Properties

Label 363.2.d.b.362.2
Level $363$
Weight $2$
Character 363.362
Analytic conductor $2.899$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(362,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.362");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 362.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 363.362
Dual form 363.2.d.b.362.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.00000 + 1.41421i) q^{3} -1.00000 q^{4} +2.82843i q^{5} +(1.00000 + 1.41421i) q^{6} -1.41421i q^{7} -3.00000 q^{8} +(-1.00000 + 2.82843i) q^{9} +2.82843i q^{10} +(-1.00000 - 1.41421i) q^{12} +4.24264i q^{13} -1.41421i q^{14} +(-4.00000 + 2.82843i) q^{15} -1.00000 q^{16} +6.00000 q^{17} +(-1.00000 + 2.82843i) q^{18} -4.24264i q^{19} -2.82843i q^{20} +(2.00000 - 1.41421i) q^{21} +(-3.00000 - 4.24264i) q^{24} -3.00000 q^{25} +4.24264i q^{26} +(-5.00000 + 1.41421i) q^{27} +1.41421i q^{28} -2.00000 q^{29} +(-4.00000 + 2.82843i) q^{30} -2.00000 q^{31} +5.00000 q^{32} +6.00000 q^{34} +4.00000 q^{35} +(1.00000 - 2.82843i) q^{36} +8.00000 q^{37} -4.24264i q^{38} +(-6.00000 + 4.24264i) q^{39} -8.48528i q^{40} +6.00000 q^{41} +(2.00000 - 1.41421i) q^{42} -4.24264i q^{43} +(-8.00000 - 2.82843i) q^{45} +2.82843i q^{47} +(-1.00000 - 1.41421i) q^{48} +5.00000 q^{49} -3.00000 q^{50} +(6.00000 + 8.48528i) q^{51} -4.24264i q^{52} +5.65685i q^{53} +(-5.00000 + 1.41421i) q^{54} +4.24264i q^{56} +(6.00000 - 4.24264i) q^{57} -2.00000 q^{58} -11.3137i q^{59} +(4.00000 - 2.82843i) q^{60} -9.89949i q^{61} -2.00000 q^{62} +(4.00000 + 1.41421i) q^{63} +7.00000 q^{64} -12.0000 q^{65} +2.00000 q^{67} -6.00000 q^{68} +4.00000 q^{70} +2.82843i q^{71} +(3.00000 - 8.48528i) q^{72} -1.41421i q^{73} +8.00000 q^{74} +(-3.00000 - 4.24264i) q^{75} +4.24264i q^{76} +(-6.00000 + 4.24264i) q^{78} +4.24264i q^{79} -2.82843i q^{80} +(-7.00000 - 5.65685i) q^{81} +6.00000 q^{82} -16.0000 q^{83} +(-2.00000 + 1.41421i) q^{84} +16.9706i q^{85} -4.24264i q^{86} +(-2.00000 - 2.82843i) q^{87} +(-8.00000 - 2.82843i) q^{90} +6.00000 q^{91} +(-2.00000 - 2.82843i) q^{93} +2.82843i q^{94} +12.0000 q^{95} +(5.00000 + 7.07107i) q^{96} -2.00000 q^{97} +5.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{6} - 6 q^{8} - 2 q^{9} - 2 q^{12} - 8 q^{15} - 2 q^{16} + 12 q^{17} - 2 q^{18} + 4 q^{21} - 6 q^{24} - 6 q^{25} - 10 q^{27} - 4 q^{29} - 8 q^{30} - 4 q^{31} + 10 q^{32}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 1.00000 + 1.41421i 0.577350 + 0.816497i
\(4\) −1.00000 −0.500000
\(5\) 2.82843i 1.26491i 0.774597 + 0.632456i \(0.217953\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 1.00000 + 1.41421i 0.408248 + 0.577350i
\(7\) 1.41421i 0.534522i −0.963624 0.267261i \(-0.913881\pi\)
0.963624 0.267261i \(-0.0861187\pi\)
\(8\) −3.00000 −1.06066
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 2.82843i 0.894427i
\(11\) 0 0
\(12\) −1.00000 1.41421i −0.288675 0.408248i
\(13\) 4.24264i 1.17670i 0.808608 + 0.588348i \(0.200222\pi\)
−0.808608 + 0.588348i \(0.799778\pi\)
\(14\) 1.41421i 0.377964i
\(15\) −4.00000 + 2.82843i −1.03280 + 0.730297i
\(16\) −1.00000 −0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) −1.00000 + 2.82843i −0.235702 + 0.666667i
\(19\) 4.24264i 0.973329i −0.873589 0.486664i \(-0.838214\pi\)
0.873589 0.486664i \(-0.161786\pi\)
\(20\) 2.82843i 0.632456i
\(21\) 2.00000 1.41421i 0.436436 0.308607i
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −3.00000 4.24264i −0.612372 0.866025i
\(25\) −3.00000 −0.600000
\(26\) 4.24264i 0.832050i
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) 1.41421i 0.267261i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) −4.00000 + 2.82843i −0.730297 + 0.516398i
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 4.00000 0.676123
\(36\) 1.00000 2.82843i 0.166667 0.471405i
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 4.24264i 0.688247i
\(39\) −6.00000 + 4.24264i −0.960769 + 0.679366i
\(40\) 8.48528i 1.34164i
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 2.00000 1.41421i 0.308607 0.218218i
\(43\) 4.24264i 0.646997i −0.946229 0.323498i \(-0.895141\pi\)
0.946229 0.323498i \(-0.104859\pi\)
\(44\) 0 0
\(45\) −8.00000 2.82843i −1.19257 0.421637i
\(46\) 0 0
\(47\) 2.82843i 0.412568i 0.978492 + 0.206284i \(0.0661372\pi\)
−0.978492 + 0.206284i \(0.933863\pi\)
\(48\) −1.00000 1.41421i −0.144338 0.204124i
\(49\) 5.00000 0.714286
\(50\) −3.00000 −0.424264
\(51\) 6.00000 + 8.48528i 0.840168 + 1.18818i
\(52\) 4.24264i 0.588348i
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) −5.00000 + 1.41421i −0.680414 + 0.192450i
\(55\) 0 0
\(56\) 4.24264i 0.566947i
\(57\) 6.00000 4.24264i 0.794719 0.561951i
\(58\) −2.00000 −0.262613
\(59\) 11.3137i 1.47292i −0.676481 0.736460i \(-0.736496\pi\)
0.676481 0.736460i \(-0.263504\pi\)
\(60\) 4.00000 2.82843i 0.516398 0.365148i
\(61\) 9.89949i 1.26750i −0.773538 0.633750i \(-0.781515\pi\)
0.773538 0.633750i \(-0.218485\pi\)
\(62\) −2.00000 −0.254000
\(63\) 4.00000 + 1.41421i 0.503953 + 0.178174i
\(64\) 7.00000 0.875000
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) 2.82843i 0.335673i 0.985815 + 0.167836i \(0.0536780\pi\)
−0.985815 + 0.167836i \(0.946322\pi\)
