399187 + 1.22857i 0.0315585 + 0.0971271i
\(161\) 13.2812 + 9.64932i 1.04670 + 0.760473i
\(162\) −1.30902 + 0.951057i −0.102846 + 0.0747221i
\(163\) −4.71885 + 14.5231i −0.369609 + 1.13754i 0.577436 + 0.816436i \(0.304053\pi\)
−0.947045 + 0.321102i \(0.895947\pi\)
\(164\) 3.67376 0.286873
\(165\) 0 0
\(166\) −20.5623 −1.59594
\(167\) −5.88197 + 18.1028i −0.455160 + 1.40084i 0.415787 + 0.909462i \(0.363506\pi\)
−0.870947 + 0.491377i \(0.836494\pi\)
\(168\) 5.42705 3.94298i 0.418706 0.304208i
\(169\) −20.9443 15.2169i −1.61110 1.17053i
\(170\) 0.118034 + 0.363271i 0.00905279 + 0.0278616i
\(171\) −0.263932 0.812299i −0.0201834 0.0621181i
\(172\) −0.881966 0.640786i −0.0672493 0.0488595i
\(173\) −14.2533 + 10.3556i −1.08366 + 0.787323i −0.978317 0.207113i \(-0.933593\pi\)
−0.105340 + 0.994436i \(0.533593\pi\)
\(174\) −2.23607 + 6.88191i −0.169516 + 0.521716i
\(175\) −14.5623 −1.10081
\(176\) 0 0
\(177\) −5.32624 −0.400345
\(178\) 4.73607 14.5761i 0.354983 1.09253i
\(179\) −1.80902 + 1.31433i −0.135212 + 0.0982375i −0.653335 0.757069i \(-0.726631\pi\)
0.518123 + 0.855306i \(0.326631\pi\)
\(180\) 0.190983 + 0.138757i 0.0142350 + 0.0103424i
\(181\) −2.63525 8.11048i −0.195877 0.602847i −0.999965 0.00833738i \(-0.997346\pi\)
0.804088 0.594510i \(-0.202654\pi\)
\(182\) 9.35410 + 28.7890i 0.693372 + 2.13398i
\(183\) −0.927051 0.673542i −0.0685296 0.0497897i
\(184\) −9.89919 + 7.19218i −0.729778 + 0.530215i
\(185\) 0.500000 1.53884i 0.0367607 0.113138i
\(186\) −6.23607 −0.457251
\(187\) 0 0
\(188\) −0.381966 −0.0278577
\(189\) 0.927051 2.85317i 0.0674330 0.207538i
\(190\) −0.427051 + 0.310271i −0.0309815 + 0.0225094i
\(191\) −1.19098 0.865300i −0.0861765 0.0626109i 0.543863 0.839174i \(-0.316961\pi\)
−0.630039 + 0.776563i \(0.716961\pi\)
\(192\) 1.30902 + 4.02874i 0.0944702 + 0.290749i
\(193\) 0.482779 + 1.48584i 0.0347512 + 0.106953i 0.966927 0.255052i \(-0.0820924\pi\)
−0.932176 + 0.362005i \(0.882092\pi\)
\(194\) −19.6803 14.2986i −1.41297 1.02658i
\(195\) 1.92705 1.40008i 0.137999 0.100262i
\(196\) 0.381966 1.17557i 0.0272833 0.0839693i
\(197\) 26.6180 1.89646 0.948228 0.317590i \(-0.102873\pi\)
0.948228 + 0.317590i \(0.102873\pi\)
\(198\) 0 0
\(199\) −3.29180 −0.233349 −0.116675 0.993170i \(-0.537223\pi\)
−0.116675 + 0.993170i \(0.537223\pi\)
\(200\) 3.35410 10.3229i 0.237171 0.729937i
\(201\) −8.54508 + 6.20837i −0.602724 + 0.437904i
\(202\) 3.92705 + 2.85317i 0.276306 + 0.200748i
\(203\) −4.14590 12.7598i −0.290985 0.895560i
\(204\) −0.118034 0.363271i −0.00826403 0.0254341i
\(205\) 1.83688 + 1.33457i 0.128293 + 0.0932106i
\(206\) 7.85410 5.70634i 0.547221 0.397579i
\(207\) −1.69098 + 5.20431i −0.117531 + 0.361725i
\(208\) −30.2705 −2.09888
\(209\) 0 0
\(210\) −1.85410 −0.127945
\(211\) 3.48278 10.7189i 0.239764 0.737919i −0.756689 0.653775i \(-0.773184\pi\)
0.996454 0.0841442i \(-0.0268156\pi\)
\(212\) 3.69098 2.68166i 0.253498 0.184177i
\(213\) −11.7812 8.55951i −0.807231 0.586488i
\(214\) 0.118034 + 0.363271i 0.00806864 + 0.0248327i
\(215\) −0.208204 0.640786i −0.0141994 0.0437012i
\(216\) 1.80902 + 1.31433i 0.123088 + 0.0894287i
\(217\) 9.35410 6.79615i 0.634998 0.461353i
\(218\) 0 0
\(219\) 1.23607 0.0835257
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) −2.11803 + 6.51864i −0.142153 + 0.437502i
\(223\) 10.2812 7.46969i 0.688477 0.500208i −0.187682 0.982230i \(-0.560097\pi\)
0.876159 + 0.482022i \(0.160097\pi\)
\(224\) 8.20820 + 5.96361i 0.548434 + 0.398460i
\(225\) −1.50000 4.61653i −0.100000 0.307768i
\(226\) −6.35410 19.5559i −0.422669 1.30084i
\(227\) −8.80902 6.40013i −0.584675 0.424791i 0.255731 0.966748i \(-0.417684\pi\)
−0.840406 + 0.541957i \(0.817684\pi\)
\(228\) 0.427051 0.310271i 0.0282821 0.0205482i
\(229\) 3.09017 9.51057i 0.204204 0.628476i −0.795541 0.605900i \(-0.792813\pi\)
0.999745 0.0225760i \(-0.00718678\pi\)
\(230\) 3.38197 0.223000
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) 2.68034 8.24924i 0.175595 0.540426i −0.824065 0.566495i \(-0.808299\pi\)
0.999660 + 0.0260694i \(0.00829908\pi\)
\(234\) −8.16312 + 5.93085i −0.533640 + 0.387712i
\(235\) −0.190983 0.138757i −0.0124584 0.00905153i
\(236\) −1.01722 3.13068i −0.0662154 0.203790i
\(237\) 0.163119 + 0.502029i 0.0105957 + 0.0326103i
\(238\) 2.42705 + 1.76336i 0.157322 + 0.114301i
\(239\) 14.2082 10.3229i 0.919052 0.667731i −0.0242356 0.999706i \(-0.507715\pi\)
0.943288 + 0.331976i \(0.107715\pi\)
\(240\) 0.572949 1.76336i 0.0369837 0.113824i
\(241\) 17.1246 1.10309 0.551547 0.834144i \(-0.314038\pi\)
0.551547 + 0.834144i \(0.314038\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0.218847 0.673542i 0.0140102 0.0431191i
\(245\) 0.618034 0.449028i 0.0394847 0.0286873i
\(246\) −7.78115 5.65334i −0.496108 0.360444i
\(247\) −1.64590 5.06555i −0.104726 0.322313i
\(248\) 2.66312 + 8.19624i 0.169108 + 0.520462i
\(249\) 10.2812 + 7.46969i 0.651542 + 0.473373i
\(250\) −4.92705 + 3.57971i −0.311614 + 0.226401i
\(251\) 5.19098 15.9762i 0.327652 1.00841i −0.642577 0.766221i \(-0.722135\pi\)
0.970229 0.242188i \(-0.0778651\pi\)
\(252\) 1.85410 0.116797
\(253\) 0 0
\(254\) 15.7082 0.985620
\(255\) 0.0729490 0.224514i 0.00456824 0.0140596i
\(256\) −10.9721 + 7.97172i −0.685758 + 0.498233i
\(257\) 22.1074 + 16.0620i 1.37902 + 1.00192i 0.996971 + 0.0777760i \(0.0247819\pi\)
0.382050 + 0.924142i \(0.375218\pi\)
\(258\) 0.881966 + 2.71441i 0.0549088 + 0.168992i
\(259\) −3.92705 12.0862i −0.244015 0.751001i
\(260\) 1.19098 + 0.865300i 0.0738616 + 0.0536636i
\(261\) 3.61803 2.62866i 0.223951 0.162710i
\(262\) −6.92705 + 21.3193i −0.427955 + 1.31711i
\(263\) −0.673762 −0.0415459 −0.0207730 0.999784i \(-0.506613\pi\)
−0.0207730 + 0.999784i \(0.506613\pi\)
\(264\) 0 0
\(265\) 2.81966 0.173210
\(266\) −1.28115 + 3.94298i −0.0785525 + 0.241760i
