Properties

Label 363.2.e.a.202.1
Level $363$
Weight $2$
Character 363.202
Analytic conductor $2.899$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 202.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 363.202
Dual form 363.2.e.a.124.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.80902 - 1.31433i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.927051 + 2.85317i) q^{4} +(-1.61803 + 1.17557i) q^{5} +(-1.80902 + 1.31433i) q^{6} +(-1.38197 - 4.25325i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(-1.80902 - 1.31433i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.927051 + 2.85317i) q^{4} +(-1.61803 + 1.17557i) q^{5} +(-1.80902 + 1.31433i) q^{6} +(-1.38197 - 4.25325i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-0.809017 - 0.587785i) q^{9} +4.47214 q^{10} +3.00000 q^{12} +(-3.09017 + 9.51057i) q^{14} +(0.618034 + 1.90211i) q^{15} +(0.809017 - 0.587785i) q^{16} +(-3.61803 + 2.62866i) q^{17} +(0.690983 + 2.12663i) q^{18} +(-1.38197 + 4.25325i) q^{19} +(-4.85410 - 3.52671i) q^{20} -4.47214 q^{21} -4.00000 q^{23} +(-1.80902 - 1.31433i) q^{24} +(-0.309017 + 0.951057i) q^{25} +(-0.809017 + 0.587785i) q^{27} +(10.8541 - 7.88597i) q^{28} +(1.38197 + 4.25325i) q^{29} +(1.38197 - 4.25325i) q^{30} -6.70820 q^{32} +10.0000 q^{34} +(7.23607 + 5.25731i) q^{35} +(0.927051 - 2.85317i) q^{36} +(0.618034 + 1.90211i) q^{37} +(8.09017 - 5.87785i) q^{38} +(1.38197 + 4.25325i) q^{40} +(-1.38197 + 4.25325i) q^{41} +(8.09017 + 5.87785i) q^{42} +4.47214 q^{43} +2.00000 q^{45} +(7.23607 + 5.25731i) q^{46} +(2.47214 - 7.60845i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(-10.5172 + 7.64121i) q^{49} +(1.80902 - 1.31433i) q^{50} +(1.38197 + 4.25325i) q^{51} +(-4.85410 - 3.52671i) q^{53} +2.23607 q^{54} -10.0000 q^{56} +(3.61803 + 2.62866i) q^{57} +(3.09017 - 9.51057i) q^{58} +(-4.85410 + 3.52671i) q^{60} +(-7.23607 + 5.25731i) q^{61} +(-1.38197 + 4.25325i) q^{63} +(10.5172 + 7.64121i) q^{64} -12.0000 q^{67} +(-10.8541 - 7.88597i) q^{68} +(-1.23607 + 3.80423i) q^{69} +(-6.18034 - 19.0211i) q^{70} +(6.47214 - 4.70228i) q^{71} +(-1.80902 + 1.31433i) q^{72} +(-2.76393 - 8.50651i) q^{73} +(1.38197 - 4.25325i) q^{74} +(0.809017 + 0.587785i) q^{75} -13.4164 q^{76} +(-10.8541 - 7.88597i) q^{79} +(-0.618034 + 1.90211i) q^{80} +(0.309017 + 0.951057i) q^{81} +(8.09017 - 5.87785i) q^{82} +(7.23607 - 5.25731i) q^{83} +(-4.14590 - 12.7598i) q^{84} +(2.76393 - 8.50651i) q^{85} +(-8.09017 - 5.87785i) q^{86} +4.47214 q^{87} -14.0000 q^{89} +(-3.61803 - 2.62866i) q^{90} +(-3.70820 - 11.4127i) q^{92} +(-14.4721 + 10.5146i) q^{94} +(-2.76393 - 8.50651i) q^{95} +(-2.07295 + 6.37988i) q^{96} +(-1.61803 - 1.17557i) q^{97} +29.0689 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} - q^{3} - 3 q^{4} - 2 q^{5} - 5 q^{6} - 10 q^{7} + 5 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 5 q^{2} - q^{3} - 3 q^{4} - 2 q^{5} - 5 q^{6} - 10 q^{7} + 5 q^{8} - q^{9} + 12 q^{12} + 10 q^{14} - 2 q^{15} + q^{16} - 10 q^{17} + 5 q^{18} - 10 q^{19} - 6 q^{20} - 16 q^{23} - 5 q^{24} + q^{25} - q^{27} + 30 q^{28} + 10 q^{29} + 10 q^{30} + 40 q^{34} + 20 q^{35} - 3 q^{36} - 2 q^{37} + 10 q^{38} + 10 q^{40} - 10 q^{41} + 10 q^{42} + 8 q^{45} + 20 q^{46} - 8 q^{47} + q^{48} - 13 q^{49} + 5 q^{50} + 10 q^{51} - 6 q^{53} - 40 q^{56} + 10 q^{57} - 10 q^{58} - 6 q^{60} - 20 q^{61} - 10 q^{63} + 13 q^{64} - 48 q^{67} - 30 q^{68} + 4 q^{69} + 20 q^{70} + 8 q^{71} - 5 q^{72} - 20 q^{73} + 10 q^{74} + q^{75} - 30 q^{79} + 2 q^{80} - q^{81} + 10 q^{82} + 20 q^{83} - 30 q^{84} + 20 q^{85} - 10 q^{86} - 56 q^{89} - 10 q^{90} + 12 q^{92} - 40 q^{94} - 20 q^{95} - 15 q^{96} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80902 1.31433i −1.27917 0.929370i −0.279641 0.960105i \(-0.590215\pi\)
−0.999528 + 0.0307347i \(0.990215\pi\)
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0.927051 + 2.85317i 0.463525 + 1.42658i
\(5\) −1.61803 + 1.17557i −0.723607 + 0.525731i −0.887535 0.460741i \(-0.847584\pi\)
0.163928 + 0.986472i \(0.447584\pi\)
\(6\) −1.80902 + 1.31433i −0.738528 + 0.536572i
\(7\) −1.38197 4.25325i −0.522334 1.60758i −0.769528 0.638613i \(-0.779509\pi\)
0.247194 0.968966i \(-0.420491\pi\)
\(8\) 0.690983 2.12663i 0.244299 0.751876i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 4.47214 1.41421
\(11\) 0 0
\(12\) 3.00000 0.866025
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) −3.09017 + 9.51057i −0.825883 + 2.54181i
\(15\) 0.618034 + 1.90211i 0.159576 + 0.491123i
\(16\) 0.809017 0.587785i 0.202254 0.146946i
\(17\) −3.61803 + 2.62866i −0.877502 + 0.637543i −0.932589 0.360939i \(-0.882456\pi\)
0.0550873 + 0.998482i \(0.482456\pi\)
\(18\) 0.690983 + 2.12663i 0.162866 + 0.501251i
\(19\) −1.38197 + 4.25325i −0.317045 + 0.975763i 0.657860 + 0.753140i \(0.271462\pi\)
−0.974905 + 0.222623i \(0.928538\pi\)
\(20\) −4.85410 3.52671i −1.08541 0.788597i
\(21\) −4.47214 −0.975900
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) −1.80902 1.31433i −0.369264 0.268286i
