Properties

Label 363.2.e.e.124.1
Level $363$
Weight $2$
Character 363.124
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 124.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.124
Dual form 363.2.e.e.202.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(1.61803 + 1.17557i) q^{5} +(0.809017 + 0.587785i) q^{6} +(1.23607 - 3.80423i) q^{7} +(-0.927051 - 2.85317i) q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(1.61803 + 1.17557i) q^{5} +(0.809017 + 0.587785i) q^{6} +(1.23607 - 3.80423i) q^{7} +(-0.927051 - 2.85317i) q^{8} +(-0.809017 + 0.587785i) q^{9} -2.00000 q^{10} +1.00000 q^{12} +(1.61803 - 1.17557i) q^{13} +(1.23607 + 3.80423i) q^{14} +(0.618034 - 1.90211i) q^{15} +(0.809017 + 0.587785i) q^{16} +(1.61803 + 1.17557i) q^{17} +(0.309017 - 0.951057i) q^{18} +(-1.61803 + 1.17557i) q^{20} -4.00000 q^{21} +8.00000 q^{23} +(-2.42705 + 1.76336i) q^{24} +(-0.309017 - 0.951057i) q^{25} +(-0.618034 + 1.90211i) q^{26} +(0.809017 + 0.587785i) q^{27} +(3.23607 + 2.35114i) q^{28} +(-1.85410 + 5.70634i) q^{29} +(0.618034 + 1.90211i) q^{30} +(6.47214 - 4.70228i) q^{31} +5.00000 q^{32} -2.00000 q^{34} +(6.47214 - 4.70228i) q^{35} +(-0.309017 - 0.951057i) q^{36} +(1.85410 - 5.70634i) q^{37} +(-1.61803 - 1.17557i) q^{39} +(1.85410 - 5.70634i) q^{40} +(-0.618034 - 1.90211i) q^{41} +(3.23607 - 2.35114i) q^{42} -2.00000 q^{45} +(-6.47214 + 4.70228i) q^{46} +(2.47214 + 7.60845i) q^{47} +(0.309017 - 0.951057i) q^{48} +(-7.28115 - 5.29007i) q^{49} +(0.809017 + 0.587785i) q^{50} +(0.618034 - 1.90211i) q^{51} +(0.618034 + 1.90211i) q^{52} +(-4.85410 + 3.52671i) q^{53} -1.00000 q^{54} -12.0000 q^{56} +(-1.85410 - 5.70634i) q^{58} +(-1.23607 + 3.80423i) q^{59} +(1.61803 + 1.17557i) q^{60} +(-4.85410 - 3.52671i) q^{61} +(-2.47214 + 7.60845i) q^{62} +(1.23607 + 3.80423i) q^{63} +(-5.66312 + 4.11450i) q^{64} +4.00000 q^{65} -4.00000 q^{67} +(-1.61803 + 1.17557i) q^{68} +(-2.47214 - 7.60845i) q^{69} +(-2.47214 + 7.60845i) q^{70} +(2.42705 + 1.76336i) q^{72} +(-4.32624 + 13.3148i) q^{73} +(1.85410 + 5.70634i) q^{74} +(-0.809017 + 0.587785i) q^{75} +2.00000 q^{78} +(3.23607 - 2.35114i) q^{79} +(0.618034 + 1.90211i) q^{80} +(0.309017 - 0.951057i) q^{81} +(1.61803 + 1.17557i) q^{82} +(-9.70820 - 7.05342i) q^{83} +(1.23607 - 3.80423i) q^{84} +(1.23607 + 3.80423i) q^{85} +6.00000 q^{87} -6.00000 q^{89} +(1.61803 - 1.17557i) q^{90} +(-2.47214 - 7.60845i) q^{91} +(-2.47214 + 7.60845i) q^{92} +(-6.47214 - 4.70228i) q^{93} +(-6.47214 - 4.70228i) q^{94} +(-1.54508 - 4.75528i) q^{96} +(-1.61803 + 1.17557i) q^{97} +9.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} - 4 q^{7} + 3 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} - 4 q^{7} + 3 q^{8} - q^{9} - 8 q^{10} + 4 q^{12} + 2 q^{13} - 4 q^{14} - 2 q^{15} + q^{16} + 2 q^{17} - q^{18} - 2 q^{20} - 16 q^{21} + 32 q^{23} - 3 q^{24} + q^{25} + 2 q^{26} + q^{27} + 4 q^{28} + 6 q^{29} - 2 q^{30} + 8 q^{31} + 20 q^{32} - 8 q^{34} + 8 q^{35} + q^{36} - 6 q^{37} - 2 q^{39} - 6 q^{40} + 2 q^{41} + 4 q^{42} - 8 q^{45} - 8 q^{46} - 8 q^{47} - q^{48} - 9 q^{49} + q^{50} - 2 q^{51} - 2 q^{52} - 6 q^{53} - 4 q^{54} - 48 q^{56} + 6 q^{58} + 4 q^{59} + 2 q^{60} - 6 q^{61} + 8 q^{62} - 4 q^{63} - 7 q^{64} + 16 q^{65} - 16 q^{67} - 2 q^{68} + 8 q^{69} + 8 q^{70} + 3 q^{72} + 14 q^{73} - 6 q^{74} - q^{75} + 8 q^{78} + 4 q^{79} - 2 q^{80} - q^{81} + 2 q^{82} - 12 q^{83} - 4 q^{84} - 4 q^{85} + 24 q^{87} - 24 q^{89} + 2 q^{90} + 8 q^{91} + 8 q^{92} - 8 q^{93} - 8 q^{94} + 5 q^{96} - 2 q^{97} + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i −0.835853 0.548953i \(-0.815027\pi\)
0.263792 + 0.964580i \(0.415027\pi\)
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 1.61803 + 1.17557i 0.723607 + 0.525731i 0.887535 0.460741i \(-0.152416\pi\)
−0.163928 + 0.986472i \(0.552416\pi\)
\(6\) 0.809017 + 0.587785i 0.330280 + 0.239962i
\(7\) 1.23607 3.80423i 0.467190 1.43786i −0.389018 0.921230i \(-0.627186\pi\)
0.856208 0.516632i \(-0.172814\pi\)
\(8\) −0.927051 2.85317i −0.327762 1.00875i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −2.00000 −0.632456
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) 1.61803 1.17557i 0.448762 0.326045i −0.340345 0.940301i \(-0.610544\pi\)
0.789107 + 0.614256i \(0.210544\pi\)
\(14\) 1.23607 + 3.80423i 0.330353 + 1.01672i
\(15\) 0.618034 1.90211i 0.159576 0.491123i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 1.61803 + 1.17557i 0.392431 + 0.285118i 0.766451 0.642303i \(-0.222021\pi\)
−0.374020 + 0.927421i \(0.622021\pi\)
\(18\) 0.309017 0.951057i 0.0728360 0.224166i
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) −1.61803 + 1.17557i −0.361803 + 0.262866i
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) −2.42705 + 1.76336i −0.495420 + 0.359943i
\(25\) −0.309017 0.951057i −0.0618034 0.190211i
\(26\) −0.618034 + 1.90211i −0.121206 + 0.373035i
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) 3.23607 + 2.35114i 0.611559 + 0.444324i
\(29\) −1.85410 + 5.70634i −0.344298 + 1.05964i 0.617660 + 0.786445i \(0.288081\pi\)