\(267\) −7.66312 + 5.56758i −0.468975 + 0.340730i
\(268\) −5.28115 3.83698i −0.322598 0.234381i
\(269\) 7.56231 + 23.2744i 0.461082 + 1.41906i 0.863844 + 0.503760i \(0.168050\pi\)
−0.402762 + 0.915305i \(0.631950\pi\)
\(270\) −0.190983 0.587785i −0.0116229 0.0357715i
\(271\) −5.07295 3.68571i −0.308160 0.223891i 0.422947 0.906155i \(-0.360996\pi\)
−0.731106 + 0.682263i \(0.760996\pi\)
\(272\) −2.42705 + 1.76336i −0.147162 + 0.106919i
\(273\) 5.78115 17.7926i 0.349891 1.07685i
\(274\) −2.38197 −0.143900
\(275\) 0 0
\(276\) −3.38197 −0.203570
\(277\) 3.22542 9.92684i 0.193797 0.596446i −0.806192 0.591655i \(-0.798475\pi\)
0.999989 0.00479118i \(-0.00152509\pi\)
\(278\) −7.66312 + 5.56758i −0.459603 + 0.333921i
\(279\) 3.11803 + 2.26538i 0.186672 + 0.135625i
\(280\) 0.791796 + 2.43690i 0.0473189 + 0.145632i
\(281\) −1.61803 4.97980i −0.0965238 0.297070i 0.891124 0.453760i \(-0.149918\pi\)
−0.987648 + 0.156690i \(0.949918\pi\)
\(282\) 0.809017 + 0.587785i 0.0481763 + 0.0350021i
\(283\) 17.9443 13.0373i 1.06668 0.774986i 0.0913644 0.995818i \(-0.470877\pi\)
0.975312 + 0.220832i \(0.0708772\pi\)
\(284\) 2.78115 8.55951i 0.165031 0.507913i
\(285\) 0.326238 0.0193247
\(286\) 0 0
\(287\) 17.8328 1.05264
\(288\) −1.04508 + 3.21644i −0.0615822 + 0.189531i
\(289\) 13.4443 9.76784i 0.790840 0.574579i
\(290\) −2.23607 1.62460i −0.131306 0.0953997i
\(291\) 4.64590 + 14.2986i 0.272347 + 0.838199i
\(292\) 0.236068 + 0.726543i 0.0138148 + 0.0425177i
\(293\) −14.5172 10.5474i −0.848105 0.616184i 0.0765178 0.997068i \(-0.475620\pi\)
−0.924623 + 0.380884i \(0.875620\pi\)
\(294\) −2.61803 + 1.90211i −0.152687 + 0.110933i
\(295\) 0.628677 1.93487i 0.0366030 0.112652i
\(296\) 9.47214 0.550557
\(297\) 0 0
\(298\) 24.2705 1.40595
\(299\) −10.5451 + 32.4544i −0.609838 + 1.87689i
\(300\) 2.42705 1.76336i 0.140126 0.101807i
\(301\) −4.28115 3.11044i −0.246762 0.179283i
\(302\) 1.00000 + 3.07768i 0.0575435 + 0.177101i
\(303\) −0.927051 2.85317i −0.0532577 0.163910i
\(304\) −3.35410 2.43690i −0.192371 0.139766i
\(305\) 0.354102 0.257270i 0.0202758 0.0147312i
\(306\) −0.309017 + 0.951057i −0.0176653 + 0.0543683i
\(307\) −19.5623 −1.11648 −0.558240 0.829680i \(-0.688523\pi\)
−0.558240 + 0.829680i \(0.688523\pi\)
\(308\) 0 0
\(309\) −6.00000 −0.341328
\(310\) 0.736068 2.26538i 0.0418059 0.128665i
\(311\) −9.28115 + 6.74315i −0.526286 + 0.382369i −0.818967 0.573841i \(-0.805453\pi\)
0.292681 + 0.956210i \(0.405453\pi\)
\(312\) 11.2812 + 8.19624i 0.638670 + 0.464021i
\(313\) −8.60081 26.4706i −0.486147 1.49621i −0.830313 0.557297i \(-0.811838\pi\)
0.344166 0.938909i \(-0.388162\pi\)
\(314\) 4.85410 + 14.9394i 0.273933 + 0.843079i
\(315\) 0.927051 + 0.673542i 0.0522334 + 0.0379498i
\(316\) −0.263932 + 0.191758i −0.0148473 + 0.0107872i
\(317\) 7.83688 24.1194i 0.440163 1.35468i −0.447539 0.894264i \(-0.647699\pi\)
0.887702 0.460418i \(-0.152301\pi\)
\(318\) −11.9443 −0.669802
\(319\) 0 0
\(320\) −1.61803 −0.0904508
\(321\) 0.0729490 0.224514i 0.00407162 0.0125311i
\(322\) 21.4894 15.6129i 1.19756 0.870075i
\(323\) −0.427051 0.310271i −0.0237618 0.0172639i
\(324\) 0.190983 + 0.587785i 0.0106102 + 0.0326547i
\(325\) −9.35410 28.7890i −0.518872 1.59692i
\(326\) 19.9894 + 14.5231i 1.10711 + 0.804361i
\(327\) 0 0
\(328\) −4.10739 + 12.6412i −0.226793 + 0.697996i
\(329\) −1.85410 −0.102220
\(330\) 0 0
\(331\) −22.5967 −1.24203 −0.621015 0.783799i \(-0.713279\pi\)
−0.621015 + 0.783799i \(0.713279\pi\)
\(332\) −2.42705 + 7.46969i −0.133202 + 0.409953i
\(333\) 3.42705 2.48990i 0.187801 0.136446i
\(334\) 24.9164 + 18.1028i 1.36337 + 0.990543i
\(335\) −1.24671 3.83698i −0.0681151 0.209637i
\(336\) −4.50000 13.8496i −0.245495 0.755556i
\(337\) 11.0902 + 8.05748i 0.604120 + 0.438919i 0.847339 0.531053i \(-0.178203\pi\)
−0.243219 + 0.969971i \(0.578203\pi\)
\(338\) −33.8885 + 24.6215i −1.84329 + 1.33923i
\(339\) −3.92705 + 12.0862i −0.213288 + 0.656433i
\(340\) 0.145898 0.00791243
\(341\) 0 0
\(342\) −1.38197 −0.0747282
\(343\) −4.63525 + 14.2658i −0.250280 + 0.770283i
\(344\) 3.19098 2.31838i 0.172046 0.124999i
\(345\) −1.69098 1.22857i −0.0910395 0.0661440i
\(346\) 8.80902 + 27.1114i 0.473576 + 1.45752i
\(347\) −0.944272 2.90617i −0.0506912 0.156011i 0.922507 0.385982i \(-0.126137\pi\)
−0.973198 + 0.229970i \(0.926137\pi\)
\(348\) 2.23607 + 1.62460i 0.119866 + 0.0870876i
\(349\) −24.3713 + 17.7068i −1.30457 + 0.947823i −0.999989 0.00466403i \(-0.998515\pi\)
−0.304578 + 0.952487i \(0.598515\pi\)
\(350\) −7.28115 + 22.4091i −0.389194 + 1.19782i
\(351\) 6.23607 0.332857
\(352\) 0 0
\(353\) −1.52786 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(354\) −2.66312 + 8.19624i −0.141543 + 0.435625i
\(355\) 4.50000 3.26944i 0.238835 0.173524i
\(356\) −4.73607 3.44095i −0.251011 0.182370i
\(357\) −0.572949 1.76336i −0.0303237 0.0933267i
\(358\) 1.11803 + 3.44095i 0.0590899 + 0.181860i
\(359\) 13.9443 + 10.1311i 0.735951 + 0.534699i 0.891440 0.453138i \(-0.149696\pi\)
−0.155490 + 0.987838i \(0.549696\pi\)
\(360\) −0.690983 + 0.502029i −0.0364180 + 0.0264592i
\(361\) −5.64590 + 17.3763i −0.297153 + 0.914541i
\(362\) −13.7984 −0.725226
\(363\) 0 0
\(364\) 11.5623 0.606029
\(365\) −0.145898 + 0.449028i −0.00763665 + 0.0235032i
\(366\) −1.50000 + 1.08981i −0.0784063 + 0.0569655i
\(367\) 11.7812 + 8.55951i 0.614971 + 0.446803i 0.851161 0.524904i \(-0.175899\pi\)
−0.236190 + 0.971707i \(0.575899\pi\)
\(368\) 8.20820 + 25.2623i 0.427882 + 1.31689i
\(369\) 1.83688 + 5.65334i 0.0956242 + 0.294301i
\(370\) −2.11803 1.53884i −0.110111 0.0800006i
\(371\) 17.9164 13.0170i 0.930174 0.675811i
\(372\) −0.736068 + 2.26538i −0.0381633 + 0.117455i
\(373\) 22.4164 1.16068 0.580339 0.814375i \(-0.302920\pi\)
0.580339 + 0.814375i \(0.302920\pi\)
\(374\) 0 0
\(375\) 3.76393 0.194369
\(376\) 0.427051 1.31433i 0.0220235 0.0677813i