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) 10.8541 7.88597i 2.05123 1.49031i
\(29\) 1.38197 + 4.25325i 0.256625 + 0.789809i 0.993505 + 0.113787i \(0.0362980\pi\)
−0.736881 + 0.676023i \(0.763702\pi\)
\(30\) 1.38197 4.25325i 0.252311 0.776534i
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) −6.70820 −1.18585
\(33\) 0 0
\(34\) 10.0000 1.71499
\(35\) 7.23607 + 5.25731i 1.22312 + 0.888648i
\(36\) 0.927051 2.85317i 0.154508 0.475528i
\(37\) 0.618034 + 1.90211i 0.101604 + 0.312705i 0.988918 0.148460i \(-0.0474315\pi\)
−0.887314 + 0.461165i \(0.847432\pi\)
\(38\) 8.09017 5.87785i 1.31240 0.953514i
\(39\) 0 0
\(40\) 1.38197 + 4.25325i 0.218508 + 0.672499i
\(41\) −1.38197 + 4.25325i −0.215827 + 0.664247i 0.783267 + 0.621685i \(0.213552\pi\)
−0.999094 + 0.0425613i \(0.986448\pi\)
\(42\) 8.09017 + 5.87785i 1.24834 + 0.906972i
\(43\) 4.47214 0.681994 0.340997 0.940064i \(-0.389235\pi\)
0.340997 + 0.940064i \(0.389235\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 7.23607 + 5.25731i 1.06690 + 0.775148i
\(47\) 2.47214 7.60845i 0.360598 1.10981i −0.592094 0.805869i \(-0.701699\pi\)
0.952692 0.303938i \(-0.0983015\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −10.5172 + 7.64121i −1.50246 + 1.09160i
\(50\) 1.80902 1.31433i 0.255834 0.185874i
\(51\) 1.38197 + 4.25325i 0.193514 + 0.595575i
\(52\) 0 0
\(53\) −4.85410 3.52671i −0.666762 0.484431i 0.202178 0.979349i \(-0.435198\pi\)
−0.868940 + 0.494918i \(0.835198\pi\)
\(54\) 2.23607 0.304290
\(55\) 0 0
\(56\) −10.0000 −1.33631
\(57\) 3.61803 + 2.62866i 0.479220 + 0.348174i
\(58\) 3.09017 9.51057i 0.405759 1.24880i
\(59\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(60\) −4.85410 + 3.52671i −0.626662 + 0.455296i
\(61\) −7.23607 + 5.25731i −0.926484 + 0.673130i −0.945129 0.326696i \(-0.894065\pi\)
0.0186458 + 0.999826i \(0.494065\pi\)
\(62\) 0 0
\(63\) −1.38197 + 4.25325i −0.174111 + 0.535860i
\(64\) 10.5172 + 7.64121i 1.31465 + 0.955151i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −10.8541 7.88597i −1.31625 0.956314i
\(69\) −1.23607 + 3.80423i −0.148805 + 0.457975i
\(70\) −6.18034 19.0211i −0.738692 2.27346i
\(71\) 6.47214 4.70228i 0.768101 0.558058i −0.133283 0.991078i \(-0.542552\pi\)
0.901384 + 0.433020i \(0.142552\pi\)
\(72\) −1.80902 + 1.31433i −0.213195 + 0.154895i
\(73\) −2.76393 8.50651i −0.323494 0.995611i −0.972116 0.234501i \(-0.924654\pi\)
0.648622 0.761111i \(-0.275346\pi\)
\(74\) 1.38197 4.25325i 0.160650 0.494431i
\(75\) 0.809017 + 0.587785i 0.0934172 + 0.0678716i
\(76\) −13.4164 −1.53897
\(77\) 0 0
\(78\) 0 0
\(79\) −10.8541 7.88597i −1.22118 0.887241i −0.224984 0.974362i \(-0.572233\pi\)
−0.996198 + 0.0871218i \(0.972233\pi\)
\(80\) −0.618034 + 1.90211i −0.0690983 + 0.212663i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 8.09017 5.87785i 0.893410 0.649100i
\(83\) 7.23607 5.25731i 0.794262 0.577065i −0.114963 0.993370i \(-0.536675\pi\)
0.909225 + 0.416305i \(0.136675\pi\)
\(84\) −4.14590 12.7598i −0.452355 1.39220i
\(85\) 2.76393 8.50651i 0.299791 0.922660i
\(86\) −8.09017 5.87785i −0.872385 0.633825i
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) −3.61803 2.62866i −0.381374 0.277085i
\(91\) 0 0
\(92\) −3.70820 11.4127i −0.386607 1.18985i
\(93\) 0 0
\(94\) −14.4721 + 10.5146i −1.49269 + 1.08450i
\(95\) −2.76393 8.50651i −0.283573 0.872749i
\(96\) −2.07295 + 6.37988i −0.211569 + 0.651144i
\(97\) −1.61803 1.17557i −0.164286 0.119361i 0.502604 0.864517i \(-0.332375\pi\)
−0.666891 + 0.745155i \(0.732375\pi\)
\(98\) 29.0689 2.93640
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) −3.61803 2.62866i −0.360008 0.261561i 0.393048 0.919518i \(-0.371421\pi\)
−0.753055 + 0.657957i \(0.771421\pi\)
\(102\) 3.09017 9.51057i 0.305972 0.941686i
\(103\) 4.94427 + 15.2169i 0.487174 + 1.49937i 0.828808 + 0.559533i \(0.189020\pi\)
−0.341634 + 0.939833i \(0.610980\pi\)
\(104\) 0 0
\(105\) 7.23607 5.25731i 0.706168 0.513061i
\(106\) 4.14590 + 12.7598i 0.402685 + 1.23934i
\(107\) 2.76393 8.50651i 0.267199 0.822355i −0.723979 0.689822i \(-0.757689\pi\)
0.991179 0.132533i \(-0.0423112\pi\)
\(108\) −2.42705 1.76336i −0.233543 0.169679i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) −3.61803 2.62866i −0.341872 0.248385i
\(113\) 1.85410 5.70634i 0.174419 0.536807i −0.825187 0.564859i \(-0.808930\pi\)
0.999606 + 0.0280521i \(0.00893043\pi\)
\(114\) −3.09017 9.51057i −0.289421 0.890746i
\(115\) 6.47214 4.70228i 0.603530 0.438490i
\(116\) −10.8541 + 7.88597i −1.00778 + 0.732194i
\(117\) 0 0
\(118\) 0 0
\(119\) 16.1803 + 11.7557i 1.48325 + 1.07764i
\(120\) 4.47214 0.408248
\(121\) 0 0
\(122\) 20.0000 1.81071
\(123\) 3.61803 + 2.62866i 0.326227 + 0.237018i
\(124\) 0 0
\(125\) −3.70820 11.4127i −0.331672 1.02078i
\(126\) 8.09017 5.87785i 0.720730 0.523641i
\(127\) −10.8541 + 7.88597i −0.963146 + 0.699766i −0.953879 0.300191i \(-0.902950\pi\)
−0.00926659 + 0.999957i \(0.502950\pi\)
\(128\) −4.83688 14.8864i −0.427524 1.31578i
\(129\) 1.38197 4.25325i 0.121675 0.374478i
\(130\) 0 0
\(131\) −17.8885 −1.56293 −0.781465 0.623949i \(-0.785527\pi\)