\(72\) 3.00000 8.48528i 0.353553 1.00000i
\(73\) 1.41421i 0.165521i −0.996569 0.0827606i \(-0.973626\pi\)
0.996569 0.0827606i \(-0.0263737\pi\)
\(74\) 8.00000 0.929981
\(75\) −3.00000 4.24264i −0.346410 0.489898i
\(76\) 4.24264i 0.486664i
\(77\) 0 0
\(78\) −6.00000 + 4.24264i −0.679366 + 0.480384i
\(79\) 4.24264i 0.477334i 0.971101 + 0.238667i \(0.0767105\pi\)
−0.971101 + 0.238667i \(0.923290\pi\)
\(80\) 2.82843i 0.316228i
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 6.00000 0.662589
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) −2.00000 + 1.41421i −0.218218 + 0.154303i
\(85\) 16.9706i 1.84072i
\(86\) 4.24264i 0.457496i
\(87\) −2.00000 2.82843i −0.214423 0.303239i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −8.00000 2.82843i −0.843274 0.298142i
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) −2.00000 2.82843i −0.207390 0.293294i
\(94\) 2.82843i 0.291730i
\(95\) 12.0000 1.23117
\(96\) 5.00000 + 7.07107i 0.510310 + 0.721688i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 5.00000 0.505076
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 6.00000 + 8.48528i 0.594089 + 0.840168i
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 12.7279i 1.24808i
\(105\) 4.00000 + 5.65685i 0.390360 + 0.552052i
\(106\) 5.65685i 0.549442i
\(107\) −16.0000 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(108\) 5.00000 1.41421i 0.481125 0.136083i
\(109\) 4.24264i 0.406371i −0.979140 0.203186i \(-0.934871\pi\)
0.979140 0.203186i \(-0.0651295\pi\)
\(110\) 0 0
\(111\) 8.00000 + 11.3137i 0.759326 + 1.07385i
\(112\) 1.41421i 0.133631i
\(113\) 2.82843i 0.266076i 0.991111 + 0.133038i \(0.0424732\pi\)
−0.991111 + 0.133038i \(0.957527\pi\)
\(114\) 6.00000 4.24264i 0.561951 0.397360i
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) −12.0000 4.24264i −1.10940 0.392232i
\(118\) 11.3137i 1.04151i
\(119\) 8.48528i 0.777844i
\(120\) 12.0000 8.48528i 1.09545 0.774597i
\(121\) 0 0
\(122\) 9.89949i 0.896258i
\(123\) 6.00000 + 8.48528i 0.541002 + 0.765092i
\(124\) 2.00000 0.179605
\(125\) 5.65685i 0.505964i
\(126\) 4.00000 + 1.41421i 0.356348 + 0.125988i
\(127\) 9.89949i 0.878438i −0.898380 0.439219i \(-0.855255\pi\)
0.898380 0.439219i \(-0.144745\pi\)
\(128\) −3.00000 −0.265165
\(129\) 6.00000 4.24264i 0.528271 0.373544i
\(130\) −12.0000 −1.05247
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 2.00000 0.172774
\(135\) −4.00000 14.1421i −0.344265 1.21716i
\(136\) −18.0000 −1.54349
\(137\) 2.82843i 0.241649i 0.992674 + 0.120824i \(0.0385538\pi\)
−0.992674 + 0.120824i \(0.961446\pi\)
\(138\) 0 0
\(139\) 1.41421i 0.119952i −0.998200 0.0599760i \(-0.980898\pi\)
0.998200 0.0599760i \(-0.0191024\pi\)
\(140\) −4.00000 −0.338062
\(141\) −4.00000 + 2.82843i −0.336861 + 0.238197i
\(142\) 2.82843i 0.237356i
\(143\) 0 0
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) 5.65685i 0.469776i
\(146\) 1.41421i 0.117041i
\(147\) 5.00000 + 7.07107i 0.412393 + 0.583212i
\(148\) −8.00000 −0.657596
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −3.00000 4.24264i −0.244949 0.346410i
\(151\) 4.24264i 0.345261i −0.984987 0.172631i \(-0.944773\pi\)
0.984987 0.172631i \(-0.0552267\pi\)
\(152\) 12.7279i 1.03237i
\(153\) −6.00000 + 16.9706i −0.485071 + 1.37199i
\(154\) 0 0
\(155\) 5.65685i 0.454369i
\(156\) 6.00000 4.24264i 0.480384 0.339683i
\(157\) −20.0000 −1.59617 −0.798087 0.602542i \(-0.794154\pi\)
−0.798087 + 0.602542i \(0.794154\pi\)
\(158\) 4.24264i 0.337526i
\(159\) −8.00000 + 5.65685i −0.634441 + 0.448618i
\(160\) 14.1421i 1.11803i
\(161\) 0 0
\(162\) −7.00000 5.65685i −0.549972 0.444444i
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −16.0000 −1.24184
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) −6.00000 + 4.24264i −0.462910 + 0.327327i
\(169\) −5.00000 −0.384615
\(170\) 16.9706i 1.30158i
\(171\) 12.0000 + 4.24264i 0.917663 + 0.324443i
\(172\) 4.24264i 0.323498i
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −2.00000 2.82843i −0.151620 0.214423i
\(175\) 4.24264i 0.320713i
\(176\) 0 0
\(177\) 16.0000 11.3137i 1.20263 0.850390i
\(178\) 0 0
\(179\) 2.82843i 0.211407i 0.994398 + 0.105703i \(0.0337094\pi\)
−0.994398 + 0.105703i \(0.966291\pi\)
\(180\) 8.00000 + 2.82843i 0.596285 + 0.210819i
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 6.00000 0.444750
\(183\) 14.0000 9.89949i 1.03491 0.731792i
\(184\) 0 0
\(185\) 22.6274i 1.66360i
\(186\) −2.00000 2.82843i −0.146647 0.207390i
\(187\) 0 0
\(188\) 2.82843i 0.206284i
\(189\) 2.00000 + 7.07107i 0.145479 + 0.514344i
\(190\) 12.0000 0.870572
\(191\) 19.7990i 1.43260i 0.697790 + 0.716302i \(0.254167\pi\)
−0.697790 + 0.716302i \(0.745833\pi\)
\(192\) 7.00000 + 9.89949i 0.505181 + 0.714435i
\(193\) 21.2132i 1.52696i 0.645832 + 0.763480i \(0.276511\pi\)
−0.645832 + 0.763480i \(0.723489\pi\)
\(194\) −2.00000 −0.143592
\(195\) −12.0000 16.9706i −0.859338 1.21529i
\(196\) −5.00000 −0.357143
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 9.00000 0.636396
\(201\) 2.00000 + 2.82843i 0.141069 + 0.199502i
\(202\) −10.0000 −0.703598
\(203\) 2.82843i 0.198517i
\(204\) −6.00000 8.48528i −0.420084 0.594089i
\(205\) 16.9706i 1.18528i