\(377\) 22.5623 16.3925i 1.16202 0.844255i
\(378\) −3.92705 2.85317i −0.201986 0.146751i
\(379\) 8.78115 + 27.0256i 0.451058 + 1.38821i 0.875702 + 0.482852i \(0.160399\pi\)
−0.424644 + 0.905360i \(0.639601\pi\)
\(380\) 0.0623059 + 0.191758i 0.00319623 + 0.00983697i
\(381\) −7.85410 5.70634i −0.402378 0.292345i
\(382\) −1.92705 + 1.40008i −0.0985965 + 0.0716346i
\(383\) −2.74671 + 8.45351i −0.140350 + 0.431954i −0.996384 0.0849664i \(-0.972922\pi\)
0.856033 + 0.516920i \(0.172922\pi\)
\(384\) 13.6180 0.694942
\(385\) 0 0
\(386\) 2.52786 0.128665
\(387\) 0.545085 1.67760i 0.0277082 0.0852772i
\(388\) −7.51722 + 5.46158i −0.381629 + 0.277270i
\(389\) 7.50000 + 5.44907i 0.380265 + 0.276279i 0.761455 0.648218i \(-0.224485\pi\)
−0.381190 + 0.924497i \(0.624485\pi\)
\(390\) −1.19098 3.66547i −0.0603078 0.185608i
\(391\) 1.04508 + 3.21644i 0.0528522 + 0.162662i
\(392\) 3.61803 + 2.62866i 0.182738 + 0.132767i
\(393\) 11.2082 8.14324i 0.565379 0.410772i
\(394\) 13.3090 40.9609i 0.670499 2.06358i
\(395\) −0.201626 −0.0101449
\(396\) 0 0
\(397\) −25.2918 −1.26936 −0.634679 0.772776i \(-0.718868\pi\)
−0.634679 + 0.772776i \(0.718868\pi\)
\(398\) −1.64590 + 5.06555i −0.0825014 + 0.253913i
\(399\) 2.07295 1.50609i 0.103777 0.0753986i
\(400\) −19.0623 13.8496i −0.953115 0.692479i
\(401\) −4.60739 14.1801i −0.230082 0.708120i −0.997736 0.0672551i \(-0.978576\pi\)
0.767654 0.640865i \(-0.221424\pi\)
\(402\) 5.28115 + 16.2537i 0.263400 + 0.810662i
\(403\) 19.4443 + 14.1271i 0.968588 + 0.703721i
\(404\) 1.50000 1.08981i 0.0746278 0.0542203i
\(405\) −0.118034 + 0.363271i −0.00586516 + 0.0180511i
\(406\) −21.7082 −1.07736
\(407\) 0 0
\(408\) 1.38197 0.0684175
\(409\) −8.94427 + 27.5276i −0.442266 + 1.36115i 0.443189 + 0.896428i \(0.353847\pi\)
−0.885455 + 0.464726i \(0.846153\pi\)
\(410\) 2.97214 2.15938i 0.146783 0.106644i
\(411\) 1.19098 + 0.865300i 0.0587469 + 0.0426821i
\(412\) −1.14590 3.52671i −0.0564543 0.173749i
\(413\) −4.93769 15.1967i −0.242968 0.747779i
\(414\) 7.16312 + 5.20431i 0.352048 + 0.255778i
\(415\) −3.92705 + 2.85317i −0.192771 + 0.140057i
\(416\) −6.51722 + 20.0579i −0.319533 + 0.983422i
\(417\) 5.85410 0.286677
\(418\) 0 0
\(419\) −21.5066 −1.05067 −0.525333 0.850897i \(-0.676059\pi\)
−0.525333 + 0.850897i \(0.676059\pi\)
\(420\) −0.218847 + 0.673542i −0.0106786 + 0.0328655i
\(421\) 3.01722 2.19214i 0.147050 0.106838i −0.511828 0.859088i \(-0.671031\pi\)
0.658878 + 0.752250i \(0.271031\pi\)
\(422\) −14.7533 10.7189i −0.718179 0.521787i
\(423\) −0.190983 0.587785i −0.00928591 0.0285791i
\(424\) 5.10081 + 15.6987i 0.247717 + 0.762396i
\(425\) −2.42705 1.76336i −0.117729 0.0855353i
\(426\) −19.0623 + 13.8496i −0.923572 + 0.671014i
\(427\) 1.06231 3.26944i 0.0514086 0.158219i
\(428\) 0.145898 0.00705225
\(429\) 0 0
\(430\) −1.09017 −0.0525727
\(431\) −0.461493 + 1.42033i −0.0222293 + 0.0684148i −0.961556 0.274610i \(-0.911451\pi\)
0.939326 + 0.343024i \(0.111451\pi\)
\(432\) 3.92705 2.85317i 0.188940 0.137273i
\(433\) 4.85410 + 3.52671i 0.233273 + 0.169483i 0.698281 0.715824i \(-0.253949\pi\)
−0.465008 + 0.885307i \(0.653949\pi\)
\(434\) −5.78115 17.7926i −0.277504 0.854070i
\(435\) 0.527864 + 1.62460i 0.0253091 + 0.0778935i
\(436\) 0 0
\(437\) −3.78115 + 2.74717i −0.180877 + 0.131415i
\(438\) 0.618034 1.90211i 0.0295308 0.0908865i
\(439\) 16.7082 0.797439 0.398720 0.917073i \(-0.369455\pi\)
0.398720 + 0.917073i \(0.369455\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) −1.92705 + 5.93085i −0.0916605 + 0.282102i
\(443\) 0.708204 0.514540i 0.0336478 0.0244465i −0.570834 0.821065i \(-0.693380\pi\)
0.604482 + 0.796619i \(0.293380\pi\)
\(444\) 2.11803 + 1.53884i 0.100517 + 0.0730302i
\(445\) −1.11803 3.44095i −0.0529999 0.163117i
\(446\) −6.35410 19.5559i −0.300875 0.925999i
\(447\) −12.1353 8.81678i −0.573978 0.417019i
\(448\) −10.2812 + 7.46969i −0.485739 + 0.352910i
\(449\) −4.79837 + 14.7679i −0.226449 + 0.696939i 0.771692 + 0.635996i \(0.219411\pi\)
−0.998141 + 0.0609427i \(0.980589\pi\)
\(450\) −7.85410 −0.370246
\(451\) 0 0
\(452\) −7.85410 −0.369426
\(453\) 0.618034 1.90211i 0.0290378 0.0893691i
\(454\) −14.2533 + 10.3556i −0.668940 + 0.486013i
\(455\) 5.78115 + 4.20025i 0.271025 + 0.196911i
\(456\) 0.590170 + 1.81636i 0.0276372 + 0.0850587i
\(457\) 10.1353 + 31.1931i 0.474107 + 1.45915i 0.847158 + 0.531341i \(0.178312\pi\)
−0.373051 + 0.927811i \(0.621688\pi\)
\(458\) −13.0902 9.51057i −0.611663 0.444400i
\(459\) 0.500000 0.363271i 0.0233380 0.0169561i
\(460\) 0.399187 1.22857i 0.0186122 0.0572824i
\(461\) −9.90983 −0.461547 −0.230773 0.973008i \(-0.574126\pi\)
−0.230773 + 0.973008i \(0.574126\pi\)
\(462\) 0 0
\(463\) 8.79837 0.408895 0.204448 0.978878i \(-0.434460\pi\)
0.204448 + 0.978878i \(0.434460\pi\)
\(464\) 6.70820 20.6457i 0.311421 0.958454i
\(465\) −1.19098 + 0.865300i −0.0552305 + 0.0401273i
\(466\) −11.3541 8.24924i −0.525969 0.382139i
\(467\) −4.39919 13.5393i −0.203570 0.626524i −0.999769 0.0214895i \(-0.993159\pi\)
0.796199 0.605035i \(-0.206841\pi\)
\(468\) 1.19098 + 3.66547i 0.0550532 + 0.169436i
\(469\) −25.6353 18.6251i −1.18373 0.860027i
\(470\) −0.309017 + 0.224514i −0.0142539 + 0.0103561i
\(471\) 3.00000 9.23305i 0.138233 0.425437i
\(472\) 11.9098 0.548194
\(473\) 0 0
\(474\) 0.854102 0.0392302
\(475\) 1.28115 3.94298i 0.0587833 0.180916i
\(476\) 0.927051 0.673542i 0.0424913 0.0308717i
\(477\) 5.97214 + 4.33901i 0.273445 + 0.198670i
\(478\) −8.78115 27.0256i −0.401641 1.23612i
\(479\) −5.22542 16.0822i −0.238756 0.734815i −0.996601 0.0823803i \(-0.973748\pi\)
0.757845 0.652434i \(-0.226252\pi\)
\(480\) −1.04508 0.759299i −0.0477014 0.0346571i
\(481\) 21.3713 15.5272i 0.974448 0.707978i
\(482\) 8.56231 26.3521i 0.390002 1.20030i
\(483\) −16.4164 −0.746972
\(484\) 0 0
\(485\) −5.74265 −0.260760