−0.781465 + 0.623949i \(0.785527\pi\)
\(132\) 0 0
\(133\) 20.0000 1.73422
\(134\) 21.7082 + 15.7719i 1.87530 + 1.36249i
\(135\) 0.618034 1.90211i 0.0531919 0.163708i
\(136\) 3.09017 + 9.51057i 0.264980 + 0.815524i
\(137\) −17.7984 + 12.9313i −1.52062 + 1.10479i −0.559437 + 0.828873i \(0.688983\pi\)
−0.961180 + 0.275921i \(0.911017\pi\)
\(138\) 7.23607 5.25731i 0.615975 0.447532i
\(139\) 4.14590 + 12.7598i 0.351650 + 1.08227i 0.957926 + 0.287014i \(0.0926628\pi\)
−0.606276 + 0.795254i \(0.707337\pi\)
\(140\) −8.29180 + 25.5195i −0.700785 + 2.15679i
\(141\) −6.47214 4.70228i −0.545052 0.396004i
\(142\) −17.8885 −1.50117
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) −7.23607 5.25731i −0.600923 0.436596i
\(146\) −6.18034 + 19.0211i −0.511489 + 1.57420i
\(147\) 4.01722 + 12.3637i 0.331335 + 1.01974i
\(148\) −4.85410 + 3.52671i −0.399005 + 0.289894i
\(149\) 18.0902 13.1433i 1.48200 1.07674i 0.505100 0.863061i \(-0.331455\pi\)
0.976904 0.213679i \(-0.0685446\pi\)
\(150\) −0.690983 2.12663i −0.0564185 0.173638i
\(151\) 4.14590 12.7598i 0.337388 1.03837i −0.628145 0.778096i \(-0.716186\pi\)
0.965534 0.260279i \(-0.0838144\pi\)
\(152\) 8.09017 + 5.87785i 0.656199 + 0.476757i
\(153\) 4.47214 0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.618034 1.90211i 0.0493245 0.151805i −0.923361 0.383934i \(-0.874569\pi\)
0.972685 + 0.232129i \(0.0745691\pi\)
\(158\) 9.27051 + 28.5317i 0.737522 + 2.26986i
\(159\) −4.85410 + 3.52671i −0.384955 + 0.279686i
\(160\) 10.8541 7.88597i 0.858092 0.623440i
\(161\) 5.52786 + 17.0130i 0.435657 + 1.34081i
\(162\) 0.690983 2.12663i 0.0542888 0.167084i
\(163\) −3.23607 2.35114i −0.253468 0.184156i 0.453794 0.891107i \(-0.350070\pi\)
−0.707263 + 0.706951i \(0.750070\pi\)
\(164\) −13.4164 −1.04765
\(165\) 0 0
\(166\) −20.0000 −1.55230
\(167\) −7.23607 5.25731i −0.559944 0.406823i 0.271495 0.962440i \(-0.412482\pi\)
−0.831438 + 0.555617i \(0.812482\pi\)
\(168\) −3.09017 + 9.51057i −0.238412 + 0.733756i
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) −16.1803 + 11.7557i −1.24098 + 0.901621i
\(171\) 3.61803 2.62866i 0.276678 0.201018i
\(172\) 4.14590 + 12.7598i 0.316122 + 0.972923i
\(173\) −4.14590 + 12.7598i −0.315207 + 0.970107i 0.660462 + 0.750859i \(0.270360\pi\)
−0.975669 + 0.219248i \(0.929640\pi\)
\(174\) −8.09017 5.87785i −0.613314 0.445599i
\(175\) 4.47214 0.338062
\(176\) 0 0
\(177\) 0 0
\(178\) 25.3262 + 18.4006i 1.89828 + 1.37918i
\(179\) −1.23607 + 3.80423i −0.0923881 + 0.284341i −0.986564 0.163374i \(-0.947762\pi\)
0.894176 + 0.447715i \(0.147762\pi\)
\(180\) 1.85410 + 5.70634i 0.138197 + 0.425325i
\(181\) 8.09017 5.87785i 0.601338 0.436897i −0.245016 0.969519i \(-0.578793\pi\)
0.846353 + 0.532622i \(0.178793\pi\)
\(182\) 0 0
\(183\) 2.76393 + 8.50651i 0.204316 + 0.628819i
\(184\) −2.76393 + 8.50651i −0.203760 + 0.627108i
\(185\) −3.23607 2.35114i −0.237920 0.172859i
\(186\) 0 0
\(187\) 0 0
\(188\) 24.0000 1.75038
\(189\) 3.61803 + 2.62866i 0.263173 + 0.191207i
\(190\) −6.18034 + 19.0211i −0.448369 + 1.37994i
\(191\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(192\) 10.5172 7.64121i 0.759015 0.551457i
\(193\) 14.4721 10.5146i 1.04173 0.756859i 0.0711052 0.997469i \(-0.477347\pi\)
0.970622 + 0.240610i \(0.0773474\pi\)
\(194\) 1.38197 + 4.25325i 0.0992194 + 0.305366i
\(195\) 0 0
\(196\) −31.5517 22.9236i −2.25369 1.63740i
\(197\) 22.3607 1.59313 0.796566 0.604551i \(-0.206648\pi\)
0.796566 + 0.604551i \(0.206648\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.80902 + 1.31433i 0.127917 + 0.0929370i
\(201\) −3.70820 + 11.4127i −0.261557 + 0.804988i
\(202\) 3.09017 + 9.51057i 0.217424 + 0.669161i
\(203\) 16.1803 11.7557i 1.13564 0.825089i
\(204\) −10.8541 + 7.88597i −0.759939 + 0.552128i
\(205\) −2.76393 8.50651i −0.193041 0.594120i
\(206\) 11.0557 34.0260i 0.770289 2.37071i
\(207\) 3.23607 + 2.35114i 0.224922 + 0.163416i
\(208\) 0 0
\(209\) 0 0
\(210\) −20.0000 −1.38013
\(211\) 3.61803 + 2.62866i 0.249076 + 0.180964i 0.705317 0.708892i \(-0.250805\pi\)
−0.456241 + 0.889856i \(0.650805\pi\)
\(212\) 5.56231 17.1190i 0.382021 1.17574i
\(213\) −2.47214 7.60845i −0.169388 0.521323i
\(214\) −16.1803 + 11.7557i −1.10607 + 0.803603i
\(215\) −7.23607 + 5.25731i −0.493496 + 0.358546i
\(216\) 0.690983 + 2.12663i 0.0470154 + 0.144699i
\(217\) 0 0
\(218\) 0 0
\(219\) −8.94427 −0.604398
\(220\) 0 0
\(221\) 0 0
\(222\) −3.61803 2.62866i −0.242827 0.176424i
\(223\) −4.94427 + 15.2169i −0.331093 + 1.01900i 0.637522 + 0.770432i \(0.279960\pi\)
−0.968615 + 0.248567i \(0.920040\pi\)
\(224\) 9.27051 + 28.5317i 0.619412 + 1.90635i
\(225\) 0.809017 0.587785i 0.0539345 0.0391857i
\(226\) −10.8541 + 7.88597i −0.722004 + 0.524567i
\(227\) 2.76393 + 8.50651i 0.183449 + 0.564597i 0.999918 0.0127917i \(-0.00407183\pi\)
−0.816470 + 0.577388i \(0.804072\pi\)
\(228\) −4.14590 + 12.7598i −0.274569 + 0.845036i
\(229\) −8.09017 5.87785i −0.534613 0.388419i 0.287467 0.957790i \(-0.407187\pi\)
−0.822081 + 0.569371i \(0.807187\pi\)
\(230\) −17.8885 −1.17954
