Properties

Label 363.2.a.j.1.1
Level $363$
Weight $2$
Character 363.1
Self dual yes
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.52434\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434 q^{2} +1.00000 q^{3} +4.37228 q^{4} -2.37228 q^{5} -2.52434 q^{6} -0.792287 q^{7} -5.98844 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.52434 q^{2} +1.00000 q^{3} +4.37228 q^{4} -2.37228 q^{5} -2.52434 q^{6} -0.792287 q^{7} -5.98844 q^{8} +1.00000 q^{9} +5.98844 q^{10} +4.37228 q^{12} +4.10891 q^{13} +2.00000 q^{14} -2.37228 q^{15} +6.37228 q^{16} +5.98844 q^{17} -2.52434 q^{18} -4.25639 q^{19} -10.3723 q^{20} -0.792287 q^{21} +2.00000 q^{23} -5.98844 q^{24} +0.627719 q^{25} -10.3723 q^{26} +1.00000 q^{27} -3.46410 q^{28} +2.52434 q^{29} +5.98844 q^{30} +7.37228 q^{31} -4.10891 q^{32} -15.1168 q^{34} +1.87953 q^{35} +4.37228 q^{36} +5.00000 q^{37} +10.7446 q^{38} +4.10891 q^{39} +14.2063 q^{40} +5.69349 q^{41} +2.00000 q^{42} +6.63325 q^{43} -2.37228 q^{45} -5.04868 q^{46} -1.25544 q^{47} +6.37228 q^{48} -6.37228 q^{49} -1.58457 q^{50} +5.98844 q^{51} +17.9653 q^{52} +13.1168 q^{53} -2.52434 q^{54} +4.74456 q^{56} -4.25639 q^{57} -6.37228 q^{58} -6.00000 q^{59} -10.3723 q^{60} +2.67181 q^{61} -18.6101 q^{62} -0.792287 q^{63} -2.37228 q^{64} -9.74749 q^{65} +16.1168 q^{67} +26.1831 q^{68} +2.00000 q^{69} -4.74456 q^{70} +0.744563 q^{71} -5.98844 q^{72} -7.42554 q^{73} -12.6217 q^{74} +0.627719 q^{75} -18.6101 q^{76} -10.3723 q^{78} -5.84096 q^{79} -15.1168 q^{80} +1.00000 q^{81} -14.3723 q^{82} -8.51278 q^{83} -3.46410 q^{84} -14.2063 q^{85} -16.7446 q^{86} +2.52434 q^{87} -6.37228 q^{89} +5.98844 q^{90} -3.25544 q^{91} +8.74456 q^{92} +7.37228 q^{93} +3.16915 q^{94} +10.0974 q^{95} -4.10891 q^{96} -12.4891 q^{97} +16.0858 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} + 6 q^{4} + 2 q^{5} + 4 q^{9} + 6 q^{12} + 8 q^{14} + 2 q^{15} + 14 q^{16} - 30 q^{20} + 8 q^{23} + 14 q^{25} - 30 q^{26} + 4 q^{27} + 18 q^{31} - 26 q^{34} + 6 q^{36} + 20 q^{37} + 20 q^{38} + 8 q^{42} + 2 q^{45} - 28 q^{47} + 14 q^{48} - 14 q^{49} + 18 q^{53} - 4 q^{56} - 14 q^{58} - 24 q^{59} - 30 q^{60} + 2 q^{64} + 30 q^{67} + 8 q^{69} + 4 q^{70} - 20 q^{71} + 14 q^{75} - 30 q^{78} - 26 q^{80} + 4 q^{81} - 46 q^{82} - 44 q^{86} - 14 q^{89} - 36 q^{91} + 12 q^{92} + 18 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52434 −1.78498 −0.892488 0.451071i \(-0.851042\pi\)
−0.892488 + 0.451071i \(0.851042\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.37228 2.18614
\(5\) −2.37228 −1.06092 −0.530458 0.847711i \(-0.677980\pi\)
−0.530458 + 0.847711i \(0.677980\pi\)
\(6\) −2.52434 −1.03056
\(7\) −0.792287 −0.299456 −0.149728 0.988727i \(-0.547840\pi\)