−0.961958 + 0.273196i \(0.911919\pi\)
\(30\) 0.618034 + 1.90211i 0.112837 + 0.347277i
\(31\) 6.47214 4.70228i 1.16243 0.844555i 0.172347 0.985036i \(-0.444865\pi\)
0.990083 + 0.140482i \(0.0448651\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 6.47214 4.70228i 1.09399 0.794831i
\(36\) −0.309017 0.951057i −0.0515028 0.158509i
\(37\) 1.85410 5.70634i 0.304812 0.938116i −0.674935 0.737878i \(-0.735828\pi\)
0.979747 0.200239i \(-0.0641718\pi\)
\(38\) 0 0
\(39\) −1.61803 1.17557i −0.259093 0.188242i
\(40\) 1.85410 5.70634i 0.293159 0.902251i
\(41\) −0.618034 1.90211i −0.0965207 0.297060i 0.891126 0.453755i \(-0.149916\pi\)
−0.987647 + 0.156695i \(0.949916\pi\)
\(42\) 3.23607 2.35114i 0.499336 0.362789i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) −6.47214 + 4.70228i −0.954264 + 0.693314i
\(47\) 2.47214 + 7.60845i 0.360598 + 1.10981i 0.952692 + 0.303938i \(0.0983015\pi\)
−0.592094 + 0.805869i \(0.701699\pi\)
\(48\) 0.309017 0.951057i 0.0446028 0.137273i
\(49\) −7.28115 5.29007i −1.04016 0.755724i
\(50\) 0.809017 + 0.587785i 0.114412 + 0.0831254i
\(51\) 0.618034 1.90211i 0.0865421 0.266349i
\(52\) 0.618034 + 1.90211i 0.0857059 + 0.263776i
\(53\) −4.85410 + 3.52671i −0.666762 + 0.484431i −0.868940 0.494918i \(-0.835198\pi\)
0.202178 + 0.979349i \(0.435198\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −12.0000 −1.60357
\(57\) 0 0
\(58\) −1.85410 5.70634i −0.243456 0.749279i
\(59\) −1.23607 + 3.80423i −0.160922 + 0.495268i −0.998713 0.0507240i \(-0.983847\pi\)
0.837790 + 0.545992i \(0.183847\pi\)
\(60\) 1.61803 + 1.17557i 0.208887 + 0.151765i
\(61\) −4.85410 3.52671i −0.621504 0.451549i 0.231942 0.972730i \(-0.425492\pi\)
−0.853447 + 0.521180i \(0.825492\pi\)
\(62\) −2.47214 + 7.60845i −0.313962 + 0.966274i
\(63\) 1.23607 + 3.80423i 0.155730 + 0.479287i
\(64\) −5.66312 + 4.11450i −0.707890 + 0.514312i
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −1.61803 + 1.17557i −0.196215 + 0.142559i
\(69\) −2.47214 7.60845i −0.297610 0.915950i
\(70\) −2.47214 + 7.60845i −0.295477 + 0.909384i
\(71\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(72\) 2.42705 + 1.76336i 0.286031 + 0.207813i
\(73\) −4.32624 + 13.3148i −0.506348 + 1.55838i 0.292145 + 0.956374i \(0.405631\pi\)
−0.798493 + 0.602004i \(0.794369\pi\)
\(74\) 1.85410 + 5.70634i 0.215535 + 0.663348i
\(75\) −0.809017 + 0.587785i −0.0934172 + 0.0678716i
\(76\) 0 0
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 3.23607 2.35114i 0.364086 0.264524i −0.390668 0.920532i \(-0.627756\pi\)
0.754754 + 0.656007i \(0.227756\pi\)
\(80\) 0.618034 + 1.90211i 0.0690983 + 0.212663i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 1.61803 + 1.17557i 0.178682 + 0.129820i
\(83\) −9.70820 7.05342i −1.06561 0.774214i −0.0904951 0.995897i \(-0.528845\pi\)
−0.975119 + 0.221683i \(0.928845\pi\)
\(84\) 1.23607 3.80423i 0.134866 0.415075i
\(85\) 1.23607 + 3.80423i 0.134070 + 0.412626i
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 1.61803 1.17557i 0.170556 0.123916i
\(91\) −2.47214 7.60845i −0.259150 0.797582i
\(92\) −2.47214 + 7.60845i −0.257738 + 0.793236i
\(93\) −6.47214 4.70228i −0.671129 0.487604i
\(94\) −6.47214 4.70228i −0.667550 0.485003i
\(95\) 0 0
\(96\) −1.54508 4.75528i −0.157695 0.485334i
\(97\) −1.61803 + 1.17557i −0.164286 + 0.119361i −0.666891 0.745155i \(-0.732375\pi\)
0.502604 + 0.864517i \(0.332375\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.61803 + 1.17557i −0.161000 + 0.116974i −0.665368 0.746515i \(-0.731726\pi\)
0.504368 + 0.863489i \(0.331726\pi\)
\(102\) 0.618034 + 1.90211i 0.0611945 + 0.188337i
\(103\) 2.47214 7.60845i 0.243587 0.749683i −0.752279 0.658845i \(-0.771045\pi\)
0.995866 0.0908382i \(-0.0289546\pi\)
\(104\) −4.85410 3.52671i −0.475984 0.345823i
\(105\) −6.47214 4.70228i −0.631616 0.458896i
\(106\) 1.85410 5.70634i 0.180086 0.554249i
\(107\) −3.70820 11.4127i −0.358486 1.10331i −0.953961 0.299932i \(-0.903036\pi\)
0.595475 0.803374i \(-0.296964\pi\)
\(108\) −0.809017 + 0.587785i −0.0778477 + 0.0565597i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 3.23607 2.35114i 0.305780 0.222162i
\(113\) −1.85410 5.70634i −0.174419 0.536807i 0.825187 0.564859i \(-0.191070\pi\)
−0.999606 + 0.0280521i \(0.991070\pi\)
\(114\) 0 0
\(115\) 12.9443 + 9.40456i 1.20706 + 0.876980i
\(116\) −4.85410 3.52671i −0.450692 0.327447i
\(117\) −0.618034 + 1.90211i −0.0571373 + 0.175850i
\(118\) −1.23607 3.80423i −0.113789 0.350207i
\(119\) 6.47214 4.70228i 0.593300 0.431057i
\(120\) −6.00000 −0.547723
\(121\) 0 0
\(122\) 6.00000 0.543214
\(123\) −1.61803 + 1.17557i −0.145893 + 0.105998i
\(124\) 2.47214 + 7.60845i 0.222004 + 0.683259i
\(125\) 3.70820 11.4127i 0.331672 1.02078i
\(126\) −3.23607 2.35114i −0.288292 0.209456i
\(127\) 3.23607 + 2.35114i 0.287155 + 0.208630i 0.722032 0.691860i \(-0.243208\pi\)
−0.434877 + 0.900490i \(0.643208\pi\)
\(128\) −0.927051 + 2.85317i −0.0819405 + 0.252187i
\(129\) 0 0
\(130\) −3.23607 + 2.35114i −0.283822 + 0.206209i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.23607 2.35114i 0.279554 0.203108i
