Properties

Label 363.2.e.f.130.1
Level $363$
Weight $2$
Character 363.130
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 130.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 363.130
Dual form 363.2.e.f.148.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 2.48990i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-3.92705 - 2.85317i) q^{4} +(-0.190983 - 0.587785i) q^{5} +(-0.809017 - 2.48990i) q^{6} +(-0.809017 - 0.587785i) q^{7} +(-6.04508 + 4.39201i) q^{8} +(0.309017 - 0.951057i) q^{9} -1.61803 q^{10} -4.85410 q^{12} +(-0.0729490 + 0.224514i) q^{13} +(-2.11803 + 1.53884i) q^{14} +(-0.500000 - 0.363271i) q^{15} +(3.04508 + 9.37181i) q^{16} +(0.354102 + 1.08981i) q^{17} +(-2.11803 - 1.53884i) q^{18} +(4.73607 - 3.44095i) q^{19} +(-0.927051 + 2.85317i) q^{20} -1.00000 q^{21} +0.236068 q^{23} +(-2.30902 + 7.10642i) q^{24} +(3.73607 - 2.71441i) q^{25} +(0.500000 + 0.363271i) q^{26} +(-0.309017 - 0.951057i) q^{27} +(1.50000 + 4.61653i) q^{28} +(-4.85410 - 3.52671i) q^{29} +(-1.30902 + 0.951057i) q^{30} +(-1.88197 + 5.79210i) q^{31} +10.8541 q^{32} +3.00000 q^{34} +(-0.190983 + 0.587785i) q^{35} +(-3.92705 + 2.85317i) q^{36} +(5.04508 + 3.66547i) q^{37} +(-4.73607 - 14.5761i) q^{38} +(0.0729490 + 0.224514i) q^{39} +(3.73607 + 2.71441i) q^{40} +(0.190983 - 0.138757i) q^{41} +(-0.809017 + 2.48990i) q^{42} +6.70820 q^{43} -0.618034 q^{45} +(0.190983 - 0.587785i) q^{46} +(8.16312 - 5.93085i) q^{47} +(7.97214 + 5.79210i) q^{48} +(-1.85410 - 5.70634i) q^{49} +(-3.73607 - 11.4984i) q^{50} +(0.927051 + 0.673542i) q^{51} +(0.927051 - 0.673542i) q^{52} +(-0.118034 + 0.363271i) q^{53} -2.61803 q^{54} +7.47214 q^{56} +(1.80902 - 5.56758i) q^{57} +(-12.7082 + 9.23305i) q^{58} +(-5.97214 - 4.33901i) q^{59} +(0.927051 + 2.85317i) q^{60} +(3.57295 + 10.9964i) q^{61} +(12.8992 + 9.37181i) q^{62} +(-0.809017 + 0.587785i) q^{63} +(2.69098 - 8.28199i) q^{64} +0.145898 q^{65} +1.85410 q^{67} +(1.71885 - 5.29007i) q^{68} +(0.190983 - 0.138757i) q^{69} +(1.30902 + 0.951057i) q^{70} +(3.19098 + 9.82084i) q^{71} +(2.30902 + 7.10642i) q^{72} +(-4.61803 - 3.35520i) q^{73} +(13.2082 - 9.59632i) q^{74} +(1.42705 - 4.39201i) q^{75} -28.4164 q^{76} +0.618034 q^{78} +(-3.39919 + 10.4616i) q^{79} +(4.92705 - 3.57971i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(-0.190983 - 0.587785i) q^{82} +(-0.454915 - 1.40008i) q^{83} +(3.92705 + 2.85317i) q^{84} +(0.572949 - 0.416272i) q^{85} +(5.42705 - 16.7027i) q^{86} -6.00000 q^{87} -8.23607 q^{89} +(-0.500000 + 1.53884i) q^{90} +(0.190983 - 0.138757i) q^{91} +(-0.927051 - 0.673542i) q^{92} +(1.88197 + 5.79210i) q^{93} +(-8.16312 - 25.1235i) q^{94} +(-2.92705 - 2.12663i) q^{95} +(8.78115 - 6.37988i) q^{96} +(2.42705 - 7.46969i) q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{3} - 9 q^{4} - 3 q^{5} - q^{6} - q^{7} - 13 q^{8} - q^{9} - 2 q^{10} - 6 q^{12} - 7 q^{13} - 4 q^{14} - 2 q^{15} + q^{16} - 12 q^{17} - 4 q^{18} + 10 q^{19} + 3 q^{20} - 4 q^{21}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 2.48990i 0.572061 1.76062i −0.0739128 0.997265i \(-0.523549\pi\)
0.645974 0.763359i \(-0.276451\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) −3.92705 2.85317i −1.96353 1.42658i
\(5\) −0.190983 0.587785i −0.0854102 0.262866i 0.899226 0.437485i \(-0.144131\pi\)
−0.984636 + 0.174619i \(0.944131\pi\)
\(6\) −0.809017 2.48990i −0.330280 1.01650i
\(7\) −0.809017 0.587785i −0.305780 0.222162i 0.424304 0.905520i \(-0.360519\pi\)
−0.730084 + 0.683358i \(0.760519\pi\)
\(8\) −6.04508 + 4.39201i −2.13726 + 1.55281i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −1.61803 −0.511667
\(11\) 0 0
\(12\) −4.85410 −1.40126
\(13\) −0.0729490 + 0.224514i −0.0202324 + 0.0622690i −0.960663 0.277717i \(-0.910422\pi\)
0.940431 + 0.339986i \(0.110422\pi\)
\(14\) −2.11803 + 1.53884i −0.566068 + 0.411273i
\(15\) −0.500000 0.363271i −0.129099 0.0937962i
\(16\) 3.04508 + 9.37181i 0.761271 + 2.34295i
\(17\) 0.354102 + 1.08981i 0.0858823 + 0.264319i 0.984770 0.173860i \(-0.0556239\pi\)
−0.898888 + 0.438178i \(0.855624\pi\)
\(18\) −2.11803 1.53884i −0.499225 0.362708i
\(19\) 4.73607 3.44095i 1.08653 0.789409i 0.107719 0.994181i \(-0.465645\pi\)
0.978810 + 0.204772i \(0.0656454\pi\)
\(20\) −0.927051 + 2.85317i −0.207295 + 0.637988i
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) −2.30902 + 7.10642i −0.471326 + 1.45059i
\(25\) 3.73607 2.71441i 0.747214 0.542882i
\(26\) 0.500000 + 0.363271i 0.0980581 + 0.0712434i
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 1.50000 + 4.61653i 0.283473 + 0.872441i
\(29\) −4.85410 3.52671i −0.901384 0.654894i 0.0374370 0.999299i \(-0.488081\pi\)
−0.938821 + 0.344405i \(0.888081\pi\)
\(30\) −1.30902 + 0.951057i −0.238993 + 0.173638i
\(31\) −1.88197 + 5.79210i −0.338011 + 1.04029i 0.627209 + 0.778851i \(0.284197\pi\)
−0.965220 + 0.261440i \(0.915803\pi\)
\(32\) 10.8541 1.91875
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −0.190983 + 0.587785i −0.0322820 + 0.0993538i
\(36\) −3.92705 + 2.85317i −0.654508 + 0.475528i
\(37\) 5.04508 + 3.66547i 0.829407 + 0.602599i 0.919391 0.393344i \(-0.128682\pi\)
−0.0899846 + 0.995943i \(0.528682\pi\)
\(38\) −4.73607 14.5761i −0.768292 2.36456i
\(39\) 0.0729490 + 0.224514i 0.0116812 + 0.0359510i
\(40\) 3.73607 + 2.71441i 0.590724 + 0.429186i
\(41\) 0.190983 0.138757i 0.0298265 0.0216702i −0.572772 0.819715i \(-0.694132\pi\)
0.602599 + 0.798044i \(0.294132\pi\)
\(42\) −0.809017 + 2.48990i −0.124834 + 0.384200i
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) −0.618034 −0.0921311
\(46\) 0.190983 0.587785i 0.0281589 0.0866642i
\(47\) 8.16312 5.93085i 1.19071 0.865104i 0.197374 0.980328i \(-0.436759\pi\)
0.993339 + 0.115224i \(0.0367587\pi\)
\(48\) 7.97214 + 5.79210i 1.15068 + 0.836017i
\(49\) −1.85410 5.70634i −0.264872 0.815191i
\(50\) −3.73607 11.4984i −0.528360 1.62612i
\(51\) 0.927051 + 0.673542i 0.129813 + 0.0943147i
\(52\) 0.927051 0.673542i 0.128559 0.0934035i
\(53\) −0.118034 + 0.363271i −0.0162132 + 0.0498991i −0.958836 0.283961i \(-0.908351\pi\)
0.942623 + 0.333860i \(0.108351\pi\)
\(54\) −2.61803 −0.356269
\(55\) 0 0
\(56\) 7.47214 0.998506
\(57\) 1.80902 5.56758i 0.239610 0.737444i
\(58\) −12.7082 + 9.23305i −1.66867 + 1.21236i
\(59\) −5.97214 4.33901i −0.777506 0.564891i 0.126724 0.991938i \(-0.459554\pi\)
−0.904229 + 0.427047i \(0.859554\pi\)
\(60\) 0.927051 + 2.85317i 0.119682 + 0.368343i
\(61\) 3.57295 + 10.9964i 0.457469 + 1.40795i 0.868212 + 0.496194i \(0.165270\pi\)
−0.410742 + 0.911751i \(0.634730\pi\)
\(62\) 12.8992 + 9.37181i 1.63820 + 1.19022i
\(63\) −0.809017 + 0.587785i −0.101927 + 0.0740540i
\(64\) 2.69098 8.28199i 0.336373 1.03525i
\(65\) 0.145898 0.0180964
\(66\) 0 0
\(67\) 1.85410 0.226515 0.113257 0.993566i \(-0.463872\pi\)
0.113257 + 0.993566i \(0.463872\pi\)
\(68\) 1.71885 5.29007i 0.208441 0.641515i
\(69\) 0.190983 0.138757i 0.0229917 0.0167044i
\(70\) 1.30902 + 0.951057i 0.156457 + 0.113673i
\(71\) 3.19098 + 9.82084i 0.378700 + 1.16552i 0.940948 + 0.338550i \(0.109937\pi\)
−0.562248 + 0.826968i \(0.690063\pi\)
\(72\) 2.30902 + 7.10642i 0.272120 + 0.837500i
\(73\) −4.61803 3.35520i −0.540500 0.392696i 0.283771 0.958892i \(-0.408415\pi\)
