Properties

Label 363.2.e.b.202.1
Level $363$
Weight $2$
Character 363.202
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 202.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.202
Dual form 363.2.e.b.124.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.11803 - 1.53884i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(1.50000 + 4.61653i) q^{4} +(0.500000 - 0.363271i) q^{5} +(2.11803 - 1.53884i) q^{6} +(0.309017 + 0.951057i) q^{7} +(2.30902 - 7.10642i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(-2.11803 - 1.53884i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(1.50000 + 4.61653i) q^{4} +(0.500000 - 0.363271i) q^{5} +(2.11803 - 1.53884i) q^{6} +(0.309017 + 0.951057i) q^{7} +(2.30902 - 7.10642i) q^{8} +(-0.809017 - 0.587785i) q^{9} -1.61803 q^{10} -4.85410 q^{12} +(0.190983 + 0.138757i) q^{13} +(0.809017 - 2.48990i) q^{14} +(0.190983 + 0.587785i) q^{15} +(-7.97214 + 5.79210i) q^{16} +(-0.927051 + 0.673542i) q^{17} +(0.809017 + 2.48990i) q^{18} +(-1.80902 + 5.56758i) q^{19} +(2.42705 + 1.76336i) q^{20} -1.00000 q^{21} +0.236068 q^{23} +(6.04508 + 4.39201i) q^{24} +(-1.42705 + 4.39201i) q^{25} +(-0.190983 - 0.587785i) q^{26} +(0.809017 - 0.587785i) q^{27} +(-3.92705 + 2.85317i) q^{28} +(1.85410 + 5.70634i) q^{29} +(0.500000 - 1.53884i) q^{30} +(4.92705 + 3.57971i) q^{31} +10.8541 q^{32} +3.00000 q^{34} +(0.500000 + 0.363271i) q^{35} +(1.50000 - 4.61653i) q^{36} +(-1.92705 - 5.93085i) q^{37} +(12.3992 - 9.00854i) q^{38} +(-0.190983 + 0.138757i) q^{39} +(-1.42705 - 4.39201i) q^{40} +(-0.0729490 + 0.224514i) q^{41} +(2.11803 + 1.53884i) q^{42} +6.70820 q^{43} -0.618034 q^{45} +(-0.500000 - 0.363271i) q^{46} +(-3.11803 + 9.59632i) q^{47} +(-3.04508 - 9.37181i) q^{48} +(4.85410 - 3.52671i) q^{49} +(9.78115 - 7.10642i) q^{50} +(-0.354102 - 1.08981i) q^{51} +(-0.354102 + 1.08981i) q^{52} +(0.309017 + 0.224514i) q^{53} -2.61803 q^{54} +7.47214 q^{56} +(-4.73607 - 3.44095i) q^{57} +(4.85410 - 14.9394i) q^{58} +(2.28115 + 7.02067i) q^{59} +(-2.42705 + 1.76336i) q^{60} +(-9.35410 + 6.79615i) q^{61} +(-4.92705 - 15.1639i) q^{62} +(0.309017 - 0.951057i) q^{63} +(-7.04508 - 5.11855i) q^{64} +0.145898 q^{65} +1.85410 q^{67} +(-4.50000 - 3.26944i) q^{68} +(-0.0729490 + 0.224514i) q^{69} +(-0.500000 - 1.53884i) q^{70} +(-8.35410 + 6.06961i) q^{71} +(-6.04508 + 4.39201i) q^{72} +(1.76393 + 5.42882i) q^{73} +(-5.04508 + 15.5272i) q^{74} +(-3.73607 - 2.71441i) q^{75} -28.4164 q^{76} +0.618034 q^{78} +(8.89919 + 6.46564i) q^{79} +(-1.88197 + 5.79210i) q^{80} +(0.309017 + 0.951057i) q^{81} +(0.500000 - 0.363271i) q^{82} +(1.19098 - 0.865300i) q^{83} +(-1.50000 - 4.61653i) q^{84} +(-0.218847 + 0.673542i) q^{85} +(-14.2082 - 10.3229i) q^{86} -6.00000 q^{87} -8.23607 q^{89} +(1.30902 + 0.951057i) q^{90} +(-0.0729490 + 0.224514i) q^{91} +(0.354102 + 1.08981i) q^{92} +(-4.92705 + 3.57971i) q^{93} +(21.3713 - 15.5272i) q^{94} +(1.11803 + 3.44095i) q^{95} +(-3.35410 + 10.3229i) q^{96} +(-6.35410 - 4.61653i) q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{6} - q^{7} + 7 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{6} - q^{7} + 7 q^{8} - q^{9} - 2 q^{10} - 6 q^{12} + 3 q^{13} + q^{14} + 3 q^{15} - 14 q^{16} + 3 q^{17} + q^{18} - 5 q^{19} + 3 q^{20} - 4 q^{21} - 8 q^{23} + 13 q^{24} + q^{25} - 3 q^{26} + q^{27} - 9 q^{28} - 6 q^{29} + 2 q^{30} + 13 q^{31} + 30 q^{32} + 12 q^{34} + 2 q^{35} + 6 q^{36} - q^{37} + 25 q^{38} - 3 q^{39} + q^{40} - 7 q^{41} + 4 q^{42} + 2 q^{45} - 2 q^{46} - 8 q^{47} - q^{48} + 6 q^{49} + 19 q^{50} + 12 q^{51} + 12 q^{52} - q^{53} - 6 q^{54} + 12 q^{56} - 10 q^{57} + 6 q^{58} - 11 q^{59} - 3 q^{60} - 24 q^{61} - 13 q^{62} - q^{63} - 17 q^{64} + 14 q^{65} - 6 q^{67} - 18 q^{68} - 7 q^{69} - 2 q^{70} - 20 q^{71} - 13 q^{72} + 16 q^{73} - 9 q^{74} - 6 q^{75} - 60 q^{76} - 2 q^{78} + 11 q^{79} - 12 q^{80} - q^{81} + 2 q^{82} + 7 q^{83} - 6 q^{84} - 21 q^{85} - 30 q^{86} - 24 q^{87} - 24 q^{89} + 3 q^{90} - 7 q^{91} - 12 q^{92} - 13 q^{93} + 43 q^{94} - 12 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.11803 1.53884i −1.49768 1.08813i −0.971295 0.237877i \(-0.923549\pi\)
−0.526381 0.850249i \(-0.676451\pi\)
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 1.50000 + 4.61653i 0.750000 + 2.30826i
\(5\) 0.500000 0.363271i 0.223607 0.162460i −0.470342 0.882484i \(-0.655869\pi\)
0.693949 + 0.720024i \(0.255869\pi\)
\(6\) 2.11803 1.53884i 0.864684 0.628230i
\(7\) 0.309017 + 0.951057i 0.116797 + 0.359466i 0.992318 0.123716i \(-0.0394811\pi\)
−0.875520 + 0.483181i \(0.839481\pi\)
\(8\) 2.30902 7.10642i 0.816361 2.51250i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) −1.61803 −0.511667
\(11\) 0 0
\(12\) −4.85410 −1.40126
\(13\) 0.190983 + 0.138757i 0.0529692 + 0.0384843i 0.613955 0.789341i \(-0.289578\pi\)
−0.560986 + 0.827826i \(0.689578\pi\)
\(14\) 0.809017 2.48990i 0.216219 0.665453i
\(15\) 0.190983 + 0.587785i 0.0493116 + 0.151765i
\(16\) −7.97214 + 5.79210i −1.99303 + 1.44802i
\(17\) −0.927051 + 0.673542i −0.224843 + 0.163358i −0.694504 0.719489i \(-0.744376\pi\)
0.469661 + 0.882847i \(0.344376\pi\)
\(18\) 0.809017 + 2.48990i 0.190687 + 0.586875i
\(19\) −1.80902 + 5.56758i −0.415017 + 1.27729i 0.497219 + 0.867625i \(0.334355\pi\)
−0.912236 + 0.409666i \(0.865645\pi\)
\(20\) 2.42705 + 1.76336i 0.542705 + 0.394298i
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) 6.04508 + 4.39201i 1.23395 + 0.896516i
\(25\) −1.42705 + 4.39201i −0.285410 + 0.878402i
\(26\) −0.190983 0.587785i −0.0374548 0.115274i
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) −3.92705 + 2.85317i −0.742143 + 0.539198i