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) 3.61803 + 2.62866i 0.237025 + 0.172209i 0.699957 0.714185i \(-0.253202\pi\)
−0.462932 + 0.886394i \(0.653202\pi\)
\(234\) 0 0
\(235\) 4.94427 + 15.2169i 0.322529 + 0.992641i
\(236\) 0 0
\(237\) −10.8541 + 7.88597i −0.705050 + 0.512249i
\(238\) −13.8197 42.5325i −0.895796 2.75698i
\(239\) 2.76393 8.50651i 0.178784 0.550240i −0.821002 0.570925i \(-0.806585\pi\)
0.999786 + 0.0206848i \(0.00658466\pi\)
\(240\) 1.61803 + 1.17557i 0.104444 + 0.0758827i
\(241\) 8.94427 0.576151 0.288076 0.957608i \(-0.406985\pi\)
0.288076 + 0.957608i \(0.406985\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −21.7082 15.7719i −1.38973 1.00969i
\(245\) 8.03444 24.7275i 0.513302 1.57978i
\(246\) −3.09017 9.51057i −0.197022 0.606371i
\(247\) 0 0
\(248\) 0 0
\(249\) −2.76393 8.50651i −0.175157 0.539078i
\(250\) −8.29180 + 25.5195i −0.524419 + 1.61400i
\(251\) 9.70820 + 7.05342i 0.612776 + 0.445208i 0.850391 0.526151i \(-0.176365\pi\)
−0.237614 + 0.971360i \(0.576365\pi\)
\(252\) −13.4164 −0.845154
\(253\) 0 0
\(254\) 30.0000 1.88237
\(255\) −7.23607 5.25731i −0.453140 0.329226i
\(256\) −2.78115 + 8.55951i −0.173822 + 0.534969i
\(257\) −6.79837 20.9232i −0.424071 1.30516i −0.903881 0.427784i \(-0.859294\pi\)
0.479810 0.877372i \(-0.340706\pi\)
\(258\) −8.09017 + 5.87785i −0.503672 + 0.365939i
\(259\) 7.23607 5.25731i 0.449627 0.326673i
\(260\) 0 0
\(261\) 1.38197 4.25325i 0.0855415 0.263270i
\(262\) 32.3607 + 23.5114i 1.99925 + 1.45254i
\(263\) 8.94427 0.551527 0.275764 0.961225i \(-0.411069\pi\)
0.275764 + 0.961225i \(0.411069\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) −36.1803 26.2866i −2.21836 1.61173i
\(267\) −4.32624 + 13.3148i −0.264761 + 0.814852i
\(268\) −11.1246 34.2380i −0.679544 2.09142i
\(269\) 8.09017 5.87785i 0.493266 0.358379i −0.313173 0.949696i \(-0.601392\pi\)
0.806439 + 0.591317i \(0.201392\pi\)
\(270\) −3.61803 + 2.62866i −0.220187 + 0.159975i
\(271\) −4.14590 12.7598i −0.251845 0.775100i −0.994435 0.105353i \(-0.966403\pi\)
0.742589 0.669747i \(-0.233597\pi\)
\(272\) −1.38197 + 4.25325i −0.0837940 + 0.257891i
\(273\) 0 0
\(274\) 49.1935 2.97189
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) 9.27051 28.5317i 0.556008 1.71122i
\(279\) 0 0
\(280\) 16.1803 11.7557i 0.966960 0.702538i
\(281\) −25.3262 + 18.4006i −1.51084 + 1.09769i −0.545032 + 0.838415i \(0.683483\pi\)
−0.965804 + 0.259272i \(0.916517\pi\)
\(282\) 5.52786 + 17.0130i 0.329180 + 1.01311i
\(283\) −4.14590 + 12.7598i −0.246448 + 0.758489i 0.748947 + 0.662630i \(0.230560\pi\)
−0.995395 + 0.0958591i \(0.969440\pi\)
\(284\) 19.4164 + 14.1068i 1.15215 + 0.837087i
\(285\) −8.94427 −0.529813
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) 5.42705 + 3.94298i 0.319792 + 0.232343i
\(289\) 0.927051 2.85317i 0.0545324 0.167834i
\(290\) 6.18034 + 19.0211i 0.362922 + 1.11696i
\(291\) −1.61803 + 1.17557i −0.0948508 + 0.0689132i
\(292\) 21.7082 15.7719i 1.27038 0.922983i
\(293\) −6.90983 21.2663i −0.403677 1.24239i −0.921995 0.387201i \(-0.873442\pi\)
0.518319 0.855188i \(-0.326558\pi\)
\(294\) 8.98278 27.6462i 0.523886 1.61236i
\(295\) 0 0
\(296\) 4.47214 0.259938
\(297\) 0 0
\(298\) −50.0000 −2.89642
\(299\) 0 0
\(300\) −0.927051 + 2.85317i −0.0535233 + 0.164728i
\(301\) −6.18034 19.0211i −0.356229 1.09636i
\(302\) −24.2705 + 17.6336i −1.39661 + 1.01470i
\(303\) −3.61803 + 2.62866i −0.207851 + 0.151012i
\(304\) 1.38197 + 4.25325i 0.0792612 + 0.243941i
\(305\) 5.52786 17.0130i 0.316525 0.974162i
\(306\) −8.09017 5.87785i −0.462484 0.336014i
\(307\) −4.47214 −0.255238 −0.127619 0.991823i \(-0.540734\pi\)
−0.127619 + 0.991823i \(0.540734\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) −3.70820 + 11.4127i −0.210273 + 0.647154i 0.789183 + 0.614159i \(0.210505\pi\)
−0.999456 + 0.0329949i \(0.989495\pi\)
\(312\) 0 0
\(313\) −11.3262 + 8.22899i −0.640197 + 0.465130i −0.859918 0.510433i \(-0.829485\pi\)
0.219721 + 0.975563i \(0.429485\pi\)
\(314\) −3.61803 + 2.62866i −0.204177 + 0.148344i
\(315\) −2.76393 8.50651i −0.155730 0.479287i
\(316\) 12.4377 38.2793i 0.699675 2.15338i
\(317\) −14.5623 10.5801i −0.817901 0.594240i 0.0982098 0.995166i \(-0.468688\pi\)
−0.916110 + 0.400926i \(0.868688\pi\)
\(318\) 13.4164 0.752355
\(319\) 0 0
\(320\) −26.0000 −1.45344
\(321\) −7.23607 5.25731i −0.403878 0.293434i
\(322\) 12.3607 38.0423i 0.688834 2.12001i
\(323\) −6.18034 19.0211i −0.343883 1.05836i
\(324\) −2.42705 + 1.76336i −0.134836 + 0.0979642i
\(325\) 0 0
\(326\) 2.76393 + 8.50651i 0.153080 + 0.471132i
\(327\) 0 0
\(328\) 8.09017 + 5.87785i 0.446705 + 0.324550i
\(329\) −35.7771 −1.97245
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 21.7082 + 15.7719i 1.19139 + 0.865597i
\(333\) 0.618034 1.90211i 0.0338681 0.104235i
\(334\) 6.18034 + 19.0211i 0.338173 + 1.04079i
\(335\) 19.4164 14.1068i 1.06083 0.770739i
\(336\) −3.61803 + 2.62866i −0.197380 + 0.143405i
\(337\) 2.76393 + 8.50651i 0.150561 + 0.463379i 0.997684 0.0680176i \(-0.0216674\pi\)
−0.847123 + 0.531397i \(0.821667\pi\)