−0.824271 + 0.566196i \(0.808415\pi\)
\(74\) 13.2082 9.59632i 1.53542 1.11555i
\(75\) 1.42705 4.39201i 0.164782 0.507146i
\(76\) −28.4164 −3.25959
\(77\) 0 0
\(78\) 0.618034 0.0699786
\(79\) −3.39919 + 10.4616i −0.382438 + 1.17702i 0.555883 + 0.831260i \(0.312380\pi\)
−0.938322 + 0.345764i \(0.887620\pi\)
\(80\) 4.92705 3.57971i 0.550861 0.400224i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) −0.190983 0.587785i −0.0210905 0.0649100i
\(83\) −0.454915 1.40008i −0.0499334 0.153679i 0.922981 0.384846i \(-0.125746\pi\)
−0.972914 + 0.231167i \(0.925746\pi\)
\(84\) 3.92705 + 2.85317i 0.428476 + 0.311306i
\(85\) 0.572949 0.416272i 0.0621450 0.0451510i
\(86\) 5.42705 16.7027i 0.585214 1.80110i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) −0.500000 + 1.53884i −0.0527046 + 0.162208i
\(91\) 0.190983 0.138757i 0.0200205 0.0145457i
\(92\) −0.927051 0.673542i −0.0966517 0.0702216i
\(93\) 1.88197 + 5.79210i 0.195151 + 0.600612i
\(94\) −8.16312 25.1235i −0.841961 2.59129i
\(95\) −2.92705 2.12663i −0.300309 0.218187i
\(96\) 8.78115 6.37988i 0.896223 0.651144i
\(97\) 2.42705 7.46969i 0.246430 0.758433i −0.748968 0.662606i \(-0.769451\pi\)
0.995398 0.0958268i \(-0.0305495\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) 3.16312 9.73508i 0.314742 0.968677i −0.661118 0.750282i \(-0.729918\pi\)
0.975860 0.218395i \(-0.0700821\pi\)
\(102\) 2.42705 1.76336i 0.240314 0.174598i
\(103\) 8.85410 + 6.43288i 0.872421 + 0.633851i 0.931235 0.364418i \(-0.118732\pi\)
−0.0588148 + 0.998269i \(0.518732\pi\)
\(104\) −0.545085 1.67760i −0.0534500 0.164502i
\(105\) 0.190983 + 0.587785i 0.0186380 + 0.0573620i
\(106\) 0.809017 + 0.587785i 0.0785787 + 0.0570908i
\(107\) −9.28115 + 6.74315i −0.897243 + 0.651885i −0.937756 0.347294i \(-0.887101\pi\)
0.0405134 + 0.999179i \(0.487101\pi\)
\(108\) −1.50000 + 4.61653i −0.144338 + 0.444225i
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 6.23607 0.591901
\(112\) 3.04508 9.37181i 0.287733 0.885553i
\(113\) −10.8992 + 7.91872i −1.02531 + 0.744931i −0.967364 0.253389i \(-0.918455\pi\)
−0.0579448 + 0.998320i \(0.518455\pi\)
\(114\) −12.3992 9.00854i −1.16129 0.843727i
\(115\) −0.0450850 0.138757i −0.00420420 0.0129392i
\(116\) 9.00000 + 27.6992i 0.835629 + 2.57180i
\(117\) 0.190983 + 0.138757i 0.0176564 + 0.0128281i
\(118\) −15.6353 + 11.3597i −1.43934 + 1.04574i
\(119\) 0.354102 1.08981i 0.0324605 0.0999031i
\(120\) 4.61803 0.421567
\(121\) 0 0
\(122\) 30.2705 2.74056
\(123\) 0.0729490 0.224514i 0.00657759 0.0202437i
\(124\) 23.9164 17.3763i 2.14776 1.56044i
\(125\) −4.80902 3.49396i −0.430132 0.312509i
\(126\) 0.809017 + 2.48990i 0.0720730 + 0.221818i
\(127\) −2.38197 7.33094i −0.211365 0.650516i −0.999392 0.0348741i \(-0.988897\pi\)
0.788026 0.615641i \(-0.211103\pi\)
\(128\) −0.881966 0.640786i −0.0779555 0.0566380i
\(129\) 5.42705 3.94298i 0.477825 0.347160i
\(130\) 0.118034 0.363271i 0.0103523 0.0318610i
\(131\) 11.7984 1.03083 0.515414 0.856941i \(-0.327638\pi\)
0.515414 + 0.856941i \(0.327638\pi\)
\(132\) 0 0
\(133\) −5.85410 −0.507615
\(134\) 1.50000 4.61653i 0.129580 0.398807i
\(135\) −0.500000 + 0.363271i −0.0430331 + 0.0312654i
\(136\) −6.92705 5.03280i −0.593990 0.431559i
\(137\) 3.01722 + 9.28605i 0.257779 + 0.793361i 0.993269 + 0.115826i \(0.0369516\pi\)
−0.735491 + 0.677535i \(0.763048\pi\)
\(138\) −0.190983 0.587785i −0.0162576 0.0500356i
\(139\) 11.7812 + 8.55951i 0.999264 + 0.726008i 0.961930 0.273295i \(-0.0881134\pi\)
0.0373340 + 0.999303i \(0.488113\pi\)
\(140\) 2.42705 1.76336i 0.205123 0.149031i
\(141\) 3.11803 9.59632i 0.262586 0.808156i
\(142\) 27.0344 2.26868
\(143\) 0 0
\(144\) 9.85410 0.821175
\(145\) −1.14590 + 3.52671i −0.0951617 + 0.292877i
\(146\) −12.0902 + 8.78402i −1.00059 + 0.726971i
\(147\) −4.85410 3.52671i −0.400360 0.290878i
\(148\) −9.35410 28.7890i −0.768902 2.36644i
\(149\) 1.30902 + 4.02874i 0.107239 + 0.330047i 0.990249 0.139306i \(-0.0444871\pi\)
−0.883011 + 0.469353i \(0.844487\pi\)
\(150\) −9.78115 7.10642i −0.798628 0.580237i
\(151\) 0.854102 0.620541i 0.0695058 0.0504989i −0.552490 0.833520i \(-0.686322\pi\)
0.621996 + 0.783021i \(0.286322\pi\)
\(152\) −13.5172 + 41.6017i −1.09639 + 3.37435i
\(153\) 1.14590 0.0926404
\(154\) 0 0
\(155\) 3.76393 0.302326
\(156\) 0.354102 1.08981i 0.0283508 0.0872549i
\(157\) −12.7082 + 9.23305i −1.01423 + 0.736878i −0.965091 0.261915i \(-0.915646\pi\)
−0.0491340 + 0.998792i \(0.515646\pi\)
\(158\) 23.2984 + 16.9273i 1.85352 + 1.34666i
\(159\) 0.118034 + 0.363271i 0.00936070 + 0.0288093i
\(160\) −2.07295 6.37988i −0.163881 0.504374i
\(161\) −0.190983 0.138757i −0.0150516 0.0109356i
\(162\) −2.11803 + 1.53884i −0.166408 + 0.120903i
\(163\) −1.59017 + 4.89404i −0.124552 + 0.383331i −0.993819 0.111011i \(-0.964591\pi\)
0.869267 + 0.494342i \(0.164591\pi\)
\(164\) −1.14590 −0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) −3.71885 + 11.4454i −0.287773 + 0.885674i 0.697781 + 0.716311i \(0.254171\pi\)
−0.985554 + 0.169363i \(0.945829\pi\)
\(168\) 6.04508 4.39201i 0.466388 0.338851i
\(169\) 10.4721 + 7.60845i 0.805549 + 0.585266i
\(170\) −0.572949 1.76336i −0.0439432 0.135243i
\(171\) −1.80902 5.56758i −0.138339 0.425764i
\(172\) −26.3435 19.1396i −2.00867 1.45938i
\(173\) −14.5902 + 10.6004i −1.10927 + 0.805932i −0.982549 0.186006i \(-0.940445\pi\)
−0.126722 + 0.991938i \(0.540445\pi\)
\(174\) −4.85410 + 14.9394i −0.367989 + 1.13255i
\(175\) −4.61803 −0.349091
\(176\) 0 0
\(177\) −7.38197 −0.554863
\(178\) −6.66312 + 20.5070i −0.499422 + 1.53706i
\(179\) 6.89919 5.01255i 0.515669 0.374656i −0.299301 0.954159i \(-0.596753\pi\)
0.814970 + 0.579503i \(0.196753\pi\)
\(180\) 2.42705 + 1.76336i 0.180902 + 0.131433i
\(181\) 0.781153 + 2.40414i 0.0580626 + 0.178698i 0.975881 0.218301i \(-0.0700515\pi\)
−0.917819 + 0.396999i \(0.870051\pi\)
\(182\) −0.190983 0.587785i −0.0141566 0.0435695i
\(183\) 9.35410 + 6.79615i 0.691475 + 0.502386i
\(184\) −1.42705 + 1.03681i −0.105204 + 0.0764349i
\(185\) 1.19098 3.66547i 0.0875628 0.269491i
\(186\) 15.9443 1.16909
\(187\) 0 0
\(188\) −48.9787 −3.57214
\(189\) −0.309017 + 0.951057i −0.0224777 + 0.0691792i
\(190\) −7.66312 + 5.56758i −0.555941 + 0.403915i
\(191\) 0.663119 + 0.481784i 0.0479816 + 0.0348607i 0.611518 0.791231i \(-0.290559\pi\)
−0.563536 + 0.826092i \(0.690559\pi\)
\(192\) −2.69098 8.28199i −0.194205 0.597701i
\(193\) 0.972136 + 2.99193i 0.0699759 + 0.215364i 0.979929 0.199348i \(-0.0638824\pi\)
−0.909953 + 0.414712i \(0.863882\pi\)
\(194\) −16.6353 12.0862i −1.19434 0.867740i
\(195\) 0.118034 0.0857567i 0.00845259 0.00614117i
\(196\) −9.00000 + 27.6992i −0.642857 + 1.97851i
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) −10.6631 + 32.8177i −0.753996 + 2.32056i
\(201\) 1.50000 1.08981i 0.105802 0.0768695i
\(202\) −21.6803 15.7517i −1.52542 1.10828i
\(203\) 1.85410 + 5.70634i 0.130132 + 0.400506i
\(204\) −1.71885 5.29007i −0.120343 0.370379i
\(205\) −0.118034 0.0857567i −0.00824385 0.00598951i
\(206\) 23.1803 16.8415i 1.61505 1.17340i
\(207\) 0.0729490 0.224514i 0.00507031 0.0156048i
\(208\) −2.32624 −0.161296
\(209\) 0 0
\(210\) 1.61803 0.111655
\(211\) −1.11803 + 3.44095i −0.0769686 + 0.236885i −0.982137 0.188169i \(-0.939745\pi\)