\(29\) 1.85410 + 5.70634i 0.344298 + 1.05964i 0.961958 + 0.273196i \(0.0880806\pi\)
−0.617660 + 0.786445i \(0.711919\pi\)
\(30\) 0.500000 1.53884i 0.0912871 0.280953i
\(31\) 4.92705 + 3.57971i 0.884924 + 0.642935i 0.934550 0.355833i \(-0.115803\pi\)
−0.0496252 + 0.998768i \(0.515803\pi\)
\(32\) 10.8541 1.91875
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0.500000 + 0.363271i 0.0845154 + 0.0614041i
\(36\) 1.50000 4.61653i 0.250000 0.769421i
\(37\) −1.92705 5.93085i −0.316805 0.975026i −0.975005 0.222183i \(-0.928682\pi\)
0.658200 0.752843i \(-0.271318\pi\)
\(38\) 12.3992 9.00854i 2.01141 1.46138i
\(39\) −0.190983 + 0.138757i −0.0305818 + 0.0222189i
\(40\) −1.42705 4.39201i −0.225637 0.694438i
\(41\) −0.0729490 + 0.224514i −0.0113927 + 0.0350632i −0.956591 0.291433i \(-0.905868\pi\)
0.945199 + 0.326496i \(0.105868\pi\)
\(42\) 2.11803 + 1.53884i 0.326820 + 0.237448i
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) −0.618034 −0.0921311
\(46\) −0.500000 0.363271i −0.0737210 0.0535614i
\(47\) −3.11803 + 9.59632i −0.454812 + 1.39977i 0.416544 + 0.909116i \(0.363241\pi\)
−0.871356 + 0.490652i \(0.836759\pi\)
\(48\) −3.04508 9.37181i −0.439520 1.35270i
\(49\) 4.85410 3.52671i 0.693443 0.503816i
\(50\) 9.78115 7.10642i 1.38326 1.00500i
\(51\) −0.354102 1.08981i −0.0495842 0.152604i
\(52\) −0.354102 + 1.08981i −0.0491051 + 0.151130i
\(53\) 0.309017 + 0.224514i 0.0424467 + 0.0308394i 0.608806 0.793319i \(-0.291649\pi\)
−0.566360 + 0.824158i \(0.691649\pi\)
\(54\) −2.61803 −0.356269
\(55\) 0 0
\(56\) 7.47214 0.998506
\(57\) −4.73607 3.44095i −0.627308 0.455766i
\(58\) 4.85410 14.9394i 0.637375 1.96164i
\(59\) 2.28115 + 7.02067i 0.296981 + 0.914013i 0.982549 + 0.186004i \(0.0595539\pi\)
−0.685568 + 0.728009i \(0.740446\pi\)
\(60\) −2.42705 + 1.76336i −0.313331 + 0.227648i
\(61\) −9.35410 + 6.79615i −1.19767 + 0.870158i −0.994054 0.108893i \(-0.965270\pi\)
−0.203617 + 0.979051i \(0.565270\pi\)
\(62\) −4.92705 15.1639i −0.625736 1.92582i
\(63\) 0.309017 0.951057i 0.0389325 0.119822i
\(64\) −7.04508 5.11855i −0.880636 0.639819i
\(65\) 0.145898 0.0180964
\(66\) 0 0
\(67\) 1.85410 0.226515 0.113257 0.993566i \(-0.463872\pi\)
0.113257 + 0.993566i \(0.463872\pi\)
\(68\) −4.50000 3.26944i −0.545705 0.396478i
\(69\) −0.0729490 + 0.224514i −0.00878203 + 0.0270283i
\(70\) −0.500000 1.53884i −0.0597614 0.183927i
\(71\) −8.35410 + 6.06961i −0.991449 + 0.720330i −0.960238 0.279183i \(-0.909937\pi\)
−0.0312115 + 0.999513i \(0.509937\pi\)
\(72\) −6.04508 + 4.39201i −0.712420 + 0.517603i
\(73\) 1.76393 + 5.42882i 0.206453 + 0.635396i 0.999651 + 0.0264320i \(0.00841455\pi\)
−0.793198 + 0.608964i \(0.791585\pi\)
\(74\) −5.04508 + 15.5272i −0.586479 + 1.80500i
\(75\) −3.73607 2.71441i −0.431404 0.313433i
\(76\) −28.4164 −3.25959
\(77\) 0 0
\(78\) 0.618034 0.0699786
\(79\) 8.89919 + 6.46564i 1.00124 + 0.727441i 0.962353 0.271803i \(-0.0876198\pi\)
0.0388837 + 0.999244i \(0.487620\pi\)
\(80\) −1.88197 + 5.79210i −0.210410 + 0.647576i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0.500000 0.363271i 0.0552158 0.0401166i
\(83\) 1.19098 0.865300i 0.130727 0.0949790i −0.520500 0.853862i \(-0.674254\pi\)
0.651227 + 0.758883i \(0.274254\pi\)
\(84\) −1.50000 4.61653i −0.163663 0.503704i
\(85\) −0.218847 + 0.673542i −0.0237373 + 0.0730559i
\(86\) −14.2082 10.3229i −1.53211 1.11314i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) 1.30902 + 0.951057i 0.137983 + 0.100250i
\(91\) −0.0729490 + 0.224514i −0.00764713 + 0.0235355i
\(92\) 0.354102 + 1.08981i 0.0369177 + 0.113621i
\(93\) −4.92705 + 3.57971i −0.510911 + 0.371199i
\(94\) 21.3713 15.5272i 2.20428 1.60151i
\(95\) 1.11803 + 3.44095i 0.114708 + 0.353035i
\(96\) −3.35410 + 10.3229i −0.342327 + 1.05357i
\(97\) −6.35410 4.61653i −0.645161 0.468737i 0.216458 0.976292i \(-0.430549\pi\)
−0.861620 + 0.507555i \(0.830549\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) −8.28115 6.01661i −0.824006 0.598675i 0.0938515 0.995586i \(-0.470082\pi\)
−0.917857 + 0.396911i \(0.870082\pi\)
\(102\) −0.927051 + 2.85317i −0.0917917 + 0.282506i
\(103\) −3.38197 10.4086i −0.333235 1.02559i −0.967585 0.252546i \(-0.918732\pi\)
0.634350 0.773046i \(-0.281268\pi\)
\(104\) 1.42705 1.03681i 0.139934 0.101668i
\(105\) −0.500000 + 0.363271i −0.0487950 + 0.0354516i
\(106\) −0.309017 0.951057i −0.0300144 0.0923748i
\(107\) 3.54508 10.9106i 0.342716 1.05477i −0.620079 0.784540i \(-0.712899\pi\)
0.962795 0.270233i \(-0.0871006\pi\)
\(108\) 3.92705 + 2.85317i 0.377881 + 0.274546i
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 6.23607 0.591901
\(112\) −7.97214 5.79210i −0.753296 0.547302i
\(113\) 4.16312 12.8128i 0.391633 1.20532i −0.539919 0.841717i \(-0.681545\pi\)
0.931553 0.363607i \(-0.118455\pi\)
\(114\) 4.73607 + 14.5761i 0.443573 + 1.36518i
\(115\) 0.118034 0.0857567i 0.0110067 0.00799685i
\(116\) −23.5623 + 17.1190i −2.18771 + 1.58946i
\(117\) −0.0729490 0.224514i −0.00674414 0.0207563i
\(118\) 5.97214 18.3803i 0.549780 1.69205i
\(119\) −0.927051 0.673542i −0.0849826 0.0617435i
\(120\) 4.61803 0.421567
\(121\) 0 0
\(122\) 30.2705 2.74056
\(123\) −0.190983 0.138757i −0.0172204 0.0125113i
\(124\) −9.13525 + 28.1154i −0.820370 + 2.52484i
\(125\) 1.83688 + 5.65334i 0.164296 + 0.505650i
\(126\) −2.11803 + 1.53884i −0.188689 + 0.137091i
\(127\) 6.23607 4.53077i 0.553362 0.402041i −0.275662 0.961255i \(-0.588897\pi\)
0.829023 + 0.559214i \(0.188897\pi\)
\(128\) 0.336881 + 1.03681i 0.0297764 + 0.0916422i
\(129\) −2.07295 + 6.37988i −0.182513 + 0.561717i