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) 4.00000 + 5.65685i 0.276026 + 0.390360i
\(211\) 26.8701i 1.84981i −0.380197 0.924906i \(-0.624144\pi\)
0.380197 0.924906i \(-0.375856\pi\)
\(212\) 5.65685i 0.388514i
\(213\) −4.00000 + 2.82843i −0.274075 + 0.193801i
\(214\) −16.0000 −1.09374
\(215\) 12.0000 0.818393
\(216\) 15.0000 4.24264i 1.02062 0.288675i
\(217\) 2.82843i 0.192006i
\(218\) 4.24264i 0.287348i
\(219\) 2.00000 1.41421i 0.135147 0.0955637i
\(220\) 0 0
\(221\) 25.4558i 1.71235i
\(222\) 8.00000 + 11.3137i 0.536925 + 0.759326i
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 7.07107i 0.472456i
\(225\) 3.00000 8.48528i 0.200000 0.565685i
\(226\) 2.82843i 0.188144i
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) −6.00000 + 4.24264i −0.397360 + 0.280976i
\(229\) −24.0000 −1.58596 −0.792982 0.609245i \(-0.791473\pi\)
−0.792982 + 0.609245i \(0.791473\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) −12.0000 4.24264i −0.784465 0.277350i
\(235\) −8.00000 −0.521862
\(236\) 11.3137i 0.736460i
\(237\) −6.00000 + 4.24264i −0.389742 + 0.275589i
\(238\) 8.48528i 0.550019i
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 4.00000 2.82843i 0.258199 0.182574i
\(241\) 4.24264i 0.273293i −0.990620 0.136646i \(-0.956368\pi\)
0.990620 0.136646i \(-0.0436324\pi\)
\(242\) 0 0
\(243\) 1.00000 15.5563i 0.0641500 0.997940i
\(244\) 9.89949i 0.633750i
\(245\) 14.1421i 0.903508i
\(246\) 6.00000 + 8.48528i 0.382546 + 0.541002i
\(247\) 18.0000 1.14531
\(248\) 6.00000 0.381000
\(249\) −16.0000 22.6274i −1.01396 1.43395i
\(250\) 5.65685i 0.357771i
\(251\) 25.4558i 1.60676i −0.595468 0.803379i \(-0.703033\pi\)
0.595468 0.803379i \(-0.296967\pi\)
\(252\) −4.00000 1.41421i −0.251976 0.0890871i
\(253\) 0 0
\(254\) 9.89949i 0.621150i
\(255\) −24.0000 + 16.9706i −1.50294 + 1.06274i
\(256\) −17.0000 −1.06250
\(257\) 11.3137i 0.705730i −0.935674 0.352865i \(-0.885208\pi\)
0.935674 0.352865i \(-0.114792\pi\)
\(258\) 6.00000 4.24264i 0.373544 0.264135i
\(259\) 11.3137i 0.703000i
\(260\) 12.0000 0.744208
\(261\) 2.00000 5.65685i 0.123797 0.350150i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −16.0000 −0.982872
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) 28.2843i 1.72452i −0.506464 0.862261i \(-0.669048\pi\)
0.506464 0.862261i \(-0.330952\pi\)
\(270\) −4.00000 14.1421i −0.243432 0.860663i
\(271\) 29.6985i 1.80405i 0.431679 + 0.902027i \(0.357921\pi\)
−0.431679 + 0.902027i \(0.642079\pi\)
\(272\) −6.00000 −0.363803
\(273\) 6.00000 + 8.48528i 0.363137 + 0.513553i
\(274\) 2.82843i 0.170872i
\(275\) 0 0
\(276\) 0 0
\(277\) 4.24264i 0.254916i 0.991844 + 0.127458i \(0.0406817\pi\)
−0.991844 + 0.127458i \(0.959318\pi\)
\(278\) 1.41421i 0.0848189i
\(279\) 2.00000 5.65685i 0.119737 0.338667i
\(280\) −12.0000 −0.717137
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) −4.00000 + 2.82843i −0.238197 + 0.168430i
\(283\) 26.8701i 1.59726i 0.601823 + 0.798630i \(0.294441\pi\)
−0.601823 + 0.798630i \(0.705559\pi\)
\(284\) 2.82843i 0.167836i
\(285\) 12.0000 + 16.9706i 0.710819 + 1.00525i
\(286\) 0 0
\(287\) 8.48528i 0.500870i
\(288\) −5.00000 + 14.1421i −0.294628 + 0.833333i
\(289\) 19.0000 1.11765
\(290\) 5.65685i 0.332182i
\(291\) −2.00000 2.82843i −0.117242 0.165805i
\(292\) 1.41421i 0.0827606i
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 5.00000 + 7.07107i 0.291606 + 0.412393i
\(295\) 32.0000 1.86311
\(296\) −24.0000 −1.39497
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 3.00000 + 4.24264i 0.173205 + 0.244949i
\(301\) −6.00000 −0.345834
\(302\) 4.24264i 0.244137i
\(303\) −10.0000 14.1421i −0.574485 0.812444i
\(304\) 4.24264i 0.243332i
\(305\) 28.0000 1.60328
\(306\) −6.00000 + 16.9706i −0.342997 + 0.970143i
\(307\) 4.24264i 0.242140i −0.992644 0.121070i \(-0.961367\pi\)
0.992644 0.121070i \(-0.0386326\pi\)
\(308\) 0 0
\(309\) 8.00000 + 11.3137i 0.455104 + 0.643614i
\(310\) 5.65685i 0.321288i
\(311\) 28.2843i 1.60385i −0.597422 0.801927i \(-0.703808\pi\)
0.597422 0.801927i \(-0.296192\pi\)
\(312\) 18.0000 12.7279i 1.01905 0.720577i
\(313\) 12.0000 0.678280 0.339140 0.940736i \(-0.389864\pi\)
0.339140 + 0.940736i \(0.389864\pi\)
\(314\) −20.0000 −1.12867
\(315\) −4.00000 + 11.3137i −0.225374 + 0.637455i
\(316\) 4.24264i 0.238667i
\(317\) 25.4558i 1.42974i −0.699256 0.714871i \(-0.746485\pi\)
0.699256 0.714871i \(-0.253515\pi\)
\(318\) −8.00000 + 5.65685i −0.448618 + 0.317221i
\(319\) 0 0
\(320\) 19.7990i 1.10680i
\(321\) −16.0000 22.6274i −0.893033 1.26294i
\(322\) 0 0
\(323\) 25.4558i 1.41640i
\(324\) 7.00000 + 5.65685i 0.388889 + 0.314270i
\(325\) 12.7279i 0.706018i
\(326\) 20.0000 1.10770
\(327\) 6.00000 4.24264i 0.331801 0.234619i
\(328\) −18.0000 −0.993884
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 16.0000 0.878114
\(333\) −8.00000 + 22.6274i −0.438397 + 1.23997i
\(334\) 12.0000 0.656611
\(335\) 5.65685i 0.309067i
\(336\) −2.00000 + 1.41421i −0.109109 + 0.0771517i
\(337\) 32.5269i 1.77185i −0.463825 0.885927i \(-0.653523\pi\)
0.463825 0.885927i \(-0.346477\pi\)
\(338\) −5.00000 −0.271964
\(339\) −4.00000 + 2.82843i −0.217250 + 0.153619i
\(340\) 16.9706i 0.920358i
\(341\) 0 0
\(342\) 12.0000 + 4.24264i 0.648886 + 0.229416i
\(343\) 16.9706i 0.916324i