\(338\) −8.98278 + 27.6462i −0.488599 + 1.50375i
\(339\) −4.85410 3.52671i −0.263639 0.191545i
\(340\) 26.8328 1.45521
\(341\) 0 0
\(342\) −10.0000 −0.540738
\(343\) 21.7082 + 15.7719i 1.17213 + 0.851604i
\(344\) 3.09017 9.51057i 0.166611 0.512775i
\(345\) −2.47214 7.60845i −0.133095 0.409625i
\(346\) 24.2705 17.6336i 1.30479 0.947986i
\(347\) −7.23607 + 5.25731i −0.388452 + 0.282227i −0.764821 0.644243i \(-0.777173\pi\)
0.376369 + 0.926470i \(0.377173\pi\)
\(348\) 4.14590 + 12.7598i 0.222243 + 0.683995i
\(349\) −8.29180 + 25.5195i −0.443850 + 1.36603i 0.439891 + 0.898051i \(0.355017\pi\)
−0.883740 + 0.467978i \(0.844983\pi\)
\(350\) −8.09017 5.87785i −0.432438 0.314184i
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −4.94427 + 15.2169i −0.262415 + 0.807629i
\(356\) −12.9787 39.9444i −0.687870 2.11705i
\(357\) 16.1803 11.7557i 0.856354 0.622178i
\(358\) 7.23607 5.25731i 0.382438 0.277858i
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) 1.38197 4.25325i 0.0728360 0.224166i
\(361\) −0.809017 0.587785i −0.0425798 0.0309361i
\(362\) −22.3607 −1.17525
\(363\) 0 0
\(364\) 0 0
\(365\) 14.4721 + 10.5146i 0.757506 + 0.550360i
\(366\) 6.18034 19.0211i 0.323052 0.994250i
\(367\) 2.47214 + 7.60845i 0.129044 + 0.397158i 0.994616 0.103627i \(-0.0330448\pi\)
−0.865572 + 0.500785i \(0.833045\pi\)
\(368\) −3.23607 + 2.35114i −0.168692 + 0.122562i
\(369\) 3.61803 2.62866i 0.188347 0.136842i
\(370\) 2.76393 + 8.50651i 0.143690 + 0.442232i
\(371\) −8.29180 + 25.5195i −0.430489 + 1.32491i
\(372\) 0 0
\(373\) −26.8328 −1.38935 −0.694675 0.719323i \(-0.744452\pi\)
−0.694675 + 0.719323i \(0.744452\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) −14.4721 10.5146i −0.746343 0.542250i
\(377\) 0 0
\(378\) −3.09017 9.51057i −0.158941 0.489171i
\(379\) 16.1803 11.7557i 0.831128 0.603850i −0.0887501 0.996054i \(-0.528287\pi\)
0.919878 + 0.392204i \(0.128287\pi\)
\(380\) 21.7082 15.7719i 1.11361 0.809083i
\(381\) 4.14590 + 12.7598i 0.212401 + 0.653702i
\(382\) 0 0
\(383\) 29.1246 + 21.1603i 1.48820 + 1.08124i 0.974798 + 0.223090i \(0.0716144\pi\)
0.513400 + 0.858149i \(0.328386\pi\)
\(384\) −15.6525 −0.798762
\(385\) 0 0
\(386\) −40.0000 −2.03595
\(387\) −3.61803 2.62866i −0.183915 0.133622i
\(388\) 1.85410 5.70634i 0.0941278 0.289695i
\(389\) 3.09017 + 9.51057i 0.156678 + 0.482205i 0.998327 0.0578199i \(-0.0184149\pi\)
−0.841649 + 0.540025i \(0.818415\pi\)
\(390\) 0 0
\(391\) 14.4721 10.5146i 0.731887 0.531747i
\(392\) 8.98278 + 27.6462i 0.453699 + 1.39634i
\(393\) −5.52786 + 17.0130i −0.278844 + 0.858193i
\(394\) −40.4508 29.3893i −2.03788 1.48061i
\(395\) 26.8328 1.35011
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) 6.18034 19.0211i 0.309404 0.952248i
\(400\) 0.309017 + 0.951057i 0.0154508 + 0.0475528i
\(401\) −24.2705 + 17.6336i −1.21201 + 0.880578i −0.995412 0.0956827i \(-0.969497\pi\)
−0.216600 + 0.976261i \(0.569497\pi\)
\(402\) 21.7082 15.7719i 1.08271 0.786633i
\(403\) 0 0
\(404\) 4.14590 12.7598i 0.206266 0.634822i
\(405\) −1.61803 1.17557i −0.0804008 0.0584146i
\(406\) −44.7214 −2.21948
\(407\) 0 0
\(408\) 10.0000 0.495074
\(409\) 21.7082 + 15.7719i 1.07340 + 0.779872i 0.976521 0.215424i \(-0.0691134\pi\)
0.0968810 + 0.995296i \(0.469113\pi\)
\(410\) −6.18034 + 19.0211i −0.305225 + 0.939387i
\(411\) 6.79837 + 20.9232i 0.335339 + 1.03207i
\(412\) −38.8328 + 28.2137i −1.91316 + 1.38999i
\(413\) 0 0
\(414\) −2.76393 8.50651i −0.135840 0.418072i
\(415\) −5.52786 + 17.0130i −0.271352 + 0.835136i
\(416\) 0 0
\(417\) 13.4164 0.657004
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 21.7082 + 15.7719i 1.05925 + 0.769592i
\(421\) 3.09017 9.51057i 0.150606 0.463517i −0.847084 0.531460i \(-0.821644\pi\)
0.997689 + 0.0679432i \(0.0216437\pi\)
\(422\) −3.09017 9.51057i −0.150427 0.462967i
\(423\) −6.47214 + 4.70228i −0.314686 + 0.228633i
\(424\) −10.8541 + 7.88597i −0.527122 + 0.382976i
\(425\) −1.38197 4.25325i −0.0670352 0.206313i
\(426\) −5.52786 + 17.0130i −0.267826 + 0.824283i
\(427\) 32.3607 + 23.5114i 1.56604 + 1.13780i
\(428\) 26.8328 1.29701
\(429\) 0 0
\(430\) 20.0000 0.964486
\(431\) 7.23607 + 5.25731i 0.348549 + 0.253236i 0.748260 0.663405i \(-0.230890\pi\)
−0.399711 + 0.916641i \(0.630890\pi\)
\(432\) −0.309017 + 0.951057i −0.0148676 + 0.0457577i
\(433\) −1.85410 5.70634i −0.0891025 0.274229i 0.896569 0.442903i \(-0.146051\pi\)
−0.985672 + 0.168674i \(0.946051\pi\)
\(434\) 0 0
\(435\) −7.23607 + 5.25731i −0.346943 + 0.252069i
\(436\) 0 0
\(437\) 5.52786 17.0130i 0.264434 0.813843i
\(438\) 16.1803 + 11.7557i 0.773127 + 0.561709i
\(439\) −13.4164 −0.640330 −0.320165 0.947362i \(-0.603738\pi\)
−0.320165 + 0.947362i \(0.603738\pi\)
\(440\) 0 0
\(441\) 13.0000 0.619048
\(442\) 0 0
\(443\) −7.41641 + 22.8254i −0.352364 + 1.08447i 0.605158 + 0.796105i \(0.293110\pi\)
−0.957522 + 0.288360i \(0.906890\pi\)
\(444\) 1.85410 + 5.70634i 0.0879918 + 0.270811i
\(445\) 22.6525 16.4580i 1.07383 0.780183i
\(446\) 28.9443 21.0292i 1.37055 0.995764i
\(447\) −6.90983 21.2663i −0.326824 1.00586i
\(448\) 17.9656 55.2923i 0.848793 2.61232i