\(130\) −0.309017 0.224514i −0.0271026 0.0196912i
\(131\) 11.7984 1.03083 0.515414 0.856941i \(-0.327638\pi\)
0.515414 + 0.856941i \(0.327638\pi\)
\(132\) 0 0
\(133\) −5.85410 −0.507615
\(134\) −3.92705 2.85317i −0.339246 0.246476i
\(135\) 0.190983 0.587785i 0.0164372 0.0505885i
\(136\) 2.64590 + 8.14324i 0.226884 + 0.698277i
\(137\) −7.89919 + 5.73910i −0.674873 + 0.490324i −0.871653 0.490124i \(-0.836952\pi\)
0.196780 + 0.980448i \(0.436952\pi\)
\(138\) 0.500000 0.363271i 0.0425628 0.0309237i
\(139\) −4.50000 13.8496i −0.381685 1.17471i −0.938857 0.344308i \(-0.888113\pi\)
0.557172 0.830397i \(-0.311887\pi\)
\(140\) −0.927051 + 2.85317i −0.0783501 + 0.241137i
\(141\) −8.16312 5.93085i −0.687459 0.499468i
\(142\) 27.0344 2.26868
\(143\) 0 0
\(144\) 9.85410 0.821175
\(145\) 3.00000 + 2.17963i 0.249136 + 0.181008i
\(146\) 4.61803 14.2128i 0.382191 1.17626i
\(147\) 1.85410 + 5.70634i 0.152924 + 0.470651i
\(148\) 24.4894 17.7926i 2.01301 1.46254i
\(149\) −3.42705 + 2.48990i −0.280755 + 0.203980i −0.719247 0.694755i \(-0.755513\pi\)
0.438492 + 0.898735i \(0.355513\pi\)
\(150\) 3.73607 + 11.4984i 0.305049 + 0.938843i
\(151\) −0.326238 + 1.00406i −0.0265489 + 0.0817090i −0.963453 0.267877i \(-0.913678\pi\)
0.936904 + 0.349586i \(0.113678\pi\)
\(152\) 35.3885 + 25.7113i 2.87039 + 2.08546i
\(153\) 1.14590 0.0926404
\(154\) 0 0
\(155\) 3.76393 0.302326
\(156\) −0.927051 0.673542i −0.0742235 0.0539265i
\(157\) 4.85410 14.9394i 0.387400 1.19229i −0.547325 0.836920i \(-0.684354\pi\)
0.934725 0.355373i \(-0.115646\pi\)
\(158\) −8.89919 27.3889i −0.707981 2.17894i
\(159\) −0.309017 + 0.224514i −0.0245066 + 0.0178051i
\(160\) 5.42705 3.94298i 0.429046 0.311720i
\(161\) 0.0729490 + 0.224514i 0.00574919 + 0.0176942i
\(162\) 0.809017 2.48990i 0.0635624 0.195625i
\(163\) 4.16312 + 3.02468i 0.326081 + 0.236911i 0.738766 0.673962i \(-0.235409\pi\)
−0.412685 + 0.910874i \(0.635409\pi\)
\(164\) −1.14590 −0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) 9.73607 + 7.07367i 0.753400 + 0.547377i 0.896879 0.442277i \(-0.145829\pi\)
−0.143479 + 0.989653i \(0.545829\pi\)
\(168\) −2.30902 + 7.10642i −0.178145 + 0.548272i
\(169\) −4.00000 12.3107i −0.307692 0.946980i
\(170\) 1.50000 1.08981i 0.115045 0.0835849i
\(171\) 4.73607 3.44095i 0.362176 0.263136i
\(172\) 10.0623 + 30.9686i 0.767244 + 2.36133i
\(173\) 5.57295 17.1518i 0.423703 1.30403i −0.480527 0.876980i \(-0.659555\pi\)
0.904230 0.427045i \(-0.140445\pi\)
\(174\) 12.7082 + 9.23305i 0.963406 + 0.699956i
\(175\) −4.61803 −0.349091
\(176\) 0 0
\(177\) −7.38197 −0.554863
\(178\) 17.4443 + 12.6740i 1.30750 + 0.949957i
\(179\) −2.63525 + 8.11048i −0.196968 + 0.606206i 0.802980 + 0.596006i \(0.203247\pi\)
−0.999948 + 0.0101995i \(0.996753\pi\)
\(180\) −0.927051 2.85317i −0.0690983 0.212663i
\(181\) −2.04508 + 1.48584i −0.152010 + 0.110442i −0.661191 0.750218i \(-0.729949\pi\)
0.509181 + 0.860660i \(0.329949\pi\)
\(182\) 0.500000 0.363271i 0.0370625 0.0269275i
\(183\) −3.57295 10.9964i −0.264120 0.812878i
\(184\) 0.545085 1.67760i 0.0401842 0.123674i
\(185\) −3.11803 2.26538i −0.229242 0.166554i
\(186\) 15.9443 1.16909
\(187\) 0 0
\(188\) −48.9787 −3.57214
\(189\) 0.809017 + 0.587785i 0.0588473 + 0.0427551i
\(190\) 2.92705 9.00854i 0.212351 0.653548i
\(191\) −0.253289 0.779543i −0.0183273 0.0564058i 0.941475 0.337084i \(-0.109441\pi\)
−0.959802 + 0.280678i \(0.909441\pi\)
\(192\) 7.04508 5.11855i 0.508435 0.369400i
\(193\) −2.54508 + 1.84911i −0.183199 + 0.133102i −0.675605 0.737264i \(-0.736118\pi\)
0.492406 + 0.870366i \(0.336118\pi\)
\(194\) 6.35410 + 19.5559i 0.456198 + 1.40403i
\(195\) −0.0450850 + 0.138757i −0.00322860 + 0.00993661i
\(196\) 23.5623 + 17.1190i 1.68302 + 1.22279i
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) 27.9164 + 20.2825i 1.97399 + 1.43419i
\(201\) −0.572949 + 1.76336i −0.0404127 + 0.124378i
\(202\) 8.28115 + 25.4868i 0.582660 + 1.79324i
\(203\) −4.85410 + 3.52671i −0.340691 + 0.247527i
\(204\) 4.50000 3.26944i 0.315063 0.228907i
\(205\) 0.0450850 + 0.138757i 0.00314887 + 0.00969123i
\(206\) −8.85410 + 27.2501i −0.616895 + 1.89861i
\(207\) −0.190983 0.138757i −0.0132742 0.00964430i
\(208\) −2.32624 −0.161296
\(209\) 0 0
\(210\) 1.61803 0.111655
\(211\) 2.92705 + 2.12663i 0.201506 + 0.146403i 0.683963 0.729517i \(-0.260255\pi\)
−0.482456 + 0.875920i \(0.660255\pi\)
\(212\) −0.572949 + 1.76336i −0.0393503 + 0.121108i
\(213\) −3.19098 9.82084i −0.218643 0.672913i
\(214\) −24.2984 + 17.6538i −1.66100 + 1.20679i
\(215\) 3.35410 2.43690i 0.228748 0.166195i
\(216\) −2.30902 7.10642i −0.157109 0.483531i
\(217\) −1.88197 + 5.79210i −0.127756 + 0.393193i
\(218\) −25.4164 18.4661i −1.72142 1.25068i
\(219\) −5.70820 −0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) −13.2082 9.59632i −0.886477 0.644063i
\(223\) 2.21885 6.82891i 0.148585 0.457298i −0.848870 0.528602i \(-0.822716\pi\)
0.997455 + 0.0713048i \(0.0227163\pi\)
\(224\) 3.35410 + 10.3229i 0.224105 + 0.689725i
\(225\) 3.73607 2.71441i 0.249071 0.180961i
\(226\) −28.5344 + 20.7315i −1.89808 + 1.37904i
\(227\) −4.07295 12.5352i −0.270331 0.831994i −0.990417 0.138109i \(-0.955898\pi\)
0.720086 0.693885i \(-0.244102\pi\)
\(228\) 8.78115 27.0256i 0.581546 1.78981i
\(229\) −0.381966 0.277515i −0.0252410 0.0183387i 0.575093 0.818088i \(-0.304966\pi\)
−0.600334 + 0.799749i \(0.704966\pi\)
\(230\) −0.381966 −0.0251861
\(231\) 0 0
\(232\) 44.8328 2.94342
\(233\) −3.35410 2.43690i −0.219735 0.159646i 0.472473 0.881345i \(-0.343362\pi\)
−0.692207 + 0.721699i \(0.743362\pi\)
\(234\) −0.190983 + 0.587785i −0.0124849 + 0.0384247i