\(486\) 0.500000 1.53884i 0.0226805 0.0698033i
\(487\) −31.6976 + 23.0296i −1.43635 + 1.04357i −0.447565 + 0.894252i \(0.647709\pi\)
−0.988789 + 0.149320i \(0.952291\pi\)
\(488\) 2.07295 + 1.50609i 0.0938380 + 0.0681773i
\(489\) −4.71885 14.5231i −0.213394 0.656758i
\(490\) −0.381966 1.17557i −0.0172555 0.0531069i
\(491\) 21.2082 + 15.4087i 0.957113 + 0.695383i 0.952478 0.304606i \(-0.0985248\pi\)
0.00463443 + 0.999989i \(0.498525\pi\)
\(492\) −2.97214 + 2.15938i −0.133994 + 0.0973525i
\(493\) 0.854102 2.62866i 0.0384668 0.118389i
\(494\) −8.61803 −0.387744
\(495\) 0 0
\(496\) 18.7082 0.840023
\(497\) 13.5000 41.5487i 0.605558 1.86372i
\(498\) 16.6353 12.0862i 0.745444 0.541596i
\(499\) −2.07295 1.50609i −0.0927979 0.0674217i 0.540419 0.841396i \(-0.318266\pi\)
−0.633217 + 0.773975i \(0.718266\pi\)
\(500\) 0.718847 + 2.21238i 0.0321478 + 0.0989408i
\(501\) −5.88197 18.1028i −0.262787 0.808775i
\(502\) −21.9894 15.9762i −0.981433 0.713053i
\(503\) 24.3262 17.6740i 1.08465 0.788047i 0.106165 0.994349i \(-0.466143\pi\)
0.978488 + 0.206302i \(0.0661429\pi\)
\(504\) −2.07295 + 6.37988i −0.0923365 + 0.284182i
\(505\) 1.14590 0.0509918
\(506\) 0 0
\(507\) 25.8885 1.14975
\(508\) 1.85410 5.70634i 0.0822625 0.253178i
\(509\) −17.2984 + 12.5680i −0.766737 + 0.557067i −0.900969 0.433883i \(-0.857143\pi\)
0.134232 + 0.990950i \(0.457143\pi\)
\(510\) −0.309017 0.224514i −0.0136835 0.00994165i
\(511\) 1.14590 + 3.52671i 0.0506915 + 0.156013i
\(512\) −1.63525 5.03280i −0.0722687 0.222420i
\(513\) 0.690983 + 0.502029i 0.0305076 + 0.0221651i
\(514\) 35.7705 25.9888i 1.57777 1.14632i
\(515\) 0.708204 2.17963i 0.0312072 0.0960459i
\(516\) 1.09017 0.0479921
\(517\) 0 0
\(518\) −20.5623 −0.903456
\(519\) 5.44427 16.7557i 0.238977 0.735496i
\(520\) −4.30902 + 3.13068i −0.188963 + 0.137290i
\(521\) −31.4164 22.8254i −1.37638 0.999997i −0.997208 0.0746698i \(-0.976210\pi\)
−0.379170 0.925327i \(-0.623790\pi\)
\(522\) −2.23607 6.88191i −0.0978700 0.301213i
\(523\) 10.8090 + 33.2667i 0.472645 + 1.45465i 0.849107 + 0.528221i \(0.177141\pi\)
−0.376462 + 0.926432i \(0.622859\pi\)
\(524\) 6.92705 + 5.03280i 0.302610 + 0.219859i
\(525\) 11.7812 8.55951i 0.514172 0.373568i
\(526\) −0.336881 + 1.03681i −0.0146887 + 0.0452072i
\(527\) 2.38197 0.103760
\(528\) 0 0
\(529\) 6.94427 0.301925
\(530\) 1.40983 4.33901i 0.0612391 0.188475i
\(531\) 4.30902 3.13068i 0.186995 0.135860i
\(532\) 1.28115 + 0.930812i 0.0555450 + 0.0403558i
\(533\) 11.4549 + 35.2546i 0.496167 + 1.52705i
\(534\) 4.73607 + 14.5761i 0.204950 + 0.630770i
\(535\) 0.0729490 + 0.0530006i 0.00315386 + 0.00229141i
\(536\) 19.1074 13.8823i 0.825314 0.599625i
\(537\) 0.690983 2.12663i 0.0298181 0.0917707i
\(538\) 39.5967 1.70714
\(539\) 0 0
\(540\) −0.236068 −0.0101587
\(541\) −0.173762 + 0.534785i −0.00747062 + 0.0229922i −0.954722 0.297498i \(-0.903848\pi\)
0.947252 + 0.320491i \(0.103848\pi\)
\(542\) −8.20820 + 5.96361i −0.352573 + 0.256159i
\(543\) 6.89919 + 5.01255i 0.296072 + 0.215109i
\(544\) 0.645898 + 1.98787i 0.0276926 + 0.0852292i
\(545\) 0 0
\(546\) −24.4894 17.7926i −1.04805 0.761451i
\(547\) −15.6803 + 11.3924i −0.670443 + 0.487105i −0.870173 0.492746i \(-0.835993\pi\)
0.199731 + 0.979851i \(0.435993\pi\)
\(548\) −0.281153 + 0.865300i −0.0120103 + 0.0369638i
\(549\) 1.14590 0.0489057
\(550\) 0 0
\(551\) 3.81966 0.162723
\(552\) 3.78115 11.6372i 0.160937 0.495312i
\(553\) −1.28115 + 0.930812i −0.0544802 + 0.0395822i
\(554\) −13.6631 9.92684i −0.580490 0.421751i
\(555\) 0.500000 + 1.53884i 0.0212238 + 0.0653202i
\(556\) 1.11803 + 3.44095i 0.0474152 + 0.145929i
\(557\) −21.1074 15.3354i −0.894349 0.649782i 0.0426594 0.999090i \(-0.486417\pi\)
−0.937008 + 0.349307i \(0.886417\pi\)
\(558\) 5.04508 3.66547i 0.213575 0.155172i
\(559\) 3.39919 10.4616i 0.143770 0.442479i
\(560\) 5.56231 0.235050
\(561\) 0 0
\(562\) −8.47214 −0.357375
\(563\) 8.30902 25.5725i 0.350183 1.07775i −0.608567 0.793503i \(-0.708255\pi\)
0.958750 0.284251i \(-0.0917448\pi\)
\(564\) 0.309017 0.224514i 0.0130120 0.00945374i
\(565\) −3.92705 2.85317i −0.165212 0.120034i
\(566\) −11.0902 34.1320i −0.466155 1.43468i
\(567\) 0.927051 + 2.85317i 0.0389325 + 0.119822i
\(568\) 26.3435 + 19.1396i 1.10535 + 0.803082i
\(569\) −27.5623 + 20.0252i −1.15547 + 0.839500i −0.989199 0.146580i \(-0.953173\pi\)
−0.166273 + 0.986080i \(0.553173\pi\)
\(570\) 0.163119 0.502029i 0.00683230 0.0210277i
\(571\) −25.6869 −1.07496 −0.537482 0.843275i \(-0.680624\pi\)
−0.537482 + 0.843275i \(0.680624\pi\)
\(572\) 0 0
\(573\) 1.47214 0.0614994
\(574\) 8.91641 27.4419i 0.372164 1.14540i
\(575\) −21.4894 + 15.6129i −0.896168 + 0.651104i
\(576\) −3.42705 2.48990i −0.142794 0.103746i
\(577\) 4.70820 + 14.4904i 0.196005 + 0.603242i 0.999963 + 0.00855598i \(0.00272349\pi\)
−0.803958 + 0.594686i \(0.797277\pi\)
\(578\) −8.30902 25.5725i −0.345610 1.06368i
\(579\) −1.26393 0.918300i −0.0525272 0.0381633i
\(580\) −0.854102 + 0.620541i −0.0354647 + 0.0257666i
\(581\) −11.7812 + 36.2587i −0.488765 + 1.50426i
\(582\) 24.3262 1.00836
\(583\) 0 0
\(584\) −2.76393 −0.114372
\(585\) −0.736068 + 2.26538i −0.0304327 + 0.0936621i
\(586\) −23.4894 + 17.0660i −0.970336 + 0.704991i
\(587\) −19.6631 14.2861i −0.811584 0.589650i 0.102706 0.994712i \(-0.467250\pi\)
−0.914289 + 0.405062i \(0.867250\pi\)
\(588\) 0.381966 + 1.17557i 0.0157520 + 0.0484797i
\(589\) 1.01722 + 3.13068i 0.0419139 + 0.128998i
\(590\) −2.66312 1.93487i −0.109639 0.0796573i
\(591\) −21.5344 + 15.6457i −0.885809 + 0.643578i
\(592\) 6.35410 19.5559i 0.261152 0.803743i
\(593\) −29.2148 −1.19971 −0.599854 0.800110i \(-0.704775\pi\)
−0.599854 + 0.800110i \(0.704775\pi\)
\(594\) 0 0
\(595\) 0.708204 0.0290335
\(596\) 2.86475 8.81678i 0.117345 0.361149i
\(597\) 2.66312 1.93487i 0.108994 0.0791889i