\(449\) 4.85410 + 3.52671i 0.229079 + 0.166436i 0.696404 0.717650i \(-0.254782\pi\)
−0.467325 + 0.884086i \(0.654782\pi\)
\(450\) −2.23607 −0.105409
\(451\) 0 0
\(452\) 18.0000 0.846649
\(453\) −10.8541 7.88597i −0.509970 0.370515i
\(454\) 6.18034 19.0211i 0.290058 0.892706i
\(455\) 0 0
\(456\) 8.09017 5.87785i 0.378857 0.275256i
\(457\) −21.7082 + 15.7719i −1.01547 + 0.737780i −0.965349 0.260963i \(-0.915960\pi\)
−0.0501182 + 0.998743i \(0.515960\pi\)
\(458\) 6.90983 + 21.2663i 0.322875 + 0.993708i
\(459\) 1.38197 4.25325i 0.0645046 0.198525i
\(460\) 19.4164 + 14.1068i 0.905295 + 0.657735i
\(461\) 13.4164 0.624864 0.312432 0.949940i \(-0.398856\pi\)
0.312432 + 0.949940i \(0.398856\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 3.61803 + 2.62866i 0.167963 + 0.122032i
\(465\) 0 0
\(466\) −3.09017 9.51057i −0.143149 0.440568i
\(467\) 6.47214 4.70228i 0.299495 0.217596i −0.427881 0.903835i \(-0.640740\pi\)
0.727376 + 0.686239i \(0.240740\pi\)
\(468\) 0 0
\(469\) 16.5836 + 51.0390i 0.765759 + 2.35676i
\(470\) 11.0557 34.0260i 0.509963 1.56950i
\(471\) −1.61803 1.17557i −0.0745551 0.0541674i
\(472\) 0 0
\(473\) 0 0
\(474\) 30.0000 1.37795
\(475\) −3.61803 2.62866i −0.166007 0.120611i
\(476\) −18.5410 + 57.0634i −0.849826 + 2.61550i
\(477\) 1.85410 + 5.70634i 0.0848935 + 0.261275i
\(478\) −16.1803 + 11.7557i −0.740072 + 0.537693i
\(479\) 7.23607 5.25731i 0.330624 0.240213i −0.410071 0.912054i \(-0.634496\pi\)
0.740696 + 0.671841i \(0.234496\pi\)
\(480\) −4.14590 12.7598i −0.189233 0.582401i
\(481\) 0 0
\(482\) −16.1803 11.7557i −0.736994 0.535458i
\(483\) 17.8885 0.813957
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) −1.80902 1.31433i −0.0820587 0.0596191i
\(487\) 2.47214 7.60845i 0.112023 0.344772i −0.879291 0.476284i \(-0.841983\pi\)
0.991315 + 0.131512i \(0.0419833\pi\)
\(488\) 6.18034 + 19.0211i 0.279771 + 0.861046i
\(489\) −3.23607 + 2.35114i −0.146340 + 0.106322i
\(490\) −47.0344 + 34.1725i −2.12480 + 1.54376i
\(491\) −8.29180 25.5195i −0.374204 1.15168i −0.944014 0.329904i \(-0.892984\pi\)
0.569811 0.821776i \(-0.307016\pi\)
\(492\) −4.14590 + 12.7598i −0.186912 + 0.575255i
\(493\) −16.1803 11.7557i −0.728726 0.529450i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28.9443 21.0292i −1.29833 0.943291i
\(498\) −6.18034 + 19.0211i −0.276948 + 0.852357i
\(499\) −6.18034 19.0211i −0.276670 0.851503i −0.988773 0.149427i \(-0.952257\pi\)
0.712103 0.702075i \(-0.247743\pi\)
\(500\) 29.1246 21.1603i 1.30249 0.946316i
\(501\) −7.23607 + 5.25731i −0.323284 + 0.234879i
\(502\) −8.29180 25.5195i −0.370081 1.13899i
\(503\) −8.29180 + 25.5195i −0.369713 + 1.13786i 0.577264 + 0.816558i \(0.304120\pi\)
−0.946977 + 0.321302i \(0.895880\pi\)
\(504\) 8.09017 + 5.87785i 0.360365 + 0.261820i
\(505\) 8.94427 0.398015
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) −32.5623 23.6579i −1.44472 1.04965i
\(509\) 9.27051 28.5317i 0.410908 1.26465i −0.504952 0.863147i \(-0.668490\pi\)
0.915860 0.401498i \(-0.131510\pi\)
\(510\) 6.18034 + 19.0211i 0.273670 + 0.842270i
\(511\) −32.3607 + 23.5114i −1.43155 + 1.04008i
\(512\) −9.04508 + 6.57164i −0.399740 + 0.290428i
\(513\) −1.38197 4.25325i −0.0610153 0.187786i
\(514\) −15.2016 + 46.7858i −0.670515 + 2.06363i
\(515\) −25.8885 18.8091i −1.14079 0.828829i
\(516\) 13.4164 0.590624
\(517\) 0 0
\(518\) −20.0000 −0.878750
\(519\) 10.8541 + 7.88597i 0.476442 + 0.346156i
\(520\) 0 0
\(521\) 9.27051 + 28.5317i 0.406148 + 1.25000i 0.919933 + 0.392077i \(0.128243\pi\)
−0.513784 + 0.857920i \(0.671757\pi\)
\(522\) −8.09017 + 5.87785i −0.354097 + 0.257267i
\(523\) −3.61803 + 2.62866i −0.158206 + 0.114943i −0.664072 0.747669i \(-0.731173\pi\)
0.505866 + 0.862612i \(0.331173\pi\)
\(524\) −16.5836 51.0390i −0.724458 2.22965i
\(525\) 1.38197 4.25325i 0.0603139 0.185627i
\(526\) −16.1803 11.7557i −0.705496 0.512573i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −21.7082 15.7719i −0.942944 0.685089i
\(531\) 0 0
\(532\) 18.5410 + 57.0634i 0.803855 + 2.47401i
\(533\) 0 0
\(534\) 25.3262 18.4006i 1.09597 0.796271i
\(535\) 5.52786 + 17.0130i 0.238990 + 0.735537i
\(536\) −8.29180 + 25.5195i −0.358151 + 1.10228i
\(537\) 3.23607 + 2.35114i 0.139647 + 0.101459i
\(538\) −22.3607 −0.964037
\(539\) 0 0
\(540\) 6.00000 0.258199
\(541\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(542\) −9.27051 + 28.5317i −0.398202 + 1.22554i
\(543\) −3.09017 9.51057i −0.132612 0.408137i
\(544\) 24.2705 17.6336i 1.04059 0.756033i
\(545\) 0 0
\(546\) 0 0
\(547\) 12.4377 38.2793i 0.531797 1.63670i −0.218672 0.975798i \(-0.570172\pi\)
0.750469 0.660906i \(-0.229828\pi\)
\(548\) −53.3951 38.7938i −2.28093 1.65719i
\(549\) 8.94427 0.381732
\(550\) 0 0
\(551\) −20.0000 −0.852029
\(552\) 7.23607 + 5.25731i 0.307988 + 0.223766i
\(553\) −18.5410 + 57.0634i −0.788444 + 2.42658i
\(554\) 0 0
\(555\) −3.23607 + 2.35114i −0.137363 + 0.0998004i
\(556\) −32.5623 + 23.6579i −1.38095 + 1.00332i
\(557\) −12.4377 38.2793i −0.527002 1.62195i −0.760323 0.649546i \(-0.774959\pi\)