\(235\) 1.92705 + 5.93085i 0.125707 + 0.386886i
\(236\) −28.9894 + 21.0620i −1.88705 + 1.37102i
\(237\) −8.89919 + 6.46564i −0.578064 + 0.419988i
\(238\) 0.927051 + 2.85317i 0.0600918 + 0.184944i
\(239\) −0.118034 + 0.363271i −0.00763498 + 0.0234981i −0.954801 0.297244i \(-0.903932\pi\)
0.947166 + 0.320742i \(0.103932\pi\)
\(240\) −4.92705 3.57971i −0.318040 0.231069i
\(241\) −8.29180 −0.534122 −0.267061 0.963680i \(-0.586052\pi\)
−0.267061 + 0.963680i \(0.586052\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −45.4058 32.9892i −2.90681 2.11192i
\(245\) 1.14590 3.52671i 0.0732087 0.225313i
\(246\) 0.190983 + 0.587785i 0.0121766 + 0.0374758i
\(247\) −1.11803 + 0.812299i −0.0711388 + 0.0516854i
\(248\) 36.8156 26.7481i 2.33779 1.69851i
\(249\) 0.454915 + 1.40008i 0.0288291 + 0.0887267i
\(250\) 4.80902 14.8006i 0.304149 0.936074i
\(251\) 17.7812 + 12.9188i 1.12234 + 0.815425i 0.984562 0.175038i \(-0.0560050\pi\)
0.137775 + 0.990464i \(0.456005\pi\)
\(252\) 4.85410 0.305780
\(253\) 0 0
\(254\) −20.1803 −1.26623
\(255\) −0.572949 0.416272i −0.0358795 0.0260680i
\(256\) −4.50000 + 13.8496i −0.281250 + 0.865598i
\(257\) 9.19098 + 28.2869i 0.573318 + 1.76449i 0.641837 + 0.766841i \(0.278172\pi\)
−0.0685195 + 0.997650i \(0.521828\pi\)
\(258\) 14.2082 10.3229i 0.884564 0.642673i
\(259\) 5.04508 3.66547i 0.313486 0.227761i
\(260\) 0.218847 + 0.673542i 0.0135723 + 0.0417713i
\(261\) 1.85410 5.70634i 0.114766 0.353214i
\(262\) −24.9894 18.1558i −1.54385 1.12167i
\(263\) 15.2705 0.941620 0.470810 0.882235i \(-0.343962\pi\)
0.470810 + 0.882235i \(0.343962\pi\)
\(264\) 0 0
\(265\) 0.236068 0.0145015
\(266\) 12.3992 + 9.00854i 0.760243 + 0.552349i
\(267\) 2.54508 7.83297i 0.155757 0.479370i
\(268\) 2.78115 + 8.55951i 0.169886 + 0.522855i
\(269\) 20.5623 14.9394i 1.25371 0.910871i 0.255275 0.966868i \(-0.417834\pi\)
0.998431 + 0.0559978i \(0.0178340\pi\)
\(270\) −1.30902 + 0.951057i −0.0796642 + 0.0578795i
\(271\) −5.75329 17.7068i −0.349487 1.07561i −0.959137 0.282941i \(-0.908690\pi\)
0.609650 0.792671i \(-0.291310\pi\)
\(272\) 3.48936 10.7391i 0.211573 0.651156i
\(273\) −0.190983 0.138757i −0.0115588 0.00839797i
\(274\) 25.5623 1.54428
\(275\) 0 0
\(276\) −1.14590 −0.0689750
\(277\) −23.6353 17.1720i −1.42010 1.03177i −0.991754 0.128154i \(-0.959095\pi\)
−0.428351 0.903613i \(-0.640905\pi\)
\(278\) −11.7812 + 36.2587i −0.706587 + 2.17465i
\(279\) −1.88197 5.79210i −0.112670 0.346764i
\(280\) 3.73607 2.71441i 0.223273 0.162217i
\(281\) 20.0344 14.5559i 1.19515 0.868331i 0.201355 0.979518i \(-0.435465\pi\)
0.993799 + 0.111188i \(0.0354655\pi\)
\(282\) 8.16312 + 25.1235i 0.486107 + 1.49608i
\(283\) 1.76393 5.42882i 0.104855 0.322710i −0.884841 0.465892i \(-0.845733\pi\)
0.989696 + 0.143182i \(0.0457335\pi\)
\(284\) −40.5517 29.4625i −2.40630 1.74828i
\(285\) −3.61803 −0.214314
\(286\) 0 0
\(287\) −0.236068 −0.0139347
\(288\) −8.78115 6.37988i −0.517434 0.375938i
\(289\) −4.84752 + 14.9191i −0.285148 + 0.877597i
\(290\) −3.00000 9.23305i −0.176166 0.542183i
\(291\) 6.35410 4.61653i 0.372484 0.270626i
\(292\) −22.4164 + 16.2865i −1.31182 + 0.953094i
\(293\) 6.69098 + 20.5927i 0.390891 + 1.20304i 0.932115 + 0.362162i \(0.117961\pi\)
−0.541224 + 0.840878i \(0.682039\pi\)
\(294\) 4.85410 14.9394i 0.283097 0.871283i
\(295\) 3.69098 + 2.68166i 0.214897 + 0.156132i
\(296\) −46.5967 −2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) 0.0450850 + 0.0327561i 0.00260733 + 0.00189434i
\(300\) 6.92705 21.3193i 0.399933 1.23087i
\(301\) 2.07295 + 6.37988i 0.119483 + 0.367730i
\(302\) 2.23607 1.62460i 0.128671 0.0934851i
\(303\) 8.28115 6.01661i 0.475740 0.345645i
\(304\) −17.8262 54.8635i −1.02240 3.14664i
\(305\) −2.20820 + 6.79615i −0.126441 + 0.389147i
\(306\) −2.42705 1.76336i −0.138745 0.100804i
\(307\) −27.9787 −1.59683 −0.798415 0.602108i \(-0.794328\pi\)
−0.798415 + 0.602108i \(0.794328\pi\)
\(308\) 0 0
\(309\) 10.9443 0.622598
\(310\) −7.97214 5.79210i −0.452787 0.328969i
\(311\) 3.60081 11.0822i 0.204183 0.628412i −0.795563 0.605871i \(-0.792825\pi\)
0.999746 0.0225404i \(-0.00717543\pi\)
\(312\) 0.545085 + 1.67760i 0.0308594 + 0.0949753i
\(313\) 2.04508 1.48584i 0.115595 0.0839847i −0.528486 0.848942i \(-0.677240\pi\)
0.644081 + 0.764957i \(0.277240\pi\)
\(314\) −33.2705 + 24.1724i −1.87756 + 1.36413i
\(315\) −0.190983 0.587785i −0.0107607 0.0331179i
\(316\) −16.5000 + 50.7818i −0.928198 + 2.85670i
\(317\) 5.51722 + 4.00850i 0.309878 + 0.225140i 0.731844 0.681472i \(-0.238660\pi\)
−0.421966 + 0.906612i \(0.638660\pi\)
\(318\) 1.00000 0.0560772
\(319\) 0 0
\(320\) −5.38197 −0.300861
\(321\) 9.28115 + 6.74315i 0.518023 + 0.376366i
\(322\) 0.190983 0.587785i 0.0106431 0.0327560i
\(323\) −2.07295 6.37988i −0.115342 0.354986i
\(324\) −3.92705 + 2.85317i −0.218169 + 0.158509i
\(325\) −0.881966 + 0.640786i −0.0489227 + 0.0355444i
\(326\) −4.16312 12.8128i −0.230574 0.709633i
\(327\) −3.70820 + 11.4127i −0.205064 + 0.631123i
\(328\) 1.42705 + 1.03681i 0.0787957 + 0.0572484i
\(329\) −10.0902 −0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) 5.78115 + 4.20025i 0.317282 + 0.230519i
\(333\) −1.92705 + 5.93085i −0.105602 + 0.325009i
\(334\) −9.73607 29.9645i −0.532734 1.63959i
\(335\) 0.927051 0.673542i 0.0506502 0.0367995i
\(336\) 7.97214 5.79210i 0.434916 0.315985i
\(337\) 5.61803 + 17.2905i 0.306034 + 0.941875i 0.979289 + 0.202465i \(0.0648954\pi\)
−0.673256 + 0.739410i \(0.735105\pi\)
\(338\) −10.4721 + 32.2299i −0.569609 + 1.75308i
\(339\) 10.8992 + 7.91872i 0.591963 + 0.430086i
\(340\) −3.43769 −0.186435
\(341\) 0 0
\(342\) −15.3262 −0.828748
