Properties

Label 363.2.e.b.124.1
Level $363$
Weight $2$
Character 363.124
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 124.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.124
Dual form 363.2.e.b.202.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.11803 + 1.53884i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(1.50000 - 4.61653i) q^{4} +(0.500000 + 0.363271i) q^{5} +(2.11803 + 1.53884i) q^{6} +(0.309017 - 0.951057i) q^{7} +(2.30902 + 7.10642i) q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(-2.11803 + 1.53884i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(1.50000 - 4.61653i) q^{4} +(0.500000 + 0.363271i) q^{5} +(2.11803 + 1.53884i) q^{6} +(0.309017 - 0.951057i) q^{7} +(2.30902 + 7.10642i) q^{8} +(-0.809017 + 0.587785i) q^{9} -1.61803 q^{10} -4.85410 q^{12} +(0.190983 - 0.138757i) q^{13} +(0.809017 + 2.48990i) q^{14} +(0.190983 - 0.587785i) q^{15} +(-7.97214 - 5.79210i) q^{16} +(-0.927051 - 0.673542i) q^{17} +(0.809017 - 2.48990i) q^{18} +(-1.80902 - 5.56758i) q^{19} +(2.42705 - 1.76336i) q^{20} -1.00000 q^{21} +0.236068 q^{23} +(6.04508 - 4.39201i) q^{24} +(-1.42705 - 4.39201i) q^{25} +(-0.190983 + 0.587785i) q^{26} +(0.809017 + 0.587785i) q^{27} +(-3.92705 - 2.85317i) q^{28} +(1.85410 - 5.70634i) q^{29} +(0.500000 + 1.53884i) q^{30} +(4.92705 - 3.57971i) q^{31} +10.8541 q^{32} +3.00000 q^{34} +(0.500000 - 0.363271i) q^{35} +(1.50000 + 4.61653i) q^{36} +(-1.92705 + 5.93085i) q^{37} +(12.3992 + 9.00854i) q^{38} +(-0.190983 - 0.138757i) q^{39} +(-1.42705 + 4.39201i) q^{40} +(-0.0729490 - 0.224514i) q^{41} +(2.11803 - 1.53884i) q^{42} +6.70820 q^{43} -0.618034 q^{45} +(-0.500000 + 0.363271i) q^{46} +(-3.11803 - 9.59632i) q^{47} +(-3.04508 + 9.37181i) q^{48} +(4.85410 + 3.52671i) q^{49} +(9.78115 + 7.10642i) q^{50} +(-0.354102 + 1.08981i) q^{51} +(-0.354102 - 1.08981i) q^{52} +(0.309017 - 0.224514i) q^{53} -2.61803 q^{54} +7.47214 q^{56} +(-4.73607 + 3.44095i) q^{57} +(4.85410 + 14.9394i) q^{58} +(2.28115 - 7.02067i) q^{59} +(-2.42705 - 1.76336i) q^{60} +(-9.35410 - 6.79615i) q^{61} +(-4.92705 + 15.1639i) q^{62} +(0.309017 + 0.951057i) q^{63} +(-7.04508 + 5.11855i) q^{64} +0.145898 q^{65} +1.85410 q^{67} +(-4.50000 + 3.26944i) q^{68} +(-0.0729490 - 0.224514i) q^{69} +(-0.500000 + 1.53884i) q^{70} +(-8.35410 - 6.06961i) q^{71} +(-6.04508 - 4.39201i) q^{72} +(1.76393 - 5.42882i) q^{73} +(-5.04508 - 15.5272i) q^{74} +(-3.73607 + 2.71441i) q^{75} -28.4164 q^{76} +0.618034 q^{78} +(8.89919 - 6.46564i) q^{79} +(-1.88197 - 5.79210i) q^{80} +(0.309017 - 0.951057i) q^{81} +(0.500000 + 0.363271i) q^{82} +(1.19098 + 0.865300i) q^{83} +(-1.50000 + 4.61653i) q^{84} +(-0.218847 - 0.673542i) q^{85} +(-14.2082 + 10.3229i) q^{86} -6.00000 q^{87} -8.23607 q^{89} +(1.30902 - 0.951057i) q^{90} +(-0.0729490 - 0.224514i) q^{91} +(0.354102 - 1.08981i) q^{92} +(-4.92705 - 3.57971i) q^{93} +(21.3713 + 15.5272i) q^{94} +(1.11803 - 3.44095i) q^{95} +(-3.35410 - 10.3229i) q^{96} +(-6.35410 + 4.61653i) q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{6} - q^{7} + 7 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{6} - q^{7} + 7 q^{8} - q^{9} - 2 q^{10} - 6 q^{12} + 3 q^{13} + q^{14} + 3 q^{15} - 14 q^{16} + 3 q^{17} + q^{18} - 5 q^{19} + 3 q^{20} - 4 q^{21} - 8 q^{23} + 13 q^{24} + q^{25} - 3 q^{26} + q^{27} - 9 q^{28} - 6 q^{29} + 2 q^{30} + 13 q^{31} + 30 q^{32} + 12 q^{34} + 2 q^{35} + 6 q^{36} - q^{37} + 25 q^{38} - 3 q^{39} + q^{40} - 7 q^{41} + 4 q^{42} + 2 q^{45} - 2 q^{46} - 8 q^{47} - q^{48} + 6 q^{49} + 19 q^{50} + 12 q^{51} + 12 q^{52} - q^{53} - 6 q^{54} + 12 q^{56} - 10 q^{57} + 6 q^{58} - 11 q^{59} - 3 q^{60} - 24 q^{61} - 13 q^{62} - q^{63} - 17 q^{64} + 14 q^{65} - 6 q^{67} - 18 q^{68} - 7 q^{69} - 2 q^{70} - 20 q^{71} - 13 q^{72} + 16 q^{73} - 9 q^{74} - 6 q^{75} - 60 q^{76} - 2 q^{78} + 11 q^{79} - 12 q^{80} - q^{81} + 2 q^{82} + 7 q^{83} - 6 q^{84} - 21 q^{85} - 30 q^{86} - 24 q^{87} - 24 q^{89} + 3 q^{90} - 7 q^{91} - 12 q^{92} - 13 q^{93} + 43 q^{94} - 12 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.11803 + 1.53884i −1.49768 + 1.08813i −0.526381 + 0.850249i \(0.676451\pi\)
−0.971295 + 0.237877i \(0.923549\pi\)
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) 1.50000 4.61653i 0.750000 2.30826i
\(5\) 0.500000 + 0.363271i 0.223607 + 0.162460i 0.693949 0.720024i \(-0.255869\pi\)
−0.470342 + 0.882484i \(0.655869\pi\)
\(6\) 2.11803 + 1.53884i 0.864684 + 0.628230i
\(7\) 0.309017 0.951057i 0.116797 0.359466i −0.875520 0.483181i \(-0.839481\pi\)
0.992318 + 0.123716i \(0.0394811\pi\)
\(8\) 2.30902 + 7.10642i 0.816361 + 2.51250i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −1.61803 −0.511667
\(11\) 0 0
\(12\) −4.85410 −1.40126
\(13\) 0.190983 0.138757i 0.0529692 0.0384843i −0.560986 0.827826i \(-0.689578\pi\)
0.613955 + 0.789341i \(0.289578\pi\)
\(14\) 0.809017 + 2.48990i 0.216219 + 0.665453i
\(15\) 0.190983 0.587785i 0.0493116 0.151765i
\(16\) −7.97214 5.79210i −1.99303 1.44802i
\(17\) −0.927051 0.673542i −0.224843 0.163358i 0.469661 0.882847i \(-0.344376\pi\)
−0.694504 + 0.719489i \(0.744376\pi\)
\(18\) 0.809017 2.48990i 0.190687 0.586875i
\(19\) −1.80902 5.56758i −0.415017 1.27729i −0.912236 0.409666i \(-0.865645\pi\)
0.497219 0.867625i \(-0.334355\pi\)
\(20\) 2.42705 1.76336i 0.542705 0.394298i
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) 6.04508 4.39201i 1.23395 0.896516i
\(25\) −1.42705 4.39201i −0.285410 0.878402i
\(26\) −0.190983 + 0.587785i −0.0374548 + 0.115274i
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) −3.92705 2.85317i −0.742143 0.539198i