0.233321 0.972400i \(-0.425041\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 8.94427 0.377964
\(561\) 0 0
\(562\) 70.0000 2.95277
\(563\) −14.4721 10.5146i −0.609928 0.443138i 0.239461 0.970906i \(-0.423029\pi\)
−0.849389 + 0.527767i \(0.823029\pi\)
\(564\) 7.41641 22.8254i 0.312287 0.961121i
\(565\) 3.70820 + 11.4127i 0.156005 + 0.480135i
\(566\) 24.2705 17.6336i 1.02017 0.741194i
\(567\) 3.61803 2.62866i 0.151943 0.110393i
\(568\) −5.52786 17.0130i −0.231944 0.713850i
\(569\) 1.38197 4.25325i 0.0579350 0.178306i −0.917901 0.396809i \(-0.870117\pi\)
0.975836 + 0.218503i \(0.0701175\pi\)
\(570\) 16.1803 + 11.7557i 0.677720 + 0.492392i
\(571\) −13.4164 −0.561459 −0.280730 0.959787i \(-0.590576\pi\)
−0.280730 + 0.959787i \(0.590576\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −36.1803 26.2866i −1.51014 1.09718i
\(575\) 1.23607 3.80423i 0.0515476 0.158647i
\(576\) −4.01722 12.3637i −0.167384 0.515156i
\(577\) 1.61803 1.17557i 0.0673596 0.0489396i −0.553596 0.832785i \(-0.686745\pi\)
0.620956 + 0.783846i \(0.286745\pi\)
\(578\) −5.42705 + 3.94298i −0.225736 + 0.164006i
\(579\) −5.52786 17.0130i −0.229730 0.707037i
\(580\) 8.29180 25.5195i 0.344298 1.05964i
\(581\) −32.3607 23.5114i −1.34255 0.975418i
\(582\) 4.47214 0.185376
\(583\) 0 0
\(584\) −20.0000 −0.827606
\(585\) 0 0
\(586\) −15.4508 + 47.5528i −0.638269 + 1.96439i
\(587\) −2.47214 7.60845i −0.102036 0.314034i 0.886987 0.461794i \(-0.152794\pi\)
−0.989023 + 0.147759i \(0.952794\pi\)
\(588\) −31.5517 + 22.9236i −1.30117 + 0.945354i
\(589\) 0 0
\(590\) 0 0
\(591\) 6.90983 21.2663i 0.284232 0.874777i
\(592\) 1.61803 + 1.17557i 0.0665008 + 0.0483157i
\(593\) −22.3607 −0.918243 −0.459122 0.888373i \(-0.651836\pi\)
−0.459122 + 0.888373i \(0.651836\pi\)
\(594\) 0 0
\(595\) −40.0000 −1.63984
\(596\) 54.2705 + 39.4298i 2.22301 + 1.61511i
\(597\) 0 0
\(598\) 0 0
\(599\) 29.1246 21.1603i 1.19000 0.864585i 0.196735 0.980457i \(-0.436966\pi\)
0.993264 + 0.115872i \(0.0369661\pi\)
\(600\) 1.80902 1.31433i 0.0738528 0.0536572i
\(601\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(602\) −13.8197 + 42.5325i −0.563247 + 1.73350i
\(603\) 9.70820 + 7.05342i 0.395349 + 0.287238i
\(604\) 40.2492 1.63772
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) 3.61803 + 2.62866i 0.146851 + 0.106694i 0.658785 0.752331i \(-0.271071\pi\)
−0.511934 + 0.859025i \(0.671071\pi\)
\(608\) 9.27051 28.5317i 0.375969 1.15711i
\(609\) −6.18034 19.0211i −0.250440 0.770775i
\(610\) −32.3607 + 23.5114i −1.31025 + 0.951949i
\(611\) 0 0
\(612\) 4.14590 + 12.7598i 0.167588 + 0.515783i
\(613\) 13.8197 42.5325i 0.558171 1.71787i −0.129248 0.991612i \(-0.541256\pi\)
0.687419 0.726261i \(-0.258744\pi\)
\(614\) 8.09017 + 5.87785i 0.326493 + 0.237211i
\(615\) −8.94427 −0.360668
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) −28.9443 21.0292i −1.16431 0.845920i
\(619\) 13.5967 41.8465i 0.546499 1.68195i −0.170898 0.985289i \(-0.554667\pi\)
0.717398 0.696664i \(-0.245333\pi\)
\(620\) 0 0
\(621\) 3.23607 2.35114i 0.129859 0.0943480i
\(622\) 21.7082 15.7719i 0.870420 0.632397i
\(623\) 19.3475 + 59.5456i 0.775142 + 2.38564i
\(624\) 0 0
\(625\) 15.3713 + 11.1679i 0.614853 + 0.446717i
\(626\) 31.3050 1.25120
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) −7.23607 5.25731i −0.288521 0.209623i
\(630\) −6.18034 + 19.0211i −0.246231 + 0.757820i
\(631\) 9.88854 + 30.4338i 0.393657 + 1.21155i 0.930003 + 0.367553i \(0.119804\pi\)
−0.536346 + 0.843998i \(0.680196\pi\)
\(632\) −24.2705 + 17.6336i −0.965429 + 0.701425i
\(633\) 3.61803 2.62866i 0.143804 0.104480i
\(634\) 12.4377 + 38.2793i 0.493964 + 1.52026i
\(635\) 8.29180 25.5195i 0.329050 1.01271i
\(636\) −14.5623 10.5801i −0.577433 0.419530i
\(637\) 0 0
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 25.3262 + 18.4006i 1.00111 + 0.727347i
\(641\) −9.27051 + 28.5317i −0.366163 + 1.12693i 0.583086 + 0.812410i \(0.301845\pi\)
−0.949250 + 0.314524i \(0.898155\pi\)
\(642\) 6.18034 + 19.0211i 0.243919 + 0.750704i
\(643\) −29.1246 + 21.1603i −1.14856 + 0.834480i −0.988289 0.152593i \(-0.951238\pi\)
−0.160273 + 0.987073i \(0.551238\pi\)
\(644\) −43.4164 + 31.5439i −1.71085 + 1.24300i
\(645\) 2.76393 + 8.50651i 0.108830 + 0.334943i
\(646\) −13.8197 + 42.5325i −0.543727 + 1.67342i
\(647\) 9.70820 + 7.05342i 0.381669 + 0.277299i 0.762033 0.647538i \(-0.224201\pi\)
−0.380364 + 0.924837i \(0.624201\pi\)
\(648\) 2.23607 0.0878410
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 3.70820 11.4127i 0.145224 0.446955i
\(653\) 14.2148 + 43.7486i 0.556267 + 1.71202i 0.692573 + 0.721348i \(0.256477\pi\)
−0.136305 + 0.990667i \(0.543523\pi\)
\(654\) 0 0
\(655\) 28.9443 21.0292i 1.13095 0.821681i
\(656\) 1.38197 + 4.25325i 0.0539567 + 0.166062i
\(657\) −2.76393 + 8.50651i −0.107831 + 0.331870i
\(658\) 64.7214 + 47.0228i 2.52310 + 1.83314i
\(659\) 17.8885 0.696839 0.348419 0.937339i \(-0.386719\pi\)
0.348419 + 0.937339i \(0.386719\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 36.1803 + 26.2866i 1.40619 + 1.02166i
\(663\) 0 0