\(344\) 12.7279i 0.686244i
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 2.00000 + 2.82843i 0.107211 + 0.151620i
\(349\) 4.24264i 0.227103i −0.993532 0.113552i \(-0.963777\pi\)
0.993532 0.113552i \(-0.0362227\pi\)
\(350\) 4.24264i 0.226779i
\(351\) −6.00000 21.2132i −0.320256 1.13228i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 16.0000 11.3137i 0.850390 0.601317i
\(355\) −8.00000 −0.424596
\(356\) 0 0
\(357\) 12.0000 8.48528i 0.635107 0.449089i
\(358\) 2.82843i 0.149487i
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 24.0000 + 8.48528i 1.26491 + 0.447214i
\(361\) 1.00000 0.0526316
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 4.00000 0.209370
\(366\) 14.0000 9.89949i 0.731792 0.517455i
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) −6.00000 + 16.9706i −0.312348 + 0.883452i
\(370\) 22.6274i 1.17634i
\(371\) 8.00000 0.415339
\(372\) 2.00000 + 2.82843i 0.103695 + 0.146647i
\(373\) 4.24264i 0.219676i −0.993950 0.109838i \(-0.964967\pi\)
0.993950 0.109838i \(-0.0350331\pi\)
\(374\) 0 0
\(375\) −8.00000 + 5.65685i −0.413118 + 0.292119i
\(376\) 8.48528i 0.437595i
\(377\) 8.48528i 0.437014i
\(378\) 2.00000 + 7.07107i 0.102869 + 0.363696i
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) −12.0000 −0.615587
\(381\) 14.0000 9.89949i 0.717242 0.507166i
\(382\) 19.7990i 1.01300i
\(383\) 5.65685i 0.289052i 0.989501 + 0.144526i \(0.0461657\pi\)
−0.989501 + 0.144526i \(0.953834\pi\)
\(384\) −3.00000 4.24264i −0.153093 0.216506i
\(385\) 0 0
\(386\) 21.2132i 1.07972i
\(387\) 12.0000 + 4.24264i 0.609994 + 0.215666i
\(388\) 2.00000 0.101535
\(389\) 19.7990i 1.00385i 0.864912 + 0.501924i \(0.167374\pi\)
−0.864912 + 0.501924i \(0.832626\pi\)
\(390\) −12.0000 16.9706i −0.607644 0.859338i
\(391\) 0 0
\(392\) −15.0000 −0.757614
\(393\) 0 0
\(394\) 22.0000 1.10834
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 2.00000 0.100251
\(399\) −6.00000 8.48528i −0.300376 0.424795i
\(400\) 3.00000 0.150000
\(401\) 2.82843i 0.141245i 0.997503 + 0.0706225i \(0.0224986\pi\)
−0.997503 + 0.0706225i \(0.977501\pi\)
\(402\) 2.00000 + 2.82843i 0.0997509 + 0.141069i
\(403\) 8.48528i 0.422682i
\(404\) 10.0000 0.497519
\(405\) 16.0000 19.7990i 0.795046 0.983820i
\(406\) 2.82843i 0.140372i
\(407\) 0 0
\(408\) −18.0000 25.4558i −0.891133 1.26025i
\(409\) 4.24264i 0.209785i 0.994484 + 0.104893i \(0.0334499\pi\)
−0.994484 + 0.104893i \(0.966550\pi\)
\(410\) 16.9706i 0.838116i
\(411\) −4.00000 + 2.82843i −0.197305 + 0.139516i
\(412\) −8.00000 −0.394132
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) 45.2548i 2.22147i
\(416\) 21.2132i 1.04006i
\(417\) 2.00000 1.41421i 0.0979404 0.0692543i
\(418\) 0 0
\(419\) 31.1127i 1.51995i −0.649950 0.759977i \(-0.725210\pi\)
0.649950 0.759977i \(-0.274790\pi\)
\(420\) −4.00000 5.65685i −0.195180 0.276026i
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 26.8701i 1.30801i
\(423\) −8.00000 2.82843i −0.388973 0.137523i
\(424\) 16.9706i 0.824163i
\(425\) −18.0000 −0.873128
\(426\) −4.00000 + 2.82843i −0.193801 + 0.137038i
\(427\) −14.0000 −0.677507
\(428\) 16.0000 0.773389
\(429\) 0 0
\(430\) 12.0000 0.578691
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 5.00000 1.41421i 0.240563 0.0680414i
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 2.82843i 0.135769i
\(435\) 8.00000 5.65685i 0.383571 0.271225i
\(436\) 4.24264i 0.203186i
\(437\) 0 0
\(438\) 2.00000 1.41421i 0.0955637 0.0675737i
\(439\) 26.8701i 1.28244i 0.767358 + 0.641219i \(0.221571\pi\)
−0.767358 + 0.641219i \(0.778429\pi\)
\(440\) 0 0
\(441\) −5.00000 + 14.1421i −0.238095 + 0.673435i
\(442\) 25.4558i 1.21081i
\(443\) 28.2843i 1.34383i −0.740630 0.671913i \(-0.765473\pi\)
0.740630 0.671913i \(-0.234527\pi\)
\(444\) −8.00000 11.3137i −0.379663 0.536925i
\(445\) 0 0
\(446\) 24.0000 1.13643
\(447\) 6.00000 + 8.48528i 0.283790 + 0.401340i
\(448\) 9.89949i 0.467707i
\(449\) 5.65685i 0.266963i 0.991051 + 0.133482i \(0.0426157\pi\)
−0.991051 + 0.133482i \(0.957384\pi\)
\(450\) 3.00000 8.48528i 0.141421 0.400000i
\(451\) 0 0
\(452\) 2.82843i 0.133038i
\(453\) 6.00000 4.24264i 0.281905 0.199337i
\(454\) −24.0000 −1.12638
\(455\) 16.9706i 0.795592i
\(456\) −18.0000 + 12.7279i −0.842927 + 0.596040i
\(457\) 9.89949i 0.463079i −0.972826 0.231539i \(-0.925624\pi\)
0.972826 0.231539i \(-0.0743762\pi\)
\(458\) −24.0000 −1.12145
\(459\) −30.0000 + 8.48528i −1.40028 + 0.396059i
\(460\) 0 0
\(461\) 22.0000 1.02464 0.512321 0.858794i \(-0.328786\pi\)
0.512321 + 0.858794i \(0.328786\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 2.00000 0.0928477
\(465\) 8.00000 5.65685i 0.370991 0.262330i
\(466\) −10.0000 −0.463241
\(467\) 28.2843i 1.30884i −0.756131 0.654420i \(-0.772913\pi\)
0.756131 0.654420i \(-0.227087\pi\)
\(468\) 12.0000 + 4.24264i 0.554700 + 0.196116i
\(469\) 2.82843i 0.130605i
\(470\) −8.00000 −0.369012
\(471\) −20.0000 28.2843i −0.921551 1.30327i
\(472\) 33.9411i 1.56227i
\(473\) 0 0
\(474\) −6.00000 + 4.24264i −0.275589 + 0.194871i
\(475\) 12.7279i 0.583997i
\(476\) 8.48528i 0.388922i
\(477\) −16.0000 5.65685i −0.732590 0.259010i
\(478\) −16.0000 −0.731823
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) −20.0000 + 14.1421i −0.912871 + 0.645497i