\(598\) 44.6697 + 32.4544i 1.82668 + 1.32716i
\(599\) −6.70820 20.6457i −0.274090 0.843562i −0.989459 0.144815i \(-0.953741\pi\)
0.715369 0.698747i \(-0.246259\pi\)
\(600\) 3.35410 + 10.3229i 0.136931 + 0.421429i
\(601\) 16.0451 + 11.6574i 0.654493 + 0.475517i 0.864799 0.502119i \(-0.167446\pi\)
−0.210306 + 0.977636i \(0.567446\pi\)
\(602\) −6.92705 + 5.03280i −0.282326 + 0.205121i
\(603\) 3.26393 10.0453i 0.132918 0.409078i
\(604\) 1.23607 0.0502949
\(605\) 0 0
\(606\) −4.85410 −0.197184
\(607\) −0.718847 + 2.21238i −0.0291771 + 0.0897979i −0.964585 0.263774i \(-0.915033\pi\)
0.935408 + 0.353571i \(0.115033\pi\)
\(608\) −2.33688 + 1.69784i −0.0947730 + 0.0688566i
\(609\) 10.8541 + 7.88597i 0.439830 + 0.319555i
\(610\) −0.218847 0.673542i −0.00886086 0.0272709i
\(611\) −1.19098 3.66547i −0.0481820 0.148289i
\(612\) 0.309017 + 0.224514i 0.0124913 + 0.00907544i
\(613\) −2.70820 + 1.96763i −0.109383 + 0.0794716i −0.641132 0.767430i \(-0.721535\pi\)
0.531749 + 0.846902i \(0.321535\pi\)
\(614\) −9.78115 + 30.1033i −0.394735 + 1.21487i
\(615\) −2.27051 −0.0915558
\(616\) 0 0
\(617\) 46.4164 1.86865 0.934327 0.356417i \(-0.116002\pi\)
0.934327 + 0.356417i \(0.116002\pi\)
\(618\) −3.00000 + 9.23305i −0.120678 + 0.371408i
\(619\) 25.2254 18.3273i 1.01390 0.736638i 0.0488729 0.998805i \(-0.484437\pi\)
0.965023 + 0.262167i \(0.0844371\pi\)
\(620\) −0.736068 0.534785i −0.0295612 0.0214775i
\(621\) −1.69098 5.20431i −0.0678568 0.208842i
\(622\) 5.73607 + 17.6538i 0.229995 + 0.707853i
\(623\) −22.9894 16.7027i −0.921049 0.669181i
\(624\) 24.4894 17.7926i 0.980359 0.712272i
\(625\) 7.05573 21.7153i 0.282229 0.868612i
\(626\) −45.0344 −1.79994
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 0.809017 2.48990i 0.0322576 0.0992787i
\(630\) 1.50000 1.08981i 0.0597614 0.0434192i
\(631\) −10.2984 7.48221i −0.409972 0.297862i 0.363619 0.931548i \(-0.381541\pi\)
−0.773590 + 0.633686i \(0.781541\pi\)
\(632\) −0.364745 1.12257i −0.0145088 0.0446534i
\(633\) 3.48278 + 10.7189i 0.138428 + 0.426038i
\(634\) −33.1976 24.1194i −1.31844 0.957905i
\(635\) 3.00000 2.17963i 0.119051 0.0864959i
\(636\) −1.40983 + 4.33901i −0.0559034 + 0.172053i
\(637\) 12.4721 0.494164
\(638\) 0 0
\(639\) 14.5623 0.576076
\(640\) −1.60739 + 4.94704i −0.0635377 + 0.195549i
\(641\) 5.45492 3.96323i 0.215456 0.156538i −0.474823 0.880081i \(-0.657488\pi\)
0.690279 + 0.723543i \(0.257488\pi\)
\(642\) −0.309017 0.224514i −0.0121959 0.00886086i
\(643\) −5.69756 17.5353i −0.224690 0.691524i −0.998323 0.0578904i \(-0.981563\pi\)
0.773633 0.633634i \(-0.218437\pi\)
\(644\) −3.13525 9.64932i −0.123546 0.380237i
\(645\) 0.545085 + 0.396027i 0.0214627 + 0.0155936i
\(646\) −0.690983 + 0.502029i −0.0271864 + 0.0197520i
\(647\) 0.989357 3.04493i 0.0388956 0.119708i −0.929723 0.368259i \(-0.879954\pi\)
0.968619 + 0.248550i \(0.0799541\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 0 0
\(650\) −48.9787 −1.92110
\(651\) −3.57295 + 10.9964i −0.140035 + 0.430983i
\(652\) 7.63525 5.54734i 0.299020 0.217250i
\(653\) −17.7705 12.9110i −0.695414 0.505248i 0.183022 0.983109i \(-0.441412\pi\)
−0.878435 + 0.477861i \(0.841412\pi\)
\(654\) 0 0
\(655\) 1.63525 + 5.03280i 0.0638947 + 0.196648i
\(656\) 23.3435 + 16.9600i 0.911409 + 0.662177i
\(657\) −1.00000 + 0.726543i −0.0390137 + 0.0283451i
\(658\) −0.927051 + 2.85317i −0.0361402 + 0.111228i
\(659\) 20.6525 0.804506 0.402253 0.915528i \(-0.368227\pi\)
0.402253 + 0.915528i \(0.368227\pi\)
\(660\) 0 0
\(661\) −21.0902 −0.820313 −0.410156 0.912015i \(-0.634526\pi\)
−0.410156 + 0.912015i \(0.634526\pi\)
\(662\) −11.2984 + 34.7728i −0.439124 + 1.35148i
\(663\) 3.11803 2.26538i 0.121094 0.0879802i
\(664\) −22.9894 16.7027i −0.892160 0.648192i
\(665\) 0.302439 + 0.930812i 0.0117281 + 0.0360953i
\(666\) −2.11803 6.51864i −0.0820721 0.252592i
\(667\) −19.7984 14.3844i −0.766596 0.556965i
\(668\) 9.51722 6.91467i 0.368232 0.267536i
\(669\) −3.92705 + 12.0862i −0.151829 + 0.467280i
\(670\) −6.52786 −0.252193
\(671\) 0 0
\(672\) −10.1459 −0.391387
\(673\) −4.45492 + 13.7108i −0.171724 + 0.528513i −0.999469 0.0325922i \(-0.989624\pi\)
0.827744 + 0.561105i \(0.189624\pi\)
\(674\) 17.9443 13.0373i 0.691188 0.502177i
\(675\) 3.92705 + 2.85317i 0.151152 + 0.109819i
\(676\) 4.94427 + 15.2169i 0.190164 + 0.585266i
\(677\) 6.94427 + 21.3723i 0.266890 + 0.821403i 0.991252 + 0.131983i \(0.0421345\pi\)
−0.724362 + 0.689420i \(0.757866\pi\)
\(678\) 16.6353 + 12.0862i 0.638873 + 0.464168i
\(679\) −36.4894 + 26.5111i −1.40033 + 1.01740i
\(680\) −0.163119 + 0.502029i −0.00625533 + 0.0192519i
\(681\) 10.8885 0.417250
\(682\) 0 0
\(683\) −38.8885 −1.48803 −0.744014 0.668164i \(-0.767081\pi\)
−0.744014 + 0.668164i \(0.767081\pi\)
\(684\) −0.163119 + 0.502029i −0.00623701 + 0.0191955i
\(685\) −0.454915 + 0.330515i −0.0173814 + 0.0126283i
\(686\) 19.6353 + 14.2658i 0.749678 + 0.544673i
\(687\) 3.09017 + 9.51057i 0.117897 + 0.362851i
\(688\) −2.64590 8.14324i −0.100874 0.310458i
\(689\) 37.2426 + 27.0584i 1.41883 + 1.03084i
\(690\) −2.73607 + 1.98787i −0.104160 + 0.0756769i
\(691\) −12.2705 + 37.7647i −0.466792 + 1.43664i 0.389922 + 0.920848i \(0.372502\pi\)
−0.856715 + 0.515791i \(0.827498\pi\)
\(692\) 10.8885 0.413920
\(693\) 0 0
\(694\) −4.94427 −0.187682
\(695\) −0.690983 + 2.12663i −0.0262105 + 0.0806676i
\(696\) −8.09017 + 5.87785i −0.306657 + 0.222799i
\(697\) 2.97214 + 2.15938i 0.112578 + 0.0817925i
\(698\) 15.0623 + 46.3570i 0.570117 + 1.75464i
\(699\) 2.68034 + 8.24924i 0.101380 + 0.312015i
\(700\) 7.28115 + 5.29007i 0.275202 + 0.199946i
\(701\) −40.1976 + 29.2052i −1.51824 + 1.10307i −0.555890 + 0.831256i \(0.687623\pi\)
−0.962351 + 0.271811i \(0.912377\pi\)
\(702\) 3.11803 9.59632i 0.117683 0.362190i
\(703\) 3.61803 0.136457
\(704\) 0 0
\(705\) 0.236068 0.00889083