\(29\) 1.85410 5.70634i 0.344298 1.05964i −0.617660 0.786445i \(-0.711919\pi\)
0.961958 0.273196i \(-0.0880806\pi\)
\(30\) 0.500000 + 1.53884i 0.0912871 + 0.280953i
\(31\) 4.92705 3.57971i 0.884924 0.642935i −0.0496252 0.998768i \(-0.515803\pi\)
0.934550 + 0.355833i \(0.115803\pi\)
\(32\) 10.8541 1.91875
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0.500000 0.363271i 0.0845154 0.0614041i
\(36\) 1.50000 + 4.61653i 0.250000 + 0.769421i
\(37\) −1.92705 + 5.93085i −0.316805 + 0.975026i 0.658200 + 0.752843i \(0.271318\pi\)
−0.975005 + 0.222183i \(0.928682\pi\)
\(38\) 12.3992 + 9.00854i 2.01141 + 1.46138i
\(39\) −0.190983 0.138757i −0.0305818 0.0222189i
\(40\) −1.42705 + 4.39201i −0.225637 + 0.694438i
\(41\) −0.0729490 0.224514i −0.0113927 0.0350632i 0.945199 0.326496i \(-0.105868\pi\)
−0.956591 + 0.291433i \(0.905868\pi\)
\(42\) 2.11803 1.53884i 0.326820 0.237448i
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) −0.618034 −0.0921311
\(46\) −0.500000 + 0.363271i −0.0737210 + 0.0535614i
\(47\) −3.11803 9.59632i −0.454812 1.39977i −0.871356 0.490652i \(-0.836759\pi\)
0.416544 0.909116i \(-0.363241\pi\)
\(48\) −3.04508 + 9.37181i −0.439520 + 1.35270i
\(49\) 4.85410 + 3.52671i 0.693443 + 0.503816i
\(50\) 9.78115 + 7.10642i 1.38326 + 1.00500i
\(51\) −0.354102 + 1.08981i −0.0495842 + 0.152604i
\(52\) −0.354102 1.08981i −0.0491051 0.151130i
\(53\) 0.309017 0.224514i 0.0424467 0.0308394i −0.566360 0.824158i \(-0.691649\pi\)
0.608806 + 0.793319i \(0.291649\pi\)
\(54\) −2.61803 −0.356269
\(55\) 0 0
\(56\) 7.47214 0.998506
\(57\) −4.73607 + 3.44095i −0.627308 + 0.455766i
\(58\) 4.85410 + 14.9394i 0.637375 + 1.96164i
\(59\) 2.28115 7.02067i 0.296981 0.914013i −0.685568 0.728009i \(-0.740446\pi\)
0.982549 0.186004i \(-0.0595539\pi\)
\(60\) −2.42705 1.76336i −0.313331 0.227648i
\(61\) −9.35410 6.79615i −1.19767 0.870158i −0.203617 0.979051i \(-0.565270\pi\)
−0.994054 + 0.108893i \(0.965270\pi\)
\(62\) −4.92705 + 15.1639i −0.625736 + 1.92582i
\(63\) 0.309017 + 0.951057i 0.0389325 + 0.119822i
\(64\) −7.04508 + 5.11855i −0.880636 + 0.639819i
\(65\) 0.145898 0.0180964
\(66\) 0 0
\(67\) 1.85410 0.226515 0.113257 0.993566i \(-0.463872\pi\)
0.113257 + 0.993566i \(0.463872\pi\)
\(68\) −4.50000 + 3.26944i −0.545705 + 0.396478i
\(69\) −0.0729490 0.224514i −0.00878203 0.0270283i
\(70\) −0.500000 + 1.53884i −0.0597614 + 0.183927i
\(71\) −8.35410 6.06961i −0.991449 0.720330i −0.0312115 0.999513i \(-0.509937\pi\)
−0.960238 + 0.279183i \(0.909937\pi\)
\(72\) −6.04508 4.39201i −0.712420 0.517603i
\(73\) 1.76393 5.42882i 0.206453 0.635396i −0.793198 0.608964i \(-0.791585\pi\)
0.999651 0.0264320i \(-0.00841455\pi\)
\(74\) −5.04508 15.5272i −0.586479 1.80500i
\(75\) −3.73607 + 2.71441i −0.431404 + 0.313433i
\(76\) −28.4164 −3.25959
\(77\) 0 0
\(78\) 0.618034 0.0699786
\(79\) 8.89919 6.46564i 1.00124 0.727441i 0.0388837 0.999244i \(-0.487620\pi\)
0.962353 + 0.271803i \(0.0876198\pi\)
\(80\) −1.88197 5.79210i −0.210410 0.647576i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0.500000 + 0.363271i 0.0552158 + 0.0401166i
\(83\) 1.19098 + 0.865300i 0.130727 + 0.0949790i 0.651227 0.758883i \(-0.274254\pi\)
−0.520500 + 0.853862i \(0.674254\pi\)
\(84\) −1.50000 + 4.61653i −0.163663 + 0.503704i
\(85\) −0.218847 0.673542i −0.0237373 0.0730559i
\(86\) −14.2082 + 10.3229i −1.53211 + 1.11314i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) 1.30902 0.951057i 0.137983 0.100250i
\(91\) −0.0729490 0.224514i −0.00764713 0.0235355i
\(92\) 0.354102 1.08981i 0.0369177 0.113621i
\(93\) −4.92705 3.57971i −0.510911 0.371199i
\(94\) 21.3713 + 15.5272i 2.20428 + 1.60151i
\(95\) 1.11803 3.44095i 0.114708 0.353035i
\(96\) −3.35410 10.3229i −0.342327 1.05357i
\(97\) −6.35410 + 4.61653i −0.645161 + 0.468737i −0.861620 0.507555i \(-0.830549\pi\)
0.216458 + 0.976292i \(0.430549\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) −8.28115 + 6.01661i −0.824006 + 0.598675i −0.917857 0.396911i \(-0.870082\pi\)
0.0938515 + 0.995586i \(0.470082\pi\)
\(102\) −0.927051 2.85317i −0.0917917 0.282506i
\(103\) −3.38197 + 10.4086i −0.333235 + 1.02559i 0.634350 + 0.773046i \(0.281268\pi\)
−0.967585 + 0.252546i \(0.918732\pi\)
\(104\) 1.42705 + 1.03681i 0.139934 + 0.101668i
\(105\) −0.500000 0.363271i −0.0487950 0.0354516i
\(106\) −0.309017 + 0.951057i −0.0300144 + 0.0923748i
\(107\) 3.54508 + 10.9106i 0.342716 + 1.05477i 0.962795 + 0.270233i \(0.0871006\pi\)
−0.620079 + 0.784540i \(0.712899\pi\)
\(108\) 3.92705 2.85317i 0.377881 0.274546i
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 6.23607 0.591901
\(112\) −7.97214 + 5.79210i −0.753296 + 0.547302i
\(113\) 4.16312 + 12.8128i 0.391633 + 1.20532i 0.931553 + 0.363607i \(0.118455\pi\)
−0.539919 + 0.841717i \(0.681545\pi\)
\(114\) 4.73607 14.5761i 0.443573 1.36518i
\(115\) 0.118034 + 0.0857567i 0.0110067 + 0.00799685i
\(116\) −23.5623 17.1190i −2.18771 1.58946i
\(117\) −0.0729490 + 0.224514i −0.00674414 + 0.0207563i
\(118\) 5.97214 + 18.3803i 0.549780 + 1.69205i
\(119\) −0.927051 + 0.673542i −0.0849826 + 0.0617435i
\(120\) 4.61803 0.421567
\(121\) 0 0
\(122\) 30.2705 2.74056
\(123\) −0.190983 + 0.138757i −0.0172204 + 0.0125113i
\(124\) −9.13525 28.1154i −0.820370 2.52484i
\(125\) 1.83688 5.65334i 0.164296 0.505650i
\(126\) −2.11803 1.53884i −0.188689 0.137091i
\(127\) 6.23607 + 4.53077i 0.553362 + 0.402041i 0.829023 0.559214i \(-0.188897\pi\)
−0.275662 + 0.961255i \(0.588897\pi\)
\(128\) 0.336881 1.03681i 0.0297764 0.0916422i
\(129\) −2.07295 6.37988i −0.182513 0.561717i
\(130\) −0.309017 + 0.224514i −0.0271026 + 0.0196912i