−0.149728 + 0.988727i \(0.547840\pi\)
\(8\) −5.98844 −2.11723
\(9\) 1.00000 0.333333
\(10\) 5.98844 1.89371
\(11\) 0 0
\(12\) 4.37228 1.26217
\(13\) 4.10891 1.13961 0.569804 0.821781i \(-0.307019\pi\)
0.569804 + 0.821781i \(0.307019\pi\)
\(14\) 2.00000 0.534522
\(15\) −2.37228 −0.612520
\(16\) 6.37228 1.59307
\(17\) 5.98844 1.45241 0.726205 0.687478i \(-0.241282\pi\)
0.726205 + 0.687478i \(0.241282\pi\)
\(18\) −2.52434 −0.594992
\(19\) −4.25639 −0.976483 −0.488241 0.872709i \(-0.662361\pi\)
−0.488241 + 0.872709i \(0.662361\pi\)
\(20\) −10.3723 −2.31931
\(21\) −0.792287 −0.172891
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) −5.98844 −1.22239
\(25\) 0.627719 0.125544
\(26\) −10.3723 −2.03417
\(27\) 1.00000 0.192450
\(28\) −3.46410 −0.654654
\(29\) 2.52434 0.468758 0.234379 0.972145i \(-0.424694\pi\)
0.234379 + 0.972145i \(0.424694\pi\)
\(30\) 5.98844 1.09333
\(31\) 7.37228 1.32410 0.662050 0.749459i \(-0.269686\pi\)
0.662050 + 0.749459i \(0.269686\pi\)
\(32\) −4.10891 −0.726360
\(33\) 0 0
\(34\) −15.1168 −2.59252
\(35\) 1.87953 0.317698
\(36\) 4.37228 0.728714
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 10.7446 1.74300
\(39\) 4.10891 0.657952
\(40\) 14.2063 2.24621
\(41\) 5.69349 0.889173 0.444587 0.895736i \(-0.353351\pi\)
0.444587 + 0.895736i \(0.353351\pi\)
\(42\) 2.00000 0.308607
\(43\) 6.63325 1.01156 0.505781 0.862662i \(-0.331205\pi\)
0.505781 + 0.862662i \(0.331205\pi\)
\(44\) 0 0
\(45\) −2.37228 −0.353639
\(46\) −5.04868 −0.744387
\(47\) −1.25544 −0.183124 −0.0915622 0.995799i \(-0.529186\pi\)
−0.0915622 + 0.995799i \(0.529186\pi\)
\(48\) 6.37228 0.919760
\(49\) −6.37228 −0.910326
\(50\) −1.58457 −0.224093
\(51\) 5.98844 0.838549
\(52\) 17.9653 2.49134
\(53\) 13.1168 1.80174 0.900869 0.434092i \(-0.142931\pi\)
0.900869 + 0.434092i \(0.142931\pi\)
\(54\) −2.52434 −0.343519
\(55\) 0 0
\(56\) 4.74456 0.634019
\(57\) −4.25639 −0.563772
\(58\) −6.37228 −0.836722
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) −10.3723 −1.33906
\(61\) 2.67181 0.342091 0.171045 0.985263i \(-0.445286\pi\)
0.171045 + 0.985263i \(0.445286\pi\)
\(62\) −18.6101 −2.36349
\(63\) −0.792287 −0.0998188
\(64\) −2.37228 −0.296535
\(65\) −9.74749 −1.20903
\(66\) 0 0
\(67\) 16.1168 1.96899 0.984493 0.175424i \(-0.0561297\pi\)
0.984493 + 0.175424i \(0.0561297\pi\)
\(68\) 26.1831 3.17517
\(69\) 2.00000 0.240772
\(70\) −4.74456 −0.567084
\(71\) 0.744563 0.0883633 0.0441817 0.999024i \(-0.485932\pi\)
0.0441817 + 0.999024i \(0.485932\pi\)
\(72\) −5.98844 −0.705744
\(73\) −7.42554 −0.869093 −0.434547 0.900649i \(-0.643091\pi\)
−0.434547 + 0.900649i \(0.643091\pi\)
\(74\) −12.6217 −1.46724
\(75\) 0.627719 0.0724827
\(76\) −18.6101 −2.13473