\(706\) −0.763932 + 2.35114i −0.0287510 + 0.0884864i
\(707\) 7.28115 5.29007i 0.273836 0.198953i
\(708\) 2.66312 + 1.93487i 0.100086 + 0.0727168i
\(709\) 1.93363 + 5.95110i 0.0726190 + 0.223498i 0.980778 0.195127i \(-0.0625120\pi\)
−0.908159 + 0.418625i \(0.862512\pi\)
\(710\) −2.78115 8.55951i −0.104375 0.321233i
\(711\) −0.427051 0.310271i −0.0160157 0.0116361i
\(712\) 17.1353 12.4495i 0.642171 0.466564i
\(713\) 6.51722 20.0579i 0.244072 0.751176i
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) 1.38197 0.0516465
\(717\) −5.42705 + 16.7027i −0.202677 + 0.623775i
\(718\) 22.5623 16.3925i 0.842018 0.611762i
\(719\) 22.9894 + 16.7027i 0.857358 + 0.622907i 0.927165 0.374653i \(-0.122238\pi\)
−0.0698067 + 0.997561i \(0.522238\pi\)
\(720\) 0.572949 + 1.76336i 0.0213525 + 0.0657164i
\(721\) −5.56231 17.1190i −0.207151 0.637546i
\(722\) 23.9164 + 17.3763i 0.890077 + 0.646678i
\(723\) −13.8541 + 10.0656i −0.515240 + 0.374343i
\(724\) −1.62868 + 5.01255i −0.0605293 + 0.186290i
\(725\) 21.7082 0.806222
\(726\) 0 0
\(727\) 32.1459 1.19223 0.596113 0.802901i \(-0.296711\pi\)
0.596113 + 0.802901i \(0.296711\pi\)
\(728\) −12.9271 + 39.7854i −0.479108 + 1.47454i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0.618034 + 0.449028i 0.0228745 + 0.0166193i
\(731\) −0.336881 1.03681i −0.0124600 0.0383479i
\(732\) 0.218847 + 0.673542i 0.00808882 + 0.0248948i
\(733\) 19.6525 + 14.2784i 0.725881 + 0.527383i 0.888258 0.459346i \(-0.151916\pi\)
−0.162377 + 0.986729i \(0.551916\pi\)
\(734\) 19.0623 13.8496i 0.703603 0.511197i
\(735\) −0.236068 + 0.726543i −0.00870750 + 0.0267989i
\(736\) 18.5066 0.682162
\(737\) 0 0
\(738\) 9.61803 0.354045
\(739\) −7.72542 + 23.7764i −0.284184 + 0.874629i 0.702458 + 0.711726i \(0.252086\pi\)
−0.986642 + 0.162904i \(0.947914\pi\)
\(740\) −0.809017 + 0.587785i −0.0297401 + 0.0216074i
\(741\) 4.30902 + 3.13068i 0.158296 + 0.115009i
\(742\) −11.0729 34.0790i −0.406501 1.25108i
\(743\) 3.96149 + 12.1922i 0.145333 + 0.447289i 0.997054 0.0767070i \(-0.0244406\pi\)
−0.851721 + 0.523996i \(0.824441\pi\)
\(744\) −6.97214 5.06555i −0.255611 0.185712i
\(745\) 4.63525 3.36771i 0.169823 0.123383i
\(746\) 11.2082 34.4953i 0.410362 1.26296i
\(747\) −12.7082 −0.464969
\(748\) 0 0
\(749\) 0.708204 0.0258772
\(750\) 1.88197 5.79210i 0.0687197 0.211497i
\(751\) 42.8156 31.1074i 1.56236 1.13512i 0.628325 0.777951i \(-0.283741\pi\)
0.934039 0.357172i \(-0.116259\pi\)
\(752\) −2.42705 1.76336i −0.0885054 0.0643030i
\(753\) 5.19098 + 15.9762i 0.189170 + 0.582205i
\(754\) −13.9443 42.9161i −0.507820 1.56291i
\(755\) 0.618034 + 0.449028i 0.0224926 + 0.0163418i
\(756\) −1.50000 + 1.08981i −0.0545545 + 0.0396361i
\(757\) −4.92705 + 15.1639i −0.179077 + 0.551141i −0.999796 0.0201900i \(-0.993573\pi\)
0.820719 + 0.571331i \(0.193573\pi\)
\(758\) 45.9787 1.67002
\(759\) 0 0
\(760\) −0.729490 −0.0264614
\(761\) 1.51064 4.64928i 0.0547608 0.168536i −0.919935 0.392070i \(-0.871759\pi\)
0.974696 + 0.223533i \(0.0717592\pi\)
\(762\) −12.7082 + 9.23305i −0.460370 + 0.334478i
\(763\) 0 0
\(764\) 0.281153 + 0.865300i 0.0101718 + 0.0313054i
\(765\) 0.0729490 + 0.224514i 0.00263748 + 0.00811732i
\(766\) 11.6353 + 8.45351i 0.420399 + 0.305438i
\(767\) 26.8713 19.5232i 0.970267 0.704940i
\(768\) 4.19098 12.8985i 0.151229 0.465435i
\(769\) −47.6869 −1.71963 −0.859817 0.510602i \(-0.829423\pi\)
−0.859817 + 0.510602i \(0.829423\pi\)
\(770\) 0 0
\(771\) −27.3262 −0.984130
\(772\) 0.298374 0.918300i 0.0107387 0.0330504i
\(773\) −39.8435 + 28.9480i −1.43307 + 1.04119i −0.443635 + 0.896208i \(0.646311\pi\)
−0.989435 + 0.144978i \(0.953689\pi\)
\(774\) −2.30902 1.67760i −0.0829959 0.0603001i
\(775\) 5.78115 + 17.7926i 0.207665 + 0.639128i
\(776\) −10.3885 31.9727i −0.372927 1.14775i
\(777\) 10.2812 + 7.46969i 0.368834 + 0.267974i
\(778\) 12.1353 8.81678i 0.435070 0.316097i
\(779\) −1.56888 + 4.82853i −0.0562111 + 0.173000i
\(780\) −1.47214 −0.0527109
\(781\) 0 0
\(782\) 5.47214 0.195683
\(783\) −1.38197 + 4.25325i −0.0493874 + 0.151999i
\(784\) 7.85410 5.70634i 0.280504 0.203798i
\(785\) 3.00000 + 2.17963i 0.107075 + 0.0777942i
\(786\) −6.92705 21.3193i −0.247080 0.760433i
\(787\) −7.32624 22.5478i −0.261152 0.803744i −0.992555 0.121798i \(-0.961134\pi\)
0.731403 0.681946i \(-0.238866\pi\)
\(788\) −13.3090 9.66957i −0.474114 0.344464i
\(789\) 0.545085 0.396027i 0.0194055 0.0140989i
\(790\) −0.100813 + 0.310271i −0.00358677 + 0.0110389i
\(791\) −38.1246 −1.35556
\(792\) 0 0
\(793\) 7.14590 0.253758
\(794\) −12.6459 + 38.9201i −0.448786 + 1.38122i
\(795\) −2.28115 + 1.65735i −0.0809042 + 0.0587803i
\(796\) 1.64590 + 1.19581i 0.0583373 + 0.0423845i
\(797\) 4.70820 + 14.4904i 0.166773 + 0.513275i 0.999163 0.0409162i \(-0.0130277\pi\)
−0.832389 + 0.554191i \(0.813028\pi\)
\(798\) −1.28115 3.94298i −0.0453523 0.139580i
\(799\) −0.309017 0.224514i −0.0109322 0.00794273i
\(800\) −13.2812 + 9.64932i −0.469560 + 0.341155i
\(801\) 2.92705 9.00854i 0.103422 0.318301i
\(802\) −24.1246 −0.851870
\(803\) 0 0
\(804\) 6.52786 0.230220
\(805\) 1.93769 5.96361i 0.0682947 0.210190i
\(806\) 31.4615 22.8581i 1.10818 0.805143i
\(807\) −19.7984 14.3844i −0.696936 0.506353i
\(808\) 2.07295 + 6.37988i 0.0729261 + 0.224443i
\(809\) 7.82624 + 24.0867i 0.275156 + 0.846843i 0.989178 + 0.146720i \(0.0468715\pi\)
−0.714022 + 0.700123i \(0.753128\pi\)
\(810\) 0.500000 + 0.363271i 0.0175682 + 0.0127641i
\(811\) −37.0066 + 26.8869i −1.29948 + 0.944125i −0.999950 0.00996294i \(-0.996829\pi\)
−0.299526 + 0.954088i \(0.596829\pi\)
\(812\) −2.56231 + 7.88597i −0.0899193 + 0.276743i
\(813\) 6.27051 0.219916
\(814\) 0 0
\(815\) 5.83282 0.204315
\(816\) 0.927051 2.85317i 0.0324533 0.0998809i
\(817\) 1.21885 0.885544i 0.0426421 0.0309813i
\(818\) 37.8885 + 27.5276i 1.32474 + 0.962481i
\(819\) 5.78115 + 17.7926i 0.202010 + 0.621722i