\(343\) 10.5172 + 7.64121i 0.567877 + 0.412586i
\(344\) 15.4894 47.6713i 0.835130 2.57027i
\(345\) 0.0450850 + 0.138757i 0.00242729 + 0.00747044i
\(346\) −38.1976 + 27.7522i −2.05351 + 1.49196i
\(347\) −1.23607 + 0.898056i −0.0663556 + 0.0482102i −0.620469 0.784231i \(-0.713058\pi\)
0.554113 + 0.832441i \(0.313058\pi\)
\(348\) −9.00000 27.6992i −0.482451 1.48483i
\(349\) −3.92705 + 12.0862i −0.210210 + 0.646961i 0.789249 + 0.614073i \(0.210470\pi\)
−0.999459 + 0.0328870i \(0.989530\pi\)
\(350\) 9.78115 + 7.10642i 0.522825 + 0.379854i
\(351\) 0.236068 0.0126004
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 15.6353 + 11.3597i 0.831004 + 0.603760i
\(355\) −1.97214 + 6.06961i −0.104670 + 0.322141i
\(356\) −12.3541 38.0220i −0.654766 2.01516i
\(357\) 0.927051 0.673542i 0.0490647 0.0356476i
\(358\) 18.0623 13.1230i 0.954623 0.693574i
\(359\) 3.00000 + 9.23305i 0.158334 + 0.487302i 0.998483 0.0550531i \(-0.0175328\pi\)
−0.840149 + 0.542355i \(0.817533\pi\)
\(360\) −1.42705 + 4.39201i −0.0752122 + 0.231479i
\(361\) −12.3541 8.97578i −0.650216 0.472409i
\(362\) 6.61803 0.347836
\(363\) 0 0
\(364\) −1.14590 −0.0600614
\(365\) 2.85410 + 2.07363i 0.149391 + 0.108539i
\(366\) −9.35410 + 28.7890i −0.488947 + 1.50482i
\(367\) 6.84346 + 21.0620i 0.357226 + 1.09943i 0.954708 + 0.297545i \(0.0961679\pi\)
−0.597482 + 0.801882i \(0.703832\pi\)
\(368\) −1.88197 + 1.36733i −0.0981043 + 0.0712769i
\(369\) 0.190983 0.138757i 0.00994218 0.00722342i
\(370\) 3.11803 + 9.59632i 0.162099 + 0.498889i
\(371\) −0.118034 + 0.363271i −0.00612802 + 0.0188601i
\(372\) −23.9164 17.3763i −1.24001 0.900919i
\(373\) −0.888544 −0.0460071 −0.0230035 0.999735i \(-0.507323\pi\)
−0.0230035 + 0.999735i \(0.507323\pi\)
\(374\) 0 0
\(375\) −5.94427 −0.306961
\(376\) 60.9959 + 44.3161i 3.14563 + 2.28543i
\(377\) −0.437694 + 1.34708i −0.0225424 + 0.0693784i
\(378\) −0.809017 2.48990i −0.0416113 0.128067i
\(379\) 20.1353 14.6291i 1.03428 0.751447i 0.0651180 0.997878i \(-0.479258\pi\)
0.969161 + 0.246430i \(0.0792576\pi\)
\(380\) −14.2082 + 10.3229i −0.728865 + 0.529552i
\(381\) 2.38197 + 7.33094i 0.122032 + 0.375575i
\(382\) −0.663119 + 2.04087i −0.0339281 + 0.104420i
\(383\) 10.2812 + 7.46969i 0.525342 + 0.381684i 0.818613 0.574346i \(-0.194744\pi\)
−0.293270 + 0.956030i \(0.594744\pi\)
\(384\) −1.09017 −0.0556325
\(385\) 0 0
\(386\) 8.23607 0.419205
\(387\) −5.42705 3.94298i −0.275873 0.200433i
\(388\) 11.7812 36.2587i 0.598097 1.84075i
\(389\) −11.3541 34.9443i −0.575676 1.77175i −0.633866 0.773443i \(-0.718533\pi\)
0.0581906 0.998305i \(-0.481467\pi\)
\(390\) 0.309017 0.224514i 0.0156477 0.0113687i
\(391\) −0.218847 + 0.159002i −0.0110676 + 0.00804106i
\(392\) −13.8541 42.6385i −0.699738 2.15357i
\(393\) −3.64590 + 11.2209i −0.183911 + 0.566021i
\(394\) 27.6074 + 20.0579i 1.39084 + 1.01050i
\(395\) 6.79837 0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) −14.2082 10.3229i −0.712193 0.517438i
\(399\) 1.80902 5.56758i 0.0905641 0.278728i
\(400\) −14.0623 43.2793i −0.703115 2.16397i
\(401\) 25.6353 18.6251i 1.28016 0.930093i 0.280606 0.959823i \(-0.409465\pi\)
0.999558 + 0.0297299i \(0.00946472\pi\)
\(402\) 3.92705 2.85317i 0.195864 0.142303i
\(403\) 0.444272 + 1.36733i 0.0221308 + 0.0681115i
\(404\) 15.3541 47.2551i 0.763895 2.35103i
\(405\) 0.500000 + 0.363271i 0.0248452 + 0.0180511i
\(406\) 15.7082 0.779585
\(407\) 0 0
\(408\) −8.56231 −0.423897
\(409\) −5.23607 3.80423i −0.258907 0.188107i 0.450758 0.892646i \(-0.351154\pi\)
−0.709665 + 0.704539i \(0.751154\pi\)
\(410\) 0.118034 0.363271i 0.00582928 0.0179407i
\(411\) −3.01722 9.28605i −0.148829 0.458047i
\(412\) 42.9787 31.2259i 2.11741 1.53839i
\(413\) −5.97214 + 4.33901i −0.293870 + 0.213509i
\(414\) 0.190983 + 0.587785i 0.00938630 + 0.0288881i
\(415\) 0.281153 0.865300i 0.0138013 0.0424759i
\(416\) 2.07295 + 1.50609i 0.101635 + 0.0738419i
\(417\) 14.5623 0.713119
\(418\) 0 0
\(419\) 31.4508 1.53647 0.768237 0.640165i \(-0.221134\pi\)
0.768237 + 0.640165i \(0.221134\pi\)
\(420\) −2.42705 1.76336i −0.118428 0.0860430i
\(421\) 3.24671 9.99235i 0.158235 0.486997i −0.840239 0.542216i \(-0.817586\pi\)
0.998474 + 0.0552185i \(0.0175855\pi\)
\(422\) −2.92705 9.00854i −0.142487 0.438529i
\(423\) 8.16312 5.93085i 0.396904 0.288368i
\(424\) 2.30902 1.67760i 0.112136 0.0814714i
\(425\) −1.63525 5.03280i −0.0793215 0.244127i
\(426\) −8.35410 + 25.7113i −0.404758 + 1.24572i
\(427\) −9.35410 6.79615i −0.452677 0.328889i
\(428\) 55.6869 2.69173
\(429\) 0 0
\(430\) −10.8541 −0.523431
\(431\) −4.78115 3.47371i −0.230300 0.167323i 0.466651 0.884442i \(-0.345460\pi\)
−0.696951 + 0.717119i \(0.745460\pi\)
\(432\) −3.04508 + 9.37181i −0.146507 + 0.450901i
\(433\) 10.9098 + 33.5770i 0.524293 + 1.61361i 0.765710 + 0.643186i \(0.222388\pi\)
−0.241417 + 0.970422i \(0.577612\pi\)
\(434\) 12.8992 9.37181i 0.619181 0.449861i
\(435\) −3.00000 + 2.17963i −0.143839 + 0.104505i
\(436\) 18.0000 + 55.3983i 0.862044 + 2.65310i
\(437\) −0.427051 + 1.31433i −0.0204286 + 0.0628728i
\(438\) 12.0902 + 8.78402i 0.577691 + 0.419717i
\(439\) −23.2918 −1.11166 −0.555828 0.831297i \(-0.687599\pi\)
−0.555828 + 0.831297i \(0.687599\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0.572949 + 0.416272i 0.0272524 + 0.0198000i
\(443\) −9.76393 + 30.0503i −0.463898 + 1.42773i 0.396464 + 0.918050i \(0.370237\pi\)
−0.860363 + 0.509682i \(0.829763\pi\)
\(444\) 9.35410 + 28.7890i 0.443926 + 1.36626i
\(445\) −4.11803 + 2.99193i −0.195214 + 0.141831i
\(446\) −15.2082 + 11.0494i −0.720129 + 0.523205i
\(447\) −1.30902 4.02874i −0.0619144 0.190553i