0.905168 + 0.425054i \(0.139745\pi\)
\(212\) 1.50000 1.08981i 0.103020 0.0748487i
\(213\) 8.35410 + 6.06961i 0.572414 + 0.415883i
\(214\) 9.28115 + 28.5645i 0.634447 + 1.95263i
\(215\) −1.28115 3.94298i −0.0873739 0.268909i
\(216\) 6.04508 + 4.39201i 0.411316 + 0.298839i
\(217\) 4.92705 3.57971i 0.334470 0.243007i
\(218\) 9.70820 29.8788i 0.657523 2.02365i
\(219\) −5.70820 −0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) 5.04508 15.5272i 0.338604 1.04212i
\(223\) −5.80902 + 4.22050i −0.389001 + 0.282625i −0.765046 0.643976i \(-0.777284\pi\)
0.376045 + 0.926601i \(0.377284\pi\)
\(224\) −8.78115 6.37988i −0.586715 0.426274i
\(225\) −1.42705 4.39201i −0.0951367 0.292801i
\(226\) 10.8992 + 33.5442i 0.725003 + 2.23133i
\(227\) 10.6631 + 7.74721i 0.707736 + 0.514200i 0.882443 0.470420i \(-0.155898\pi\)
−0.174706 + 0.984621i \(0.555898\pi\)
\(228\) −22.9894 + 16.7027i −1.52251 + 1.10617i
\(229\) 0.145898 0.449028i 0.00964121 0.0296726i −0.946120 0.323816i \(-0.895034\pi\)
0.955761 + 0.294143i \(0.0950342\pi\)
\(230\) −0.381966 −0.0251861
\(231\) 0 0
\(232\) 44.8328 2.94342
\(233\) 1.28115 3.94298i 0.0839311 0.258313i −0.900280 0.435311i \(-0.856638\pi\)
0.984211 + 0.176997i \(0.0566384\pi\)
\(234\) 0.500000 0.363271i 0.0326860 0.0237478i
\(235\) −5.04508 3.66547i −0.329105 0.239109i
\(236\) 11.0729 + 34.0790i 0.720788 + 2.21836i
\(237\) 3.39919 + 10.4616i 0.220801 + 0.679555i
\(238\) −2.42705 1.76336i −0.157322 0.114301i
\(239\) 0.309017 0.224514i 0.0199886 0.0145226i −0.577746 0.816217i \(-0.696068\pi\)
0.597735 + 0.801694i \(0.296068\pi\)
\(240\) 1.88197 5.79210i 0.121480 0.373878i
\(241\) −8.29180 −0.534122 −0.267061 0.963680i \(-0.586052\pi\)
−0.267061 + 0.963680i \(0.586052\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 17.3435 53.3777i 1.11030 3.41716i
\(245\) −3.00000 + 2.17963i −0.191663 + 0.139251i
\(246\) −0.500000 0.363271i −0.0318788 0.0231613i
\(247\) 0.427051 + 1.31433i 0.0271726 + 0.0836287i
\(248\) −14.0623 43.2793i −0.892957 2.74824i
\(249\) −1.19098 0.865300i −0.0754755 0.0548361i
\(250\) −12.5902 + 9.14729i −0.796272 + 0.578526i
\(251\) −6.79180 + 20.9030i −0.428694 + 1.31939i 0.470718 + 0.882284i \(0.343995\pi\)
−0.899412 + 0.437102i \(0.856005\pi\)
\(252\) 4.85410 0.305780
\(253\) 0 0
\(254\) −20.1803 −1.26623
\(255\) 0.218847 0.673542i 0.0137047 0.0421788i
\(256\) 11.7812 8.55951i 0.736322 0.534969i
\(257\) −24.0623 17.4823i −1.50097 1.09052i −0.969995 0.243125i \(-0.921828\pi\)
−0.530970 0.847390i \(-0.678172\pi\)
\(258\) −5.42705 16.7027i −0.337873 1.03987i
\(259\) −1.92705 5.93085i −0.119741 0.368525i
\(260\) −0.572949 0.416272i −0.0355328 0.0258161i
\(261\) −4.85410 + 3.52671i −0.300461 + 0.218298i
\(262\) 9.54508 29.3768i 0.589697 1.81490i
\(263\) 15.2705 0.941620 0.470810 0.882235i \(-0.343962\pi\)
0.470810 + 0.882235i \(0.343962\pi\)
\(264\) 0 0
\(265\) 0.236068 0.0145015
\(266\) −4.73607 + 14.5761i −0.290387 + 0.893719i
\(267\) −6.66312 + 4.84104i −0.407776 + 0.296267i
\(268\) −7.28115 5.29007i −0.444767 0.323142i
\(269\) −7.85410 24.1724i −0.478873 1.47382i −0.840662 0.541560i \(-0.817834\pi\)
0.361789 0.932260i \(-0.382166\pi\)
\(270\) 0.500000 + 1.53884i 0.0304290 + 0.0936509i
\(271\) 15.0623 + 10.9434i 0.914970 + 0.664765i 0.942267 0.334863i \(-0.108690\pi\)
−0.0272970 + 0.999627i \(0.508690\pi\)
\(272\) −9.13525 + 6.63715i −0.553906 + 0.402436i
\(273\) 0.0729490 0.224514i 0.00441508 0.0135882i
\(274\) 25.5623 1.54428
\(275\) 0 0
\(276\) −1.14590 −0.0689750
\(277\) 9.02786 27.7849i 0.542432 1.66943i −0.184587 0.982816i \(-0.559095\pi\)
0.727019 0.686617i \(-0.240905\pi\)
\(278\) 30.8435 22.4091i 1.84987 1.34401i
\(279\) 4.92705 + 3.57971i 0.294975 + 0.214312i
\(280\) −1.42705 4.39201i −0.0852826 0.262473i
\(281\) −7.65248 23.5519i −0.456508 1.40499i −0.869355 0.494188i \(-0.835465\pi\)
0.412847 0.910801i \(-0.364535\pi\)
\(282\) −21.3713 15.5272i −1.27264 0.924630i
\(283\) −4.61803 + 3.35520i −0.274514 + 0.199446i −0.716521 0.697566i \(-0.754267\pi\)
0.442007 + 0.897011i \(0.354267\pi\)
\(284\) 15.4894 47.6713i 0.919124 2.82877i
\(285\) −3.61803 −0.214314
\(286\) 0 0
\(287\) −0.236068 −0.0139347
\(288\) 3.35410 10.3229i 0.197642 0.608281i
\(289\) 12.6910 9.22054i 0.746528 0.542385i
\(290\) 7.85410 + 5.70634i 0.461209 + 0.335088i
\(291\) −2.42705 7.46969i −0.142276 0.437881i
\(292\) 8.56231 + 26.3521i 0.501071 + 1.54214i
\(293\) −17.5172 12.7270i −1.02337 0.743520i −0.0563966 0.998408i \(-0.517961\pi\)
−0.966970 + 0.254889i \(0.917961\pi\)
\(294\) −12.7082 + 9.23305i −0.741158 + 0.538482i
\(295\) −1.40983 + 4.33901i −0.0820835 + 0.252627i
\(296\) −46.5967 −2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) −0.0172209 + 0.0530006i −0.000995912 + 0.00306510i
\(300\) −18.1353 + 13.1760i −1.04704 + 0.760719i
\(301\) −5.42705 3.94298i −0.312810 0.227270i
\(302\) −0.854102 2.62866i −0.0491480 0.151262i
\(303\) −3.16312 9.73508i −0.181716 0.559266i
\(304\) 46.6697 + 33.9075i 2.67669 + 1.94473i
\(305\) 5.78115 4.20025i 0.331028 0.240506i
\(306\) 0.927051 2.85317i 0.0529960 0.163105i
\(307\) −27.9787 −1.59683 −0.798415 0.602108i \(-0.794328\pi\)
−0.798415 + 0.602108i \(0.794328\pi\)
\(308\) 0 0
\(309\) 10.9443 0.622598
\(310\) 3.04508 9.37181i 0.172949 0.532283i
\(311\) −9.42705 + 6.84915i −0.534559 + 0.388380i −0.822060 0.569400i \(-0.807175\pi\)
0.287501 + 0.957780i \(0.407175\pi\)
\(312\) −1.42705 1.03681i −0.0807909 0.0586980i
\(313\) −0.781153 2.40414i −0.0441534 0.135890i 0.926550 0.376172i \(-0.122760\pi\)
−0.970703 + 0.240282i \(0.922760\pi\)
\(314\) 12.7082 + 39.1118i 0.717165 + 2.20721i
\(315\) 0.500000 + 0.363271i 0.0281718 + 0.0204680i
\(316\) 43.1976 31.3849i 2.43005 1.76554i
\(317\) −2.10739 + 6.48588i −0.118363 + 0.364283i −0.992634 0.121155i \(-0.961340\pi\)
0.874271 + 0.485439i \(0.161340\pi\)
\(318\) 1.00000 0.0560772
\(319\) 0 0
\(320\) −5.38197 −0.300861
\(321\) −3.54508 + 10.9106i −0.197867 + 0.608973i
\(322\) −0.500000 + 0.363271i −0.0278639 + 0.0202443i
\(323\) 5.42705 + 3.94298i 0.301969 + 0.219393i
\(324\) 1.50000 + 4.61653i 0.0833333 + 0.256474i
\(325\) 0.336881 + 1.03681i 0.0186868 + 0.0575121i
\(326\) 10.8992 + 7.91872i 0.603650 + 0.438577i
\(327\) 9.70820 7.05342i 0.536865 0.390055i
\(328\) −0.545085 + 1.67760i −0.0300973 + 0.0926299i
\(329\) −10.0902 −0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) −2.20820 + 6.79615i −0.121191 + 0.372987i
\(333\) 5.04508 3.66547i 0.276469 0.200866i
\(334\) 25.4894 + 18.5191i 1.39472 + 1.01332i
\(335\) −0.354102 1.08981i −0.0193467 0.0595429i
\(336\) −3.04508 9.37181i −0.166123 0.511274i
\(337\) −14.7082 10.6861i −0.801207 0.582111i 0.110061 0.993925i \(-0.464895\pi\)
−0.911268 + 0.411814i \(0.864895\pi\)
\(338\) 27.4164 19.9192i 1.49126 1.08346i
\(339\) −4.16312 + 12.8128i −0.226110 + 0.695894i
\(340\) −3.43769 −0.186435
\(341\) 0 0
\(342\) −15.3262 −0.828748
\(343\) −4.01722 + 12.3637i −0.216910 + 0.667579i
\(344\) −40.5517 + 29.4625i −2.18640 + 1.58851i
\(345\) −0.118034 0.0857567i −0.00635474 0.00461699i
\(346\) 14.5902 + 44.9039i 0.784372 + 2.41405i
\(347\) 0.472136 + 1.45309i 0.0253456 + 0.0780057i 0.962929 0.269754i \(-0.0869424\pi\)