\(131\) 11.7984 1.03083 0.515414 0.856941i \(-0.327638\pi\)
0.515414 + 0.856941i \(0.327638\pi\)
\(132\) 0 0
\(133\) −5.85410 −0.507615
\(134\) −3.92705 + 2.85317i −0.339246 + 0.246476i
\(135\) 0.190983 + 0.587785i 0.0164372 + 0.0505885i
\(136\) 2.64590 8.14324i 0.226884 0.698277i
\(137\) −7.89919 5.73910i −0.674873 0.490324i 0.196780 0.980448i \(-0.436952\pi\)
−0.871653 + 0.490124i \(0.836952\pi\)
\(138\) 0.500000 + 0.363271i 0.0425628 + 0.0309237i
\(139\) −4.50000 + 13.8496i −0.381685 + 1.17471i 0.557172 + 0.830397i \(0.311887\pi\)
−0.938857 + 0.344308i \(0.888113\pi\)
\(140\) −0.927051 2.85317i −0.0783501 0.241137i
\(141\) −8.16312 + 5.93085i −0.687459 + 0.499468i
\(142\) 27.0344 2.26868
\(143\) 0 0
\(144\) 9.85410 0.821175
\(145\) 3.00000 2.17963i 0.249136 0.181008i
\(146\) 4.61803 + 14.2128i 0.382191 + 1.17626i
\(147\) 1.85410 5.70634i 0.152924 0.470651i
\(148\) 24.4894 + 17.7926i 2.01301 + 1.46254i
\(149\) −3.42705 2.48990i −0.280755 0.203980i 0.438492 0.898735i \(-0.355513\pi\)
−0.719247 + 0.694755i \(0.755513\pi\)
\(150\) 3.73607 11.4984i 0.305049 0.938843i
\(151\) −0.326238 1.00406i −0.0265489 0.0817090i 0.936904 0.349586i \(-0.113678\pi\)
−0.963453 + 0.267877i \(0.913678\pi\)
\(152\) 35.3885 25.7113i 2.87039 2.08546i
\(153\) 1.14590 0.0926404
\(154\) 0 0
\(155\) 3.76393 0.302326
\(156\) −0.927051 + 0.673542i −0.0742235 + 0.0539265i
\(157\) 4.85410 + 14.9394i 0.387400 + 1.19229i 0.934725 + 0.355373i \(0.115646\pi\)
−0.547325 + 0.836920i \(0.684354\pi\)
\(158\) −8.89919 + 27.3889i −0.707981 + 2.17894i
\(159\) −0.309017 0.224514i −0.0245066 0.0178051i
\(160\) 5.42705 + 3.94298i 0.429046 + 0.311720i
\(161\) 0.0729490 0.224514i 0.00574919 0.0176942i
\(162\) 0.809017 + 2.48990i 0.0635624 + 0.195625i
\(163\) 4.16312 3.02468i 0.326081 0.236911i −0.412685 0.910874i \(-0.635409\pi\)
0.738766 + 0.673962i \(0.235409\pi\)
\(164\) −1.14590 −0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) 9.73607 7.07367i 0.753400 0.547377i −0.143479 0.989653i \(-0.545829\pi\)
0.896879 + 0.442277i \(0.145829\pi\)
\(168\) −2.30902 7.10642i −0.178145 0.548272i
\(169\) −4.00000 + 12.3107i −0.307692 + 0.946980i
\(170\) 1.50000 + 1.08981i 0.115045 + 0.0835849i
\(171\) 4.73607 + 3.44095i 0.362176 + 0.263136i
\(172\) 10.0623 30.9686i 0.767244 2.36133i
\(173\) 5.57295 + 17.1518i 0.423703 + 1.30403i 0.904230 + 0.427045i \(0.140445\pi\)
−0.480527 + 0.876980i \(0.659555\pi\)
\(174\) 12.7082 9.23305i 0.963406 0.699956i
\(175\) −4.61803 −0.349091
\(176\) 0 0
\(177\) −7.38197 −0.554863
\(178\) 17.4443 12.6740i 1.30750 0.949957i
\(179\) −2.63525 8.11048i −0.196968 0.606206i −0.999948 0.0101995i \(-0.996753\pi\)
0.802980 0.596006i \(-0.203247\pi\)
\(180\) −0.927051 + 2.85317i −0.0690983 + 0.212663i
\(181\) −2.04508 1.48584i −0.152010 0.110442i 0.509181 0.860660i \(-0.329949\pi\)
−0.661191 + 0.750218i \(0.729949\pi\)
\(182\) 0.500000 + 0.363271i 0.0370625 + 0.0269275i
\(183\) −3.57295 + 10.9964i −0.264120 + 0.812878i
\(184\) 0.545085 + 1.67760i 0.0401842 + 0.123674i
\(185\) −3.11803 + 2.26538i −0.229242 + 0.166554i
\(186\) 15.9443 1.16909
\(187\) 0 0
\(188\) −48.9787 −3.57214
\(189\) 0.809017 0.587785i 0.0588473 0.0427551i
\(190\) 2.92705 + 9.00854i 0.212351 + 0.653548i
\(191\) −0.253289 + 0.779543i −0.0183273 + 0.0564058i −0.959802 0.280678i \(-0.909441\pi\)
0.941475 + 0.337084i \(0.109441\pi\)
\(192\) 7.04508 + 5.11855i 0.508435 + 0.369400i
\(193\) −2.54508 1.84911i −0.183199 0.133102i 0.492406 0.870366i \(-0.336118\pi\)
−0.675605 + 0.737264i \(0.736118\pi\)
\(194\) 6.35410 19.5559i 0.456198 1.40403i
\(195\) −0.0450850 0.138757i −0.00322860 0.00993661i
\(196\) 23.5623 17.1190i 1.68302 1.22279i
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) 27.9164 20.2825i 1.97399 1.43419i
\(201\) −0.572949 1.76336i −0.0404127 0.124378i
\(202\) 8.28115 25.4868i 0.582660 1.79324i
\(203\) −4.85410 3.52671i −0.340691 0.247527i
\(204\) 4.50000 + 3.26944i 0.315063 + 0.228907i
\(205\) 0.0450850 0.138757i 0.00314887 0.00969123i
\(206\) −8.85410 27.2501i −0.616895 1.89861i
\(207\) −0.190983 + 0.138757i −0.0132742 + 0.00964430i
\(208\) −2.32624 −0.161296
\(209\) 0 0
\(210\) 1.61803 0.111655
\(211\) 2.92705 2.12663i 0.201506 0.146403i −0.482456 0.875920i \(-0.660255\pi\)
0.683963 + 0.729517i \(0.260255\pi\)
\(212\) −0.572949 1.76336i −0.0393503 0.121108i
\(213\) −3.19098 + 9.82084i −0.218643 + 0.672913i
\(214\) −24.2984 17.6538i −1.66100 1.20679i
\(215\) 3.35410 + 2.43690i 0.228748 + 0.166195i
\(216\) −2.30902 + 7.10642i −0.157109 + 0.483531i
\(217\) −1.88197 5.79210i −0.127756 0.393193i
\(218\) −25.4164 + 18.4661i −1.72142 + 1.25068i
\(219\) −5.70820 −0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) −13.2082 + 9.59632i −0.886477 + 0.644063i
\(223\) 2.21885 + 6.82891i 0.148585 + 0.457298i 0.997455 0.0713048i \(-0.0227163\pi\)
−0.848870 + 0.528602i \(0.822716\pi\)
\(224\) 3.35410 10.3229i 0.224105 0.689725i
\(225\) 3.73607 + 2.71441i 0.249071 + 0.180961i
\(226\) −28.5344 20.7315i −1.89808 1.37904i
\(227\) −4.07295 + 12.5352i −0.270331 + 0.831994i 0.720086 + 0.693885i \(0.244102\pi\)
−0.990417 + 0.138109i \(0.955898\pi\)
\(228\) 8.78115 + 27.0256i 0.581546 + 1.78981i
\(229\) −0.381966 + 0.277515i −0.0252410 + 0.0183387i −0.600334 0.799749i \(-0.704966\pi\)
0.575093 + 0.818088i \(0.304966\pi\)
\(230\) −0.381966 −0.0251861
\(231\) 0 0
\(232\) 44.8328 2.94342
\(233\) −3.35410 + 2.43690i −0.219735 + 0.159646i −0.692207 0.721699i \(-0.743362\pi\)
0.472473 + 0.881345i \(0.343362\pi\)
\(234\) −0.190983 0.587785i −0.0124849 0.0384247i
\(235\) 1.92705 5.93085i 0.125707 0.386886i