\(77\) 0 0
\(78\) −10.3723 −1.17443
\(79\) −5.84096 −0.657160 −0.328580 0.944476i \(-0.606570\pi\)
−0.328580 + 0.944476i \(0.606570\pi\)
\(80\) −15.1168 −1.69011
\(81\) 1.00000 0.111111
\(82\) −14.3723 −1.58715
\(83\) −8.51278 −0.934399 −0.467199 0.884152i \(-0.654737\pi\)
−0.467199 + 0.884152i \(0.654737\pi\)
\(84\) −3.46410 −0.377964
\(85\) −14.2063 −1.54089
\(86\) −16.7446 −1.80561
\(87\) 2.52434 0.270637
\(88\) 0 0
\(89\) −6.37228 −0.675460 −0.337730 0.941243i \(-0.609659\pi\)
−0.337730 + 0.941243i \(0.609659\pi\)
\(90\) 5.98844 0.631237
\(91\) −3.25544 −0.341263
\(92\) 8.74456 0.911684
\(93\) 7.37228 0.764470
\(94\) 3.16915 0.326873
\(95\) 10.0974 1.03597
\(96\) −4.10891 −0.419364
\(97\) −12.4891 −1.26808 −0.634039 0.773301i \(-0.718604\pi\)
−0.634039 + 0.773301i \(0.718604\pi\)
\(98\) 16.0858 1.62491
\(99\) 0 0
\(100\) 2.74456 0.274456
\(101\) 5.34363 0.531711 0.265855 0.964013i \(-0.414346\pi\)
0.265855 + 0.964013i \(0.414346\pi\)
\(102\) −15.1168 −1.49679
\(103\) 8.11684 0.799776 0.399888 0.916564i \(-0.369049\pi\)
0.399888 + 0.916564i \(0.369049\pi\)
\(104\) −24.6060 −2.41281
\(105\) 1.87953 0.183423
\(106\) −33.1113 −3.21606
\(107\) 0.294954 0.0285142 0.0142571 0.999898i \(-0.495462\pi\)
0.0142571 + 0.999898i \(0.495462\pi\)
\(108\) 4.37228 0.420723
\(109\) −9.94987 −0.953025 −0.476513 0.879168i \(-0.658099\pi\)
−0.476513 + 0.879168i \(0.658099\pi\)
\(110\) 0 0
\(111\) 5.00000 0.474579
\(112\) −5.04868 −0.477055
\(113\) −4.37228 −0.411310 −0.205655 0.978625i \(-0.565932\pi\)
−0.205655 + 0.978625i \(0.565932\pi\)
\(114\) 10.7446 1.00632
\(115\) −4.74456 −0.442433
\(116\) 11.0371 1.02477
\(117\) 4.10891 0.379869
\(118\) 15.1460 1.39430
\(119\) −4.74456 −0.434933
\(120\) 14.2063 1.29685
\(121\) 0 0
\(122\) −6.74456 −0.610624
\(123\) 5.69349 0.513364
\(124\) 32.2337 2.89467
\(125\) 10.3723 0.927725
\(126\) 2.00000 0.178174
\(127\) −19.6974 −1.74786 −0.873929 0.486053i \(-0.838436\pi\)
−0.873929 + 0.486053i \(0.838436\pi\)
\(128\) 14.2063 1.25567
\(129\) 6.63325 0.584025
\(130\) 24.6060 2.15809
\(131\) −6.63325 −0.579550 −0.289775 0.957095i \(-0.593580\pi\)
−0.289775 + 0.957095i \(0.593580\pi\)
\(132\) 0 0
\(133\) 3.37228 0.292414
\(134\) −40.6844 −3.51459
\(135\) −2.37228 −0.204173
\(136\) −35.8614 −3.07509
\(137\) 0.744563 0.0636123 0.0318061 0.999494i \(-0.489874\pi\)
0.0318061 + 0.999494i \(0.489874\pi\)
\(138\) −5.04868 −0.429772
\(139\) 10.3923 0.881464 0.440732 0.897639i \(-0.354719\pi\)
0.440732 + 0.897639i \(0.354719\pi\)
\(140\) 8.21782 0.694533
\(141\) −1.25544 −0.105727
\(142\) −1.87953 −0.157726
\(143\) 0 0
\(144\) 6.37228 0.531023
\(145\) −5.98844 −0.497313
\(146\) 18.7446 1.55131
\(147\) −6.37228 −0.525577