\(135\) 0.618034 + 1.90211i 0.0531919 + 0.163708i
\(136\) 1.85410 5.70634i 0.158988 0.489315i
\(137\) −1.61803 1.17557i −0.138238 0.100436i 0.516517 0.856277i \(-0.327228\pi\)
−0.654755 + 0.755841i \(0.727228\pi\)
\(138\) 6.47214 + 4.70228i 0.550945 + 0.400285i
\(139\) −2.47214 + 7.60845i −0.209684 + 0.645340i 0.789805 + 0.613359i \(0.210182\pi\)
−0.999488 + 0.0319820i \(0.989818\pi\)
\(140\) 2.47214 + 7.60845i 0.208934 + 0.643032i
\(141\) 6.47214 4.70228i 0.545052 0.396004i
\(142\) 0 0
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) −9.70820 + 7.05342i −0.806222 + 0.585755i
\(146\) −4.32624 13.3148i −0.358042 1.10194i
\(147\) −2.78115 + 8.55951i −0.229386 + 0.705976i
\(148\) 4.85410 + 3.52671i 0.399005 + 0.289894i
\(149\) 17.7984 + 12.9313i 1.45810 + 1.05937i 0.983853 + 0.178979i \(0.0572796\pi\)
0.474247 + 0.880392i \(0.342720\pi\)
\(150\) 0.309017 0.951057i 0.0252311 0.0776534i
\(151\) 6.18034 + 19.0211i 0.502949 + 1.54792i 0.804192 + 0.594370i \(0.202599\pi\)
−0.301243 + 0.953548i \(0.597401\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 1.61803 1.17557i 0.129546 0.0941210i
\(157\) 4.32624 + 13.3148i 0.345271 + 1.06264i 0.961438 + 0.275020i \(0.0886846\pi\)
−0.616167 + 0.787616i \(0.711315\pi\)
\(158\) −1.23607 + 3.80423i −0.0983363 + 0.302648i
\(159\) 4.85410 + 3.52671i 0.384955 + 0.279686i
\(160\) 8.09017 + 5.87785i 0.639584 + 0.464685i
\(161\) 9.88854 30.4338i 0.779326 2.39852i
\(162\) 0.309017 + 0.951057i 0.0242787 + 0.0747221i
\(163\) −3.23607 + 2.35114i −0.253468 + 0.184156i −0.707263 0.706951i \(-0.750070\pi\)
0.453794 + 0.891107i \(0.350070\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(168\) 3.70820 + 11.4127i 0.286094 + 0.880507i
\(169\) −2.78115 + 8.55951i −0.213935 + 0.658424i
\(170\) −3.23607 2.35114i −0.248195 0.180324i
\(171\) 0 0
\(172\) 0 0
\(173\) −1.85410 5.70634i −0.140965 0.433845i 0.855505 0.517794i \(-0.173247\pi\)
−0.996470 + 0.0839492i \(0.973247\pi\)
\(174\) −4.85410 + 3.52671i −0.367989 + 0.267359i
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 4.85410 3.52671i 0.363830 0.264338i
\(179\) 3.70820 + 11.4127i 0.277164 + 0.853024i 0.988639 + 0.150312i \(0.0480277\pi\)
−0.711474 + 0.702712i \(0.751972\pi\)
\(180\) 0.618034 1.90211i 0.0460655 0.141775i
\(181\) −17.7984 12.9313i −1.32294 0.961174i −0.999891 0.0147930i \(-0.995291\pi\)
−0.323052 0.946381i \(-0.604709\pi\)
\(182\) 6.47214 + 4.70228i 0.479747 + 0.348556i
\(183\) −1.85410 + 5.70634i −0.137059 + 0.421825i
\(184\) −7.41641 22.8254i −0.546745 1.68271i
\(185\) 9.70820 7.05342i 0.713761 0.518578i
\(186\) 8.00000 0.586588
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 3.23607 2.35114i 0.235389 0.171020i
\(190\) 0 0
\(191\) 2.47214 7.60845i 0.178877 0.550528i −0.820912 0.571055i \(-0.806534\pi\)
0.999789 + 0.0205267i \(0.00653431\pi\)
\(192\) 5.66312 + 4.11450i 0.408700 + 0.296938i
\(193\) 11.3262 + 8.22899i 0.815280 + 0.592336i 0.915357 0.402644i \(-0.131909\pi\)
−0.100076 + 0.994980i \(0.531909\pi\)
\(194\) 0.618034 1.90211i 0.0443723 0.136564i
\(195\) −1.23607 3.80423i −0.0885167 0.272426i
\(196\) 7.28115 5.29007i 0.520082 0.377862i
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −2.42705 + 1.76336i −0.171618 + 0.124688i
\(201\) 1.23607 + 3.80423i 0.0871855 + 0.268329i
\(202\) 0.618034 1.90211i 0.0434847 0.133832i
\(203\) 19.4164 + 14.1068i 1.36276 + 0.990106i
\(204\) 1.61803 + 1.17557i 0.113285 + 0.0823064i
\(205\) 1.23607 3.80423i 0.0863307 0.265699i
\(206\) 2.47214 + 7.60845i 0.172242 + 0.530106i
\(207\) −6.47214 + 4.70228i −0.449845 + 0.326831i
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 8.00000 0.552052
\(211\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(212\) −1.85410 5.70634i −0.127340 0.391913i
\(213\) 0 0
\(214\) 9.70820 + 7.05342i 0.663639 + 0.482162i
\(215\) 0 0
\(216\) 0.927051 2.85317i 0.0630778 0.194134i
\(217\) −9.88854 30.4338i −0.671278 2.06598i
\(218\) 1.61803 1.17557i 0.109587 0.0796197i
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 4.85410 3.52671i 0.325786 0.236697i
\(223\) 4.94427 + 15.2169i 0.331093 + 1.01900i 0.968615 + 0.248567i \(0.0799596\pi\)
−0.637522 + 0.770432i \(0.720040\pi\)
\(224\) 6.18034 19.0211i 0.412941 1.27090i
\(225\) 0.809017 + 0.587785i 0.0539345 + 0.0391857i
\(226\) 4.85410 + 3.52671i 0.322890 + 0.234593i
\(227\) 3.70820 11.4127i 0.246122 0.757486i −0.749328 0.662199i \(-0.769623\pi\)
0.995450 0.0952867i \(-0.0303768\pi\)
\(228\) 0 0
\(229\) −4.85410 + 3.52671i −0.320768 + 0.233052i −0.736503 0.676434i \(-0.763524\pi\)
0.415735 + 0.909486i \(0.363524\pi\)
\(230\) −16.0000 −1.05501
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) −24.2705 + 17.6336i −1.59001 + 1.15521i −0.686092 + 0.727514i \(0.740675\pi\)
−0.903921 + 0.427698i \(0.859325\pi\)
\(234\) −0.618034 1.90211i −0.0404021 0.124345i
\(235\) −4.94427 + 15.2169i −0.322529 + 0.992641i
\(236\) −3.23607 2.35114i −0.210650 0.153046i
\(237\) −3.23607 2.35114i −0.210205 0.152723i