−0.937584 + 0.347760i \(0.886942\pi\)
\(348\) 23.5623 + 17.1190i 1.26307 + 0.917676i
\(349\) 10.2812 7.46969i 0.550337 0.399844i −0.277572 0.960705i \(-0.589530\pi\)
0.827910 + 0.560861i \(0.189530\pi\)
\(350\) −3.73607 + 11.4984i −0.199701 + 0.614617i
\(351\) 0.236068 0.0126004
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) −5.97214 + 18.3803i −0.317415 + 0.976904i
\(355\) 5.16312 3.75123i 0.274030 0.199094i
\(356\) 32.3435 + 23.4989i 1.71420 + 1.24544i
\(357\) −0.354102 1.08981i −0.0187411 0.0576791i
\(358\) −6.89919 21.2335i −0.364633 1.12223i
\(359\) −7.85410 5.70634i −0.414524 0.301169i 0.360907 0.932602i \(-0.382467\pi\)
−0.775431 + 0.631433i \(0.782467\pi\)
\(360\) 3.73607 2.71441i 0.196908 0.143062i
\(361\) 4.71885 14.5231i 0.248360 0.764375i
\(362\) 6.61803 0.347836
\(363\) 0 0
\(364\) −1.14590 −0.0600614
\(365\) −1.09017 + 3.35520i −0.0570621 + 0.175619i
\(366\) 24.4894 17.7926i 1.28008 0.930032i
\(367\) −17.9164 13.0170i −0.935229 0.679484i 0.0120386 0.999928i \(-0.496168\pi\)
−0.947267 + 0.320444i \(0.896168\pi\)
\(368\) 0.718847 + 2.21238i 0.0374725 + 0.115328i
\(369\) −0.0729490 0.224514i −0.00379757 0.0116877i
\(370\) −8.16312 5.93085i −0.424380 0.308330i
\(371\) 0.309017 0.224514i 0.0160434 0.0116562i
\(372\) 9.13525 28.1154i 0.473641 1.45772i
\(373\) −0.888544 −0.0460071 −0.0230035 0.999735i \(-0.507323\pi\)
−0.0230035 + 0.999735i \(0.507323\pi\)
\(374\) 0 0
\(375\) −5.94427 −0.306961
\(376\) −23.2984 + 71.7050i −1.20152 + 3.69790i
\(377\) 1.14590 0.832544i 0.0590168 0.0428782i
\(378\) 2.11803 + 1.53884i 0.108940 + 0.0791495i
\(379\) −7.69098 23.6704i −0.395059 1.21587i −0.928915 0.370292i \(-0.879258\pi\)
0.533856 0.845575i \(-0.320742\pi\)
\(380\) 5.42705 + 16.7027i 0.278402 + 0.856833i
\(381\) −6.23607 4.53077i −0.319483 0.232118i
\(382\) 1.73607 1.26133i 0.0888250 0.0645351i
\(383\) −3.92705 + 12.0862i −0.200663 + 0.617577i 0.799201 + 0.601064i \(0.205256\pi\)
−0.999864 + 0.0165128i \(0.994744\pi\)
\(384\) −1.09017 −0.0556325
\(385\) 0 0
\(386\) 8.23607 0.419205
\(387\) 2.07295 6.37988i 0.105374 0.324308i
\(388\) −30.8435 + 22.4091i −1.56584 + 1.13765i
\(389\) 29.7254 + 21.5968i 1.50714 + 1.09500i 0.967427 + 0.253151i \(0.0814669\pi\)
0.539712 + 0.841850i \(0.318533\pi\)
\(390\) −0.118034 0.363271i −0.00597688 0.0183950i
\(391\) 0.0835921 + 0.257270i 0.00422744 + 0.0130107i
\(392\) 36.2705 + 26.3521i 1.83194 + 1.33098i
\(393\) 9.54508 6.93491i 0.481486 0.349820i
\(394\) −10.5451 + 32.4544i −0.531254 + 1.63503i
\(395\) 6.79837 0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 5.42705 16.7027i 0.272033 0.837233i
\(399\) −4.73607 + 3.44095i −0.237100 + 0.172263i
\(400\) 36.8156 + 26.7481i 1.84078 + 1.33740i
\(401\) −9.79180 30.1360i −0.488979 1.50492i −0.826134 0.563473i \(-0.809465\pi\)
0.337155 0.941449i \(-0.390535\pi\)
\(402\) −1.50000 4.61653i −0.0748132 0.230251i
\(403\) −1.16312 0.845055i −0.0579391 0.0420952i
\(404\) −40.1976 + 29.2052i −1.99990 + 1.45301i
\(405\) −0.190983 + 0.587785i −0.00949002 + 0.0292073i
\(406\) 15.7082 0.779585
\(407\) 0 0
\(408\) −8.56231 −0.423897
\(409\) 2.00000 6.15537i 0.0988936 0.304363i −0.889355 0.457217i \(-0.848846\pi\)
0.988249 + 0.152854i \(0.0488463\pi\)
\(410\) −0.309017 + 0.224514i −0.0152613 + 0.0110880i
\(411\) 7.89919 + 5.73910i 0.389638 + 0.283089i
\(412\) −16.4164 50.5245i −0.808778 2.48916i
\(413\) 2.28115 + 7.02067i 0.112248 + 0.345464i
\(414\) −0.500000 0.363271i −0.0245737 0.0178538i
\(415\) −0.736068 + 0.534785i −0.0361322 + 0.0262515i
\(416\) −0.791796 + 2.43690i −0.0388210 + 0.119479i
\(417\) 14.5623 0.713119
\(418\) 0 0
\(419\) 31.4508 1.53647 0.768237 0.640165i \(-0.221134\pi\)
0.768237 + 0.640165i \(0.221134\pi\)
\(420\) 0.927051 2.85317i 0.0452355 0.139220i
\(421\) −8.50000 + 6.17561i −0.414265 + 0.300981i −0.775326 0.631561i \(-0.782414\pi\)
0.361061 + 0.932542i \(0.382414\pi\)
\(422\) 7.66312 + 5.56758i 0.373035 + 0.271026i
\(423\) −3.11803 9.59632i −0.151604 0.466589i
\(424\) −0.881966 2.71441i −0.0428321 0.131824i
\(425\) 4.28115 + 3.11044i 0.207666 + 0.150878i
\(426\) 21.8713 15.8904i 1.05967 0.769895i
\(427\) 3.57295 10.9964i 0.172907 0.532153i
\(428\) 55.6869 2.69173
\(429\) 0 0
\(430\) −10.8541 −0.523431
\(431\) 1.82624 5.62058i 0.0879668 0.270734i −0.897390 0.441238i \(-0.854540\pi\)
0.985357 + 0.170504i \(0.0545395\pi\)
\(432\) 7.97214 5.79210i 0.383560 0.278672i
\(433\) −28.5623 20.7517i −1.37262 0.997264i −0.997528 0.0702758i \(-0.977612\pi\)
−0.375089 0.926989i \(-0.622388\pi\)
\(434\) −4.92705 15.1639i −0.236506 0.727891i
\(435\) 1.14590 + 3.52671i 0.0549416 + 0.169093i
\(436\) −47.1246 34.2380i −2.25686 1.63970i
\(437\) 1.11803 0.812299i 0.0534828 0.0388575i
\(438\) −4.61803 + 14.2128i −0.220658 + 0.679116i
\(439\) −23.2918 −1.11166 −0.555828 0.831297i \(-0.687599\pi\)
−0.555828 + 0.831297i \(0.687599\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −0.218847 + 0.673542i −0.0104095 + 0.0320371i
\(443\) 25.5623 18.5721i 1.21450 0.882387i 0.218870 0.975754i \(-0.429763\pi\)
0.995632 + 0.0933668i \(0.0297629\pi\)
\(444\) −24.4894 17.7926i −1.16221 0.844397i
\(445\) 1.57295 + 4.84104i 0.0745649 + 0.229487i
\(446\) 5.80902 + 17.8783i 0.275065 + 0.846563i
\(447\) 3.42705 + 2.48990i 0.162094 + 0.117768i
\(448\) −7.04508 + 5.11855i −0.332849 + 0.241829i
\(449\) −2.79837 + 8.61251i −0.132063 + 0.406449i −0.995122 0.0986549i \(-0.968546\pi\)
0.863058 + 0.505104i \(0.168546\pi\)
\(450\) −12.0902 −0.569936
\(451\) 0 0
\(452\) 65.3951 3.07593
\(453\) 0.326238 1.00406i 0.0153280 0.0471747i
\(454\) 27.9164 20.2825i 1.31018 0.951903i
\(455\) −0.118034 0.0857567i −0.00553352 0.00402034i
\(456\) 13.5172 + 41.6017i 0.633002 + 1.94818i
\(457\) −7.40983 22.8051i −0.346617 1.06678i −0.960712 0.277546i \(-0.910479\pi\)
0.614095 0.789232i \(-0.289521\pi\)
\(458\) −1.00000 0.726543i −0.0467269 0.0339491i
\(459\) 0.927051 0.673542i 0.0432710 0.0314382i
\(460\) −0.218847 + 0.673542i −0.0102038 + 0.0314041i
\(461\) −9.27051 −0.431771 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(462\) 0 0
\(463\) 1.72949 0.0803762 0.0401881 0.999192i \(-0.487204\pi\)
0.0401881 + 0.999192i \(0.487204\pi\)
\(464\) 18.2705 56.2308i 0.848187 2.61045i
\(465\) 3.04508 2.21238i 0.141212 0.102597i
\(466\) −8.78115 6.37988i −0.406779 0.295542i
\(467\) 6.45492 + 19.8662i 0.298698 + 0.919297i 0.981954 + 0.189119i \(0.0605631\pi\)
−0.683256 + 0.730179i \(0.739437\pi\)
\(468\) −0.354102 1.08981i −0.0163684 0.0503767i
\(469\) −1.50000 1.08981i −0.0692636 0.0503229i
\(470\) −13.2082 + 9.59632i −0.609249 + 0.442645i
\(471\) −4.85410 + 14.9394i −0.223665 + 0.688371i
\(472\) 55.1591 2.53890
\(473\) 0 0
\(474\) 28.7984 1.32275
\(475\) 8.35410 25.7113i 0.383312 1.17971i
\(476\) −4.50000 + 3.26944i −0.206257 + 0.149855i
\(477\) 0.309017 + 0.224514i 0.0141489 + 0.0102798i
\(478\) −0.309017 0.951057i −0.0141341 0.0435003i
\(479\) 8.77051 + 26.9929i 0.400735 + 1.23333i 0.924405 + 0.381414i \(0.124563\pi\)
−0.523670 + 0.851921i \(0.675437\pi\)
\(480\) −5.42705 3.94298i −0.247710 0.179972i
\(481\) −1.19098 + 0.865300i −0.0543042 + 0.0394543i
\(482\) −6.70820 + 20.6457i −0.305550 + 0.940387i
\(483\) −0.236068 −0.0107415
\(484\) 0 0