\(148\) 21.8614 1.79700
\(149\) 5.98844 0.490592 0.245296 0.969448i \(-0.421115\pi\)
0.245296 + 0.969448i \(0.421115\pi\)
\(150\) −1.58457 −0.129380
\(151\) −2.17448 −0.176957 −0.0884784 0.996078i \(-0.528200\pi\)
−0.0884784 + 0.996078i \(0.528200\pi\)
\(152\) 25.4891 2.06744
\(153\) 5.98844 0.484137
\(154\) 0 0
\(155\) −17.4891 −1.40476
\(156\) 17.9653 1.43838
\(157\) 6.62772 0.528950 0.264475 0.964393i \(-0.414801\pi\)
0.264475 + 0.964393i \(0.414801\pi\)
\(158\) 14.7446 1.17301
\(159\) 13.1168 1.04023
\(160\) 9.74749 0.770607
\(161\) −1.58457 −0.124882
\(162\) −2.52434 −0.198331
\(163\) −9.37228 −0.734094 −0.367047 0.930202i \(-0.619631\pi\)
−0.367047 + 0.930202i \(0.619631\pi\)
\(164\) 24.8935 1.94386
\(165\) 0 0
\(166\) 21.4891 1.66788
\(167\) 2.87419 0.222412 0.111206 0.993797i \(-0.464529\pi\)
0.111206 + 0.993797i \(0.464529\pi\)
\(168\) 4.74456 0.366051
\(169\) 3.88316 0.298704
\(170\) 35.8614 2.75044
\(171\) −4.25639 −0.325494
\(172\) 29.0024 2.21141
\(173\) 6.92820 0.526742 0.263371 0.964695i \(-0.415166\pi\)
0.263371 + 0.964695i \(0.415166\pi\)
\(174\) −6.37228 −0.483081
\(175\) −0.497333 −0.0375949
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 16.0858 1.20568
\(179\) −24.2337 −1.81131 −0.905655 0.424014i \(-0.860621\pi\)
−0.905655 + 0.424014i \(0.860621\pi\)
\(180\) −10.3723 −0.773104
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 8.21782 0.609146
\(183\) 2.67181 0.197506
\(184\) −11.9769 −0.882947
\(185\) −11.8614 −0.872068
\(186\) −18.6101 −1.36456
\(187\) 0 0
\(188\) −5.48913 −0.400336
\(189\) −0.792287 −0.0576304
\(190\) −25.4891 −1.84918
\(191\) −17.4891 −1.26547 −0.632734 0.774369i \(-0.718067\pi\)
−0.632734 + 0.774369i \(0.718067\pi\)
\(192\) −2.37228 −0.171205
\(193\) 17.1730 1.23614 0.618071 0.786122i \(-0.287914\pi\)
0.618071 + 0.786122i \(0.287914\pi\)
\(194\) 31.5268 2.26349
\(195\) −9.74749 −0.698033
\(196\) −27.8614 −1.99010
\(197\) −21.1345 −1.50577 −0.752884 0.658153i \(-0.771338\pi\)
−0.752884 + 0.658153i \(0.771338\pi\)
\(198\) 0 0
\(199\) −6.86141 −0.486392 −0.243196 0.969977i \(-0.578196\pi\)
−0.243196 + 0.969977i \(0.578196\pi\)
\(200\) −3.75906 −0.265805
\(201\) 16.1168 1.13679
\(202\) −13.4891 −0.949092
\(203\) −2.00000 −0.140372
\(204\) 26.1831 1.83319
\(205\) −13.5065 −0.943338
\(206\) −20.4897 −1.42758
\(207\) 2.00000 0.139010
\(208\) 26.1831 1.81547
\(209\) 0 0
\(210\) −4.74456 −0.327406
\(211\) −12.4742 −0.858760 −0.429380 0.903124i \(-0.641268\pi\)
−0.429380 + 0.903124i \(0.641268\pi\)
\(212\) 57.3505 3.93885
\(213\) 0.744563 0.0510166
\(214\) −0.744563 −0.0508973
\(215\) −15.7359 −1.07318
\(216\) −5.98844 −0.407462
\(217\) −5.84096 −0.396510
\(218\) 25.1168 1.70113