\(238\) −2.47214 + 7.60845i −0.160245 + 0.493183i
\(239\) 7.41641 + 22.8254i 0.479728 + 1.47645i 0.839474 + 0.543400i \(0.182863\pi\)
−0.359747 + 0.933050i \(0.617137\pi\)
\(240\) 1.61803 1.17557i 0.104444 0.0758827i
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 4.85410 3.52671i 0.310752 0.225775i
\(245\) −5.56231 17.1190i −0.355363 1.09369i
\(246\) 0.618034 1.90211i 0.0394044 0.121274i
\(247\) 0 0
\(248\) −19.4164 14.1068i −1.23294 0.895786i
\(249\) −3.70820 + 11.4127i −0.234998 + 0.723249i
\(250\) 3.70820 + 11.4127i 0.234527 + 0.721801i
\(251\) −3.23607 + 2.35114i −0.204259 + 0.148403i −0.685212 0.728343i \(-0.740291\pi\)
0.480953 + 0.876746i \(0.340291\pi\)
\(252\) −4.00000 −0.251976
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 3.23607 2.35114i 0.202650 0.147234i
\(256\) −5.25329 16.1680i −0.328331 1.01050i
\(257\) −4.32624 + 13.3148i −0.269863 + 0.830554i 0.720670 + 0.693279i \(0.243834\pi\)
−0.990533 + 0.137275i \(0.956166\pi\)
\(258\) 0 0
\(259\) −19.4164 14.1068i −1.20648 0.876557i
\(260\) −1.23607 + 3.80423i −0.0766577 + 0.235928i
\(261\) −1.85410 5.70634i −0.114766 0.353214i
\(262\) 9.70820 7.05342i 0.599775 0.435762i
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 1.85410 + 5.70634i 0.113469 + 0.349222i
\(268\) 1.23607 3.80423i 0.0755049 0.232380i
\(269\) 1.61803 + 1.17557i 0.0986533 + 0.0716758i 0.636018 0.771674i \(-0.280580\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(270\) −1.61803 1.17557i −0.0984704 0.0715429i
\(271\) 6.18034 19.0211i 0.375429 1.15545i −0.567760 0.823194i \(-0.692190\pi\)
0.943189 0.332257i \(-0.107810\pi\)
\(272\) 0.618034 + 1.90211i 0.0374738 + 0.115333i
\(273\) −6.47214 + 4.70228i −0.391711 + 0.284595i
\(274\) 2.00000 0.120824
\(275\) 0 0
\(276\) 8.00000 0.481543
\(277\) 21.0344 15.2824i 1.26384 0.918231i 0.264898 0.964277i \(-0.414662\pi\)
0.998939 + 0.0460451i \(0.0146618\pi\)
\(278\) −2.47214 7.60845i −0.148269 0.456325i
\(279\) −2.47214 + 7.60845i −0.148003 + 0.455506i
\(280\) −19.4164 14.1068i −1.16035 0.843045i
\(281\) 14.5623 + 10.5801i 0.868714 + 0.631158i 0.930242 0.366947i \(-0.119597\pi\)
−0.0615273 + 0.998105i \(0.519597\pi\)
\(282\) −2.47214 + 7.60845i −0.147214 + 0.453077i
\(283\) 4.94427 + 15.2169i 0.293906 + 0.904551i 0.983587 + 0.180437i \(0.0577512\pi\)
−0.689680 + 0.724114i \(0.742249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) −4.04508 + 2.93893i −0.238359 + 0.173178i
\(289\) −4.01722 12.3637i −0.236307 0.727279i
\(290\) 3.70820 11.4127i 0.217753 0.670176i
\(291\) 1.61803 + 1.17557i 0.0948508 + 0.0689132i
\(292\) −11.3262 8.22899i −0.662818 0.481565i
\(293\) −1.85410 + 5.70634i −0.108318 + 0.333368i −0.990495 0.137550i \(-0.956077\pi\)
0.882177 + 0.470918i \(0.156077\pi\)
\(294\) −2.78115 8.55951i −0.162200 0.499201i
\(295\) −6.47214 + 4.70228i −0.376822 + 0.273777i
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) −22.0000 −1.27443
\(299\) 12.9443 9.40456i 0.748587 0.543880i
\(300\) −0.309017 0.951057i −0.0178411 0.0549093i
\(301\) 0 0
\(302\) −16.1803 11.7557i −0.931074 0.676465i
\(303\) 1.61803 + 1.17557i 0.0929536 + 0.0675348i
\(304\) 0 0
\(305\) −3.70820 11.4127i −0.212331 0.653488i
\(306\) 1.61803 1.17557i 0.0924968 0.0672029i
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) −12.9443 + 9.40456i −0.735185 + 0.534143i
\(311\) −7.41641 22.8254i −0.420546 1.29431i −0.907195 0.420710i \(-0.861781\pi\)
0.486649 0.873597i \(-0.338219\pi\)
\(312\) −1.85410 + 5.70634i −0.104968 + 0.323058i
\(313\) 17.7984 + 12.9313i 1.00602 + 0.730919i 0.963371 0.268171i \(-0.0864192\pi\)
0.0426523 + 0.999090i \(0.486419\pi\)
\(314\) −11.3262 8.22899i −0.639177 0.464389i
\(315\) −2.47214 + 7.60845i −0.139289 + 0.428688i
\(316\) 1.23607 + 3.80423i 0.0695343 + 0.214004i
\(317\) −17.7984 + 12.9313i −0.999656 + 0.726293i −0.962014 0.272999i \(-0.911985\pi\)
−0.0376418 + 0.999291i \(0.511985\pi\)
\(318\) −6.00000 −0.336463
\(319\) 0 0
\(320\) −14.0000 −0.782624
\(321\) −9.70820 + 7.05342i −0.541859 + 0.393684i
\(322\) 9.88854 + 30.4338i 0.551067 + 1.69601i
\(323\) 0 0
\(324\) 0.809017 + 0.587785i 0.0449454 + 0.0326547i
\(325\) −1.61803 1.17557i −0.0897524 0.0652089i
\(326\) 1.23607 3.80423i 0.0684595 0.210697i
\(327\) 0.618034 + 1.90211i 0.0341774 + 0.105187i
\(328\) −4.85410 + 3.52671i −0.268023 + 0.194730i
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 9.70820 7.05342i 0.532807 0.387107i
\(333\) 1.85410 + 5.70634i 0.101604 + 0.312705i
\(334\) 0 0
\(335\) −6.47214 4.70228i −0.353611 0.256913i
\(336\) −3.23607 2.35114i −0.176542 0.128265i
\(337\) −6.79837 + 20.9232i −0.370331 + 1.13976i 0.576244 + 0.817278i \(0.304518\pi\)
−0.946575 + 0.322484i \(0.895482\pi\)
\(338\) −2.78115 8.55951i −0.151275 0.465576i
\(339\) −4.85410 + 3.52671i −0.263639 + 0.191545i
\(340\) −4.00000 −0.216930
\(341\) 0 0
\(342\) 0 0
\(343\) −6.47214 + 4.70228i −0.349462 + 0.253899i
\(344\) 0 0
\(345\) 4.94427 15.2169i 0.266191 0.819251i
\(346\) 4.85410 + 3.52671i 0.260958 + 0.189597i