\(481\) 33.9411i 1.54758i
\(482\) 4.24264i 0.193247i
\(483\) 0 0
\(484\) 0 0
\(485\) 5.65685i 0.256865i
\(486\) 1.00000 15.5563i 0.0453609 0.705650i
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 29.6985i 1.34439i
\(489\) 20.0000 + 28.2843i 0.904431 + 1.27906i
\(490\) 14.1421i 0.638877i
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) −6.00000 8.48528i −0.270501 0.382546i
\(493\) −12.0000 −0.540453
\(494\) 18.0000 0.809858
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 4.00000 0.179425
\(498\) −16.0000 22.6274i −0.716977 1.01396i
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 5.65685i 0.252982i
\(501\) 12.0000 + 16.9706i 0.536120 + 0.758189i
\(502\) 25.4558i 1.13615i
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) −12.0000 4.24264i −0.534522 0.188982i
\(505\) 28.2843i 1.25863i
\(506\) 0 0
\(507\) −5.00000 7.07107i −0.222058 0.314037i
\(508\) 9.89949i 0.439219i
\(509\) 33.9411i 1.50441i 0.658927 + 0.752207i \(0.271011\pi\)
−0.658927 + 0.752207i \(0.728989\pi\)
\(510\) −24.0000 + 16.9706i −1.06274 + 0.751469i
\(511\) −2.00000 −0.0884748
\(512\) −11.0000 −0.486136
\(513\) 6.00000 + 21.2132i 0.264906 + 0.936586i
\(514\) 11.3137i 0.499026i
\(515\) 22.6274i 0.997083i
\(516\) −6.00000 + 4.24264i −0.264135 + 0.186772i
\(517\) 0 0
\(518\) 11.3137i 0.497096i
\(519\) 6.00000 + 8.48528i 0.263371 + 0.372463i
\(520\) 36.0000 1.57870
\(521\) 19.7990i 0.867409i 0.901055 + 0.433705i \(0.142794\pi\)
−0.901055 + 0.433705i \(0.857206\pi\)
\(522\) 2.00000 5.65685i 0.0875376 0.247594i
\(523\) 21.2132i 0.927589i 0.885943 + 0.463794i \(0.153512\pi\)
−0.885943 + 0.463794i \(0.846488\pi\)
\(524\) 0 0
\(525\) −6.00000 + 4.24264i −0.261861 + 0.185164i
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) −16.0000 −0.694996
\(531\) 32.0000 + 11.3137i 1.38868 + 0.490973i
\(532\) 6.00000 0.260133
\(533\) 25.4558i 1.10262i
\(534\) 0 0
\(535\) 45.2548i 1.95654i
\(536\) −6.00000 −0.259161
\(537\) −4.00000 + 2.82843i −0.172613 + 0.122056i
\(538\) 28.2843i 1.21942i
\(539\) 0 0
\(540\) 4.00000 + 14.1421i 0.172133 + 0.608581i
\(541\) 35.3553i 1.52004i 0.649897 + 0.760022i \(0.274812\pi\)
−0.649897 + 0.760022i \(0.725188\pi\)
\(542\) 29.6985i 1.27566i
\(543\) −10.0000 14.1421i −0.429141 0.606897i
\(544\) 30.0000 1.28624
\(545\) 12.0000 0.514024
\(546\) 6.00000 + 8.48528i 0.256776 + 0.363137i
\(547\) 35.3553i 1.51169i −0.654753 0.755843i \(-0.727228\pi\)
0.654753 0.755843i \(-0.272772\pi\)
\(548\) 2.82843i 0.120824i
\(549\) 28.0000 + 9.89949i 1.19501 + 0.422500i
\(550\) 0 0
\(551\) 8.48528i 0.361485i
\(552\) 0 0
\(553\) 6.00000 0.255146
\(554\) 4.24264i 0.180253i
\(555\) −32.0000 + 22.6274i −1.35832 + 0.960480i
\(556\) 1.41421i 0.0599760i
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 2.00000 5.65685i 0.0846668 0.239474i
\(559\) 18.0000 0.761319
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 4.00000 2.82843i 0.168430 0.119098i
\(565\) −8.00000 −0.336563
\(566\) 26.8701i 1.12943i
\(567\) −8.00000 + 9.89949i −0.335968 + 0.415740i
\(568\) 8.48528i 0.356034i
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 12.0000 + 16.9706i 0.502625 + 0.710819i
\(571\) 26.8701i 1.12448i 0.826975 + 0.562238i \(0.190060\pi\)
−0.826975 + 0.562238i \(0.809940\pi\)
\(572\) 0 0
\(573\) −28.0000 + 19.7990i −1.16972 + 0.827115i
\(574\) 8.48528i 0.354169i
\(575\) 0 0
\(576\) −7.00000 + 19.7990i −0.291667 + 0.824958i
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 19.0000 0.790296
\(579\) −30.0000 + 21.2132i −1.24676 + 0.881591i
\(580\) 5.65685i 0.234888i
\(581\) 22.6274i 0.938743i
\(582\) −2.00000 2.82843i −0.0829027 0.117242i
\(583\) 0 0
\(584\) 4.24264i 0.175562i
\(585\) 12.0000 33.9411i 0.496139 1.40329i
\(586\) −2.00000 −0.0826192
\(587\) 11.3137i 0.466967i −0.972361 0.233483i \(-0.924988\pi\)
0.972361 0.233483i \(-0.0750124\pi\)
\(588\) −5.00000 7.07107i −0.206197 0.291606i
\(589\) 8.48528i 0.349630i
\(590\) 32.0000 1.31742
\(591\) 22.0000 + 31.1127i 0.904959 + 1.27981i
\(592\) −8.00000 −0.328798
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 0 0
\(595\) 24.0000 0.983904
\(596\) −6.00000 −0.245770
\(597\) 2.00000 + 2.82843i 0.0818546 + 0.115760i
\(598\) 0 0
\(599\) 33.9411i 1.38680i 0.720554 + 0.693398i \(0.243887\pi\)
−0.720554 + 0.693398i \(0.756113\pi\)
\(600\) 9.00000 + 12.7279i 0.367423 + 0.519615i
\(601\) 29.6985i 1.21143i 0.795683 + 0.605713i \(0.207112\pi\)
−0.795683 + 0.605713i \(0.792888\pi\)
\(602\) −6.00000 −0.244542
\(603\) −2.00000 + 5.65685i −0.0814463 + 0.230365i
\(604\) 4.24264i 0.172631i
\(605\) 0 0
\(606\) −10.0000 14.1421i −0.406222 0.574485i
\(607\) 4.24264i 0.172203i 0.996286 + 0.0861017i \(0.0274410\pi\)
−0.996286 + 0.0861017i \(0.972559\pi\)
\(608\) 21.2132i 0.860309i
\(609\) −4.00000 + 2.82843i −0.162088 + 0.114614i
\(610\) 28.0000 1.13369
\(611\) −12.0000 −0.485468
\(612\) 6.00000 16.9706i 0.242536 0.685994i
\(613\) 4.24264i 0.171359i −0.996323 0.0856793i \(-0.972694\pi\)
0.996323 0.0856793i \(-0.0273061\pi\)
\(614\) 4.24264i 0.171219i
\(615\) −24.0000 + 16.9706i −0.967773 + 0.684319i
\(616\) 0 0
\(617\) 31.1127i 1.25255i −0.779602 0.626275i \(-0.784579\pi\)
0.779602 0.626275i \(-0.215421\pi\)