\(664\) −6.18034 19.0211i −0.239844 0.738163i
\(665\) −32.3607 + 23.5114i −1.25489 + 0.911733i
\(666\) −3.61803 + 2.62866i −0.140196 + 0.101858i
\(667\) −5.52786 17.0130i −0.214040 0.658747i
\(668\) 8.29180 25.5195i 0.320819 0.987380i
\(669\) 12.9443 + 9.40456i 0.500454 + 0.363601i
\(670\) −53.6656 −2.07328
\(671\) 0 0
\(672\) 30.0000 1.15728
\(673\) 14.4721 + 10.5146i 0.557860 + 0.405309i 0.830675 0.556758i \(-0.187955\pi\)
−0.272815 + 0.962066i \(0.587955\pi\)
\(674\) 6.18034 19.0211i 0.238058 0.732667i
\(675\) −0.309017 0.951057i −0.0118941 0.0366062i
\(676\) 31.5517 22.9236i 1.21353 0.881678i
\(677\) 25.3262 18.4006i 0.973366 0.707192i 0.0171501 0.999853i \(-0.494541\pi\)
0.956216 + 0.292661i \(0.0945407\pi\)
\(678\) 4.14590 + 12.7598i 0.159222 + 0.490036i
\(679\) −2.76393 + 8.50651i −0.106070 + 0.326450i
\(680\) −16.1803 11.7557i −0.620488 0.450811i
\(681\) 8.94427 0.342745
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 10.8541 + 7.88597i 0.415017 + 0.301527i
\(685\) 13.5967 41.8465i 0.519505 1.59887i
\(686\) −18.5410 57.0634i −0.707899 2.17869i
\(687\) −8.09017 + 5.87785i −0.308659 + 0.224254i
\(688\) 3.61803 2.62866i 0.137936 0.100217i
\(689\) 0 0
\(690\) −5.52786 + 17.0130i −0.210442 + 0.647674i
\(691\) −9.70820 7.05342i −0.369317 0.268325i 0.387610 0.921823i \(-0.373301\pi\)
−0.756928 + 0.653498i \(0.773301\pi\)
\(692\) −40.2492 −1.53005
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) −21.7082 15.7719i −0.823439 0.598264i
\(696\) 3.09017 9.51057i 0.117133 0.360497i
\(697\) −6.18034 19.0211i −0.234097 0.720477i
\(698\) 48.5410 35.2671i 1.83730 1.33488i
\(699\) 3.61803 2.62866i 0.136847 0.0994249i
\(700\) 4.14590 + 12.7598i 0.156700 + 0.482274i
\(701\) −6.90983 + 21.2663i −0.260981 + 0.803216i 0.731611 + 0.681722i \(0.238769\pi\)
−0.992592 + 0.121494i \(0.961231\pi\)
\(702\) 0 0
\(703\) −8.94427 −0.337340
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) 25.3262 + 18.4006i 0.953166 + 0.692515i
\(707\) −6.18034 + 19.0211i −0.232436 + 0.715363i
\(708\) 0 0
\(709\) 4.85410 3.52671i 0.182300 0.132448i −0.492893 0.870090i \(-0.664061\pi\)
0.675192 + 0.737642i \(0.264061\pi\)
\(710\) 28.9443 21.0292i 1.08626 0.789213i
\(711\) 4.14590 + 12.7598i 0.155483 + 0.478528i
\(712\) −9.67376 + 29.7728i −0.362540 + 1.11578i
\(713\) 0 0
\(714\) −44.7214 −1.67365
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) −7.23607 5.25731i −0.270236 0.196338i
\(718\) 0 0
\(719\) −7.41641 22.8254i −0.276585 0.851242i −0.988796 0.149276i \(-0.952306\pi\)
0.712210 0.701966i \(-0.247694\pi\)
\(720\) 1.61803 1.17557i 0.0603006 0.0438109i
\(721\) 57.8885 42.0585i 2.15588 1.56634i
\(722\) 0.690983 + 2.12663i 0.0257157 + 0.0791449i
\(723\) 2.76393 8.50651i 0.102792 0.316360i
\(724\) 24.2705 + 17.6336i 0.902006 + 0.655346i
\(725\) −4.47214 −0.166091
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −12.3607 38.0423i −0.457489 1.40801i
\(731\) −16.1803 + 11.7557i −0.598451 + 0.434800i
\(732\) −21.7082 + 15.7719i −0.802358 + 0.582947i
\(733\) −5.52786 17.0130i −0.204176 0.628390i −0.999746 0.0225283i \(-0.992828\pi\)
0.795570 0.605862i \(-0.207172\pi\)
\(734\) 5.52786 17.0130i 0.204037 0.627962i
\(735\) −21.0344 15.2824i −0.775867 0.563700i
\(736\) 26.8328 0.989071
\(737\) 0 0
\(738\) −10.0000 −0.368105
\(739\) −3.61803 2.62866i −0.133092 0.0966967i 0.519248 0.854624i \(-0.326212\pi\)
−0.652339 + 0.757927i \(0.726212\pi\)
\(740\) 3.70820 11.4127i 0.136316 0.419538i
\(741\) 0 0
\(742\) 48.5410 35.2671i 1.78200 1.29470i
\(743\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(744\) 0 0
\(745\) −13.8197 + 42.5325i −0.506313 + 1.55827i
\(746\) 48.5410 + 35.2671i 1.77721 + 1.29122i
\(747\) −8.94427 −0.327254
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) 21.7082 + 15.7719i 0.792672 + 0.575910i
\(751\) 9.88854 30.4338i 0.360838 1.11055i −0.591708 0.806152i \(-0.701546\pi\)
0.952546 0.304393i \(-0.0984537\pi\)
\(752\) −2.47214 7.60845i −0.0901495 0.277452i
\(753\) 9.70820 7.05342i 0.353787 0.257041i
\(754\) 0 0
\(755\) 8.29180 + 25.5195i 0.301769 + 0.928751i
\(756\) −4.14590 + 12.7598i −0.150785 + 0.464068i
\(757\) −33.9787 24.6870i −1.23498 0.897264i −0.237724 0.971333i \(-0.576401\pi\)
−0.997253 + 0.0740691i \(0.976401\pi\)
\(758\) −44.7214 −1.62435
\(759\) 0 0
\(760\) −20.0000 −0.725476
\(761\) 25.3262 + 18.4006i 0.918075 + 0.667021i 0.943044 0.332667i \(-0.107949\pi\)
−0.0249688 + 0.999688i \(0.507949\pi\)
\(762\) 9.27051 28.5317i 0.335835 1.03359i
\(763\) 0 0
\(764\) 0 0
\(765\) −7.23607 + 5.25731i −0.261621 + 0.190078i
\(766\) −24.8754 76.5586i −0.898784 2.76617i
\(767\) 0 0
\(768\) 7.28115 + 5.29007i 0.262736 + 0.190889i
\(769\) 35.7771 1.29015 0.645077 0.764117i \(-0.276825\pi\)
0.645077 + 0.764117i \(0.276825\pi\)
\(770\) 0 0
\(771\) −22.0000 −0.792311
\(772\) 43.4164 + 31.5439i 1.56259 + 1.13529i
\(773\) 4.32624 13.3148i 0.155604 0.478900i −0.842618 0.538512i \(-0.818987\pi\)
0.998222 + 0.0596126i \(0.0189865\pi\)
\(774\) 3.09017 + 9.51057i 0.111074 + 0.341850i
\(775\) 0 0
\(776\) −3.61803