\(485\) −4.85410 −0.220413
\(486\) −0.809017 + 2.48990i −0.0366978 + 0.112944i
\(487\) 10.2812 7.46969i 0.465884 0.338484i −0.329951 0.943998i \(-0.607032\pi\)
0.795835 + 0.605514i \(0.207032\pi\)
\(488\) −69.8951 50.7818i −3.16400 2.29878i
\(489\) 1.59017 + 4.89404i 0.0719100 + 0.221316i
\(490\) 3.00000 + 9.23305i 0.135526 + 0.417107i
\(491\) −14.4894 10.5271i −0.653896 0.475083i 0.210700 0.977551i \(-0.432426\pi\)
−0.864596 + 0.502468i \(0.832426\pi\)
\(492\) −0.927051 + 0.673542i −0.0417947 + 0.0303656i
\(493\) 2.12461 6.53888i 0.0956877 0.294496i
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 3.19098 9.82084i 0.143135 0.440525i
\(498\) −3.11803 + 2.26538i −0.139722 + 0.101514i
\(499\) 14.6803 + 10.6659i 0.657182 + 0.477471i 0.865710 0.500546i \(-0.166867\pi\)
−0.208528 + 0.978016i \(0.566867\pi\)
\(500\) 8.91641 + 27.4419i 0.398754 + 1.22724i
\(501\) 3.71885 + 11.4454i 0.166146 + 0.511344i
\(502\) 46.5517 + 33.8218i 2.07770 + 1.50954i
\(503\) 7.00000 5.08580i 0.312115 0.226765i −0.420689 0.907205i \(-0.638212\pi\)
0.732803 + 0.680441i \(0.238212\pi\)
\(504\) 2.30902 7.10642i 0.102852 0.316545i
\(505\) −6.32624 −0.281514
\(506\) 0 0
\(507\) 12.9443 0.574875
\(508\) −11.5623 + 35.5851i −0.512994 + 1.57883i
\(509\) −31.3435 + 22.7724i −1.38927 + 1.00937i −0.393330 + 0.919397i \(0.628677\pi\)
−0.995945 + 0.0899695i \(0.971323\pi\)
\(510\) −1.50000 1.08981i −0.0664211 0.0482578i
\(511\) 1.76393 + 5.42882i 0.0780318 + 0.240157i
\(512\) −12.4549 38.3323i −0.550435 1.69406i
\(513\) −4.73607 3.44095i −0.209103 0.151922i
\(514\) −62.9959 + 45.7692i −2.77863 + 2.01879i
\(515\) 2.09017 6.43288i 0.0921039 0.283467i
\(516\) −32.5623 −1.43348
\(517\) 0 0
\(518\) −16.3262 −0.717334
\(519\) −5.57295 + 17.1518i −0.244625 + 0.752879i
\(520\) −0.881966 + 0.640786i −0.0386768 + 0.0281003i
\(521\) −7.23607 5.25731i −0.317018 0.230327i 0.417884 0.908500i \(-0.362772\pi\)
−0.734902 + 0.678173i \(0.762772\pi\)
\(522\) 4.85410 + 14.9394i 0.212458 + 0.653879i
\(523\) −5.64590 17.3763i −0.246878 0.759812i −0.995322 0.0966140i \(-0.969199\pi\)
0.748444 0.663198i \(-0.230801\pi\)
\(524\) −46.3328 33.6628i −2.02406 1.47056i
\(525\) −3.73607 + 2.71441i −0.163055 + 0.118467i
\(526\) 12.3541 38.0220i 0.538664 1.65784i
\(527\) −6.97871 −0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0.190983 0.587785i 0.00829577 0.0255318i
\(531\) −5.97214 + 4.33901i −0.259169 + 0.188297i
\(532\) 22.9894 + 16.7027i 0.996715 + 0.724156i
\(533\) 0.0172209 + 0.0530006i 0.000745921 + 0.00229571i
\(534\) 6.66312 + 20.5070i 0.288341 + 0.887423i
\(535\) 5.73607 + 4.16750i 0.247992 + 0.180177i
\(536\) −11.2082 + 8.14324i −0.484121 + 0.351734i
\(537\) 2.63525 8.11048i 0.113720 0.349993i
\(538\) −66.5410 −2.86879
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) 2.31559 7.12667i 0.0995552 0.306399i −0.888859 0.458181i \(-0.848501\pi\)
0.988414 + 0.151782i \(0.0485011\pi\)
\(542\) 39.4336 28.6502i 1.69382 1.23063i
\(543\) 2.04508 + 1.48584i 0.0877630 + 0.0637635i
\(544\) 3.84346 + 11.8290i 0.164787 + 0.507162i
\(545\) −2.29180 7.05342i −0.0981698 0.302135i
\(546\) −0.500000 0.363271i −0.0213980 0.0155466i
\(547\) −24.8713 + 18.0701i −1.06342 + 0.772621i −0.974718 0.223438i \(-0.928272\pi\)
−0.0887027 + 0.996058i \(0.528272\pi\)
\(548\) 14.6459 45.0754i 0.625642 1.92553i
\(549\) 11.5623 0.493467
\(550\) 0 0
\(551\) −35.1246 −1.49636
\(552\) −0.545085 + 1.67760i −0.0232004 + 0.0714034i
\(553\) 8.89919 6.46564i 0.378432 0.274947i
\(554\) −61.8779 44.9569i −2.62894 1.91004i
\(555\) −1.19098 3.66547i −0.0505544 0.155590i
\(556\) −21.8435 67.2273i −0.926369 2.85107i
\(557\) 30.4443 + 22.1191i 1.28997 + 0.937215i 0.999805 0.0197634i \(-0.00629130\pi\)
0.290161 + 0.956978i \(0.406291\pi\)
\(558\) 12.8992 9.37181i 0.546066 0.396740i
\(559\) −0.489357 + 1.50609i −0.0206976 + 0.0637006i
\(560\) −6.09017 −0.257357
\(561\) 0 0
\(562\) −64.8328 −2.73481
\(563\) −12.5451 + 38.6098i −0.528712 + 1.62721i 0.228144 + 0.973627i \(0.426734\pi\)
−0.756856 + 0.653582i \(0.773266\pi\)
\(564\) −39.6246 + 28.7890i −1.66850 + 1.21223i
\(565\) 6.73607 + 4.89404i 0.283389 + 0.205894i
\(566\) 4.61803 + 14.2128i 0.194110 + 0.597411i
\(567\) 0.309017 + 0.951057i 0.0129775 + 0.0399406i
\(568\) −62.4230 45.3530i −2.61921 1.90297i
\(569\) 27.6525 20.0907i 1.15925 0.842246i 0.169569 0.985518i \(-0.445763\pi\)
0.989683 + 0.143272i \(0.0457625\pi\)
\(570\) −2.92705 + 9.00854i −0.122601 + 0.377326i
\(571\) 9.09017 0.380412 0.190206 0.981744i \(-0.439084\pi\)
0.190206 + 0.981744i \(0.439084\pi\)
\(572\) 0 0
\(573\) 0.819660 0.0342418
\(574\) −0.190983 + 0.587785i −0.00797148 + 0.0245337i
\(575\) 0.881966 0.640786i 0.0367805 0.0267226i
\(576\) −7.04508 5.11855i −0.293545 0.213273i
\(577\) 9.79837 + 30.1563i 0.407912 + 1.25542i 0.918439 + 0.395562i \(0.129450\pi\)
−0.510528 + 0.859861i \(0.670550\pi\)
\(578\) −12.6910 39.0588i −0.527875 1.62463i
\(579\) 2.54508 + 1.84911i 0.105770 + 0.0768465i
\(580\) 14.5623 10.5801i 0.604667 0.439316i
\(581\) −0.454915 + 1.40008i −0.0188731 + 0.0580853i
\(582\) −20.5623 −0.852335
\(583\) 0 0
\(584\) 42.6525 1.76497
\(585\) 0.0450850 0.138757i 0.00186403 0.00573691i
\(586\) −45.8607 + 33.3197i −1.89449 + 1.37643i
\(587\) 1.71885 + 1.24882i 0.0709444 + 0.0515441i 0.622692 0.782467i \(-0.286039\pi\)
−0.551748 + 0.834011i \(0.686039\pi\)
\(588\) 9.00000 + 27.6992i 0.371154 + 1.14229i
\(589\) 11.0172 + 33.9075i 0.453957 + 1.39714i
\(590\) 9.66312 + 7.02067i 0.397824 + 0.289036i
\(591\) −10.5451 + 7.66145i −0.433767 + 0.315150i
\(592\) −18.9894 + 58.4432i −0.780458 + 2.40200i
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) 6.35410 19.5559i 0.260274 0.801041i
\(597\) 5.42705 3.94298i 0.222114 0.161376i
\(598\) 0.118034 + 0.0857567i 0.00482677 + 0.00350685i
\(599\) 3.90983 + 12.0332i 0.159751 + 0.491664i 0.998611 0.0526833i \(-0.0167774\pi\)
−0.838860 + 0.544347i \(0.816777\pi\)
\(600\) 10.6631 + 32.8177i 0.435320 + 1.33978i
\(601\) −5.57295 4.04898i −0.227325 0.165162i 0.468293 0.883573i \(-0.344869\pi\)
−0.695618 + 0.718412i \(0.744869\pi\)
\(602\) −14.2082 + 10.3229i −0.579083 + 0.420729i
\(603\) 0.572949 1.76336i 0.0233323 0.0718094i
\(604\) −5.12461 −0.208517
\(605\) 0 0
\(606\) −26.7984 −1.08861
\(607\) 5.11803 15.7517i 0.207735 0.639341i −0.791855 0.610709i \(-0.790885\pi\)
0.999590 0.0286327i \(-0.00911532\pi\)
\(608\) 51.4058 37.3485i 2.08478 1.51468i
\(609\) 4.85410 + 3.52671i 0.196698 + 0.142910i
\(610\) −5.78115 17.7926i −0.234072 0.720400i
\(611\) 0.736068 + 2.26538i 0.0297781 + 0.0916476i
\(612\) −4.50000 3.26944i −0.181902 0.132159i
\(613\) −11.5623 + 8.40051i −0.466997 + 0.339293i −0.796270 0.604942i \(-0.793196\pi\)
0.329273 + 0.944235i \(0.393196\pi\)
\(614\) −22.6353 + 69.6642i −0.913485 + 2.81142i
\(615\) −0.145898 −0.00588318
\(616\) 0 0
\(617\) 11.1803 0.450104 0.225052 0.974347i \(-0.427745\pi\)
0.225052 + 0.974347i \(0.427745\pi\)
\(618\) 8.85410 27.2501i 0.356164 1.09616i
\(619\) −19.5172 + 14.1801i −0.784463 + 0.569946i −0.906315 0.422602i \(-0.861117\pi\)
0.121852 + 0.992548i \(0.461117\pi\)
\(620\) −14.7812 10.7391i −0.593625 0.431294i
\(621\) −0.0729490 0.224514i −0.00292734 0.00900944i