\(618\) 8.00000 + 11.3137i 0.321807 + 0.455104i
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 5.65685i 0.227185i
\(621\) 0 0
\(622\) 28.2843i 1.13410i
\(623\) 0 0
\(624\) 6.00000 4.24264i 0.240192 0.169842i
\(625\) −31.0000 −1.24000
\(626\) 12.0000 0.479616
\(627\) 0 0
\(628\) 20.0000 0.798087
\(629\) 48.0000 1.91389
\(630\) −4.00000 + 11.3137i −0.159364 + 0.450749i
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 12.7279i 0.506290i
\(633\) 38.0000 26.8701i 1.51036 1.06799i
\(634\) 25.4558i 1.01098i
\(635\) 28.0000 1.11115
\(636\) 8.00000 5.65685i 0.317221 0.224309i
\(637\) 21.2132i 0.840498i
\(638\) 0 0
\(639\) −8.00000 2.82843i −0.316475 0.111891i
\(640\) 8.48528i 0.335410i
\(641\) 28.2843i 1.11716i −0.829450 0.558581i \(-0.811346\pi\)
0.829450 0.558581i \(-0.188654\pi\)
\(642\) −16.0000 22.6274i −0.631470 0.893033i
\(643\) 12.0000 0.473234 0.236617 0.971603i \(-0.423961\pi\)
0.236617 + 0.971603i \(0.423961\pi\)
\(644\) 0 0
\(645\) 12.0000 + 16.9706i 0.472500 + 0.668215i
\(646\) 25.4558i 1.00155i
\(647\) 5.65685i 0.222394i 0.993798 + 0.111197i \(0.0354684\pi\)
−0.993798 + 0.111197i \(0.964532\pi\)
\(648\) 21.0000 + 16.9706i 0.824958 + 0.666667i
\(649\) 0 0
\(650\) 12.7279i 0.499230i
\(651\) −4.00000 + 2.82843i −0.156772 + 0.110855i
\(652\) −20.0000 −0.783260
\(653\) 11.3137i 0.442740i −0.975190 0.221370i \(-0.928947\pi\)
0.975190 0.221370i \(-0.0710528\pi\)
\(654\) 6.00000 4.24264i 0.234619 0.165900i
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 4.00000 + 1.41421i 0.156055 + 0.0551737i
\(658\) 4.00000 0.155936
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −20.0000 −0.777910 −0.388955 0.921257i \(-0.627164\pi\)
−0.388955 + 0.921257i \(0.627164\pi\)
\(662\) −20.0000 −0.777322
\(663\) −36.0000 + 25.4558i −1.39812 + 0.988623i
\(664\) 48.0000 1.86276
\(665\) 16.9706i 0.658090i
\(666\) −8.00000 + 22.6274i −0.309994 + 0.876795i
\(667\) 0 0
\(668\) −12.0000 −0.464294
\(669\) 24.0000 + 33.9411i 0.927894 + 1.31224i
\(670\) 5.65685i 0.218543i
\(671\) 0 0
\(672\) 10.0000 7.07107i 0.385758 0.272772i
\(673\) 4.24264i 0.163542i 0.996651 + 0.0817709i \(0.0260576\pi\)
−0.996651 + 0.0817709i \(0.973942\pi\)
\(674\) 32.5269i 1.25289i
\(675\) 15.0000 4.24264i 0.577350 0.163299i
\(676\) 5.00000 0.192308
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) −4.00000 + 2.82843i −0.153619 + 0.108625i
\(679\) 2.82843i 0.108545i
\(680\) 50.9117i 1.95237i
\(681\) −24.0000 33.9411i −0.919682 1.30063i
\(682\) 0 0
\(683\) 31.1127i 1.19049i 0.803543 + 0.595247i \(0.202946\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) −12.0000 4.24264i −0.458831 0.162221i
\(685\) −8.00000 −0.305664
\(686\) 16.9706i 0.647939i
\(687\) −24.0000 33.9411i −0.915657 1.29493i
\(688\) 4.24264i 0.161749i
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −16.0000 −0.607352
\(695\) 4.00000 0.151729
\(696\) 6.00000 + 8.48528i 0.227429 + 0.321634i
\(697\) 36.0000 1.36360
\(698\) 4.24264i 0.160586i
\(699\) −10.0000 14.1421i −0.378235 0.534905i
\(700\) 4.24264i 0.160357i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) −6.00000 21.2132i −0.226455 0.800641i
\(703\) 33.9411i 1.28011i
\(704\) 0 0
\(705\) −8.00000 11.3137i −0.301297 0.426099i
\(706\) 0 0
\(707\) 14.1421i 0.531870i
\(708\) −16.0000 + 11.3137i −0.601317 + 0.425195i
\(709\) −32.0000 −1.20179 −0.600893 0.799330i \(-0.705188\pi\)
−0.600893 + 0.799330i \(0.705188\pi\)
\(710\) −8.00000 −0.300235
\(711\) −12.0000 4.24264i −0.450035 0.159111i
\(712\) 0 0
\(713\) 0 0
\(714\) 12.0000 8.48528i 0.449089 0.317554i
\(715\) 0 0
\(716\) 2.82843i 0.105703i
\(717\) −16.0000 22.6274i −0.597531 0.845036i
\(718\) 20.0000 0.746393
\(719\) 19.7990i 0.738378i 0.929354 + 0.369189i \(0.120364\pi\)
−0.929354 + 0.369189i \(0.879636\pi\)
\(720\) 8.00000 + 2.82843i 0.298142 + 0.105409i
\(721\) 11.3137i 0.421345i
\(722\) 1.00000 0.0372161
\(723\) 6.00000 4.24264i 0.223142 0.157786i
\(724\) 10.0000 0.371647
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) −18.0000 −0.667124
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 4.00000 0.148047
\(731\) 25.4558i 0.941518i
\(732\) −14.0000 + 9.89949i −0.517455 + 0.365896i
\(733\) 1.41421i 0.0522352i −0.999659 0.0261176i \(-0.991686\pi\)
0.999659 0.0261176i \(-0.00831443\pi\)
\(734\) 8.00000 0.295285
\(735\) −20.0000 + 14.1421i −0.737711 + 0.521641i
\(736\) 0 0
\(737\) 0 0
\(738\) −6.00000 + 16.9706i −0.220863 + 0.624695i
\(739\) 4.24264i 0.156068i 0.996951 + 0.0780340i \(0.0248643\pi\)
−0.996951 + 0.0780340i \(0.975136\pi\)
\(740\) 22.6274i 0.831800i
\(741\) 18.0000 + 25.4558i 0.661247 + 0.935144i
\(742\) 8.00000 0.293689
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 6.00000 + 8.48528i 0.219971 + 0.311086i
\(745\) 16.9706i 0.621753i
\(746\) 4.24264i 0.155334i
\(747\) 16.0000 45.2548i 0.585409 1.65579i
\(748\) 0 0
\(749\) 22.6274i 0.826788i
\(750\) −8.00000 + 5.65685i −0.292119 + 0.206559i
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 2.82843i 0.103142i
\(753\) 36.0000 25.4558i 1.31191 0.927663i
\(754\) 8.48528i 0.309016i
\(755\) 12.0000 0.436725
\(756\) −2.00000 7.07107i −0.0727393 0.257172i
\(757\) 20.0000 0.726912 0.363456 0.931611i \(-0.381597\pi\)