\(236\) −28.9894 21.0620i −1.88705 1.37102i
\(237\) −8.89919 6.46564i −0.578064 0.419988i
\(238\) 0.927051 2.85317i 0.0600918 0.184944i
\(239\) −0.118034 0.363271i −0.00763498 0.0234981i 0.947166 0.320742i \(-0.103932\pi\)
−0.954801 + 0.297244i \(0.903932\pi\)
\(240\) −4.92705 + 3.57971i −0.318040 + 0.231069i
\(241\) −8.29180 −0.534122 −0.267061 0.963680i \(-0.586052\pi\)
−0.267061 + 0.963680i \(0.586052\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −45.4058 + 32.9892i −2.90681 + 2.11192i
\(245\) 1.14590 + 3.52671i 0.0732087 + 0.225313i
\(246\) 0.190983 0.587785i 0.0121766 0.0374758i
\(247\) −1.11803 0.812299i −0.0711388 0.0516854i
\(248\) 36.8156 + 26.7481i 2.33779 + 1.69851i
\(249\) 0.454915 1.40008i 0.0288291 0.0887267i
\(250\) 4.80902 + 14.8006i 0.304149 + 0.936074i
\(251\) 17.7812 12.9188i 1.12234 0.815425i 0.137775 0.990464i \(-0.456005\pi\)
0.984562 + 0.175038i \(0.0560050\pi\)
\(252\) 4.85410 0.305780
\(253\) 0 0
\(254\) −20.1803 −1.26623
\(255\) −0.572949 + 0.416272i −0.0358795 + 0.0260680i
\(256\) −4.50000 13.8496i −0.281250 0.865598i
\(257\) 9.19098 28.2869i 0.573318 1.76449i −0.0685195 0.997650i \(-0.521828\pi\)
0.641837 0.766841i \(-0.278172\pi\)
\(258\) 14.2082 + 10.3229i 0.884564 + 0.642673i
\(259\) 5.04508 + 3.66547i 0.313486 + 0.227761i
\(260\) 0.218847 0.673542i 0.0135723 0.0417713i
\(261\) 1.85410 + 5.70634i 0.114766 + 0.353214i
\(262\) −24.9894 + 18.1558i −1.54385 + 1.12167i
\(263\) 15.2705 0.941620 0.470810 0.882235i \(-0.343962\pi\)
0.470810 + 0.882235i \(0.343962\pi\)
\(264\) 0 0
\(265\) 0.236068 0.0145015
\(266\) 12.3992 9.00854i 0.760243 0.552349i
\(267\) 2.54508 + 7.83297i 0.155757 + 0.479370i
\(268\) 2.78115 8.55951i 0.169886 0.522855i
\(269\) 20.5623 + 14.9394i 1.25371 + 0.910871i 0.998431 0.0559978i \(-0.0178340\pi\)
0.255275 + 0.966868i \(0.417834\pi\)
\(270\) −1.30902 0.951057i −0.0796642 0.0578795i
\(271\) −5.75329 + 17.7068i −0.349487 + 1.07561i 0.609650 + 0.792671i \(0.291310\pi\)
−0.959137 + 0.282941i \(0.908690\pi\)
\(272\) 3.48936 + 10.7391i 0.211573 + 0.651156i
\(273\) −0.190983 + 0.138757i −0.0115588 + 0.00839797i
\(274\) 25.5623 1.54428
\(275\) 0 0
\(276\) −1.14590 −0.0689750
\(277\) −23.6353 + 17.1720i −1.42010 + 1.03177i −0.428351 + 0.903613i \(0.640905\pi\)
−0.991754 + 0.128154i \(0.959095\pi\)
\(278\) −11.7812 36.2587i −0.706587 2.17465i
\(279\) −1.88197 + 5.79210i −0.112670 + 0.346764i
\(280\) 3.73607 + 2.71441i 0.223273 + 0.162217i
\(281\) 20.0344 + 14.5559i 1.19515 + 0.868331i 0.993799 0.111188i \(-0.0354655\pi\)
0.201355 + 0.979518i \(0.435465\pi\)
\(282\) 8.16312 25.1235i 0.486107 1.49608i
\(283\) 1.76393 + 5.42882i 0.104855 + 0.322710i 0.989696 0.143182i \(-0.0457335\pi\)
−0.884841 + 0.465892i \(0.845733\pi\)
\(284\) −40.5517 + 29.4625i −2.40630 + 1.74828i
\(285\) −3.61803 −0.214314
\(286\) 0 0
\(287\) −0.236068 −0.0139347
\(288\) −8.78115 + 6.37988i −0.517434 + 0.375938i
\(289\) −4.84752 14.9191i −0.285148 0.877597i
\(290\) −3.00000 + 9.23305i −0.176166 + 0.542183i
\(291\) 6.35410 + 4.61653i 0.372484 + 0.270626i
\(292\) −22.4164 16.2865i −1.31182 0.953094i
\(293\) 6.69098 20.5927i 0.390891 1.20304i −0.541224 0.840878i \(-0.682039\pi\)
0.932115 0.362162i \(-0.117961\pi\)
\(294\) 4.85410 + 14.9394i 0.283097 + 0.871283i
\(295\) 3.69098 2.68166i 0.214897 0.156132i
\(296\) −46.5967 −2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) 0.0450850 0.0327561i 0.00260733 0.00189434i
\(300\) 6.92705 + 21.3193i 0.399933 + 1.23087i
\(301\) 2.07295 6.37988i 0.119483 0.367730i
\(302\) 2.23607 + 1.62460i 0.128671 + 0.0934851i
\(303\) 8.28115 + 6.01661i 0.475740 + 0.345645i
\(304\) −17.8262 + 54.8635i −1.02240 + 3.14664i
\(305\) −2.20820 6.79615i −0.126441 0.389147i
\(306\) −2.42705 + 1.76336i −0.138745 + 0.100804i
\(307\) −27.9787 −1.59683 −0.798415 0.602108i \(-0.794328\pi\)
−0.798415 + 0.602108i \(0.794328\pi\)
\(308\) 0 0
\(309\) 10.9443 0.622598
\(310\) −7.97214 + 5.79210i −0.452787 + 0.328969i
\(311\) 3.60081 + 11.0822i 0.204183 + 0.628412i 0.999746 + 0.0225404i \(0.00717543\pi\)
−0.795563 + 0.605871i \(0.792825\pi\)
\(312\) 0.545085 1.67760i 0.0308594 0.0949753i
\(313\) 2.04508 + 1.48584i 0.115595 + 0.0839847i 0.644081 0.764957i \(-0.277240\pi\)
−0.528486 + 0.848942i \(0.677240\pi\)
\(314\) −33.2705 24.1724i −1.87756 1.36413i
\(315\) −0.190983 + 0.587785i −0.0107607 + 0.0331179i
\(316\) −16.5000 50.7818i −0.928198 2.85670i
\(317\) 5.51722 4.00850i 0.309878 0.225140i −0.421966 0.906612i \(-0.638660\pi\)
0.731844 + 0.681472i \(0.238660\pi\)
\(318\) 1.00000 0.0560772
\(319\) 0 0
\(320\) −5.38197 −0.300861
\(321\) 9.28115 6.74315i 0.518023 0.376366i
\(322\) 0.190983 + 0.587785i 0.0106431 + 0.0327560i
\(323\) −2.07295 + 6.37988i −0.115342 + 0.354986i
\(324\) −3.92705 2.85317i −0.218169 0.158509i
\(325\) −0.881966 0.640786i −0.0489227 0.0355444i
\(326\) −4.16312 + 12.8128i −0.230574 + 0.709633i
\(327\) −3.70820 11.4127i −0.205064 0.631123i
\(328\) 1.42705 1.03681i 0.0787957 0.0572484i
\(329\) −10.0902 −0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) 5.78115 4.20025i 0.317282 0.230519i
\(333\) −1.92705 5.93085i −0.105602 0.325009i
\(334\) −9.73607 + 29.9645i −0.532734 + 1.63959i
\(335\) 0.927051 + 0.673542i 0.0506502 + 0.0367995i
\(336\) 7.97214 + 5.79210i 0.434916 + 0.315985i
\(337\) 5.61803 17.2905i 0.306034 0.941875i −0.673256 0.739410i \(-0.735105\pi\)
0.979289 0.202465i \(-0.0648954\pi\)
\(338\) −10.4721 32.2299i −0.569609 1.75308i
\(339\) 10.8992 7.91872i 0.591963 0.430086i
\(340\) −3.43769 −0.186435
\(341\) 0 0
\(342\) −15.3262 −0.828748