\(347\) −3.23607 2.35114i −0.173721 0.126216i 0.497527 0.867448i \(-0.334242\pi\)
−0.671248 + 0.741233i \(0.734242\pi\)
\(348\) −1.85410 + 5.70634i −0.0993903 + 0.305892i
\(349\) 1.85410 + 5.70634i 0.0992478 + 0.305453i 0.988337 0.152280i \(-0.0486615\pi\)
−0.889090 + 0.457733i \(0.848662\pi\)
\(350\) 3.23607 2.35114i 0.172975 0.125674i
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) −3.23607 + 2.35114i −0.171995 + 0.124962i
\(355\) 0 0
\(356\) 1.85410 5.70634i 0.0982672 0.302435i
\(357\) −6.47214 4.70228i −0.342542 0.248871i
\(358\) −9.70820 7.05342i −0.513095 0.372785i
\(359\) −2.47214 + 7.60845i −0.130474 + 0.401559i −0.994859 0.101273i \(-0.967708\pi\)
0.864384 + 0.502832i \(0.167708\pi\)
\(360\) 1.85410 + 5.70634i 0.0977198 + 0.300750i
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) 8.00000 0.419314
\(365\) −22.6525 + 16.4580i −1.18568 + 0.861450i
\(366\) −1.85410 5.70634i −0.0969155 0.298275i
\(367\) −9.88854 + 30.4338i −0.516178 + 1.58863i 0.264951 + 0.964262i \(0.414644\pi\)
−0.781129 + 0.624370i \(0.785356\pi\)
\(368\) 6.47214 + 4.70228i 0.337383 + 0.245123i
\(369\) 1.61803 + 1.17557i 0.0842315 + 0.0611978i
\(370\) −3.70820 + 11.4127i −0.192780 + 0.593317i
\(371\) 7.41641 + 22.8254i 0.385041 + 1.18503i
\(372\) 6.47214 4.70228i 0.335565 0.243802i
\(373\) −2.00000 −0.103556 −0.0517780 0.998659i \(-0.516489\pi\)
−0.0517780 + 0.998659i \(0.516489\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 19.4164 14.1068i 1.00132 0.727505i
\(377\) 3.70820 + 11.4127i 0.190982 + 0.587783i
\(378\) −1.23607 + 3.80423i −0.0635765 + 0.195668i
\(379\) −22.6525 16.4580i −1.16358 0.845390i −0.173353 0.984860i \(-0.555460\pi\)
−0.990226 + 0.139470i \(0.955460\pi\)
\(380\) 0 0
\(381\) 1.23607 3.80423i 0.0633257 0.194896i
\(382\) 2.47214 + 7.60845i 0.126485 + 0.389282i
\(383\) 12.9443 9.40456i 0.661421 0.480551i −0.205721 0.978611i \(-0.565954\pi\)
0.867143 + 0.498060i \(0.165954\pi\)
\(384\) 3.00000 0.153093
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) −0.618034 1.90211i −0.0313759 0.0965652i
\(389\) −5.56231 + 17.1190i −0.282020 + 0.867969i 0.705256 + 0.708953i \(0.250832\pi\)
−0.987276 + 0.159016i \(0.949168\pi\)
\(390\) 3.23607 + 2.35114i 0.163865 + 0.119055i
\(391\) 12.9443 + 9.40456i 0.654620 + 0.475609i
\(392\) −8.34346 + 25.6785i −0.421408 + 1.29696i
\(393\) 3.70820 + 11.4127i 0.187054 + 0.575693i
\(394\) 11.3262 8.22899i 0.570608 0.414571i
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) −21.0344 15.2824i −1.05041 0.763167i −0.0781195 0.996944i \(-0.524892\pi\)
−0.972290 + 0.233777i \(0.924892\pi\)
\(402\) −3.23607 2.35114i −0.161400 0.117264i
\(403\) 4.94427 15.2169i 0.246292 0.758008i
\(404\) −0.618034 1.90211i −0.0307483 0.0946337i
\(405\) 1.61803 1.17557i 0.0804008 0.0584146i
\(406\) −24.0000 −1.19110
\(407\) 0 0
\(408\) −6.00000 −0.297044
\(409\) −14.5623 + 10.5801i −0.720060 + 0.523154i −0.886403 0.462914i \(-0.846804\pi\)
0.166344 + 0.986068i \(0.446804\pi\)
\(410\) 1.23607 + 3.80423i 0.0610450 + 0.187877i
\(411\) −0.618034 + 1.90211i −0.0304854 + 0.0938243i
\(412\) 6.47214 + 4.70228i 0.318859 + 0.231665i
\(413\) 12.9443 + 9.40456i 0.636946 + 0.462768i
\(414\) 2.47214 7.60845i 0.121499 0.373935i
\(415\) −7.41641 22.8254i −0.364057 1.12045i
\(416\) 8.09017 5.87785i 0.396653 0.288185i
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 6.47214 4.70228i 0.315808 0.229448i
\(421\) −8.03444 24.7275i −0.391575 1.20514i −0.931597 0.363492i \(-0.881584\pi\)
0.540022 0.841651i \(-0.318416\pi\)
\(422\) 0 0
\(423\) −6.47214 4.70228i −0.314686 0.228633i
\(424\) 14.5623 + 10.5801i 0.707208 + 0.513817i
\(425\) 0.618034 1.90211i 0.0299791 0.0922660i
\(426\) 0 0
\(427\) −19.4164 + 14.1068i −0.939626 + 0.682678i
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 19.4164 14.1068i 0.935255 0.679503i −0.0120185 0.999928i \(-0.503826\pi\)
0.947274 + 0.320425i \(0.103826\pi\)
\(432\) 0.309017 + 0.951057i 0.0148676 + 0.0457577i
\(433\) 10.5066 32.3359i 0.504914 1.55397i −0.296001 0.955188i \(-0.595653\pi\)
0.800915 0.598778i \(-0.204347\pi\)
\(434\) 25.8885 + 18.8091i 1.24269 + 0.902867i
\(435\) 9.70820 + 7.05342i 0.465473 + 0.338186i
\(436\) 0.618034 1.90211i 0.0295985 0.0910947i
\(437\) 0 0
\(438\) −11.3262 + 8.22899i −0.541189 + 0.393197i
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) −3.23607 + 2.35114i −0.153924 + 0.111832i
\(443\) 8.65248 + 26.6296i 0.411092 + 1.26521i 0.915700 + 0.401862i \(0.131637\pi\)
−0.504609 + 0.863348i \(0.668363\pi\)
\(444\) 1.85410 5.70634i 0.0879918 0.270811i
\(445\) −9.70820 7.05342i −0.460213 0.334364i
\(446\) −12.9443 9.40456i −0.612929 0.445319i
\(447\) 6.79837 20.9232i 0.321552 0.989635i
\(448\) 8.65248 + 26.6296i 0.408791 + 1.25813i
\(449\) −1.61803 + 1.17557i −0.0763597 + 0.0554786i −0.625310 0.780376i \(-0.715028\pi\)
0.548950 + 0.835855i \(0.315028\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) 6.00000 0.282216
\(453\) 16.1803 11.7557i 0.760219 0.552331i
\(454\) 3.70820 + 11.4127i 0.174035 + 0.535624i
\(455\) 4.94427 15.2169i 0.231791 0.713379i