0.363456 + 0.931611i \(0.381597\pi\)
\(758\) 12.0000 0.435860
\(759\) 0 0
\(760\) −36.0000 −1.30586
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 14.0000 9.89949i 0.507166 0.358621i
\(763\) −6.00000 −0.217215
\(764\) 19.7990i 0.716302i
\(765\) −48.0000 16.9706i −1.73544 0.613572i
\(766\) 5.65685i 0.204390i
\(767\) 48.0000 1.73318
\(768\) −17.0000 24.0416i −0.613435 0.867528i
\(769\) 35.3553i 1.27495i −0.770473 0.637473i \(-0.779980\pi\)
0.770473 0.637473i \(-0.220020\pi\)
\(770\) 0 0
\(771\) 16.0000 11.3137i 0.576226 0.407453i
\(772\) 21.2132i 0.763480i
\(773\) 33.9411i 1.22078i 0.792102 + 0.610389i \(0.208987\pi\)
−0.792102 + 0.610389i \(0.791013\pi\)
\(774\) 12.0000 + 4.24264i 0.431331 + 0.152499i
\(775\) 6.00000 0.215526
\(776\) 6.00000 0.215387
\(777\) 16.0000 11.3137i 0.573997 0.405877i
\(778\) 19.7990i 0.709828i
\(779\) 25.4558i 0.912050i
\(780\) 12.0000 + 16.9706i 0.429669 + 0.607644i
\(781\) 0 0
\(782\) 0 0
\(783\) 10.0000 2.82843i 0.357371 0.101080i
\(784\) −5.00000 −0.178571
\(785\) 56.5685i 2.01902i
\(786\) 0 0
\(787\) 21.2132i 0.756169i 0.925771 + 0.378085i \(0.123417\pi\)
−0.925771 + 0.378085i \(0.876583\pi\)
\(788\) −22.0000 −0.783718
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 4.00000 0.142224
\(792\) 0 0
\(793\) 42.0000 1.49146
\(794\) 2.00000 0.0709773
\(795\) −16.0000 22.6274i −0.567462 0.802512i
\(796\) −2.00000 −0.0708881
\(797\) 2.82843i 0.100188i 0.998745 + 0.0500940i \(0.0159521\pi\)
−0.998745 + 0.0500940i \(0.984048\pi\)
\(798\) −6.00000 8.48528i −0.212398 0.300376i
\(799\) 16.9706i 0.600375i
\(800\) −15.0000 −0.530330
\(801\) 0 0
\(802\) 2.82843i 0.0998752i
\(803\) 0 0
\(804\) −2.00000 2.82843i −0.0705346 0.0997509i
\(805\) 0 0
\(806\) 8.48528i 0.298881i
\(807\) 40.0000 28.2843i 1.40807 0.995654i
\(808\) 30.0000 1.05540
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 16.0000 19.7990i 0.562183 0.695666i
\(811\) 26.8701i 0.943535i 0.881723 + 0.471768i \(0.156384\pi\)
−0.881723 + 0.471768i \(0.843616\pi\)
\(812\) 2.82843i 0.0992583i
\(813\) −42.0000 + 29.6985i −1.47300 + 1.04157i
\(814\) 0 0
\(815\) 56.5685i 1.98151i
\(816\) −6.00000 8.48528i −0.210042 0.297044i
\(817\) −18.0000 −0.629740
\(818\) 4.24264i 0.148340i
\(819\) −6.00000 + 16.9706i −0.209657 + 0.592999i
\(820\) 16.9706i 0.592638i
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) −4.00000 + 2.82843i −0.139516 + 0.0986527i
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) −24.0000 −0.836080
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 45.2548i 1.57082i
\(831\) −6.00000 + 4.24264i −0.208138 + 0.147176i
\(832\) 29.6985i 1.02961i
\(833\) 30.0000 1.03944
\(834\) 2.00000 1.41421i 0.0692543 0.0489702i
\(835\) 33.9411i 1.17458i
\(836\) 0 0
\(837\) 10.0000 2.82843i 0.345651 0.0977647i
\(838\) 31.1127i 1.07477i
\(839\) 33.9411i 1.17178i 0.810391 + 0.585889i \(0.199255\pi\)
−0.810391 + 0.585889i \(0.800745\pi\)
\(840\) −12.0000 16.9706i −0.414039 0.585540i
\(841\) −25.0000 −0.862069
\(842\) −20.0000 −0.689246
\(843\) 6.00000 + 8.48528i 0.206651 + 0.292249i
\(844\) 26.8701i 0.924906i
\(845\) 14.1421i 0.486504i
\(846\) −8.00000 2.82843i −0.275046 0.0972433i
\(847\) 0 0
\(848\) 5.65685i 0.194257i
\(849\) −38.0000 + 26.8701i −1.30416 + 0.922178i
\(850\) −18.0000 −0.617395
\(851\) 0 0
\(852\) 4.00000 2.82843i 0.137038 0.0969003i
\(853\) 41.0122i 1.40423i −0.712063 0.702115i \(-0.752239\pi\)
0.712063 0.702115i \(-0.247761\pi\)
\(854\) −14.0000 −0.479070
\(855\) −12.0000 + 33.9411i −0.410391 + 1.16076i
\(856\) 48.0000 1.64061
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) −12.0000 −0.409197
\(861\) 12.0000 8.48528i 0.408959 0.289178i
\(862\) −32.0000 −1.08992
\(863\) 33.9411i 1.15537i 0.816260 + 0.577685i \(0.196044\pi\)
−0.816260 + 0.577685i \(0.803956\pi\)
\(864\) −25.0000 + 7.07107i −0.850517 + 0.240563i
\(865\) 16.9706i 0.577016i
\(866\) 30.0000 1.01944
\(867\) 19.0000 + 26.8701i 0.645274 + 0.912555i
\(868\) 2.82843i 0.0960031i
\(869\) 0 0
\(870\) 8.00000 5.65685i 0.271225 0.191785i
\(871\) 8.48528i 0.287513i
\(872\) 12.7279i 0.431022i
\(873\) 2.00000 5.65685i 0.0676897 0.191456i
\(874\) 0 0
\(875\) 8.00000 0.270449
\(876\) −2.00000 + 1.41421i −0.0675737 + 0.0477818i
\(877\) 35.3553i 1.19386i −0.802291 0.596932i \(-0.796386\pi\)
0.802291 0.596932i \(-0.203614\pi\)
\(878\) 26.8701i 0.906821i
\(879\) −2.00000 2.82843i −0.0674583 0.0954005i
\(880\) 0 0
\(881\) 31.1127i 1.04821i −0.851653 0.524107i \(-0.824399\pi\)
0.851653 0.524107i \(-0.175601\pi\)
\(882\) −5.00000 + 14.1421i −0.168359 + 0.476190i
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 25.4558i 0.856173i
\(885\) 32.0000 + 45.2548i 1.07567 + 1.52122i
\(886\) 28.2843i 0.950229i
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) −24.0000 33.9411i −0.805387 1.13899i
\(889\) −14.0000 −0.469545
\(890\) 0 0
\(891\) 0 0
\(892\) −24.0000 −0.803579
\(893\) 12.0000 0.401565
\(894\) 6.00000 + 8.48528i 0.200670 + 0.283790i
\(895\) −8.00000 −0.267411
\(896\) 4.24264i 0.141737i
\(897\) 0 0
\(898\) 5.65685i 0.188772i
\(899\) 4.00000 0.133407
\(900\) −3.00000 + 8.48528i −0.100000 + 0.282843i
\(901\) 33.9411i 1.13074i
\(902\) 0 0
\(903\) −6.00000 8.48528i −0.199667 0.282372i