\(448\) 2.69098 8.28199i 0.127137 0.391287i
\(449\) 7.32624 + 5.32282i 0.345747 + 0.251200i 0.747082 0.664731i \(-0.231454\pi\)
−0.401336 + 0.915931i \(0.631454\pi\)
\(450\) −12.0902 −0.569936
\(451\) 0 0
\(452\) 65.3951 3.07593
\(453\) −0.854102 0.620541i −0.0401292 0.0291556i
\(454\) −10.6631 + 32.8177i −0.500445 + 1.54021i
\(455\) 0.0450850 + 0.138757i 0.00211362 + 0.00650504i
\(456\) −35.3885 + 25.7113i −1.65722 + 1.20404i
\(457\) 19.3992 14.0943i 0.907456 0.659305i −0.0329144 0.999458i \(-0.510479\pi\)
0.940370 + 0.340153i \(0.110479\pi\)
\(458\) 0.381966 + 1.17557i 0.0178481 + 0.0549308i
\(459\) −0.354102 + 1.08981i −0.0165281 + 0.0508682i
\(460\) 0.572949 + 0.416272i 0.0267139 + 0.0194088i
\(461\) −9.27051 −0.431771 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(462\) 0 0
\(463\) 1.72949 0.0803762 0.0401881 0.999192i \(-0.487204\pi\)
0.0401881 + 0.999192i \(0.487204\pi\)
\(464\) −47.8328 34.7526i −2.22058 1.61335i
\(465\) −1.16312 + 3.57971i −0.0539384 + 0.166005i
\(466\) 3.35410 + 10.3229i 0.155376 + 0.478197i
\(467\) −16.8992 + 12.2780i −0.782001 + 0.568157i −0.905579 0.424178i \(-0.860563\pi\)
0.123578 + 0.992335i \(0.460563\pi\)
\(468\) 0.927051 0.673542i 0.0428529 0.0311345i
\(469\) 0.572949 + 1.76336i 0.0264563 + 0.0814242i
\(470\) 5.04508 15.5272i 0.232712 0.716215i
\(471\) 12.7082 + 9.23305i 0.585563 + 0.425437i
\(472\) 55.1591 2.53890
\(473\) 0 0
\(474\) 28.7984 1.32275
\(475\) −21.8713 15.8904i −1.00353 0.729104i
\(476\) 1.71885 5.29007i 0.0787832 0.242470i
\(477\) −0.118034 0.363271i −0.00540441 0.0166330i
\(478\) 0.809017 0.587785i 0.0370036 0.0268847i
\(479\) −22.9615 + 16.6825i −1.04914 + 0.762243i −0.972048 0.234781i \(-0.924563\pi\)
−0.0770892 + 0.997024i \(0.524563\pi\)
\(480\) 2.07295 + 6.37988i 0.0946167 + 0.291200i
\(481\) 0.454915 1.40008i 0.0207423 0.0638384i
\(482\) 17.5623 + 12.7598i 0.799941 + 0.581191i
\(483\) −0.236068 −0.0107415
\(484\) 0 0
\(485\) −4.85410 −0.220413
\(486\) 2.11803 + 1.53884i 0.0960760 + 0.0698033i
\(487\) −3.92705 + 12.0862i −0.177952 + 0.547679i −0.999756 0.0220909i \(-0.992968\pi\)
0.821804 + 0.569770i \(0.192968\pi\)
\(488\) 26.6976 + 82.1666i 1.20854 + 3.71951i
\(489\) −4.16312 + 3.02468i −0.188263 + 0.136781i
\(490\) −7.85410 + 5.70634i −0.354812 + 0.257786i
\(491\) 5.53444 + 17.0333i 0.249766 + 0.768700i 0.994816 + 0.101692i \(0.0324255\pi\)
−0.745050 + 0.667009i \(0.767574\pi\)
\(492\) 0.354102 1.08981i 0.0159641 0.0491326i
\(493\) −5.56231 4.04125i −0.250514 0.182009i
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) −8.35410 6.06961i −0.374733 0.272259i
\(498\) 1.19098 3.66547i 0.0533692 0.164254i
\(499\) −5.60739 17.2578i −0.251021 0.772564i −0.994588 0.103902i \(-0.966867\pi\)
0.743566 0.668662i \(-0.233133\pi\)
\(500\) −23.3435 + 16.9600i −1.04395 + 0.758475i
\(501\) −9.73607 + 7.07367i −0.434975 + 0.316028i
\(502\) −17.7812 54.7248i −0.793612 2.44249i
\(503\) −2.67376 + 8.22899i −0.119217 + 0.366913i −0.992803 0.119757i \(-0.961788\pi\)
0.873586 + 0.486670i \(0.161788\pi\)
\(504\) −6.04508 4.39201i −0.269269 0.195636i
\(505\) −6.32624 −0.281514
\(506\) 0 0
\(507\) 12.9443 0.574875
\(508\) 30.2705 + 21.9928i 1.34304 + 0.975773i
\(509\) 11.9721 36.8464i 0.530656 1.63319i −0.222198 0.975002i \(-0.571323\pi\)
0.752853 0.658188i \(-0.228677\pi\)
\(510\) 0.572949 + 1.76336i 0.0253706 + 0.0780827i
\(511\) −4.61803 + 3.35520i −0.204290 + 0.148425i
\(512\) 32.6074 23.6907i 1.44106 1.04699i
\(513\) 1.80902 + 5.56758i 0.0798701 + 0.245815i
\(514\) 24.0623 74.0562i 1.06134 3.26648i
\(515\) −5.47214 3.97574i −0.241131 0.175192i
\(516\) −32.5623 −1.43348
\(517\) 0 0
\(518\) −16.3262 −0.717334
\(519\) 14.5902 + 10.6004i 0.640437 + 0.465305i
\(520\) 0.336881 1.03681i 0.0147732 0.0454673i
\(521\) 2.76393 + 8.50651i 0.121090 + 0.372677i 0.993168 0.116689i \(-0.0372282\pi\)
−0.872078 + 0.489366i \(0.837228\pi\)
\(522\) −12.7082 + 9.23305i −0.556223 + 0.404120i
\(523\) 14.7812 10.7391i 0.646335 0.469590i −0.215686 0.976463i \(-0.569199\pi\)
0.862021 + 0.506873i \(0.169199\pi\)
\(524\) 17.6976 + 54.4675i 0.773122 + 2.37942i
\(525\) 1.42705 4.39201i 0.0622816 0.191683i
\(526\) −32.3435 23.4989i −1.41024 1.02460i
\(527\) −6.97871 −0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) −0.500000 0.363271i −0.0217186 0.0157795i
\(531\) 2.28115 7.02067i 0.0989936 0.304671i
\(532\) −8.78115 27.0256i −0.380711 1.17171i
\(533\) −0.0450850 + 0.0327561i −0.00195285 + 0.00141883i
\(534\) −17.4443 + 12.6740i −0.754887 + 0.548458i
\(535\) −2.19098 6.74315i −0.0947245 0.291532i
\(536\) 4.28115 13.1760i 0.184918 0.569118i
\(537\) −6.89919 5.01255i −0.297722 0.216308i
\(538\) −66.5410 −2.86879
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) −6.06231 4.40452i −0.260639 0.189365i 0.449790 0.893134i \(-0.351499\pi\)
−0.710429 + 0.703769i \(0.751499\pi\)
\(542\) −15.0623 + 46.3570i −0.646981 + 1.99120i
\(543\) −0.781153 2.40414i −0.0335225 0.103172i
\(544\) −10.0623 + 7.31069i −0.431418 + 0.313443i
\(545\) 6.00000 4.35926i 0.257012 0.186730i
\(546\) 0.190983 + 0.587785i 0.00817332 + 0.0251549i
\(547\) 9.50000 29.2380i 0.406191 1.25013i −0.513706 0.857966i \(-0.671728\pi\)
0.919897 0.392160i \(-0.128272\pi\)
\(548\) −38.3435 27.8582i −1.63795 1.19004i
\(549\) 11.5623 0.493467
\(550\) 0 0
\(551\) −35.1246 −1.49636
\(552\) 1.42705 + 1.03681i 0.0607393 + 0.0441297i
\(553\) −3.39919 + 10.4616i −0.144548 + 0.444873i
\(554\) 23.6353 + 72.7418i 1.00417 + 3.09050i
\(555\) 3.11803 2.26538i 0.132353 0.0961602i
\(556\) 57.1869 41.5487i 2.42527 1.76206i