\(343\) 10.5172 7.64121i 0.567877 0.412586i
\(344\) 15.4894 + 47.6713i 0.835130 + 2.57027i
\(345\) 0.0450850 0.138757i 0.00242729 0.00747044i
\(346\) −38.1976 27.7522i −2.05351 1.49196i
\(347\) −1.23607 0.898056i −0.0663556 0.0482102i 0.554113 0.832441i \(-0.313058\pi\)
−0.620469 + 0.784231i \(0.713058\pi\)
\(348\) −9.00000 + 27.6992i −0.482451 + 1.48483i
\(349\) −3.92705 12.0862i −0.210210 0.646961i −0.999459 0.0328870i \(-0.989530\pi\)
0.789249 0.614073i \(-0.210470\pi\)
\(350\) 9.78115 7.10642i 0.522825 0.379854i
\(351\) 0.236068 0.0126004
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 15.6353 11.3597i 0.831004 0.603760i
\(355\) −1.97214 6.06961i −0.104670 0.322141i
\(356\) −12.3541 + 38.0220i −0.654766 + 2.01516i
\(357\) 0.927051 + 0.673542i 0.0490647 + 0.0356476i
\(358\) 18.0623 + 13.1230i 0.954623 + 0.693574i
\(359\) 3.00000 9.23305i 0.158334 0.487302i −0.840149 0.542355i \(-0.817533\pi\)
0.998483 + 0.0550531i \(0.0175328\pi\)
\(360\) −1.42705 4.39201i −0.0752122 0.231479i
\(361\) −12.3541 + 8.97578i −0.650216 + 0.472409i
\(362\) 6.61803 0.347836
\(363\) 0 0
\(364\) −1.14590 −0.0600614
\(365\) 2.85410 2.07363i 0.149391 0.108539i
\(366\) −9.35410 28.7890i −0.488947 1.50482i
\(367\) 6.84346 21.0620i 0.357226 1.09943i −0.597482 0.801882i \(-0.703832\pi\)
0.954708 0.297545i \(-0.0961679\pi\)
\(368\) −1.88197 1.36733i −0.0981043 0.0712769i
\(369\) 0.190983 + 0.138757i 0.00994218 + 0.00722342i
\(370\) 3.11803 9.59632i 0.162099 0.498889i
\(371\) −0.118034 0.363271i −0.00612802 0.0188601i
\(372\) −23.9164 + 17.3763i −1.24001 + 0.900919i
\(373\) −0.888544 −0.0460071 −0.0230035 0.999735i \(-0.507323\pi\)
−0.0230035 + 0.999735i \(0.507323\pi\)
\(374\) 0 0
\(375\) −5.94427 −0.306961
\(376\) 60.9959 44.3161i 3.14563 2.28543i
\(377\) −0.437694 1.34708i −0.0225424 0.0693784i
\(378\) −0.809017 + 2.48990i −0.0416113 + 0.128067i
\(379\) 20.1353 + 14.6291i 1.03428 + 0.751447i 0.969161 0.246430i \(-0.0792576\pi\)
0.0651180 + 0.997878i \(0.479258\pi\)
\(380\) −14.2082 10.3229i −0.728865 0.529552i
\(381\) 2.38197 7.33094i 0.122032 0.375575i
\(382\) −0.663119 2.04087i −0.0339281 0.104420i
\(383\) 10.2812 7.46969i 0.525342 0.381684i −0.293270 0.956030i \(-0.594744\pi\)
0.818613 + 0.574346i \(0.194744\pi\)
\(384\) −1.09017 −0.0556325
\(385\) 0 0
\(386\) 8.23607 0.419205
\(387\) −5.42705 + 3.94298i −0.275873 + 0.200433i
\(388\) 11.7812 + 36.2587i 0.598097 + 1.84075i
\(389\) −11.3541 + 34.9443i −0.575676 + 1.77175i 0.0581906 + 0.998305i \(0.481467\pi\)
−0.633866 + 0.773443i \(0.718533\pi\)
\(390\) 0.309017 + 0.224514i 0.0156477 + 0.0113687i
\(391\) −0.218847 0.159002i −0.0110676 0.00804106i
\(392\) −13.8541 + 42.6385i −0.699738 + 2.15357i
\(393\) −3.64590 11.2209i −0.183911 0.566021i
\(394\) 27.6074 20.0579i 1.39084 1.01050i
\(395\) 6.79837 0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) −14.2082 + 10.3229i −0.712193 + 0.517438i
\(399\) 1.80902 + 5.56758i 0.0905641 + 0.278728i
\(400\) −14.0623 + 43.2793i −0.703115 + 2.16397i
\(401\) 25.6353 + 18.6251i 1.28016 + 0.930093i 0.999558 0.0297299i \(-0.00946472\pi\)
0.280606 + 0.959823i \(0.409465\pi\)
\(402\) 3.92705 + 2.85317i 0.195864 + 0.142303i
\(403\) 0.444272 1.36733i 0.0221308 0.0681115i
\(404\) 15.3541 + 47.2551i 0.763895 + 2.35103i
\(405\) 0.500000 0.363271i 0.0248452 0.0180511i
\(406\) 15.7082 0.779585
\(407\) 0 0
\(408\) −8.56231 −0.423897
\(409\) −5.23607 + 3.80423i −0.258907 + 0.188107i −0.709665 0.704539i \(-0.751154\pi\)
0.450758 + 0.892646i \(0.351154\pi\)
\(410\) 0.118034 + 0.363271i 0.00582928 + 0.0179407i
\(411\) −3.01722 + 9.28605i −0.148829 + 0.458047i
\(412\) 42.9787 + 31.2259i 2.11741 + 1.53839i
\(413\) −5.97214 4.33901i −0.293870 0.213509i
\(414\) 0.190983 0.587785i 0.00938630 0.0288881i
\(415\) 0.281153 + 0.865300i 0.0138013 + 0.0424759i
\(416\) 2.07295 1.50609i 0.101635 0.0738419i
\(417\) 14.5623 0.713119
\(418\) 0 0
\(419\) 31.4508 1.53647 0.768237 0.640165i \(-0.221134\pi\)
0.768237 + 0.640165i \(0.221134\pi\)
\(420\) −2.42705 + 1.76336i −0.118428 + 0.0860430i
\(421\) 3.24671 + 9.99235i 0.158235 + 0.486997i 0.998474 0.0552185i \(-0.0175855\pi\)
−0.840239 + 0.542216i \(0.817586\pi\)
\(422\) −2.92705 + 9.00854i −0.142487 + 0.438529i
\(423\) 8.16312 + 5.93085i 0.396904 + 0.288368i
\(424\) 2.30902 + 1.67760i 0.112136 + 0.0814714i
\(425\) −1.63525 + 5.03280i −0.0793215 + 0.244127i
\(426\) −8.35410 25.7113i −0.404758 1.24572i
\(427\) −9.35410 + 6.79615i −0.452677 + 0.328889i
\(428\) 55.6869 2.69173
\(429\) 0 0
\(430\) −10.8541 −0.523431
\(431\) −4.78115 + 3.47371i −0.230300 + 0.167323i −0.696951 0.717119i \(-0.745460\pi\)
0.466651 + 0.884442i \(0.345460\pi\)
\(432\) −3.04508 9.37181i −0.146507 0.450901i
\(433\) 10.9098 33.5770i 0.524293 1.61361i −0.241417 0.970422i \(-0.577612\pi\)
0.765710 0.643186i \(-0.222388\pi\)
\(434\) 12.8992 + 9.37181i 0.619181 + 0.449861i
\(435\) −3.00000 2.17963i −0.143839 0.104505i
\(436\) 18.0000 55.3983i 0.862044 2.65310i
\(437\) −0.427051 1.31433i −0.0204286 0.0628728i
\(438\) 12.0902 8.78402i 0.577691 0.419717i
\(439\) −23.2918 −1.11166 −0.555828 0.831297i \(-0.687599\pi\)
−0.555828 + 0.831297i \(0.687599\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0.572949 0.416272i 0.0272524 0.0198000i
\(443\) −9.76393 30.0503i −0.463898 1.42773i −0.860363 0.509682i \(-0.829763\pi\)
0.396464 0.918050i \(-0.370237\pi\)
\(444\) 9.35410 28.7890i 0.443926 1.36626i
\(445\) −4.11803 2.99193i −0.195214 0.141831i
\(446\) −15.2082 11.0494i −0.720129 0.523205i
\(447\) −1.30902 + 4.02874i −0.0619144 + 0.190553i
\(448\) 2.69098 + 8.28199i 0.127137 + 0.391287i