\(622\) 9.42705 + 29.0135i 0.377990 + 1.16333i
\(623\) 6.66312 + 4.84104i 0.266952 + 0.193952i
\(624\) −1.88197 + 1.36733i −0.0753389 + 0.0547369i
\(625\) 6.00000 18.4661i 0.240000 0.738644i
\(626\) −6.61803 −0.264510
\(627\) 0 0
\(628\) 76.2492 3.04268
\(629\) −2.20820 + 6.79615i −0.0880469 + 0.270980i
\(630\) 1.30902 0.951057i 0.0521525 0.0378910i
\(631\) −15.5451 11.2942i −0.618840 0.449614i 0.233676 0.972314i \(-0.424924\pi\)
−0.852516 + 0.522701i \(0.824924\pi\)
\(632\) −25.3992 78.1707i −1.01033 3.10946i
\(633\) 1.11803 + 3.44095i 0.0444379 + 0.136766i
\(634\) 14.4443 + 10.4944i 0.573655 + 0.416785i
\(635\) −3.85410 + 2.80017i −0.152945 + 0.111121i
\(636\) 0.572949 1.76336i 0.0227189 0.0699216i
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) 10.3262 0.408500
\(640\) −0.208204 + 0.640786i −0.00822998 + 0.0253293i
\(641\) 20.2984 14.7476i 0.801738 0.582496i −0.109686 0.993966i \(-0.534984\pi\)
0.911423 + 0.411470i \(0.134984\pi\)
\(642\) 24.2984 + 17.6538i 0.958980 + 0.696740i
\(643\) 6.44427 + 19.8334i 0.254137 + 0.782154i 0.993998 + 0.109394i \(0.0348912\pi\)
−0.739861 + 0.672760i \(0.765109\pi\)
\(644\) 0.354102 + 1.08981i 0.0139536 + 0.0429447i
\(645\) −3.35410 2.43690i −0.132068 0.0959528i
\(646\) 14.2082 10.3229i 0.559014 0.406148i
\(647\) 13.9164 42.8303i 0.547110 1.68383i −0.168808 0.985649i \(-0.553992\pi\)
0.715918 0.698184i \(-0.246008\pi\)
\(648\) 7.47214 0.293533
\(649\) 0 0
\(650\) 2.85410 0.111947
\(651\) 1.88197 5.79210i 0.0737601 0.227010i
\(652\) 20.2082 14.6821i 0.791414 0.574996i
\(653\) 4.54508 + 3.30220i 0.177863 + 0.129225i 0.673155 0.739502i \(-0.264939\pi\)
−0.495292 + 0.868727i \(0.664939\pi\)
\(654\) −9.70820 29.8788i −0.379621 1.16835i
\(655\) −2.25329 6.93491i −0.0880433 0.270969i
\(656\) 1.88197 + 1.36733i 0.0734784 + 0.0533852i
\(657\) −4.61803 + 3.35520i −0.180167 + 0.130899i
\(658\) −8.16312 + 25.1235i −0.318232 + 0.979416i
\(659\) 41.1246 1.60199 0.800994 0.598673i \(-0.204305\pi\)
0.800994 + 0.598673i \(0.204305\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) 13.5172 41.6017i 0.525362 1.61690i
\(663\) −0.218847 + 0.159002i −0.00849932 + 0.00617511i
\(664\) 8.89919 + 6.46564i 0.345355 + 0.250915i
\(665\) 1.11803 + 3.44095i 0.0433555 + 0.133435i
\(666\) −5.04508 15.5272i −0.195493 0.601666i
\(667\) −1.14590 0.832544i −0.0443693 0.0322362i
\(668\) 47.2599 34.3363i 1.82854 1.32851i
\(669\) −2.21885 + 6.82891i −0.0857856 + 0.264021i
\(670\) −3.00000 −0.115900
\(671\) 0 0
\(672\) −10.8541 −0.418706
\(673\) −11.0729 + 34.0790i −0.426831 + 1.31365i 0.474399 + 0.880310i \(0.342665\pi\)
−0.901230 + 0.433340i \(0.857335\pi\)
\(674\) −38.5066 + 27.9767i −1.48322 + 1.07762i
\(675\) −3.73607 2.71441i −0.143801 0.104478i
\(676\) −19.4164 59.7576i −0.746785 2.29837i
\(677\) −4.18034 12.8658i −0.160664 0.494471i 0.838027 0.545629i \(-0.183709\pi\)
−0.998691 + 0.0511572i \(0.983709\pi\)
\(678\) 28.5344 + 20.7315i 1.09586 + 0.796188i
\(679\) −6.35410 + 4.61653i −0.243848 + 0.177166i
\(680\) −1.63525 + 5.03280i −0.0627092 + 0.192999i
\(681\) 13.1803 0.505072
\(682\) 0 0
\(683\) 9.06888 0.347011 0.173506 0.984833i \(-0.444491\pi\)
0.173506 + 0.984833i \(0.444491\pi\)
\(684\) −8.78115 + 27.0256i −0.335756 + 1.03335i
\(685\) 4.88197 3.54696i 0.186530 0.135522i
\(686\) 27.5344 + 20.0049i 1.05127 + 0.763792i
\(687\) −0.145898 0.449028i −0.00556636 0.0171315i
\(688\) 20.4271 + 62.8680i 0.778774 + 2.39682i
\(689\) −0.0729490 0.0530006i −0.00277914 0.00201916i
\(690\) −0.309017 + 0.224514i −0.0117641 + 0.00854710i
\(691\) 0.416408 1.28157i 0.0158409 0.0487533i −0.942824 0.333292i \(-0.891840\pi\)
0.958665 + 0.284539i \(0.0918405\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 2.78115 8.55951i 0.105495 0.324681i
\(696\) 36.2705 26.3521i 1.37483 0.998873i
\(697\) 0.218847 + 0.159002i 0.00828942 + 0.00602262i
\(698\) −10.2812 31.6421i −0.389147 1.19767i
\(699\) −1.28115 3.94298i −0.0484577 0.149137i
\(700\) 18.1353 + 13.1760i 0.685448 + 0.498007i
\(701\) −28.1525 + 20.4540i −1.06330 + 0.772536i −0.974697 0.223531i \(-0.928242\pi\)
−0.0886075 + 0.996067i \(0.528242\pi\)
\(702\) 0.190983 0.587785i 0.00720819 0.0221845i
\(703\) 36.5066 1.37687
\(704\) 0 0
\(705\) −6.23607 −0.234864
\(706\) −9.70820 + 29.8788i −0.365373 + 1.12450i
\(707\) −8.28115 + 6.01661i −0.311445 + 0.226278i
\(708\) 28.9894 + 21.0620i 1.08949 + 0.791558i
\(709\) 3.46556 + 10.6659i 0.130152 + 0.400566i 0.994804 0.101804i \(-0.0324615\pi\)
−0.864653 + 0.502370i \(0.832462\pi\)
\(710\) −5.16312 15.8904i −0.193768 0.596358i
\(711\) 8.89919 + 6.46564i 0.333746 + 0.242480i
\(712\) 49.7877 36.1729i 1.86587 1.35564i
\(713\) −0.444272 + 1.36733i −0.0166381 + 0.0512068i
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) −41.3951 −1.54701
\(717\) 0.118034 0.363271i 0.00440806 0.0135666i
\(718\) −20.5623 + 14.9394i −0.767378 + 0.557533i
\(719\) 31.1353 + 22.6211i 1.16115 + 0.843624i 0.989923 0.141608i \(-0.0452271\pi\)
0.171226 + 0.985232i \(0.445227\pi\)
\(720\) −1.88197 5.79210i −0.0701367 0.215859i
\(721\) −3.38197 10.4086i −0.125951 0.387637i
\(722\) −32.3435 23.4989i −1.20370 0.874538i
\(723\) −6.70820 + 4.87380i −0.249481 + 0.181258i
\(724\) 3.79180 11.6699i 0.140921 0.433710i
\(725\) −27.7082 −1.02906
\(726\) 0 0
\(727\) −9.14590 −0.339203 −0.169601 0.985513i \(-0.554248\pi\)
−0.169601 + 0.985513i \(0.554248\pi\)
\(728\) −0.545085 + 1.67760i −0.0202022 + 0.0621760i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 7.47214 + 5.42882i 0.276556 + 0.200930i
\(731\) 2.37539 + 7.31069i 0.0878569 + 0.270396i
\(732\) −17.3435 53.3777i −0.641033 1.97290i
\(733\) −0.326238 0.237026i −0.0120499 0.00875474i 0.581744 0.813372i \(-0.302371\pi\)
−0.593794 + 0.804617i \(0.702371\pi\)
\(734\) −46.9058 + 34.0790i −1.73132 + 1.25788i
\(735\) −1.14590 + 3.52671i −0.0422671 + 0.130085i
\(736\) 2.56231 0.0944478
\(737\) 0 0
\(738\) −0.618034 −0.0227501
\(739\) −0.927051 + 2.85317i −0.0341021 + 0.104956i −0.966659 0.256068i \(-0.917573\pi\)
0.932557 + 0.361024i \(0.117573\pi\)
\(740\) −15.1353 + 10.9964i −0.556383 + 0.404236i
\(741\) 1.11803 + 0.812299i 0.0410720 + 0.0298406i
\(742\) −0.309017 0.951057i −0.0113444 0.0349144i
\(743\) 13.2533 + 40.7894i 0.486216 + 1.49642i 0.830212 + 0.557448i \(0.188219\pi\)
−0.343996 + 0.938971i \(0.611781\pi\)
\(744\) −36.8156 26.7481i −1.34973 0.980633i
\(745\) 2.11803 1.53884i 0.0775988 0.0563788i
\(746\) −0.718847 + 2.21238i −0.0263189 + 0.0810011i
\(747\) −1.47214 −0.0538626
\(748\) 0 0
\(749\) 11.4721 0.419183
\(750\) −4.80902 + 14.8006i −0.175600 + 0.540443i
\(751\) −13.0623 + 9.49032i −0.476650 + 0.346307i −0.800027 0.599963i \(-0.795182\pi\)
0.323377 + 0.946270i \(0.395182\pi\)
\(752\) 80.4402 + 58.4432i 2.93335 + 2.13121i
\(753\) 6.79180 + 20.9030i 0.247507 + 0.761748i
\(754\) −1.14590 3.52671i −0.0417311 0.128435i
\(755\) −0.527864 0.383516i −0.0192109 0.0139576i
\(756\) 3.92705 2.85317i 0.142825 0.103769i
\(757\) 1.54508 4.75528i 0.0561571 0.172834i −0.919044 0.394156i \(-0.871037\pi\)
0.975201 + 0.221322i \(0.0710371\pi\)
\(758\) −65.1591 −2.36668
\(759\) 0 0
\(760\) 27.0344 0.980642
\(761\) −9.05166 + 27.8582i −0.328123 + 1.00986i 0.641889 + 0.766798i \(0.278151\pi\)