\(904\) 8.48528i 0.282216i
\(905\) 28.2843i 0.940201i
\(906\) 6.00000 4.24264i 0.199337 0.140952i
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 24.0000 0.796468
\(909\) 10.0000 28.2843i 0.331679 0.938130i
\(910\) 16.9706i 0.562569i
\(911\) 36.7696i 1.21823i 0.793082 + 0.609115i \(0.208475\pi\)
−0.793082 + 0.609115i \(0.791525\pi\)
\(912\) −6.00000 + 4.24264i −0.198680 + 0.140488i
\(913\) 0 0
\(914\) 9.89949i 0.327446i
\(915\) 28.0000 + 39.5980i 0.925651 + 1.30907i
\(916\) 24.0000 0.792982
\(917\) 0 0
\(918\) −30.0000 + 8.48528i −0.990148 + 0.280056i
\(919\) 21.2132i 0.699759i 0.936795 + 0.349880i \(0.113777\pi\)
−0.936795 + 0.349880i \(0.886223\pi\)
\(920\) 0 0
\(921\) 6.00000 4.24264i 0.197707 0.139800i
\(922\) 22.0000 0.724531
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −24.0000 −0.789115
\(926\) 24.0000 0.788689
\(927\) −8.00000 + 22.6274i −0.262754 + 0.743182i
\(928\) −10.0000 −0.328266
\(929\) 2.82843i 0.0927977i 0.998923 + 0.0463988i \(0.0147745\pi\)
−0.998923 + 0.0463988i \(0.985225\pi\)
\(930\) 8.00000 5.65685i 0.262330 0.185496i
\(931\) 21.2132i 0.695235i
\(932\) 10.0000 0.327561
\(933\) 40.0000 28.2843i 1.30954 0.925985i
\(934\) 28.2843i 0.925490i
\(935\) 0 0
\(936\) 36.0000 + 12.7279i 1.17670 + 0.416025i
\(937\) 35.3553i 1.15501i 0.816388 + 0.577504i \(0.195973\pi\)
−0.816388 + 0.577504i \(0.804027\pi\)
\(938\) 2.82843i 0.0923514i
\(939\) 12.0000 + 16.9706i 0.391605 + 0.553813i
\(940\) 8.00000 0.260931
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) −20.0000 28.2843i −0.651635 0.921551i
\(943\) 0 0
\(944\) 11.3137i 0.368230i
\(945\) −20.0000 + 5.65685i −0.650600 + 0.184017i
\(946\) 0 0
\(947\) 31.1127i 1.01103i 0.862819 + 0.505513i \(0.168697\pi\)
−0.862819 + 0.505513i \(0.831303\pi\)
\(948\) 6.00000 4.24264i 0.194871 0.137795i
\(949\) 6.00000 0.194768
\(950\) 12.7279i 0.412948i
\(951\) 36.0000 25.4558i 1.16738 0.825462i
\(952\) 25.4558i 0.825029i
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) −16.0000 5.65685i −0.518019 0.183147i
\(955\) −56.0000 −1.81212
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) 28.0000 0.904639
\(959\) 4.00000 0.129167
\(960\) −28.0000 + 19.7990i −0.903696 + 0.639010i
\(961\) −27.0000 −0.870968
\(962\) 33.9411i 1.09431i
\(963\) 16.0000 45.2548i 0.515593 1.45832i
\(964\) 4.24264i 0.136646i
\(965\) −60.0000 −1.93147
\(966\) 0 0
\(967\) 4.24264i 0.136434i −0.997671 0.0682171i \(-0.978269\pi\)
0.997671 0.0682171i \(-0.0217310\pi\)
\(968\) 0 0
\(969\) 36.0000 25.4558i 1.15649 0.817760i
\(970\) 5.65685i 0.181631i
\(971\) 33.9411i 1.08922i 0.838689 + 0.544611i \(0.183323\pi\)
−0.838689 + 0.544611i \(0.816677\pi\)
\(972\) −1.00000 + 15.5563i −0.0320750 + 0.498970i
\(973\) −2.00000 −0.0641171
\(974\) 2.00000 0.0640841
\(975\) 18.0000 12.7279i 0.576461 0.407620i
\(976\) 9.89949i 0.316875i
\(977\) 25.4558i 0.814405i −0.913338 0.407202i \(-0.866504\pi\)
0.913338 0.407202i \(-0.133496\pi\)
\(978\) 20.0000 + 28.2843i 0.639529 + 0.904431i
\(979\) 0 0
\(980\) 14.1421i 0.451754i
\(981\) 12.0000 + 4.24264i 0.383131 + 0.135457i
\(982\) 20.0000 0.638226
\(983\) 11.3137i 0.360851i −0.983589 0.180426i \(-0.942252\pi\)
0.983589 0.180426i \(-0.0577475\pi\)
\(984\) −18.0000 25.4558i −0.573819 0.811503i
\(985\) 62.2254i 1.98267i
\(986\) −12.0000 −0.382158
\(987\) 4.00000 + 5.65685i 0.127321 + 0.180060i
\(988\) −18.0000 −0.572656
\(989\) 0 0
\(990\) 0 0
\(991\) −42.0000 −1.33417 −0.667087 0.744980i \(-0.732459\pi\)
−0.667087 + 0.744980i \(0.732459\pi\)
\(992\) −10.0000 −0.317500
\(993\) −20.0000 28.2843i −0.634681 0.897574i
\(994\) 4.00000 0.126872
\(995\) 5.65685i 0.179334i
\(996\) 16.0000 + 22.6274i 0.506979 + 0.716977i
\(997\) 29.6985i 0.940560i 0.882517 + 0.470280i \(0.155847\pi\)
−0.882517 + 0.470280i \(0.844153\pi\)
\(998\) −14.0000 −0.443162
\(999\) −40.0000 + 11.3137i −1.26554 + 0.357950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.d.b.362.2 yes 2
3.2 odd 2 363.2.d.a.362.1 2
11.2 odd 10 363.2.f.f.161.2 8
11.3 even 5 363.2.f.a.233.1 8
11.4 even 5 363.2.f.a.215.2 8
11.5 even 5 363.2.f.a.239.1 8
11.6 odd 10 363.2.f.f.239.1 8
11.7 odd 10 363.2.f.f.215.2 8
11.8 odd 10 363.2.f.f.233.1 8
11.9 even 5 363.2.f.a.161.2 8
11.10 odd 2 363.2.d.a.362.2 yes 2
33.2 even 10 363.2.f.a.161.1 8
33.5 odd 10 363.2.f.f.239.2 8
33.8 even 10 363.2.f.a.233.2 8
33.14 odd 10 363.2.f.f.233.2 8
33.17 even 10 363.2.f.a.239.2 8
33.20 odd 10 363.2.f.f.161.1 8
33.26 odd 10 363.2.f.f.215.1 8
33.29 even 10 363.2.f.a.215.1 8
33.32 even 2 inner 363.2.d.b.362.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.d.a.362.1 2 3.2 odd 2
363.2.d.a.362.2 yes 2 11.10 odd 2
363.2.d.b.362.1 yes 2 33.32 even 2 inner
363.2.d.b.362.2 yes 2 1.1 even 1 trivial
363.2.f.a.161.1 8 33.2 even 10
363.2.f.a.161.2 8 11.9 even 5
363.2.f.a.215.1 8 33.29 even 10
363.2.f.a.215.2 8 11.4 even 5
363.2.f.a.233.1 8 11.3 even 5
363.2.f.a.233.2 8 33.8 even 10
363.2.f.a.239.1 8 11.5 even 5
363.2.f.a.239.2 8 33.17 even 10
363.2.f.f.161.1 8 33.20 odd 10
363.2.f.f.161.2 8 11.2 odd 10
363.2.f.f.215.1 8 33.26 odd 10
363.2.f.f.215.2 8 11.7 odd 10
363.2.f.f.233.1 8 11.8 odd 10
363.2.f.f.233.2 8 33.14 odd 10
363.2.f.f.239.1 8 11.6 odd 10
363.2.f.f.239.2 8 33.5 odd 10