\(449\) 7.32624 5.32282i 0.345747 0.251200i −0.401336 0.915931i \(-0.631454\pi\)
0.747082 + 0.664731i \(0.231454\pi\)
\(450\) −12.0902 −0.569936
\(451\) 0 0
\(452\) 65.3951 3.07593
\(453\) −0.854102 + 0.620541i −0.0401292 + 0.0291556i
\(454\) −10.6631 32.8177i −0.500445 1.54021i
\(455\) 0.0450850 0.138757i 0.00211362 0.00650504i
\(456\) −35.3885 25.7113i −1.65722 1.20404i
\(457\) 19.3992 + 14.0943i 0.907456 + 0.659305i 0.940370 0.340153i \(-0.110479\pi\)
−0.0329144 + 0.999458i \(0.510479\pi\)
\(458\) 0.381966 1.17557i 0.0178481 0.0549308i
\(459\) −0.354102 1.08981i −0.0165281 0.0508682i
\(460\) 0.572949 0.416272i 0.0267139 0.0194088i
\(461\) −9.27051 −0.431771 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(462\) 0 0
\(463\) 1.72949 0.0803762 0.0401881 0.999192i \(-0.487204\pi\)
0.0401881 + 0.999192i \(0.487204\pi\)
\(464\) −47.8328 + 34.7526i −2.22058 + 1.61335i
\(465\) −1.16312 3.57971i −0.0539384 0.166005i
\(466\) 3.35410 10.3229i 0.155376 0.478197i
\(467\) −16.8992 12.2780i −0.782001 0.568157i 0.123578 0.992335i \(-0.460563\pi\)
−0.905579 + 0.424178i \(0.860563\pi\)
\(468\) 0.927051 + 0.673542i 0.0428529 + 0.0311345i
\(469\) 0.572949 1.76336i 0.0264563 0.0814242i
\(470\) 5.04508 + 15.5272i 0.232712 + 0.716215i
\(471\) 12.7082 9.23305i 0.585563 0.425437i
\(472\) 55.1591 2.53890
\(473\) 0 0
\(474\) 28.7984 1.32275
\(475\) −21.8713 + 15.8904i −1.00353 + 0.729104i
\(476\) 1.71885 + 5.29007i 0.0787832 + 0.242470i
\(477\) −0.118034 + 0.363271i −0.00540441 + 0.0166330i
\(478\) 0.809017 + 0.587785i 0.0370036 + 0.0268847i
\(479\) −22.9615 16.6825i −1.04914 0.762243i −0.0770892 0.997024i \(-0.524563\pi\)
−0.972048 + 0.234781i \(0.924563\pi\)
\(480\) 2.07295 6.37988i 0.0946167 0.291200i
\(481\) 0.454915 + 1.40008i 0.0207423 + 0.0638384i
\(482\) 17.5623 12.7598i 0.799941 0.581191i
\(483\) −0.236068 −0.0107415
\(484\) 0 0
\(485\) −4.85410 −0.220413
\(486\) 2.11803 1.53884i 0.0960760 0.0698033i
\(487\) −3.92705 12.0862i −0.177952 0.547679i 0.821804 0.569770i \(-0.192968\pi\)
−0.999756 + 0.0220909i \(0.992968\pi\)
\(488\) 26.6976 82.1666i 1.20854 3.71951i
\(489\) −4.16312 3.02468i −0.188263 0.136781i
\(490\) −7.85410 5.70634i −0.354812 0.257786i
\(491\) 5.53444 17.0333i 0.249766 0.768700i −0.745050 0.667009i \(-0.767574\pi\)
0.994816 0.101692i \(-0.0324255\pi\)
\(492\) 0.354102 + 1.08981i 0.0159641 + 0.0491326i
\(493\) −5.56231 + 4.04125i −0.250514 + 0.182009i
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) −8.35410 + 6.06961i −0.374733 + 0.272259i
\(498\) 1.19098 + 3.66547i 0.0533692 + 0.164254i
\(499\) −5.60739 + 17.2578i −0.251021 + 0.772564i 0.743566 + 0.668662i \(0.233133\pi\)
−0.994588 + 0.103902i \(0.966867\pi\)
\(500\) −23.3435 16.9600i −1.04395 0.758475i
\(501\) −9.73607 7.07367i −0.434975 0.316028i
\(502\) −17.7812 + 54.7248i −0.793612 + 2.44249i
\(503\) −2.67376 8.22899i −0.119217 0.366913i 0.873586 0.486670i \(-0.161788\pi\)
−0.992803 + 0.119757i \(0.961788\pi\)
\(504\) −6.04508 + 4.39201i −0.269269 + 0.195636i
\(505\) −6.32624 −0.281514
\(506\) 0 0
\(507\) 12.9443 0.574875
\(508\) 30.2705 21.9928i 1.34304 0.975773i
\(509\) 11.9721 + 36.8464i 0.530656 + 1.63319i 0.752853 + 0.658188i \(0.228677\pi\)
−0.222198 + 0.975002i \(0.571323\pi\)
\(510\) 0.572949 1.76336i 0.0253706 0.0780827i
\(511\) −4.61803 3.35520i −0.204290 0.148425i
\(512\) 32.6074 + 23.6907i 1.44106 + 1.04699i
\(513\) 1.80902 5.56758i 0.0798701 0.245815i
\(514\) 24.0623 + 74.0562i 1.06134 + 3.26648i
\(515\) −5.47214 + 3.97574i −0.241131 + 0.175192i
\(516\) −32.5623 −1.43348
\(517\) 0 0
\(518\) −16.3262 −0.717334
\(519\) 14.5902 10.6004i 0.640437 0.465305i
\(520\) 0.336881 + 1.03681i 0.0147732 + 0.0454673i
\(521\) 2.76393 8.50651i 0.121090 0.372677i −0.872078 0.489366i \(-0.837228\pi\)
0.993168 + 0.116689i \(0.0372282\pi\)
\(522\) −12.7082 9.23305i −0.556223 0.404120i
\(523\) 14.7812 + 10.7391i 0.646335 + 0.469590i 0.862021 0.506873i \(-0.169199\pi\)
−0.215686 + 0.976463i \(0.569199\pi\)
\(524\) 17.6976 54.4675i 0.773122 2.37942i
\(525\) 1.42705 + 4.39201i 0.0622816 + 0.191683i
\(526\) −32.3435 + 23.4989i −1.41024 + 1.02460i
\(527\) −6.97871 −0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) −0.500000 + 0.363271i −0.0217186 + 0.0157795i
\(531\) 2.28115 + 7.02067i 0.0989936 + 0.304671i
\(532\) −8.78115 + 27.0256i −0.380711 + 1.17171i
\(533\) −0.0450850 0.0327561i −0.00195285 0.00141883i
\(534\) −17.4443 12.6740i −0.754887 0.548458i
\(535\) −2.19098 + 6.74315i −0.0947245 + 0.291532i
\(536\) 4.28115 + 13.1760i 0.184918 + 0.569118i
\(537\) −6.89919 + 5.01255i −0.297722 + 0.216308i
\(538\) −66.5410 −2.86879
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) −6.06231 + 4.40452i −0.260639 + 0.189365i −0.710429 0.703769i \(-0.751499\pi\)
0.449790 + 0.893134i \(0.351499\pi\)
\(542\) −15.0623 46.3570i −0.646981 1.99120i
\(543\) −0.781153 + 2.40414i −0.0335225 + 0.103172i
\(544\) −10.0623 7.31069i −0.431418 0.313443i
\(545\) 6.00000 + 4.35926i 0.257012 + 0.186730i
\(546\) 0.190983 0.587785i 0.00817332 0.0251549i
\(547\) 9.50000 + 29.2380i 0.406191 + 1.25013i 0.919897 + 0.392160i \(0.128272\pi\)
−0.513706 + 0.857966i \(0.671728\pi\)
\(548\) −38.3435 + 27.8582i −1.63795 + 1.19004i
\(549\) 11.5623 0.493467
\(550\) 0 0
\(551\) −35.1246 −1.49636
\(552\) 1.42705 1.03681i 0.0607393 0.0441297i
\(553\) −3.39919 10.4616i −0.144548 0.444873i
\(554\) 23.6353 72.7418i 1.00417 3.09050i
\(555\) 3.11803 + 2.26538i 0.132353 + 0.0961602i
\(556\) 57.1869 + 41.5487i 2.42527 + 1.76206i
\(557\) −11.6287 + 35.7894i −0.492723 + 1.51645i 0.327753 + 0.944764i \(0.393709\pi\)