\(219\) −7.42554 −0.501771
\(220\) 0 0
\(221\) 24.6060 1.65518
\(222\) −12.6217 −0.847112
\(223\) −4.86141 −0.325544 −0.162772 0.986664i \(-0.552043\pi\)
−0.162772 + 0.986664i \(0.552043\pi\)
\(224\) 3.25544 0.217513
\(225\) 0.627719 0.0418479
\(226\) 11.0371 0.734178
\(227\) −25.2434 −1.67546 −0.837731 0.546083i \(-0.816118\pi\)
−0.837731 + 0.546083i \(0.816118\pi\)
\(228\) −18.6101 −1.23249
\(229\) −3.62772 −0.239726 −0.119863 0.992790i \(-0.538246\pi\)
−0.119863 + 0.992790i \(0.538246\pi\)
\(230\) 11.9769 0.789732
\(231\) 0 0
\(232\) −15.1168 −0.992469
\(233\) −2.52434 −0.165375 −0.0826874 0.996576i \(-0.526350\pi\)
−0.0826874 + 0.996576i \(0.526350\pi\)
\(234\) −10.3723 −0.678057
\(235\) 2.97825 0.194280
\(236\) −26.2337 −1.70767
\(237\) −5.84096 −0.379411
\(238\) 11.9769 0.776346
\(239\) 29.2974 1.89509 0.947545 0.319622i \(-0.103556\pi\)
0.947545 + 0.319622i \(0.103556\pi\)
\(240\) −15.1168 −0.975788
\(241\) 13.2665 0.854570 0.427285 0.904117i \(-0.359470\pi\)
0.427285 + 0.904117i \(0.359470\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 11.6819 0.747859
\(245\) 15.1168 0.965780
\(246\) −14.3723 −0.916343
\(247\) −17.4891 −1.11281
\(248\) −44.1485 −2.80343
\(249\) −8.51278 −0.539475
\(250\) −26.1831 −1.65597
\(251\) −0.510875 −0.0322461 −0.0161231 0.999870i \(-0.505132\pi\)
−0.0161231 + 0.999870i \(0.505132\pi\)
\(252\) −3.46410 −0.218218
\(253\) 0 0
\(254\) 49.7228 3.11989
\(255\) −14.2063 −0.889631
\(256\) −31.1168 −1.94480
\(257\) 24.3723 1.52030 0.760151 0.649747i \(-0.225125\pi\)
0.760151 + 0.649747i \(0.225125\pi\)
\(258\) −16.7446 −1.04247
\(259\) −3.96143 −0.246152
\(260\) −42.6188 −2.64311
\(261\) 2.52434 0.156253
\(262\) 16.7446 1.03448
\(263\) 22.3692 1.37934 0.689671 0.724122i \(-0.257755\pi\)
0.689671 + 0.724122i \(0.257755\pi\)
\(264\) 0 0
\(265\) −31.1168 −1.91149
\(266\) −8.51278 −0.521952
\(267\) −6.37228 −0.389977
\(268\) 70.4674 4.30448
\(269\) 9.11684 0.555864 0.277932 0.960601i \(-0.410351\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(270\) 5.98844 0.364445
\(271\) 10.3923 0.631288 0.315644 0.948878i \(-0.397780\pi\)
0.315644 + 0.948878i \(0.397780\pi\)
\(272\) 38.1600 2.31379
\(273\) −3.25544 −0.197028
\(274\) −1.87953 −0.113546
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) 8.66025 0.520344 0.260172 0.965562i \(-0.416221\pi\)
0.260172 + 0.965562i \(0.416221\pi\)
\(278\) −26.2337 −1.57339
\(279\) 7.37228 0.441367
\(280\) −11.2554 −0.672641
\(281\) 0.589907 0.0351909 0.0175955 0.999845i \(-0.494399\pi\)
0.0175955 + 0.999845i \(0.494399\pi\)
\(282\) 3.16915 0.188720
\(283\) 2.37686 0.141290 0.0706449 0.997502i \(-0.477494\pi\)
0.0706449 + 0.997502i \(0.477494\pi\)
\(284\) 3.25544 0.193175
