Properties

Label 363.2.e.a
Level $363$
Weight $2$
Character orbit 363.e
Analytic conductor $2.899$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{3} + \zeta_{10}^{2} + \cdots - 1) q^{2}+ \cdots + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{10}^{3} + \zeta_{10}^{2} + \cdots - 1) q^{2}+ \cdots + ( - 26 \zeta_{10}^{3} + 26 \zeta_{10}^{2} + 13) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} - q^{3} - 3 q^{4} - 2 q^{5} - 5 q^{6} - 10 q^{7} + 5 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 5 q^{2} - q^{3} - 3 q^{4} - 2 q^{5} - 5 q^{6} - 10 q^{7} + 5 q^{8} - q^{9} + 12 q^{12} + 10 q^{14} - 2 q^{15} + q^{16} - 10 q^{17} + 5 q^{18} - 10 q^{19} - 6 q^{20} - 16 q^{23} - 5 q^{24} + q^{25} - q^{27} + 30 q^{28} + 10 q^{29} + 10 q^{30} + 40 q^{34} + 20 q^{35} - 3 q^{36} - 2 q^{37} + 10 q^{38} + 10 q^{40} - 10 q^{41} + 10 q^{42} + 8 q^{45} + 20 q^{46} - 8 q^{47} + q^{48} - 13 q^{49} + 5 q^{50} + 10 q^{51} - 6 q^{53} - 40 q^{56} + 10 q^{57} - 10 q^{58} - 6 q^{60} - 20 q^{61} - 10 q^{63} + 13 q^{64} - 48 q^{67} - 30 q^{68} + 4 q^{69} + 20 q^{70} + 8 q^{71} - 5 q^{72} - 20 q^{73} + 10 q^{74} + q^{75} - 30 q^{79} + 2 q^{80} - q^{81} + 10 q^{82} + 20 q^{83} - 30 q^{84} + 20 q^{85} - 10 q^{86} - 56 q^{89} - 10 q^{90} + 12 q^{92} - 40 q^{94} - 20 q^{95} - 15 q^{96} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
124.1
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
−1.80902 + 1.31433i 0.309017 + 0.951057i 0.927051 2.85317i −1.61803 1.17557i −1.80902 1.31433i −1.38197 + 4.25325i 0.690983 + 2.12663i −0.809017 + 0.587785i 4.47214
130.1 −0.690983 + 2.12663i −0.809017 + 0.587785i −2.42705 1.76336i 0.618034 + 1.90211i −0.690983 2.12663i −3.61803 2.62866i 1.80902 1.31433i 0.309017 0.951057i −4.47214
148.1 −0.690983 2.12663i −0.809017 0.587785i −2.42705 + 1.76336i 0.618034 1.90211i −0.690983 + 2.12663i −3.61803 + 2.62866i 1.80902 + 1.31433i 0.309017 + 0.951057i −4.47214
202.1 −1.80902 1.31433i 0.309017 0.951057i 0.927051 + 2.85317i −1.61803 + 1.17557i −1.80902 + 1.31433i −1.38197 4.25325i 0.690983 2.12663i −0.809017 0.587785i 4.47214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner
11.d odd 10 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 363.2.e.a 4
11.b odd 2 1 363.2.e.l 4
11.c even 5 1 363.2.a.g 2
11.c even 5 1 inner 363.2.e.a 4
11.c even 5 2 363.2.e.l 4
11.d odd 10 1 363.2.a.g 2
11.d odd 10 2 inner 363.2.e.a 4
11.d odd 10 1 363.2.e.l 4
33.f even 10 1 1089.2.a.p 2
33.h odd 10 1 1089.2.a.p 2
44.g even 10 1 5808.2.a.bx 2
44.h odd 10 1 5808.2.a.bx 2
55.h odd 10 1 9075.2.a.bi 2
55.j even 10 1 9075.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
363.2.a.g 2 11.c even 5 1
363.2.a.g 2 11.d odd 10 1
363.2.e.a 4 1.a even 1 1 trivial
363.2.e.a 4 11.c even 5 1 inner
363.2.e.a 4 11.d odd 10 2 inner
363.2.e.l 4 11.b odd 2 1
363.2.e.l 4 11.c even 5 2
363.2.e.l 4 11.d odd 10 1
1089.2.a.p 2 33.f even 10 1
1089.2.a.p 2 33.h odd 10 1
5808.2.a.bx 2 44.g even 10 1
5808.2.a.bx 2 44.h odd 10 1
9075.2.a.bi 2 55.h odd 10 1
9075.2.a.bi 2 55.j even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 5T_{2}^{3} + 15T_{2}^{2} + 25T_{2} + 25 \) acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$19$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$23$ \( (T + 4)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$43$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$53$ \( T^{4} + 6 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 20 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$67$ \( (T + 12)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$73$ \( T^{4} + 20 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$79$ \( T^{4} + 30 T^{3} + \cdots + 32400 \) Copy content Toggle raw display
$83$ \( T^{4} - 20 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$89$ \( (T + 14)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
show more
show less