−0.820476 + 0.571682i \(0.806291\pi\)
\(558\) −4.92705 15.1639i −0.208579 0.641939i
\(559\) 1.28115 0.930812i 0.0541870 0.0393692i
\(560\) −6.09017 −0.257357
\(561\) 0 0
\(562\) −64.8328 −2.73481
\(563\) 32.8435 23.8622i 1.38419 1.00567i 0.387712 0.921781i \(-0.373266\pi\)
0.996475 0.0838899i \(-0.0267344\pi\)
\(564\) 15.1353 + 46.5815i 0.637309 + 1.96144i
\(565\) −2.57295 + 7.91872i −0.108245 + 0.333143i
\(566\) −12.0902 8.78402i −0.508188 0.369220i
\(567\) −0.809017 0.587785i −0.0339755 0.0246847i
\(568\) 23.8435 73.3826i 1.00045 3.07907i
\(569\) −10.5623 32.5074i −0.442795 1.36278i −0.884884 0.465811i \(-0.845763\pi\)
0.442089 0.896971i \(-0.354237\pi\)
\(570\) 7.66312 5.56758i 0.320973 0.233200i
\(571\) 9.09017 0.380412 0.190206 0.981744i \(-0.439084\pi\)
0.190206 + 0.981744i \(0.439084\pi\)
\(572\) 0 0
\(573\) 0.819660 0.0342418
\(574\) 0.500000 0.363271i 0.0208696 0.0151626i
\(575\) −0.336881 1.03681i −0.0140489 0.0432381i
\(576\) 2.69098 8.28199i 0.112124 0.345083i
\(577\) −25.6525 18.6376i −1.06793 0.775894i −0.0923881 0.995723i \(-0.529450\pi\)
−0.975538 + 0.219829i \(0.929450\pi\)
\(578\) 33.2254 + 24.1397i 1.38200 + 1.00408i
\(579\) −0.972136 + 2.99193i −0.0404006 + 0.124340i
\(580\) −5.56231 17.1190i −0.230962 0.710829i
\(581\) 1.19098 0.865300i 0.0494103 0.0358987i
\(582\) −20.5623 −0.852335
\(583\) 0 0
\(584\) 42.6525 1.76497
\(585\) −0.118034 + 0.0857567i −0.00488010 + 0.00354560i
\(586\) 17.5172 + 53.9125i 0.723630 + 2.22710i
\(587\) −0.656541 + 2.02063i −0.0270984 + 0.0834002i −0.963691 0.267020i \(-0.913961\pi\)
0.936593 + 0.350420i \(0.113961\pi\)
\(588\) −23.5623 17.1190i −0.971693 0.705976i
\(589\) −28.8435 20.9560i −1.18847 0.863477i
\(590\) −3.69098 + 11.3597i −0.151955 + 0.467671i
\(591\) 4.02786 + 12.3965i 0.165684 + 0.509923i
\(592\) 49.7148 36.1199i 2.04326 1.48452i
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) −16.6353 + 12.0862i −0.681407 + 0.495071i
\(597\) −2.07295 6.37988i −0.0848402 0.261111i
\(598\) −0.0450850 + 0.138757i −0.00184366 + 0.00567421i
\(599\) −10.2361 7.43694i −0.418234 0.303865i 0.358693 0.933456i \(-0.383223\pi\)
−0.776927 + 0.629591i \(0.783223\pi\)
\(600\) −27.9164 20.2825i −1.13968 0.828028i
\(601\) 2.12868 6.55139i 0.0868306 0.267237i −0.898208 0.439570i \(-0.855131\pi\)
0.985039 + 0.172334i \(0.0551307\pi\)
\(602\) 5.42705 + 16.7027i 0.221190 + 0.680753i
\(603\) −1.50000 + 1.08981i −0.0610847 + 0.0443806i
\(604\) −5.12461 −0.208517
\(605\) 0 0
\(606\) −26.7984 −1.08861
\(607\) −13.3992 + 9.73508i −0.543856 + 0.395135i −0.825515 0.564380i \(-0.809115\pi\)
0.281659 + 0.959515i \(0.409115\pi\)
\(608\) −19.6353 60.4311i −0.796315 2.45080i
\(609\) −1.85410 + 5.70634i −0.0751320 + 0.231233i
\(610\) 15.1353 + 10.9964i 0.612809 + 0.445231i
\(611\) −1.92705 1.40008i −0.0779601 0.0566414i
\(612\) 1.71885 5.29007i 0.0694803 0.213838i
\(613\) 4.41641 + 13.5923i 0.178377 + 0.548988i 0.999772 0.0213723i \(-0.00680355\pi\)
−0.821395 + 0.570360i \(0.806804\pi\)
\(614\) 59.2599 43.0548i 2.39153 1.73755i
\(615\) −0.145898 −0.00588318
\(616\) 0 0
\(617\) 11.1803 0.450104 0.225052 0.974347i \(-0.427745\pi\)
0.225052 + 0.974347i \(0.427745\pi\)
\(618\) −23.1803 + 16.8415i −0.932450 + 0.677465i
\(619\) 7.45492 + 22.9439i 0.299638 + 0.922192i 0.981624 + 0.190826i \(0.0611167\pi\)
−0.681985 + 0.731366i \(0.738883\pi\)
\(620\) 5.64590 17.3763i 0.226745 0.697848i
\(621\) 0.190983 + 0.138757i 0.00766388 + 0.00556814i
\(622\) −24.6803 17.9313i −0.989591 0.718980i
\(623\) −2.54508 + 7.83297i −0.101967 + 0.313821i
\(624\) 0.718847 + 2.21238i 0.0287769 + 0.0885662i
\(625\) −15.7082 + 11.4127i −0.628328 + 0.456507i
\(626\) −6.61803 −0.264510
\(627\) 0 0
\(628\) 76.2492 3.04268
\(629\) 5.78115 4.20025i 0.230510 0.167475i
\(630\) −0.500000 1.53884i −0.0199205 0.0613089i
\(631\) 5.93769 18.2743i 0.236376 0.727490i −0.760560 0.649268i \(-0.775076\pi\)
0.996936 0.0782225i \(-0.0249245\pi\)
\(632\) 66.4959 + 48.3121i 2.64507 + 1.92175i
\(633\) −2.92705 2.12663i −0.116340 0.0845258i
\(634\) −5.51722 + 16.9803i −0.219117 + 0.674372i
\(635\) 1.47214 + 4.53077i 0.0584199 + 0.179798i
\(636\) −1.50000 + 1.08981i −0.0594789 + 0.0432139i
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) 10.3262 0.408500
\(640\) 0.545085 0.396027i 0.0215464 0.0156544i
\(641\) −7.75329 23.8622i −0.306236 0.942499i −0.979213 0.202835i \(-0.934984\pi\)
0.672976 0.739664i \(-0.265016\pi\)
\(642\) −9.28115 + 28.5645i −0.366298 + 1.12735i
\(643\) −16.8713 12.2577i −0.665340 0.483398i 0.203122 0.979153i \(-0.434891\pi\)
−0.868462 + 0.495756i \(0.834891\pi\)
\(644\) −0.927051 0.673542i −0.0365309 0.0265413i
\(645\) 1.28115 3.94298i 0.0504453 0.155255i
\(646\) −5.42705 16.7027i −0.213524 0.657161i
\(647\) −36.4336 + 26.4706i −1.43235 + 1.04067i −0.442781 + 0.896630i \(0.646008\pi\)
−0.989572 + 0.144036i \(0.953992\pi\)
\(648\) 7.47214 0.293533
\(649\) 0 0
\(650\) 2.85410 0.111947
\(651\) −4.92705 + 3.57971i −0.193106 + 0.140300i
\(652\) −7.71885 23.7562i −0.302293 0.930363i
\(653\) −1.73607 + 5.34307i −0.0679376 + 0.209090i −0.979262 0.202599i \(-0.935061\pi\)
0.911324 + 0.411690i \(0.135061\pi\)
\(654\) 25.4164 + 18.4661i 0.993860 + 0.722082i
\(655\) 5.89919 + 4.28601i 0.230500 + 0.167468i
\(656\) −0.718847 + 2.21238i −0.0280663 + 0.0863791i
\(657\) 1.76393 + 5.42882i 0.0688175 + 0.211799i
\(658\) 21.3713 15.5272i 0.833141 0.605312i
\(659\) 41.1246 1.60199 0.800994 0.598673i \(-0.204305\pi\)
0.800994 + 0.598673i \(0.204305\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) −35.3885 + 25.7113i −1.37541 + 0.999297i