−0.970011 + 0.243060i \(0.921849\pi\)
\(762\) −16.3262 + 11.8617i −0.591437 + 0.429704i
\(763\) −9.70820 7.05342i −0.351461 0.255351i
\(764\) −1.22949 3.78398i −0.0444814 0.136900i
\(765\) −0.218847 0.673542i −0.00791243 0.0243520i
\(766\) 26.9164 + 19.5559i 0.972529 + 0.706584i
\(767\) 1.40983 1.02430i 0.0509060 0.0369854i
\(768\) 4.50000 13.8496i 0.162380 0.499754i
\(769\) 34.5066 1.24434 0.622170 0.782883i \(-0.286251\pi\)
0.622170 + 0.782883i \(0.286251\pi\)
\(770\) 0 0
\(771\) −29.7426 −1.07116
\(772\) 4.71885 14.5231i 0.169835 0.522698i
\(773\) −21.9894 + 15.9762i −0.790902 + 0.574624i −0.908231 0.418469i \(-0.862567\pi\)
0.117329 + 0.993093i \(0.462567\pi\)
\(774\) −14.2082 10.3229i −0.510703 0.371048i
\(775\) 8.69098 + 26.7481i 0.312189 + 0.960820i
\(776\) 18.1353 + 55.8146i 0.651018 + 2.00363i
\(777\) −5.04508 3.66547i −0.180991 0.131498i
\(778\) 77.8222 56.5411i 2.79006 2.02710i
\(779\) 0.427051 1.31433i 0.0153007 0.0470907i
\(780\) −0.708204 −0.0253578
\(781\) 0 0
\(782\) 0.708204 0.0253253
\(783\) −1.85410 + 5.70634i −0.0662602 + 0.203928i
\(784\) 47.8328 34.7526i 1.70831 1.24116i
\(785\) 7.85410 + 5.70634i 0.280325 + 0.203668i
\(786\) −9.54508 29.3768i −0.340462 1.04783i
\(787\) 3.00000 + 9.23305i 0.106938 + 0.329123i 0.990181 0.139795i \(-0.0446442\pi\)
−0.883242 + 0.468917i \(0.844644\pi\)
\(788\) 51.1869 + 37.1895i 1.82346 + 1.32482i
\(789\) 12.3541 8.97578i 0.439818 0.319546i
\(790\) 5.50000 16.9273i 0.195681 0.602245i
\(791\) 13.4721 0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) −15.1353 + 46.5815i −0.537130 + 1.65312i
\(795\) 0.190983 0.138757i 0.00677347 0.00492121i
\(796\) −26.3435 19.1396i −0.933719 0.678387i
\(797\) 5.72949 + 17.6336i 0.202949 + 0.624613i 0.999791 + 0.0204255i \(0.00650208\pi\)
−0.796842 + 0.604187i \(0.793498\pi\)
\(798\) 4.73607 + 14.5761i 0.167655 + 0.515989i
\(799\) 9.35410 + 6.79615i 0.330924 + 0.240431i
\(800\) 40.5517 29.4625i 1.43372 1.04166i
\(801\) −2.54508 + 7.83297i −0.0899262 + 0.276764i
\(802\) −82.9574 −2.92933
\(803\) 0 0
\(804\) −9.00000 −0.317406
\(805\) −0.0450850 + 0.138757i −0.00158904 + 0.00489055i
\(806\) −3.04508 + 2.21238i −0.107259 + 0.0779279i
\(807\) −20.5623 14.9394i −0.723827 0.525891i
\(808\) 23.6353 + 72.7418i 0.831485 + 2.55905i
\(809\) −8.37132 25.7643i −0.294320 0.905824i −0.983449 0.181185i \(-0.942007\pi\)
0.689129 0.724639i \(-0.257993\pi\)
\(810\) 1.30902 + 0.951057i 0.0459942 + 0.0334167i
\(811\) 29.5795 21.4908i 1.03868 0.754644i 0.0686507 0.997641i \(-0.478131\pi\)
0.970027 + 0.242997i \(0.0781306\pi\)
\(812\) 9.00000 27.6992i 0.315838 0.972050i
\(813\) 18.6180 0.652963
\(814\) 0 0
\(815\) 3.18034 0.111402
\(816\) −3.48936 + 10.7391i −0.122152 + 0.375945i
\(817\) 31.7705 23.0826i 1.11151 0.807559i
\(818\) −13.7082 9.95959i −0.479296 0.348229i
\(819\) −0.0729490 0.224514i −0.00254904 0.00784515i
\(820\) 0.218847 + 0.673542i 0.00764247 + 0.0235211i
\(821\) 32.8435 + 23.8622i 1.14624 + 0.832795i 0.987977 0.154601i \(-0.0494091\pi\)
0.158268 + 0.987396i \(0.449409\pi\)
\(822\) 20.6803 15.0251i 0.721310 0.524062i
\(823\) −8.60081 + 26.4706i −0.299805 + 0.922706i 0.681759 + 0.731577i \(0.261215\pi\)
−0.981565 + 0.191130i \(0.938785\pi\)
\(824\) −81.7771 −2.84884
\(825\) 0 0
\(826\) 19.3262 0.672446
\(827\) 3.29180 10.1311i 0.114467 0.352293i −0.877369 0.479817i \(-0.840703\pi\)
0.991835 + 0.127524i \(0.0407030\pi\)
\(828\) −0.927051 + 0.673542i −0.0322172 + 0.0234072i
\(829\) 25.3992 + 18.4536i 0.882150 + 0.640920i 0.933819 0.357745i \(-0.116454\pi\)
−0.0516692 + 0.998664i \(0.516454\pi\)
\(830\) 0.736068 + 2.26538i 0.0255493 + 0.0786326i
\(831\) −9.02786 27.7849i −0.313173 0.963848i
\(832\) 1.66312 + 1.20833i 0.0576583 + 0.0418912i
\(833\) 5.56231 4.04125i 0.192722 0.140021i
\(834\) 11.7812 36.2587i 0.407948 1.25553i
\(835\) 7.43769 0.257392
\(836\) 0 0
\(837\) 6.09017 0.210507
\(838\) 25.4443 78.3094i 0.878958 2.70515i
\(839\) 14.4271 10.4819i 0.498077 0.361874i −0.310205 0.950670i \(-0.600398\pi\)
0.808282 + 0.588796i \(0.200398\pi\)
\(840\) −3.73607 2.71441i −0.128907 0.0936561i
\(841\) 2.16312 + 6.65740i 0.0745903 + 0.229565i
\(842\) 8.50000 + 26.1603i 0.292929 + 0.901544i
\(843\) −20.0344 14.5559i −0.690023 0.501331i
\(844\) 14.2082 10.3229i 0.489067 0.355328i
\(845\) 2.47214 7.60845i 0.0850441 0.261739i
\(846\) −26.4164 −0.908215
\(847\) 0 0
\(848\) −3.76393 −0.129254
\(849\) −1.76393 + 5.42882i −0.0605380 + 0.186317i
\(850\) 11.2082 8.14324i 0.384438 0.279311i
\(851\) 1.19098 + 0.865300i 0.0408264 + 0.0296621i
\(852\) −15.4894 47.6713i −0.530657 1.63319i
\(853\) 17.2533 + 53.1002i 0.590741 + 1.81811i 0.574876 + 0.818241i \(0.305050\pi\)
0.0158658 + 0.999874i \(0.494950\pi\)
\(854\) −24.4894 17.7926i −0.838009 0.608849i
\(855\) −2.92705 + 2.12663i −0.100103 + 0.0727291i
\(856\) 26.4894 81.5259i 0.905388 2.78650i
\(857\) −27.7639 −0.948398 −0.474199 0.880418i \(-0.657262\pi\)
−0.474199 + 0.880418i \(0.657262\pi\)
\(858\) 0 0
\(859\) −34.4164 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(860\) −6.21885 + 19.1396i −0.212061 + 0.652656i
\(861\) −0.190983 + 0.138757i −0.00650868 + 0.00472884i
\(862\) −12.5172 9.09429i −0.426338 0.309753i
\(863\) 0.0344419 + 0.106001i 0.00117241 + 0.00360832i 0.951641 0.307212i \(-0.0993962\pi\)
−0.950469 + 0.310821i \(0.899396\pi\)
\(864\) −3.35410 10.3229i −0.114109 0.351191i
\(865\) 9.01722 + 6.55139i 0.306595 + 0.222754i
\(866\) −74.7771 + 54.3287i −2.54103 + 1.84617i
\(867\) 4.84752 14.9191i 0.164631 0.506681i
\(868\) −29.5623 −1.00341
\(869\) 0 0
\(870\) 9.70820 0.329139
\(871\) −0.135255 + 0.416272i −0.00458294 + 0.0141048i
\(872\) −72.5410 + 52.7041i −2.45655 + 1.78479i
\(873\) −6.35410 4.61653i −0.215054 0.156246i
\(874\) −1.11803 3.44095i −0.0378181 0.116392i
\(875\) 1.83688 + 5.65334i 0.0620979 + 0.191118i
\(876\) 22.4164 + 16.2865i 0.757380 + 0.550269i
\(877\) −46.8779 + 34.0588i −1.58295 + 1.15008i −0.669746 + 0.742590i \(0.733597\pi\)
−0.913208 + 0.407493i \(0.866403\pi\)
\(878\) −18.8435 + 57.9942i −0.635936 + 1.95721i
\(879\) −21.6525 −0.730320
\(880\) 0 0
\(881\) 6.20163 0.208938 0.104469 0.994528i \(-0.466686\pi\)
0.104469 + 0.994528i \(0.466686\pi\)
\(882\) −4.85410 + 14.9394i −0.163446 + 0.503035i
\(883\) −0.854102 + 0.620541i −0.0287428 + 0.0208829i −0.602064 0.798448i \(-0.705655\pi\)
0.573321 + 0.819331i \(0.305655\pi\)
\(884\) 1.06231 + 0.771810i 0.0357292 + 0.0259588i
\(885\) 1.40983 + 4.33901i 0.0473909 + 0.145854i
\(886\) −25.5623 78.6727i −0.858782 2.64306i
\(887\) −44.0795 32.0257i −1.48005 1.07532i −0.977542 0.210741i \(-0.932412\pi\)
−0.502504 0.864575i \(-0.667588\pi\)
\(888\) −37.6976 + 27.3889i −1.26505 + 0.919111i
\(889\) −2.38197 + 7.33094i −0.0798886 + 0.245872i
\(890\) 13.3262 0.446697
\(891\) 0 0
\(892\) 34.8541 1.16700
\(893\) 18.2533 56.1778i 0.610823 1.87992i
\(894\) 8.97214 6.51864i 0.300073 0.218016i
\(895\) −4.26393 3.09793i −0.142528 0.103552i
\(896\) 0.336881 + 1.03681i 0.0112544 + 0.0346375i
\(897\) 0.0172209 + 0.0530006i 0.000574990 + 0.00176964i
\(898\) 19.1803 + 13.9353i 0.640056 + 0.465028i
\(899\) 29.5623 21.4783i 0.985958 0.716340i
\(900\) −6.92705 + 21.3193i −0.230902 + 0.710642i
\(901\) −0.437694 −0.0145817