\(820\) −0.433629 1.33457i −0.0151430 0.0466053i
\(821\) −10.9894 7.98424i −0.383531 0.278652i 0.379268 0.925287i \(-0.376176\pi\)
−0.762800 + 0.646635i \(0.776176\pi\)
\(822\) 1.92705 1.40008i 0.0672136 0.0488336i
\(823\) −8.19756 + 25.2295i −0.285749 + 0.879445i 0.700424 + 0.713727i \(0.252994\pi\)
−0.986173 + 0.165718i \(0.947006\pi\)
\(824\) 13.4164 0.467383
\(825\) 0 0
\(826\) −25.8541 −0.899579
\(827\) 3.97871 12.2452i 0.138353 0.425808i −0.857743 0.514079i \(-0.828134\pi\)
0.996097 + 0.0882705i \(0.0281340\pi\)
\(828\) 2.73607 1.98787i 0.0950849 0.0690832i
\(829\) 34.5344 + 25.0907i 1.19943 + 0.871437i 0.994229 0.107282i \(-0.0342148\pi\)
0.205202 + 0.978720i \(0.434215\pi\)
\(830\) 2.42705 + 7.46969i 0.0842442 + 0.259277i
\(831\) 3.22542 + 9.92684i 0.111889 + 0.344358i
\(832\) −21.3713 15.5272i −0.740917 0.538308i
\(833\) 1.00000 0.726543i 0.0346479 0.0251732i
\(834\) 2.92705 9.00854i 0.101355 0.311940i
\(835\) 7.27051 0.251606
\(836\) 0 0
\(837\) −3.85410 −0.133217
\(838\) −10.7533 + 33.0952i −0.371466 + 1.14326i
\(839\) 18.8435 13.6906i 0.650548 0.472651i −0.212910 0.977072i \(-0.568294\pi\)
0.863458 + 0.504421i \(0.168294\pi\)
\(840\) −2.07295 1.50609i −0.0715235 0.0519649i
\(841\) −2.78115 8.55951i −0.0959018 0.295155i
\(842\) −1.86475 5.73910i −0.0642634 0.197782i
\(843\) 4.23607 + 3.07768i 0.145898 + 0.106001i
\(844\) −5.63525 + 4.09425i −0.193973 + 0.140930i
\(845\) −3.05573 + 9.40456i −0.105120 + 0.323527i
\(846\) −1.00000 −0.0343807
\(847\) 0 0
\(848\) 35.8328 1.23050
\(849\) −6.85410 + 21.0948i −0.235232 + 0.723970i
\(850\) −3.92705 + 2.85317i −0.134697 + 0.0978629i
\(851\) −18.7533 13.6251i −0.642854 0.467061i
\(852\) 2.78115 + 8.55951i 0.0952807 + 0.293244i
\(853\) 2.45492 + 7.55545i 0.0840547 + 0.258694i 0.984247 0.176799i \(-0.0565742\pi\)
−0.900192 + 0.435493i \(0.856574\pi\)
\(854\) −4.50000 3.26944i −0.153987 0.111878i
\(855\) −0.263932 + 0.191758i −0.00902628 + 0.00655798i
\(856\) −0.163119 + 0.502029i −0.00557529 + 0.0171590i
\(857\) −41.7214 −1.42517 −0.712587 0.701584i \(-0.752477\pi\)
−0.712587 + 0.701584i \(0.752477\pi\)
\(858\) 0 0
\(859\) 42.8885 1.46334 0.731669 0.681660i \(-0.238742\pi\)
0.731669 + 0.681660i \(0.238742\pi\)
\(860\) −0.128677 + 0.396027i −0.00438785 + 0.0135044i
\(861\) −14.4271 + 10.4819i −0.491673 + 0.357221i
\(862\) 1.95492 + 1.42033i 0.0665847 + 0.0483766i
\(863\) −7.38197 22.7194i −0.251285 0.773376i −0.994539 0.104366i \(-0.966719\pi\)
0.743254 0.669009i \(-0.233281\pi\)
\(864\) −1.04508 3.21644i −0.0355545 0.109426i
\(865\) 5.44427 + 3.95550i 0.185111 + 0.134491i
\(866\) 7.85410 5.70634i 0.266893 0.193909i
\(867\) −5.13525 + 15.8047i −0.174402 + 0.536755i
\(868\) −7.14590 −0.242548
\(869\) 0 0
\(870\) 2.76393 0.0937061
\(871\) 20.3541 62.6435i 0.689672 2.12259i
\(872\) 0 0
\(873\) −12.1631 8.83702i −0.411659 0.299088i
\(874\) 2.33688 + 7.19218i 0.0790462 + 0.243279i
\(875\) 3.48936 + 10.7391i 0.117962 + 0.363049i
\(876\) −0.618034 0.449028i −0.0208814 0.0151712i
\(877\) 16.5172 12.0005i 0.557747 0.405227i −0.272887 0.962046i \(-0.587978\pi\)
0.830634 + 0.556819i \(0.187978\pi\)
\(878\) 8.35410 25.7113i 0.281937 0.867714i
\(879\) 17.9443 0.605245
\(880\) 0 0
\(881\) 25.0902 0.845309 0.422655 0.906291i \(-0.361098\pi\)
0.422655 + 0.906291i \(0.361098\pi\)
\(882\) 1.00000 3.07768i 0.0336718 0.103631i
\(883\) −30.2705 + 21.9928i −1.01868 + 0.740117i −0.966013 0.258495i \(-0.916774\pi\)
−0.0526711 + 0.998612i \(0.516774\pi\)
\(884\) 1.92705 + 1.40008i 0.0648137 + 0.0470899i
\(885\) 0.628677 + 1.93487i 0.0211327 + 0.0650399i
\(886\) −0.437694 1.34708i −0.0147046 0.0452562i
\(887\) −2.42705 1.76336i −0.0814924 0.0592077i 0.546293 0.837594i \(-0.316038\pi\)
−0.627785 + 0.778386i \(0.716038\pi\)
\(888\) −7.66312 + 5.56758i −0.257157 + 0.186836i
\(889\) 9.00000 27.6992i 0.301850 0.929000i
\(890\) −5.85410 −0.196230
\(891\) 0 0
\(892\) −7.85410 −0.262975
\(893\) 0.163119 0.502029i 0.00545857 0.0167997i
\(894\) −19.6353 + 14.2658i −0.656701 + 0.477121i
\(895\) 0.690983 + 0.502029i 0.0230970 + 0.0167810i
\(896\) 12.6246 + 38.8546i 0.421759 + 1.29804i
\(897\) −10.5451 32.4544i −0.352090 1.08362i
\(898\) 20.3262 + 14.7679i 0.678295 + 0.492810i
\(899\) −13.9443 + 10.1311i −0.465068 + 0.337891i
\(900\) −0.927051 + 2.85317i −0.0309017 + 0.0951057i
\(901\) 4.56231 0.151992
\(902\) 0 0
\(903\) 5.29180 0.176100
\(904\) 8.78115 27.0256i 0.292057 0.898858i
\(905\) −2.63525 + 1.91462i −0.0875988 + 0.0636443i
\(906\) −2.61803 1.90211i −0.0869784 0.0631935i
\(907\) 1.22949 + 3.78398i 0.0408246 + 0.125645i 0.969392 0.245520i \(-0.0789586\pi\)
−0.928567 + 0.371165i \(0.878959\pi\)
\(908\) 2.07953 + 6.40013i 0.0690115 + 0.212396i
\(909\) 2.42705 + 1.76336i 0.0805002 + 0.0584868i
\(910\) 9.35410 6.79615i 0.310085 0.225290i
\(911\) 11.1074 34.1850i 0.368004 1.13260i −0.580074 0.814564i \(-0.696976\pi\)
0.948078 0.318037i \(-0.103024\pi\)
\(912\) 4.14590 0.137284
\(913\) 0 0
\(914\) 53.0689 1.75536
\(915\) −0.135255 + 0.416272i −0.00447139 + 0.0137615i
\(916\) −5.00000 + 3.63271i −0.165205 + 0.120028i
\(917\) 33.6246 + 24.4297i 1.11038 + 0.806740i
\(918\) −0.309017 0.951057i −0.0101991 0.0313895i
\(919\) −14.5106 44.6592i −0.478662 1.47317i −0.840955 0.541106i \(-0.818006\pi\)
0.362293 0.932064i \(-0.381994\pi\)
\(920\) 3.78115 + 2.74717i 0.124661 + 0.0905715i
\(921\) 15.8262 11.4984i 0.521492 0.378886i
\(922\) −4.95492 + 15.2497i −0.163181 + 0.502221i
\(923\) 90.8115 2.98910
\(924\) 0 0
\(925\) 20.5623 0.676084
\(926\) 4.39919 13.5393i 0.144566 0.444929i
\(927\) 4.85410 3.52671i 0.159430 0.115832i
\(928\) −12.2361 8.89002i −0.401669 0.291829i
\(929\) 0.892609 + 2.74717i 0.0292856 + 0.0901317i 0.964631 0.263604i \(-0.0849112\pi\)
−0.935345 + 0.353736i \(0.884911\pi\)