\(663\) 0.0835921 + 0.257270i 0.00324645 + 0.00999154i
\(664\) −3.39919 + 10.4616i −0.131914 + 0.405990i
\(665\) −2.92705 2.12663i −0.113506 0.0824671i
\(666\) 13.2082 + 9.59632i 0.511808 + 0.371850i
\(667\) 0.437694 1.34708i 0.0169476 0.0521593i
\(668\) −18.0517 55.5573i −0.698440 2.14958i
\(669\) 5.80902 4.22050i 0.224590 0.163174i
\(670\) −3.00000 −0.115900
\(671\) 0 0
\(672\) −10.8541 −0.418706
\(673\) 28.9894 21.0620i 1.11746 0.811880i 0.133636 0.991031i \(-0.457335\pi\)
0.983822 + 0.179150i \(0.0573348\pi\)
\(674\) 14.7082 + 45.2672i 0.566539 + 1.74363i
\(675\) 1.42705 4.39201i 0.0549272 0.169049i
\(676\) 50.8328 + 36.9322i 1.95511 + 1.42047i
\(677\) 10.9443 + 7.95148i 0.420623 + 0.305600i 0.777888 0.628403i \(-0.216291\pi\)
−0.357266 + 0.934003i \(0.616291\pi\)
\(678\) −10.8992 + 33.5442i −0.418581 + 1.28826i
\(679\) 2.42705 + 7.46969i 0.0931417 + 0.286661i
\(680\) 4.28115 3.11044i 0.164175 0.119280i
\(681\) 13.1803 0.505072
\(682\) 0 0
\(683\) 9.06888 0.347011 0.173506 0.984833i \(-0.444491\pi\)
0.173506 + 0.984833i \(0.444491\pi\)
\(684\) 22.9894 16.7027i 0.879020 0.638645i
\(685\) −1.86475 5.73910i −0.0712482 0.219280i
\(686\) −10.5172 + 32.3687i −0.401549 + 1.23584i
\(687\) 0.381966 + 0.277515i 0.0145729 + 0.0105878i
\(688\) −53.4787 38.8546i −2.03886 1.48132i
\(689\) 0.0278640 0.0857567i 0.00106154 0.00326707i
\(690\) 0.118034 + 0.363271i 0.00449348 + 0.0138295i
\(691\) −1.09017 + 0.792055i −0.0414720 + 0.0301312i −0.608328 0.793686i \(-0.708160\pi\)
0.566856 + 0.823817i \(0.308160\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −7.28115 + 5.29007i −0.276190 + 0.200664i
\(696\) −13.8541 42.6385i −0.525138 1.61621i
\(697\) −0.0835921 + 0.257270i −0.00316628 + 0.00974480i
\(698\) 26.9164 + 19.5559i 1.01880 + 0.740202i
\(699\) 3.35410 + 2.43690i 0.126864 + 0.0921719i
\(700\) −6.92705 + 21.3193i −0.261818 + 0.805793i
\(701\) 10.7533 + 33.0952i 0.406146 + 1.24999i 0.919934 + 0.392072i \(0.128242\pi\)
−0.513788 + 0.857917i \(0.671758\pi\)
\(702\) −0.500000 + 0.363271i −0.0188713 + 0.0137108i
\(703\) 36.5066 1.37687
\(704\) 0 0
\(705\) −6.23607 −0.234864
\(706\) 25.4164 18.4661i 0.956559 0.694981i
\(707\) 3.16312 + 9.73508i 0.118961 + 0.366125i
\(708\) −11.0729 + 34.0790i −0.416147 + 1.28077i
\(709\) −9.07295 6.59188i −0.340742 0.247563i 0.404233 0.914656i \(-0.367538\pi\)
−0.744975 + 0.667093i \(0.767538\pi\)
\(710\) 13.5172 + 9.82084i 0.507292 + 0.368569i
\(711\) −3.39919 + 10.4616i −0.127479 + 0.392341i
\(712\) −19.0172 58.5290i −0.712700 2.19347i
\(713\) 1.16312 0.845055i 0.0435591 0.0316476i
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) −41.3951 −1.54701
\(717\) −0.309017 + 0.224514i −0.0115405 + 0.00838463i
\(718\) 7.85410 + 24.1724i 0.293112 + 0.902107i
\(719\) −11.8926 + 36.6017i −0.443519 + 1.36501i 0.440580 + 0.897713i \(0.354773\pi\)
−0.884099 + 0.467299i \(0.845227\pi\)
\(720\) 4.92705 + 3.57971i 0.183620 + 0.133408i
\(721\) 8.85410 + 6.43288i 0.329744 + 0.239573i
\(722\) 12.3541 38.0220i 0.459772 1.41503i
\(723\) 2.56231 + 7.88597i 0.0952932 + 0.293282i
\(724\) −9.92705 + 7.21242i −0.368936 + 0.268048i
\(725\) −27.7082 −1.02906
\(726\) 0 0
\(727\) −9.14590 −0.339203 −0.169601 0.985513i \(-0.554248\pi\)
−0.169601 + 0.985513i \(0.554248\pi\)
\(728\) 1.42705 1.03681i 0.0528900 0.0384269i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) −2.85410 + 8.78402i −0.105635 + 0.325111i
\(731\) −6.21885 4.51826i −0.230012 0.167114i
\(732\) 45.4058 + 32.9892i 1.67825 + 1.21932i
\(733\) 0.124612 0.383516i 0.00460264 0.0141655i −0.948729 0.316091i \(-0.897629\pi\)
0.953331 + 0.301926i \(0.0976295\pi\)
\(734\) 17.9164 + 55.1410i 0.661307 + 2.03529i
\(735\) 3.00000 2.17963i 0.110657 0.0803968i
\(736\) 2.56231 0.0944478
\(737\) 0 0
\(738\) −0.618034 −0.0227501
\(739\) 2.42705 1.76336i 0.0892805 0.0648661i −0.542250 0.840218i \(-0.682427\pi\)
0.631530 + 0.775351i \(0.282427\pi\)
\(740\) 5.78115 + 17.7926i 0.212519 + 0.654067i
\(741\) −0.427051 + 1.31433i −0.0156881 + 0.0482830i
\(742\) 0.809017 + 0.587785i 0.0296999 + 0.0215783i
\(743\) −34.6976 25.2093i −1.27293 0.924838i −0.273615 0.961839i \(-0.588219\pi\)
−0.999315 + 0.0370015i \(0.988219\pi\)
\(744\) 14.0623 43.2793i 0.515549 1.58670i
\(745\) −0.809017 2.48990i −0.0296401 0.0912228i
\(746\) 1.88197 1.36733i 0.0689037 0.0500614i
\(747\) −1.47214 −0.0538626
\(748\) 0 0
\(749\) 11.4721 0.419183
\(750\) 12.5902 9.14729i 0.459728 0.334012i
\(751\) 4.98936 + 15.3557i 0.182064 + 0.560336i 0.999885 0.0151363i \(-0.00481823\pi\)
−0.817821 + 0.575472i \(0.804818\pi\)
\(752\) −30.7254 + 94.5631i −1.12044 + 3.44836i
\(753\) −17.7812 12.9188i −0.647981 0.470786i
\(754\) 3.00000 + 2.17963i 0.109254 + 0.0793774i
\(755\) 0.201626 0.620541i 0.00733793 0.0225838i
\(756\) −1.50000 4.61653i −0.0545545 0.167901i
\(757\) −4.04508 + 2.93893i −0.147021 + 0.106817i −0.658864 0.752262i \(-0.728963\pi\)
0.511843 + 0.859079i \(0.328963\pi\)
\(758\) −65.1591 −2.36668
\(759\) 0 0
\(760\) 27.0344 0.980642
\(761\) 23.6976 17.2173i 0.859036 0.624126i −0.0685866 0.997645i \(-0.521849\pi\)
0.927623 + 0.373519i \(0.121849\pi\)
\(762\) 6.23607 + 19.1926i 0.225909 + 0.695276i
\(763\) 3.70820 11.4127i 0.134246 0.413167i
\(764\) 3.21885 + 2.33863i 0.116454 + 0.0846086i
\(765\) 0.572949 + 0.416272i 0.0207150 + 0.0150503i
\(766\) −10.2812 + 31.6421i −0.371473 + 1.14328i
\(767\) −0.538507 1.65735i −0.0194444 0.0598436i
\(768\) −11.7812 + 8.55951i −0.425116 + 0.308865i
\(769\) 34.5066 1.24434 0.622170 0.782883i \(-0.286251\pi\)
0.622170 + 0.782883i \(0.286251\pi\)
\(770\) 0 0