\(902\) 0 0
\(903\) −6.70820 −0.223235
\(904\) 31.1074 95.7387i 1.03462 3.18422i
\(905\) 1.26393 0.918300i 0.0420145 0.0305253i
\(906\) −2.23607 1.62460i −0.0742884 0.0539737i
\(907\) −13.1008 40.3202i −0.435005 1.33881i −0.893081 0.449896i \(-0.851461\pi\)
0.458076 0.888913i \(-0.348539\pi\)
\(908\) −19.7705 60.8474i −0.656107 2.01929i
\(909\) −8.28115 6.01661i −0.274669 0.199558i
\(910\) −0.309017 + 0.224514i −0.0102438 + 0.00744257i
\(911\) 11.9271 36.7077i 0.395161 1.21618i −0.533675 0.845689i \(-0.679190\pi\)
0.928836 0.370491i \(-0.120810\pi\)
\(912\) 57.6869 1.91020
\(913\) 0 0
\(914\) −62.7771 −2.07648
\(915\) 2.20820 6.79615i 0.0730010 0.224674i
\(916\) −1.85410 + 1.34708i −0.0612613 + 0.0445089i
\(917\) −9.54508 6.93491i −0.315206 0.229011i
\(918\) −0.927051 2.85317i −0.0305972 0.0941686i
\(919\) −7.92705 24.3970i −0.261489 0.804781i −0.992481 0.122395i \(-0.960942\pi\)
0.730992 0.682386i \(-0.239058\pi\)
\(920\) 0.881966 + 0.640786i 0.0290776 + 0.0211261i
\(921\) −22.6353 + 16.4455i −0.745857 + 0.541897i
\(922\) −7.50000 + 23.0826i −0.246999 + 0.760186i
\(923\) −2.43769 −0.0802377
\(924\) 0 0
\(925\) 28.7984 0.946885
\(926\) 1.39919 4.30625i 0.0459801 0.141512i
\(927\) 8.85410 6.43288i 0.290807 0.211284i
\(928\) −52.6869 38.2793i −1.72953 1.25658i
\(929\) −3.92705 12.0862i −0.128842 0.396536i 0.865739 0.500495i \(-0.166849\pi\)
−0.994582 + 0.103959i \(0.966849\pi\)
\(930\) −3.04508 9.37181i −0.0998523 0.307314i
\(931\) −28.4164 20.6457i −0.931310 0.676636i
\(932\) −16.2812 + 11.8290i −0.533307 + 0.387470i
\(933\) −3.60081 + 11.0822i −0.117885 + 0.362814i
\(934\) 54.6869 1.78941
\(935\) 0 0
\(936\) −1.76393 −0.0576559
\(937\) −12.8713 + 39.6139i −0.420488 + 1.29413i 0.486761 + 0.873535i \(0.338178\pi\)
−0.907249 + 0.420593i \(0.861822\pi\)
\(938\) −3.92705 + 2.85317i −0.128223 + 0.0931593i
\(939\) −2.04508 1.48584i −0.0667388 0.0484886i
\(940\) 9.35410 + 28.7890i 0.305097 + 0.938993i
\(941\) 4.46556 + 13.7436i 0.145573 + 0.448028i 0.997084 0.0763087i \(-0.0243134\pi\)
−0.851511 + 0.524336i \(0.824313\pi\)
\(942\) 33.2705 + 24.1724i 1.08401 + 0.787581i
\(943\) 0.0450850 0.0327561i 0.00146817 0.00106669i
\(944\) 22.4787 69.1824i 0.731620 2.25169i
\(945\) 0.618034 0.0201046
\(946\) 0 0
\(947\) −32.3951 −1.05270 −0.526350 0.850268i \(-0.676440\pi\)
−0.526350 + 0.850268i \(0.676440\pi\)
\(948\) 16.5000 50.7818i 0.535895 1.64932i
\(949\) 1.09017 0.792055i 0.0353884 0.0257112i
\(950\) −57.2599 41.6017i −1.85776 1.34974i
\(951\) 2.10739 + 6.48588i 0.0683368 + 0.210319i
\(952\) 2.64590 + 8.14324i 0.0857540 + 0.263924i
\(953\) 9.18034 + 6.66991i 0.297380 + 0.216059i 0.726463 0.687206i \(-0.241163\pi\)
−0.429082 + 0.903265i \(0.641163\pi\)
\(954\) 0.809017 0.587785i 0.0261929 0.0190303i
\(955\) 0.156541 0.481784i 0.00506555 0.0155902i
\(956\) −1.85410 −0.0599659
\(957\) 0 0
\(958\) 74.3050 2.40068
\(959\) 3.01722 9.28605i 0.0974311 0.299862i
\(960\) −4.35410 + 3.16344i −0.140528 + 0.102100i
\(961\) −4.92705 3.57971i −0.158937 0.115475i
\(962\) 1.19098 + 3.66547i 0.0383988 + 0.118179i
\(963\) 3.54508 + 10.9106i 0.114239 + 0.351591i
\(964\) 32.5623 + 23.6579i 1.04876 + 0.761970i
\(965\) 1.57295 1.14281i 0.0506350 0.0367885i
\(966\) −0.190983 + 0.587785i −0.00614478 + 0.0189117i
\(967\) −43.9230 −1.41247 −0.706234 0.707978i \(-0.749607\pi\)
−0.706234 + 0.707978i \(0.749607\pi\)
\(968\) 0 0
\(969\) 6.70820 0.215499
\(970\) −3.92705 + 12.0862i −0.126090 + 0.388065i
\(971\) 33.9787 24.6870i 1.09043 0.792243i 0.110957 0.993825i \(-0.464608\pi\)
0.979472 + 0.201582i \(0.0646083\pi\)
\(972\) 3.92705 + 2.85317i 0.125960 + 0.0915155i
\(973\) −4.50000 13.8496i −0.144263 0.443997i
\(974\) −10.2812 31.6421i −0.329429 1.01388i
\(975\) 0.881966 + 0.640786i 0.0282455 + 0.0205216i
\(976\) −92.1763 + 66.9700i −2.95049 + 2.14366i
\(977\) −0.184405 + 0.567541i −0.00589964 + 0.0181572i −0.953963 0.299924i \(-0.903039\pi\)
0.948063 + 0.318082i \(0.103039\pi\)
\(978\) 13.4721 0.430791
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) 3.70820 11.4127i 0.118394 0.364379i
\(982\) −37.9336 + 27.5604i −1.21051 + 0.879488i
\(983\) 6.56231 + 4.76779i 0.209305 + 0.152069i 0.687499 0.726185i \(-0.258708\pi\)
−0.478194 + 0.878254i \(0.658708\pi\)
\(984\) 0.545085 + 1.67760i 0.0173767 + 0.0534799i
\(985\) 2.48936 + 7.66145i 0.0793175 + 0.244114i
\(986\) −14.5623 10.5801i −0.463758 0.336940i
\(987\) −8.16312 + 5.93085i −0.259835 + 0.188781i
\(988\) 2.07295 6.37988i 0.0659493 0.202971i
\(989\) 1.58359 0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −20.4271 + 62.8680i −0.648560 + 1.99606i
\(993\) 13.5172 9.82084i 0.428956 0.311655i
\(994\) −21.8713 15.8904i −0.693716 0.504014i
\(995\) −1.28115 3.94298i −0.0406153 0.125001i
\(996\) 2.20820 + 6.79615i 0.0699696 + 0.215344i
\(997\) −17.1525 12.4620i −0.543224 0.394676i 0.282057 0.959398i \(-0.408983\pi\)
−0.825281 + 0.564722i \(0.808983\pi\)
\(998\) 38.4336 27.9237i 1.21660 0.883908i
\(999\) 1.92705 5.93085i 0.0609692 0.187644i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.e.f.130.1 4
11.2 odd 10 363.2.e.k.124.1 4
11.3 even 5 363.2.e.b.202.1 4
11.4 even 5 363.2.a.i.1.2 2
11.5 even 5 inner 363.2.e.f.148.1 4
11.6 odd 10 33.2.e.b.16.1 4
11.7 odd 10 363.2.a.d.1.1 2
11.8 odd 10 363.2.e.k.202.1 4
11.9 even 5 363.2.e.b.124.1 4
11.10 odd 2 33.2.e.b.31.1 yes 4
33.17 even 10 99.2.f.a.82.1 4
33.26 odd 10 1089.2.a.l.1.1 2
33.29 even 10 1089.2.a.t.1.2 2
33.32 even 2 99.2.f.a.64.1 4
44.7 even 10 5808.2.a.cj.1.1 2
44.15 odd 10 5808.2.a.ci.1.1 2
44.39 even 10 528.2.y.b.49.1 4
44.43 even 2 528.2.y.b.97.1 4
55.4 even 10 9075.2.a.u.1.1 2
55.17 even 20 825.2.bx.d.49.2 8
55.28 even 20 825.2.bx.d.49.1 8
55.29 odd 10 9075.2.a.cb.1.2 2
55.32 even 4 825.2.bx.d.724.1 8
55.39 odd 10 825.2.n.c.676.1 4
55.43 even 4 825.2.bx.d.724.2 8
55.54 odd 2 825.2.n.c.526.1 4
99.32 even 6 891.2.n.b.460.1 8
99.43 odd 6 891.2.n.c.757.1 8
99.50 even 30 891.2.n.b.379.1 8
99.61 odd 30 891.2.n.c.676.1 8
99.65 even 6 891.2.n.b.757.1 8
99.76 odd 6 891.2.n.c.460.1 8
99.83 even 30 891.2.n.b.676.1 8
99.94 odd 30 891.2.n.c.379.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 11.6 odd 10
33.2.e.b.31.1 yes 4 11.10 odd 2
99.2.f.a.64.1 4 33.32 even 2
99.2.f.a.82.1 4 33.17 even 10
363.2.a.d.1.1 2 11.7 odd 10
363.2.a.i.1.2 2 11.4 even 5
363.2.e.b.124.1 4 11.9 even 5
363.2.e.b.202.1 4 11.3 even 5
363.2.e.f.130.1 4 1.1 even 1 trivial
363.2.e.f.148.1 4 11.5 even 5 inner
363.2.e.k.124.1 4 11.2 odd 10
363.2.e.k.202.1 4 11.8 odd 10
528.2.y.b.49.1 4 44.39 even 10
528.2.y.b.97.1 4 44.43 even 2
825.2.n.c.526.1 4 55.54 odd 2
825.2.n.c.676.1 4 55.39 odd 10
825.2.bx.d.49.1 8 55.28 even 20
825.2.bx.d.49.2 8 55.17 even 20
825.2.bx.d.724.1 8 55.32 even 4
825.2.bx.d.724.2 8 55.43 even 4
891.2.n.b.379.1 8 99.50 even 30
891.2.n.b.460.1 8 99.32 even 6
891.2.n.b.676.1 8 99.83 even 30
891.2.n.b.757.1 8 99.65 even 6
891.2.n.c.379.1 8 99.94 odd 30
891.2.n.c.460.1 8 99.76 odd 6
891.2.n.c.676.1 8 99.61 odd 30
891.2.n.c.757.1 8 99.43 odd 6
1089.2.a.l.1.1 2 33.26 odd 10
1089.2.a.t.1.2 2 33.29 even 10
5808.2.a.ci.1.1 2 44.15 odd 10
5808.2.a.cj.1.1 2 44.7 even 10
9075.2.a.u.1.1 2 55.4 even 10
9075.2.a.cb.1.2 2 55.29 odd 10