\(557\) −11.6287 35.7894i −0.492723 1.51645i −0.820476 0.571682i \(-0.806291\pi\)
0.327753 0.944764i \(-0.393709\pi\)
\(558\) −4.92705 + 15.1639i −0.208579 + 0.641939i
\(559\) 1.28115 + 0.930812i 0.0541870 + 0.0393692i
\(560\) −6.09017 −0.257357
\(561\) 0 0
\(562\) −64.8328 −2.73481
\(563\) 32.8435 + 23.8622i 1.38419 + 1.00567i 0.996475 + 0.0838899i \(0.0267344\pi\)
0.387712 + 0.921781i \(0.373266\pi\)
\(564\) 15.1353 46.5815i 0.637309 1.96144i
\(565\) −2.57295 7.91872i −0.108245 0.333143i
\(566\) −12.0902 + 8.78402i −0.508188 + 0.369220i
\(567\) −0.809017 + 0.587785i −0.0339755 + 0.0246847i
\(568\) 23.8435 + 73.3826i 1.00045 + 3.07907i
\(569\) −10.5623 + 32.5074i −0.442795 + 1.36278i 0.442089 + 0.896971i \(0.354237\pi\)
−0.884884 + 0.465811i \(0.845763\pi\)
\(570\) 7.66312 + 5.56758i 0.320973 + 0.233200i
\(571\) 9.09017 0.380412 0.190206 0.981744i \(-0.439084\pi\)
0.190206 + 0.981744i \(0.439084\pi\)
\(572\) 0 0
\(573\) 0.819660 0.0342418
\(574\) 0.500000 + 0.363271i 0.0208696 + 0.0151626i
\(575\) −0.336881 + 1.03681i −0.0140489 + 0.0432381i
\(576\) 2.69098 + 8.28199i 0.112124 + 0.345083i
\(577\) −25.6525 + 18.6376i −1.06793 + 0.775894i −0.975538 0.219829i \(-0.929450\pi\)
−0.0923881 + 0.995723i \(0.529450\pi\)
\(578\) 33.2254 24.1397i 1.38200 1.00408i
\(579\) −0.972136 2.99193i −0.0404006 0.124340i
\(580\) −5.56231 + 17.1190i −0.230962 + 0.710829i
\(581\) 1.19098 + 0.865300i 0.0494103 + 0.0358987i
\(582\) −20.5623 −0.852335
\(583\) 0 0
\(584\) 42.6525 1.76497
\(585\) −0.118034 0.0857567i −0.00488010 0.00354560i
\(586\) 17.5172 53.9125i 0.723630 2.22710i
\(587\) −0.656541 2.02063i −0.0270984 0.0834002i 0.936593 0.350420i \(-0.113961\pi\)
−0.963691 + 0.267020i \(0.913961\pi\)
\(588\) −23.5623 + 17.1190i −0.971693 + 0.705976i
\(589\) −28.8435 + 20.9560i −1.18847 + 0.863477i
\(590\) −3.69098 11.3597i −0.151955 0.467671i
\(591\) 4.02786 12.3965i 0.165684 0.509923i
\(592\) 49.7148 + 36.1199i 2.04326 + 1.48452i
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) −16.6353 12.0862i −0.681407 0.495071i
\(597\) −2.07295 + 6.37988i −0.0848402 + 0.261111i
\(598\) −0.0450850 0.138757i −0.00184366 0.00567421i
\(599\) −10.2361 + 7.43694i −0.418234 + 0.303865i −0.776927 0.629591i \(-0.783223\pi\)
0.358693 + 0.933456i \(0.383223\pi\)
\(600\) −27.9164 + 20.2825i −1.13968 + 0.828028i
\(601\) 2.12868 + 6.55139i 0.0868306 + 0.267237i 0.985039 0.172334i \(-0.0551307\pi\)
−0.898208 + 0.439570i \(0.855131\pi\)
\(602\) 5.42705 16.7027i 0.221190 0.680753i
\(603\) −1.50000 1.08981i −0.0610847 0.0443806i
\(604\) −5.12461 −0.208517
\(605\) 0 0
\(606\) −26.7984 −1.08861
\(607\) −13.3992 9.73508i −0.543856 0.395135i 0.281659 0.959515i \(-0.409115\pi\)
−0.825515 + 0.564380i \(0.809115\pi\)
\(608\) −19.6353 + 60.4311i −0.796315 + 2.45080i
\(609\) −1.85410 5.70634i −0.0751320 0.231233i
\(610\) 15.1353 10.9964i 0.612809 0.445231i
\(611\) −1.92705 + 1.40008i −0.0779601 + 0.0566414i
\(612\) 1.71885 + 5.29007i 0.0694803 + 0.213838i
\(613\) 4.41641 13.5923i 0.178377 0.548988i −0.821395 0.570360i \(-0.806804\pi\)
0.999772 + 0.0213723i \(0.00680355\pi\)
\(614\) 59.2599 + 43.0548i 2.39153 + 1.73755i
\(615\) −0.145898 −0.00588318
\(616\) 0 0
\(617\) 11.1803 0.450104 0.225052 0.974347i \(-0.427745\pi\)
0.225052 + 0.974347i \(0.427745\pi\)
\(618\) −23.1803 16.8415i −0.932450 0.677465i
\(619\) 7.45492 22.9439i 0.299638 0.922192i −0.681985 0.731366i \(-0.738883\pi\)
0.981624 0.190826i \(-0.0611167\pi\)
\(620\) 5.64590 + 17.3763i 0.226745 + 0.697848i
\(621\) 0.190983 0.138757i 0.00766388 0.00556814i
\(622\) −24.6803 + 17.9313i −0.989591 + 0.718980i
\(623\) −2.54508 7.83297i −0.101967 0.313821i
\(624\) 0.718847 2.21238i 0.0287769 0.0885662i
\(625\) −15.7082 11.4127i −0.628328 0.456507i
\(626\) −6.61803 −0.264510
\(627\) 0 0
\(628\) 76.2492 3.04268
\(629\) 5.78115 + 4.20025i 0.230510 + 0.167475i
\(630\) −0.500000 + 1.53884i −0.0199205 + 0.0613089i
\(631\) 5.93769 + 18.2743i 0.236376 + 0.727490i 0.996936 + 0.0782225i \(0.0249245\pi\)
−0.760560 + 0.649268i \(0.775076\pi\)
\(632\) 66.4959 48.3121i 2.64507 1.92175i
\(633\) −2.92705 + 2.12663i −0.116340 + 0.0845258i
\(634\) −5.51722 16.9803i −0.219117 0.674372i
\(635\) 1.47214 4.53077i 0.0584199 0.179798i
\(636\) −1.50000 1.08981i −0.0594789 0.0432139i
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) 10.3262 0.408500
\(640\) 0.545085 + 0.396027i 0.0215464 + 0.0156544i
\(641\) −7.75329 + 23.8622i −0.306236 + 0.942499i 0.672976 + 0.739664i \(0.265016\pi\)
−0.979213 + 0.202835i \(0.934984\pi\)
\(642\) −9.28115 28.5645i −0.366298 1.12735i
\(643\) −16.8713 + 12.2577i −0.665340 + 0.483398i −0.868462 0.495756i \(-0.834891\pi\)
0.203122 + 0.979153i \(0.434891\pi\)
\(644\) −0.927051 + 0.673542i −0.0365309 + 0.0265413i
\(645\) 1.28115 + 3.94298i 0.0504453 + 0.155255i
\(646\) −5.42705 + 16.7027i −0.213524 + 0.657161i
\(647\) −36.4336 26.4706i −1.43235 1.04067i −0.989572 0.144036i \(-0.953992\pi\)
−0.442781 0.896630i \(-0.646008\pi\)
\(648\) 7.47214 0.293533
\(649\) 0 0
\(650\) 2.85410 0.111947
\(651\) −4.92705 3.57971i −0.193106 0.140300i
\(652\) −7.71885 + 23.7562i −0.302293 + 0.930363i
\(653\) −1.73607 5.34307i −0.0679376 0.209090i 0.911324 0.411690i \(-0.135061\pi\)
−0.979262 + 0.202599i \(0.935061\pi\)
\(654\) 25.4164 18.4661i 0.993860 0.722082i
\(655\) 5.89919 4.28601i 0.230500 0.167468i
\(656\) −0.718847 2.21238i −0.0280663 0.0863791i
\(657\) 1.76393 5.42882i 0.0688175 0.211799i
\(658\) 21.3713 + 15.5272i 0.833141 + 0.605312i
\(659\) 41.1246 1.60199 0.800994 0.598673i \(-0.204305\pi\)