\(456\) 0 0
\(457\) −14.5623 10.5801i −0.681196 0.494918i 0.192558 0.981286i \(-0.438322\pi\)
−0.873754 + 0.486368i \(0.838322\pi\)
\(458\) 1.85410 5.70634i 0.0866365 0.266640i
\(459\) 0.618034 + 1.90211i 0.0288474 + 0.0887830i
\(460\) −12.9443 + 9.40456i −0.603530 + 0.438490i
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) −4.85410 + 3.52671i −0.225346 + 0.163723i
\(465\) −4.94427 15.2169i −0.229285 0.705667i
\(466\) 9.27051 28.5317i 0.429448 1.32171i
\(467\) 9.70820 + 7.05342i 0.449242 + 0.326393i 0.789296 0.614012i \(-0.210445\pi\)
−0.340054 + 0.940406i \(0.610445\pi\)
\(468\) −1.61803 1.17557i −0.0747936 0.0543408i
\(469\) −4.94427 + 15.2169i −0.228305 + 0.702651i
\(470\) −4.94427 15.2169i −0.228062 0.701903i
\(471\) 11.3262 8.22899i 0.521885 0.379172i
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 4.00000 0.183726
\(475\) 0 0
\(476\) 2.47214 + 7.60845i 0.113310 + 0.348733i
\(477\) 1.85410 5.70634i 0.0848935 0.261275i
\(478\) −19.4164 14.1068i −0.888086 0.645232i
\(479\) −6.47214 4.70228i −0.295719 0.214853i 0.430025 0.902817i \(-0.358505\pi\)
−0.725745 + 0.687964i \(0.758505\pi\)
\(480\) 3.09017 9.51057i 0.141046 0.434096i
\(481\) −3.70820 11.4127i −0.169080 0.520373i
\(482\) −8.09017 + 5.87785i −0.368497 + 0.267729i
\(483\) −32.0000 −1.45605
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0.809017 0.587785i 0.0366978 0.0266625i
\(487\) −4.94427 15.2169i −0.224046 0.689544i −0.998387 0.0567748i \(-0.981918\pi\)
0.774341 0.632769i \(-0.218082\pi\)
\(488\) −5.56231 + 17.1190i −0.251794 + 0.774942i
\(489\) 3.23607 + 2.35114i 0.146340 + 0.106322i
\(490\) 14.5623 + 10.5801i 0.657858 + 0.477962i
\(491\) 1.23607 3.80423i 0.0557830 0.171682i −0.919283 0.393597i \(-0.871231\pi\)
0.975066 + 0.221915i \(0.0712306\pi\)
\(492\) −0.618034 1.90211i −0.0278631 0.0857539i
\(493\) −9.70820 + 7.05342i −0.437236 + 0.317670i
\(494\) 0 0
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) −3.70820 11.4127i −0.166169 0.511414i
\(499\) −1.23607 + 3.80423i −0.0553340 + 0.170301i −0.974904 0.222626i \(-0.928537\pi\)
0.919570 + 0.392926i \(0.128537\pi\)
\(500\) 9.70820 + 7.05342i 0.434164 + 0.315439i
\(501\) 0 0
\(502\) 1.23607 3.80423i 0.0551684 0.169791i
\(503\) −9.88854 30.4338i −0.440908 1.35698i −0.886909 0.461944i \(-0.847152\pi\)
0.446001 0.895033i \(-0.352848\pi\)
\(504\) 9.70820 7.05342i 0.432438 0.314184i
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) −3.23607 + 2.35114i −0.143577 + 0.104315i
\(509\) 9.27051 + 28.5317i 0.410908 + 1.26465i 0.915860 + 0.401498i \(0.131510\pi\)
−0.504952 + 0.863147i \(0.668490\pi\)
\(510\) −1.23607 + 3.80423i −0.0547340 + 0.168454i
\(511\) 45.3050 + 32.9160i 2.00417 + 1.45612i
\(512\) 8.89919 + 6.46564i 0.393292 + 0.285744i
\(513\) 0 0
\(514\) −4.32624 13.3148i −0.190822 0.587290i
\(515\) 12.9443 9.40456i 0.570393 0.414415i
\(516\) 0 0
\(517\) 0 0
\(518\) 24.0000 1.05450
\(519\) −4.85410 + 3.52671i −0.213071 + 0.154805i
\(520\) −3.70820 11.4127i −0.162615 0.500479i
\(521\) −9.27051 + 28.5317i −0.406148 + 1.25000i 0.513784 + 0.857920i \(0.328243\pi\)
−0.919933 + 0.392077i \(0.871757\pi\)
\(522\) 4.85410 + 3.52671i 0.212458 + 0.154360i
\(523\) 12.9443 + 9.40456i 0.566013 + 0.411233i 0.833655 0.552286i \(-0.186244\pi\)
−0.267641 + 0.963519i \(0.586244\pi\)
\(524\) 3.70820 11.4127i 0.161994 0.498565i
\(525\) 1.23607 + 3.80423i 0.0539464 + 0.166030i
\(526\) 12.9443 9.40456i 0.564397 0.410058i
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 9.70820 7.05342i 0.421697 0.306381i
\(531\) −1.23607 3.80423i −0.0536408 0.165089i
\(532\) 0 0
\(533\) −3.23607 2.35114i −0.140170 0.101839i
\(534\) −4.85410 3.52671i −0.210058 0.152616i
\(535\) 7.41641 22.8254i 0.320639 0.986826i
\(536\) 3.70820 + 11.4127i 0.160170 + 0.492953i
\(537\) 9.70820 7.05342i 0.418940 0.304378i
\(538\) −2.00000 −0.0862261
\(539\) 0 0
\(540\) −2.00000 −0.0860663
\(541\) −37.2148 + 27.0381i −1.59999 + 1.16246i −0.712453 + 0.701719i \(0.752416\pi\)
−0.887535 + 0.460740i \(0.847584\pi\)
\(542\) 6.18034 + 19.0211i 0.265468 + 0.817028i
\(543\) −6.79837 + 20.9232i −0.291746 + 0.897902i
\(544\) 8.09017 + 5.87785i 0.346863 + 0.252011i
\(545\) −3.23607 2.35114i −0.138618 0.100712i
\(546\) 2.47214 7.60845i 0.105798 0.325612i
\(547\) 2.47214 + 7.60845i 0.105701 + 0.325314i 0.989894 0.141807i \(-0.0452913\pi\)
−0.884193 + 0.467121i \(0.845291\pi\)
\(548\) 1.61803 1.17557i 0.0691190 0.0502179i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) −19.4164 + 14.1068i −0.826417 + 0.600427i
\(553\) −4.94427 15.2169i −0.210252 0.647089i
\(554\) −8.03444 + 24.7275i −0.341351 + 1.05057i
\(555\) −9.70820 7.05342i −0.412090 0.299401i
\(556\) −6.47214 4.70228i −0.274480 0.199421i
\(557\) −4.32624 + 13.3148i −0.183309 + 0.564166i −0.999915 0.0130289i \(-0.995853\pi\)
0.816607 + 0.577195i \(0.195853\pi\)
\(558\) −2.47214 7.60845i −0.104654 0.322091i
\(559\) 0 0
\(560\) 8.00000 0.338062
\(561\) 0 0
\(562\) −18.0000 −0.759284
\(563\) 35.5967 25.8626i 1.50022 1.08998i 0.529932 0.848040i \(-0.322217\pi\)