\(930\) 0.736068 + 2.26538i 0.0241366 + 0.0742849i
\(931\) 1.38197 + 1.00406i 0.0452921 + 0.0329066i
\(932\) −4.33688 + 3.15093i −0.142059 + 0.103212i
\(933\) 3.54508 10.9106i 0.116061 0.357199i
\(934\) −23.0344 −0.753710
\(935\) 0 0
\(936\) −13.9443 −0.455783
\(937\) 10.0729 31.0013i 0.329069 1.01277i −0.640501 0.767957i \(-0.721273\pi\)
0.969570 0.244813i \(-0.0787266\pi\)
\(938\) −41.4787 + 30.1360i −1.35433 + 0.983977i
\(939\) 22.5172 + 16.3597i 0.734822 + 0.533879i
\(940\) 0.0450850 + 0.138757i 0.00147051 + 0.00452576i
\(941\) 10.3926 + 31.9852i 0.338789 + 1.04269i 0.964825 + 0.262892i \(0.0846764\pi\)
−0.626036 + 0.779794i \(0.715324\pi\)
\(942\) −12.7082 9.23305i −0.414056 0.300829i
\(943\) 26.3156 19.1194i 0.856954 0.622613i
\(944\) 7.98936 24.5887i 0.260031 0.800294i
\(945\) −1.14590 −0.0372761
\(946\) 0 0
\(947\) 2.67376 0.0868856 0.0434428 0.999056i \(-0.486167\pi\)
0.0434428 + 0.999056i \(0.486167\pi\)
\(948\) 0.100813 0.310271i 0.00327426 0.0100771i
\(949\) −6.23607 + 4.53077i −0.202431 + 0.147075i
\(950\) −5.42705 3.94298i −0.176077 0.127927i
\(951\) 7.83688 + 24.1194i 0.254128 + 0.782126i
\(952\) 1.28115 + 3.94298i 0.0415224 + 0.127793i
\(953\) −48.6869 35.3731i −1.57712 1.14585i −0.919900 0.392152i \(-0.871731\pi\)
−0.657223 0.753696i \(-0.728269\pi\)
\(954\) 9.66312 7.02067i 0.312855 0.227302i
\(955\) −0.173762 + 0.534785i −0.00562281 + 0.0173052i
\(956\) −10.8541 −0.351047
\(957\) 0 0
\(958\) −27.3607 −0.883983
\(959\) −1.36475 + 4.20025i −0.0440699 + 0.135633i
\(960\) 1.30902 0.951057i 0.0422483 0.0306952i
\(961\) 13.0623 + 9.49032i 0.421365 + 0.306139i
\(962\) −13.2082 40.6507i −0.425850 1.31063i
\(963\) 0.0729490 + 0.224514i 0.00235075 + 0.00723486i
\(964\) −8.56231 6.22088i −0.275773 0.200361i
\(965\) 0.482779 0.350760i 0.0155412 0.0112913i
\(966\) −8.20820 + 25.2623i −0.264095 + 0.812800i
\(967\) 25.6869 0.826036 0.413018 0.910723i \(-0.364475\pi\)
0.413018 + 0.910723i \(0.364475\pi\)
\(968\) 0 0
\(969\) 0.527864 0.0169574
\(970\) −2.87132 + 8.83702i −0.0921926 + 0.283740i
\(971\) 27.3262 19.8537i 0.876941 0.637135i −0.0554996 0.998459i \(-0.517675\pi\)
0.932440 + 0.361324i \(0.117675\pi\)
\(972\) −0.500000 0.363271i −0.0160375 0.0116519i
\(973\) 5.42705 + 16.7027i 0.173983 + 0.535465i
\(974\) 19.5902 + 60.2923i 0.627710 + 1.93189i
\(975\) 24.4894 + 17.7926i 0.784287 + 0.569818i
\(976\) 4.50000 3.26944i 0.144041 0.104652i
\(977\) −15.2533 + 46.9448i −0.487996 + 1.50190i 0.339598 + 0.940571i \(0.389709\pi\)
−0.827594 + 0.561327i \(0.810291\pi\)
\(978\) −24.7082 −0.790081
\(979\) 0 0
\(980\) −0.472136 −0.0150818
\(981\) 0 0
\(982\) 34.3156 24.9317i 1.09505 0.795604i
\(983\) −28.5623 20.7517i −0.910996 0.661877i 0.0302705 0.999542i \(-0.490363\pi\)
−0.941267 + 0.337664i \(0.890363\pi\)
\(984\) −4.10739 12.6412i −0.130939 0.402988i
\(985\) −3.14183 9.66957i −0.100107 0.308098i
\(986\) −3.61803 2.62866i −0.115222 0.0837134i
\(987\) 1.50000 1.08981i 0.0477455 0.0346892i
\(988\) −1.01722 + 3.13068i −0.0323621 + 0.0996003i
\(989\) −9.65248 −0.306931
\(990\) 0 0
\(991\) −12.2705 −0.389786 −0.194893 0.980825i \(-0.562436\pi\)
−0.194893 + 0.980825i \(0.562436\pi\)
\(992\) 4.02786 12.3965i 0.127885 0.393589i
\(993\) 18.2812 13.2820i 0.580135 0.421493i
\(994\) −57.1869 41.5487i −1.81386 1.31785i
\(995\) 0.388544 + 1.19581i 0.0123177 + 0.0379099i
\(996\) −2.42705 7.46969i −0.0769041 0.236686i
\(997\) −27.4894 19.9722i −0.870597 0.632526i 0.0601503 0.998189i \(-0.480842\pi\)
−0.930747 + 0.365664i \(0.880842\pi\)
\(998\) −3.35410 + 2.43690i −0.106172 + 0.0771386i
\(999\) −1.30902 + 4.02874i −0.0414155 + 0.127464i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.e.h.130.1 4
11.2 odd 10 363.2.e.j.124.1 4
11.3 even 5 33.2.e.a.4.1 4
11.4 even 5 363.2.a.h.1.2 2
11.5 even 5 inner 363.2.e.h.148.1 4
11.6 odd 10 363.2.e.c.148.1 4
11.7 odd 10 363.2.a.e.1.1 2
11.8 odd 10 363.2.e.j.202.1 4
11.9 even 5 33.2.e.a.25.1 yes 4
11.10 odd 2 363.2.e.c.130.1 4
33.14 odd 10 99.2.f.b.37.1 4
33.20 odd 10 99.2.f.b.91.1 4
33.26 odd 10 1089.2.a.m.1.1 2
33.29 even 10 1089.2.a.s.1.2 2
44.3 odd 10 528.2.y.f.433.1 4
44.7 even 10 5808.2.a.bm.1.2 2
44.15 odd 10 5808.2.a.bl.1.2 2
44.31 odd 10 528.2.y.f.289.1 4
55.3 odd 20 825.2.bx.b.499.1 8
55.4 even 10 9075.2.a.x.1.1 2
55.9 even 10 825.2.n.f.751.1 4
55.14 even 10 825.2.n.f.301.1 4
55.29 odd 10 9075.2.a.bv.1.2 2
55.42 odd 20 825.2.bx.b.124.1 8
55.47 odd 20 825.2.bx.b.499.2 8
55.53 odd 20 825.2.bx.b.124.2 8
99.14 odd 30 891.2.n.a.136.1 8
99.20 odd 30 891.2.n.a.190.1 8
99.25 even 15 891.2.n.d.433.1 8
99.31 even 15 891.2.n.d.784.1 8
99.47 odd 30 891.2.n.a.433.1 8
99.58 even 15 891.2.n.d.136.1 8
99.86 odd 30 891.2.n.a.784.1 8
99.97 even 15 891.2.n.d.190.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.a.4.1 4 11.3 even 5
33.2.e.a.25.1 yes 4 11.9 even 5
99.2.f.b.37.1 4 33.14 odd 10
99.2.f.b.91.1 4 33.20 odd 10
363.2.a.e.1.1 2 11.7 odd 10
363.2.a.h.1.2 2 11.4 even 5
363.2.e.c.130.1 4 11.10 odd 2
363.2.e.c.148.1 4 11.6 odd 10
363.2.e.h.130.1 4 1.1 even 1 trivial
363.2.e.h.148.1 4 11.5 even 5 inner
363.2.e.j.124.1 4 11.2 odd 10
363.2.e.j.202.1 4 11.8 odd 10
528.2.y.f.289.1 4 44.31 odd 10
528.2.y.f.433.1 4 44.3 odd 10
825.2.n.f.301.1 4 55.14 even 10
825.2.n.f.751.1 4 55.9 even 10
825.2.bx.b.124.1 8 55.42 odd 20
825.2.bx.b.124.2 8 55.53 odd 20
825.2.bx.b.499.1 8 55.3 odd 20
825.2.bx.b.499.2 8 55.47 odd 20
891.2.n.a.136.1 8 99.14 odd 30
891.2.n.a.190.1 8 99.20 odd 30
891.2.n.a.433.1 8 99.47 odd 30
891.2.n.a.784.1 8 99.86 odd 30
891.2.n.d.136.1 8 99.58 even 15
891.2.n.d.190.1 8 99.97 even 15
891.2.n.d.433.1 8 99.25 even 15
891.2.n.d.784.1 8 99.31 even 15
1089.2.a.m.1.1 2 33.26 odd 10
1089.2.a.s.1.2 2 33.29 even 10
5808.2.a.bl.1.2 2 44.15 odd 10
5808.2.a.bm.1.2 2 44.7 even 10
9075.2.a.x.1.1 2 55.4 even 10
9075.2.a.bv.1.2 2 55.29 odd 10