0.800994 + 0.598673i \(0.204305\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) −35.3885 25.7113i −1.37541 0.999297i
\(663\) 0.0835921 0.257270i 0.00324645 0.00999154i
\(664\) −3.39919 10.4616i −0.131914 0.405990i
\(665\) −2.92705 + 2.12663i −0.113506 + 0.0824671i
\(666\) 13.2082 9.59632i 0.511808 0.371850i
\(667\) 0.437694 + 1.34708i 0.0169476 + 0.0521593i
\(668\) −18.0517 + 55.5573i −0.698440 + 2.14958i
\(669\) 5.80902 + 4.22050i 0.224590 + 0.163174i
\(670\) −3.00000 −0.115900
\(671\) 0 0
\(672\) −10.8541 −0.418706
\(673\) 28.9894 + 21.0620i 1.11746 + 0.811880i 0.983822 0.179150i \(-0.0573348\pi\)
0.133636 + 0.991031i \(0.457335\pi\)
\(674\) 14.7082 45.2672i 0.566539 1.74363i
\(675\) 1.42705 + 4.39201i 0.0549272 + 0.169049i
\(676\) 50.8328 36.9322i 1.95511 1.42047i
\(677\) 10.9443 7.95148i 0.420623 0.305600i −0.357266 0.934003i \(-0.616291\pi\)
0.777888 + 0.628403i \(0.216291\pi\)
\(678\) −10.8992 33.5442i −0.418581 1.28826i
\(679\) 2.42705 7.46969i 0.0931417 0.286661i
\(680\) 4.28115 + 3.11044i 0.164175 + 0.119280i
\(681\) 13.1803 0.505072
\(682\) 0 0
\(683\) 9.06888 0.347011 0.173506 0.984833i \(-0.444491\pi\)
0.173506 + 0.984833i \(0.444491\pi\)
\(684\) 22.9894 + 16.7027i 0.879020 + 0.638645i
\(685\) −1.86475 + 5.73910i −0.0712482 + 0.219280i
\(686\) −10.5172 32.3687i −0.401549 1.23584i
\(687\) 0.381966 0.277515i 0.0145729 0.0105878i
\(688\) −53.4787 + 38.8546i −2.03886 + 1.48132i
\(689\) 0.0278640 + 0.0857567i 0.00106154 + 0.00326707i
\(690\) 0.118034 0.363271i 0.00449348 0.0138295i
\(691\) −1.09017 0.792055i −0.0414720 0.0301312i 0.566856 0.823817i \(-0.308160\pi\)
−0.608328 + 0.793686i \(0.708160\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −7.28115 5.29007i −0.276190 0.200664i
\(696\) −13.8541 + 42.6385i −0.525138 + 1.61621i
\(697\) −0.0835921 0.257270i −0.00316628 0.00974480i
\(698\) 26.9164 19.5559i 1.01880 0.740202i
\(699\) 3.35410 2.43690i 0.126864 0.0921719i
\(700\) −6.92705 21.3193i −0.261818 0.805793i
\(701\) 10.7533 33.0952i 0.406146 1.24999i −0.513788 0.857917i \(-0.671758\pi\)
0.919934 0.392072i \(-0.128242\pi\)
\(702\) −0.500000 0.363271i −0.0188713 0.0137108i
\(703\) 36.5066 1.37687
\(704\) 0 0
\(705\) −6.23607 −0.234864
\(706\) 25.4164 + 18.4661i 0.956559 + 0.694981i
\(707\) 3.16312 9.73508i 0.118961 0.366125i
\(708\) −11.0729 34.0790i −0.416147 1.28077i
\(709\) −9.07295 + 6.59188i −0.340742 + 0.247563i −0.744975 0.667093i \(-0.767538\pi\)
0.404233 + 0.914656i \(0.367538\pi\)
\(710\) 13.5172 9.82084i 0.507292 0.368569i
\(711\) −3.39919 10.4616i −0.127479 0.392341i
\(712\) −19.0172 + 58.5290i −0.712700 + 2.19347i
\(713\) 1.16312 + 0.845055i 0.0435591 + 0.0316476i
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) −41.3951 −1.54701
\(717\) −0.309017 0.224514i −0.0115405 0.00838463i
\(718\) 7.85410 24.1724i 0.293112 0.902107i
\(719\) −11.8926 36.6017i −0.443519 1.36501i −0.884099 0.467299i \(-0.845227\pi\)
0.440580 0.897713i \(-0.354773\pi\)
\(720\) 4.92705 3.57971i 0.183620 0.133408i
\(721\) 8.85410 6.43288i 0.329744 0.239573i
\(722\) 12.3541 + 38.0220i 0.459772 + 1.41503i
\(723\) 2.56231 7.88597i 0.0952932 0.293282i
\(724\) −9.92705 7.21242i −0.368936 0.268048i
\(725\) −27.7082 −1.02906
\(726\) 0 0
\(727\) −9.14590 −0.339203 −0.169601 0.985513i \(-0.554248\pi\)
−0.169601 + 0.985513i \(0.554248\pi\)
\(728\) 1.42705 + 1.03681i 0.0528900 + 0.0384269i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −2.85410 8.78402i −0.105635 0.325111i
\(731\) −6.21885 + 4.51826i −0.230012 + 0.167114i
\(732\) 45.4058 32.9892i 1.67825 1.21932i
\(733\) 0.124612 + 0.383516i 0.00460264 + 0.0141655i 0.953331 0.301926i \(-0.0976295\pi\)
−0.948729 + 0.316091i \(0.897629\pi\)
\(734\) 17.9164 55.1410i 0.661307 2.03529i
\(735\) 3.00000 + 2.17963i 0.110657 + 0.0803968i
\(736\) 2.56231 0.0944478
\(737\) 0 0
\(738\) −0.618034 −0.0227501
\(739\) 2.42705 + 1.76336i 0.0892805 + 0.0648661i 0.631530 0.775351i \(-0.282427\pi\)
−0.542250 + 0.840218i \(0.682427\pi\)
\(740\) 5.78115 17.7926i 0.212519 0.654067i
\(741\) −0.427051 1.31433i −0.0156881 0.0482830i
\(742\) 0.809017 0.587785i 0.0296999 0.0215783i
\(743\) −34.6976 + 25.2093i −1.27293 + 0.924838i −0.999315 0.0370015i \(-0.988219\pi\)
−0.273615 + 0.961839i \(0.588219\pi\)
\(744\) 14.0623 + 43.2793i 0.515549 + 1.58670i
\(745\) −0.809017 + 2.48990i −0.0296401 + 0.0912228i
\(746\) 1.88197 + 1.36733i 0.0689037 + 0.0500614i
\(747\) −1.47214 −0.0538626
\(748\) 0 0
\(749\) 11.4721 0.419183
\(750\) 12.5902 + 9.14729i 0.459728 + 0.334012i
\(751\) 4.98936 15.3557i 0.182064 0.560336i −0.817821 0.575472i \(-0.804818\pi\)
0.999885 + 0.0151363i \(0.00481823\pi\)
\(752\) −30.7254 94.5631i −1.12044 3.44836i
\(753\) −17.7812 + 12.9188i −0.647981 + 0.470786i
\(754\) 3.00000 2.17963i 0.109254 0.0793774i
\(755\) 0.201626 + 0.620541i 0.00733793 + 0.0225838i
\(756\) −1.50000 + 4.61653i −0.0545545 + 0.167901i
\(757\) −4.04508 2.93893i −0.147021 0.106817i 0.511843 0.859079i \(-0.328963\pi\)
−0.658864 + 0.752262i \(0.728963\pi\)
\(758\) −65.1591 −2.36668
\(759\) 0 0
\(760\) 27.0344 0.980642
\(761\) 23.6976 + 17.2173i 0.859036 + 0.624126i 0.927623 0.373519i \(-0.121849\pi\)
−0.0685866 + 0.997645i \(0.521849\pi\)
\(762\) 6.23607 19.1926i 0.225909 0.695276i
\(763\) 3.70820 + 11.4127i 0.134246 + 0.413167i
\(764\) 3.21885 2.33863i 0.116454 0.0846086i
\(765\) 0.572949 0.416272i 0.0207150 0.0150503i
\(766\) −10.2812 31.6421i −0.371473 1.14328i
\(767\) −0.538507 + 1.65735i −0.0194444 + 0.0598436i
\(768\) −11.7812 8.55951i −0.425116 0.308865i
\(769\) 34.5066 1.24434 0.622170 0.782883i \(-0.286251\pi\)
0.622170 + 0.782883i \(0.286251\pi\)
\(770\) 0