0.970292 0.241936i \(-0.0777825\pi\)
\(564\) 2.47214 + 7.60845i 0.104096 + 0.320374i
\(565\) 3.70820 11.4127i 0.156005 0.480135i
\(566\) −12.9443 9.40456i −0.544088 0.395303i
\(567\) −3.23607 2.35114i −0.135902 0.0987386i
\(568\) 0 0
\(569\) −12.9787 39.9444i −0.544096 1.67456i −0.723130 0.690712i \(-0.757297\pi\)
0.179034 0.983843i \(-0.442703\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) 6.47214 4.70228i 0.270142 0.196269i
\(575\) −2.47214 7.60845i −0.103095 0.317294i
\(576\) 2.16312 6.65740i 0.0901300 0.277391i
\(577\) 24.2705 + 17.6336i 1.01039 + 0.734095i 0.964292 0.264842i \(-0.0853198\pi\)
0.0461028 + 0.998937i \(0.485320\pi\)
\(578\) 10.5172 + 7.64121i 0.437459 + 0.317832i
\(579\) 4.32624 13.3148i 0.179792 0.553344i
\(580\) −3.70820 11.4127i −0.153975 0.473886i
\(581\) −38.8328 + 28.2137i −1.61106 + 1.17050i
\(582\) −2.00000 −0.0829027
\(583\) 0 0
\(584\) 42.0000 1.73797
\(585\) −3.23607 + 2.35114i −0.133795 + 0.0972077i
\(586\) −1.85410 5.70634i −0.0765922 0.235727i
\(587\) 8.65248 26.6296i 0.357126 1.09912i −0.597641 0.801764i \(-0.703895\pi\)
0.954767 0.297356i \(-0.0961050\pi\)
\(588\) −7.28115 5.29007i −0.300270 0.218159i
\(589\) 0 0
\(590\) 2.47214 7.60845i 0.101776 0.313235i
\(591\) 4.32624 + 13.3148i 0.177958 + 0.547697i
\(592\) 4.85410 3.52671i 0.199502 0.144947i
\(593\) 38.0000 1.56047 0.780236 0.625485i \(-0.215099\pi\)
0.780236 + 0.625485i \(0.215099\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) −17.7984 + 12.9313i −0.729050 + 0.529686i
\(597\) 0 0
\(598\) −4.94427 + 15.2169i −0.202186 + 0.622265i
\(599\) 6.47214 + 4.70228i 0.264444 + 0.192130i 0.712104 0.702074i \(-0.247742\pi\)
−0.447660 + 0.894204i \(0.647742\pi\)
\(600\) 2.42705 + 1.76336i 0.0990839 + 0.0719887i
\(601\) 8.03444 24.7275i 0.327732 1.00865i −0.642461 0.766319i \(-0.722086\pi\)
0.970192 0.242336i \(-0.0779136\pi\)
\(602\) 0 0
\(603\) 3.23607 2.35114i 0.131783 0.0957459i
\(604\) −20.0000 −0.813788
\(605\) 0 0
\(606\) −2.00000 −0.0812444
\(607\) 3.23607 2.35114i 0.131348 0.0954299i −0.520171 0.854062i \(-0.674132\pi\)
0.651519 + 0.758632i \(0.274132\pi\)
\(608\) 0 0
\(609\) 7.41641 22.8254i 0.300528 0.924930i
\(610\) 9.70820 + 7.05342i 0.393074 + 0.285585i
\(611\) 12.9443 + 9.40456i 0.523669 + 0.380468i
\(612\) 0.618034 1.90211i 0.0249825 0.0768884i
\(613\) 4.32624 + 13.3148i 0.174735 + 0.537779i 0.999621 0.0275195i \(-0.00876084\pi\)
−0.824886 + 0.565299i \(0.808761\pi\)
\(614\) −25.8885 + 18.8091i −1.04478 + 0.759075i
\(615\) −4.00000 −0.161296
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 6.47214 4.70228i 0.260347 0.189154i
\(619\) 13.5967 + 41.8465i 0.546499 + 1.68195i 0.717398 + 0.696664i \(0.245333\pi\)
−0.170898 + 0.985289i \(0.554667\pi\)
\(620\) −4.94427 + 15.2169i −0.198567 + 0.611126i
\(621\) 6.47214 + 4.70228i 0.259718 + 0.188696i
\(622\) 19.4164 + 14.1068i 0.778527 + 0.565633i
\(623\) −7.41641 + 22.8254i −0.297132 + 0.914479i
\(624\) −0.618034 1.90211i −0.0247412 0.0761455i
\(625\) 15.3713 11.1679i 0.614853 0.446717i
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 9.70820 7.05342i 0.387091 0.281238i
\(630\) −2.47214 7.60845i −0.0984923 0.303128i
\(631\) 4.94427 15.2169i 0.196828 0.605775i −0.803122 0.595815i \(-0.796829\pi\)
0.999950 0.00996082i \(-0.00317068\pi\)
\(632\) −9.70820 7.05342i −0.386172 0.280570i
\(633\) 0 0
\(634\) 6.79837 20.9232i 0.269998 0.830968i
\(635\) 2.47214 + 7.60845i 0.0981037 + 0.301932i
\(636\) −4.85410 + 3.52671i −0.192478 + 0.139843i
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) −4.85410 + 3.52671i −0.191875 + 0.139406i
\(641\) 5.56231 + 17.1190i 0.219698 + 0.676161i 0.998787 + 0.0492469i \(0.0156821\pi\)
−0.779089 + 0.626914i \(0.784318\pi\)
\(642\) 3.70820 11.4127i 0.146351 0.450422i
\(643\) −16.1803 11.7557i −0.638090 0.463600i 0.221103 0.975250i \(-0.429034\pi\)
−0.859194 + 0.511651i \(0.829034\pi\)
\(644\) 25.8885 + 18.8091i 1.02015 + 0.741183i
\(645\) 0 0
\(646\) 0 0
\(647\) −6.47214 + 4.70228i −0.254446 + 0.184866i −0.707695 0.706518i \(-0.750265\pi\)
0.453249 + 0.891384i \(0.350265\pi\)
\(648\) −3.00000 −0.117851
\(649\) 0 0
\(650\) 2.00000 0.0784465
\(651\) −25.8885 + 18.8091i −1.01465 + 0.737188i
\(652\) −1.23607 3.80423i −0.0484082 0.148985i
\(653\) −0.618034 + 1.90211i −0.0241855 + 0.0744354i −0.962421 0.271563i \(-0.912460\pi\)
0.938235 + 0.345998i \(0.112460\pi\)
\(654\) −1.61803 1.17557i −0.0632701 0.0459684i
\(655\) −19.4164 14.1068i −0.758662 0.551200i
\(656\) 0.618034 1.90211i 0.0241302 0.0742650i
\(657\) −4.32624 13.3148i −0.168783 0.519459i
\(658\) −25.8885 + 18.8091i −1.00924 + 0.733256i
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) −26.0000 −1.01128 −0.505641 0.862744i \(-0.668744\pi\)
−0.505641 + 0.862744i \(0.668744\pi\)
\(662\) 16.1803 11.7557i 0.628867 0.456898i
\(663\) −1.23607 3.80423i −0.0480049 0.147744i
\(664\) −11.1246 + 34.2380i −0.431719 + 1.32869i
\(665\) 0 0
\(666\) −4.85410 3.52671i −0.188093 0.136657i
\(667\) −14.8328 + 45.6507i −0.574329 + 1.76760i
\(668\) 0 0
\(669\) 12.9443 9.40456i 0.500454 0.363601i
\(670\) 8.00000 0.309067
\(671\) 0 0
\(672\) −20.0000 −0.771517
\(673\) 37.2148 27.0381i 1.43452 1.04224i 0.445373 0.895345i \(-0.353071\pi\)
0.989152 0.146898i \(-0.0469288\pi\)
\(674\) −6.79837 20.9232i −0.261864 0.805933i
\(675\) 0.309017 0.951057i 0.0118941 0.0366062i
\(676\) −7.28115 5.29007i −0.280044 0.203464i
\(677\) −14.5623 10.5801i −0.559675 0.406628i 0.271665 0.962392i \(-0.412426\pi\)
−0.831340 + 0.555764i \(0.812426\pi\)
\(678\) 1.85410 5.70634i 0.0712064 0.219151i
\(679\) 2.47214 + 7.60845i 0.0948719 + 0.291986i
\(680\) 9.70820 7.05342i 0.372293 0.270486i
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 20.0000 0.765279 0.382639 0.923898i \(-0.375015\pi\)
0.382639 + 0.923898i \(0.375015\pi\)
\(684\) 0 0
\(685\) −1.23607 3.80423i −0.0472277 0.145352i
\(686\) 2.47214 7.60845i 0.0943866 0.290492i
\(687\) 4.85410 + 3.52671i 0.185196 + 0.134552i
\(688\) 0 0
\(689\) −3.70820 + 11.4127i −0.141271 + 0.434788i
\(690\) 4.94427 + 15.2169i 0.188225 + 0.579298i
\(691\) 22.6525 16.4580i 0.861741 0.626091i −0.0666172 0.997779i \(-0.521221\pi\)
0.928358 + 0.371687i \(0.121221\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −12.9443 + 9.40456i −0.491004 + 0.356735i
\(696\) −5.56231 17.1190i −0.210839 0.648895i
\(697\) 1.23607 3.80423i 0.0468194 0.144095i
\(698\) −4.85410 3.52671i −0.183730 0.133488i
\(699\) 24.2705 + 17.6336i 0.917995 + 0.666962i
\(700\) 1.23607 3.80423i 0.0467190 0.143786i
\(701\) 15.4508 + 47.5528i 0.583571 + 1.79605i 0.604936 + 0.796274i \(0.293198\pi\)
−0.0213660 + 0.999772i \(0.506802\pi\)
\(702\) −1.61803 + 1.17557i −0.0610688 + 0.0443690i
\(703\) 0 0
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) −14.5623 + 10.5801i −0.548060 + 0.398189i
\(707\) 2.47214 + 7.60845i 0.0929742 + 0.286145i
\(708\) −1.23607 + 3.80423i −0.0464543 + 0.142972i
\(709\) −30.7426 22.3358i −1.15456 0.838840i −0.165483 0.986213i \(-0.552918\pi\)
−0.989081 + 0.147373i \(0.952918\pi\)
\(710\) 0 0
\(711\) −1.23607 + 3.80423i −0.0463562 + 0.142670i
\(712\) 5.56231 + 17.1190i 0.208456 + 0.641562i
\(713\) 51.7771 37.6183i 1.93907 1.40881i
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 19.4164 14.1068i 0.725119 0.526830i
\(718\) −2.47214 7.60845i −0.0922593 0.283945i
\(719\) 7.41641 22.8254i 0.276585 0.851242i −0.712210 0.701966i \(-0.752306\pi\)
0.988796 0.149276i \(-0.0476943\pi\)
\(720\) −1.61803 1.17557i −0.0603006 0.0438109i
\(721\) −25.8885 18.8091i −0.964140 0.700489i
\(722\) −5.87132 + 18.0701i −0.218508 + 0.672499i
\(723\) −3.09017 9.51057i −0.114925 0.353702i
\(724\) 17.7984 12.9313i 0.661471 0.480587i
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −19.4164 + 14.1068i −0.719620 + 0.522834i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 8.65248 26.6296i 0.320242 0.985605i
\(731\) 0 0
\(732\) −4.85410 3.52671i −0.179413 0.130351i
\(733\) 9.27051 28.5317i 0.342414 1.05384i −0.620540 0.784175i \(-0.713086\pi\)
0.962954 0.269667i \(-0.0869136\pi\)
\(734\) −9.88854 30.4338i −0.364993 1.12333i
\(735\) −14.5623 + 10.5801i −0.537139 + 0.390254i
\(736\) 40.0000 1.47442
\(737\) 0 0
\(738\) −2.00000 −0.0736210
\(739\) −6.47214 + 4.70228i −0.238081 + 0.172976i −0.700428 0.713723i \(-0.747008\pi\)
0.462347 + 0.886699i \(0.347008\pi\)
\(740\) 3.70820 + 11.4127i 0.136316 + 0.419538i
\(741\) 0 0
\(742\) −19.4164 14.1068i −0.712799 0.517879i
\(743\) −32.3607 23.5114i −1.18720 0.862550i −0.194233 0.980955i \(-0.562222\pi\)
−0.992965 + 0.118405i \(0.962222\pi\)
\(744\) −7.41641 + 22.8254i −0.271899 + 0.836818i
\(745\) 13.5967 + 41.8465i 0.498146 + 1.53314i
\(746\) 1.61803 1.17557i 0.0592404 0.0430407i
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) −48.0000 −1.75388
\(750\) 9.70820 7.05342i 0.354493 0.257555i
\(751\) −2.47214 7.60845i −0.0902095 0.277636i 0.895766 0.444526i \(-0.146628\pi\)
−0.985976 + 0.166889i \(0.946628\pi\)
\(752\) −2.47214 + 7.60845i −0.0901495 + 0.277452i
\(753\) 3.23607 + 2.35114i 0.117929 + 0.0856803i
\(754\) −9.70820 7.05342i −0.353552 0.256871i
\(755\) −12.3607 + 38.0423i −0.449851 + 1.38450i
\(756\) 1.23607 + 3.80423i 0.0449554 + 0.138358i
\(757\) 8.09017 5.87785i 0.294042 0.213634i −0.430977 0.902363i \(-0.641831\pi\)
0.725019 + 0.688729i \(0.241831\pi\)
\(758\) 28.0000 1.01701
\(759\) 0 0
\(760\) 0 0
\(761\) −4.85410 + 3.52671i −0.175961 + 0.127843i −0.672280 0.740297i \(-0.734685\pi\)
0.496319 + 0.868140i \(0.334685\pi\)
\(762\) 1.23607 + 3.80423i 0.0447780 + 0.137813i
\(763\) −2.47214 + 7.60845i −0.0894973 + 0.275444i
\(764\) 6.47214 + 4.70228i 0.234154 + 0.170123i
\(765\) −3.23607 2.35114i −0.117000 0.0850057i
\(766\) −4.94427 + 15.2169i −0.178644 + 0.549809i
\(767\) 2.47214 + 7.60845i 0.0892637 + 0.274725i
\(768\) −13.7533 + 9.99235i −0.496279 + 0.360568i
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) −11.3262 + 8.22899i −0.407640 + 0.296168i
\(773\) 1.85410 + 5.70634i 0.0666874 + 0.205243i 0.978847 0.204591i \(-0.0655866\pi\)
−0.912160 + 0.409834i \(0.865587\pi\)
\(774\) 0 0