\(285\) 10.0974 0.598115
\(286\) 0 0
\(287\) −4.51087 −0.266269
\(288\) −4.10891 −0.242120
\(289\) 18.8614 1.10949
\(290\) 15.1168 0.887692
\(291\) −12.4891 −0.732125
\(292\) −32.4665 −1.89996
\(293\) −6.57835 −0.384311 −0.192156 0.981364i \(-0.561548\pi\)
−0.192156 + 0.981364i \(0.561548\pi\)
\(294\) 16.0858 0.938142
\(295\) 14.2337 0.828717
\(296\) −29.9422 −1.74035
\(297\) 0 0
\(298\) −15.1168 −0.875695
\(299\) 8.21782 0.475249
\(300\) 2.74456 0.158457
\(301\) −5.25544 −0.302918
\(302\) 5.48913 0.315864
\(303\) 5.34363 0.306983
\(304\) −27.1229 −1.55561
\(305\) −6.33830 −0.362930
\(306\) −15.1168 −0.864172
\(307\) 17.8178 1.01692 0.508459 0.861086i \(-0.330215\pi\)
0.508459 + 0.861086i \(0.330215\pi\)
\(308\) 0 0
\(309\) 8.11684 0.461751
\(310\) 44.1485 2.50746
\(311\) −6.51087 −0.369198 −0.184599 0.982814i \(-0.559099\pi\)
−0.184599 + 0.982814i \(0.559099\pi\)
\(312\) −24.6060 −1.39304
\(313\) 9.11684 0.515314 0.257657 0.966236i \(-0.417049\pi\)
0.257657 + 0.966236i \(0.417049\pi\)
\(314\) −16.7306 −0.944162
\(315\) 1.87953 0.105899
\(316\) −25.5383 −1.43664
\(317\) 15.2554 0.856831 0.428415 0.903582i \(-0.359072\pi\)
0.428415 + 0.903582i \(0.359072\pi\)
\(318\) −33.1113 −1.85679
\(319\) 0 0
\(320\) 5.62772 0.314599
\(321\) 0.294954 0.0164627
\(322\) 4.00000 0.222911
\(323\) −25.4891 −1.41825
\(324\) 4.37228 0.242905
\(325\) 2.57924 0.143071
\(326\) 23.6588 1.31034
\(327\) −9.94987 −0.550229
\(328\) −34.0951 −1.88259
\(329\) 0.994667 0.0548377
\(330\) 0 0
\(331\) −0.627719 −0.0345025 −0.0172513 0.999851i \(-0.505492\pi\)
−0.0172513 + 0.999851i \(0.505492\pi\)
\(332\) −37.2203 −2.04273
\(333\) 5.00000 0.273998
\(334\) −7.25544 −0.397000
\(335\) −38.2337 −2.08893
\(336\) −5.04868 −0.275428
\(337\) −15.2935 −0.833090 −0.416545 0.909115i \(-0.636759\pi\)
−0.416545 + 0.909115i \(0.636759\pi\)
\(338\) −9.80240 −0.533180
\(339\) −4.37228 −0.237470
\(340\) −62.1138 −3.36859
\(341\) 0 0
\(342\) 10.7446 0.580999
\(343\) 10.5947 0.572059
\(344\) −39.7228 −2.14171
\(345\) −4.74456 −0.255439
\(346\) −17.4891 −0.940221
\(347\) 18.0202 0.967376 0.483688 0.875240i \(-0.339297\pi\)
0.483688 + 0.875240i \(0.339297\pi\)
\(348\) 11.0371 0.591651
\(349\) 25.9808 1.39072 0.695359 0.718662i \(-0.255245\pi\)
0.695359 + 0.718662i \(0.255245\pi\)
\(350\) 1.25544 0.0671059
\(351\) 4.10891 0.219317
\(352\) 0 0
\(353\) −29.3505 −1.56217 −0.781086 0.624424i \(-0.785334\pi\)
−0.781086 + 0.624424i \(0.785334\pi\)
\(354\) 15.1460 0.805002
\(355\) −1.76631 −0.0937461
\(356\) −27.8614 −1.47665
\(357\) −4.74456 −0.251109
\(358\) 61.1740 3.23315
\(359\) 1.28962 0.0680636 0.0340318 0.999421i \(-0.489165\pi\)
0.0340318 + 0.999421i \(0.489165\pi\)
\(360\) 14.2063 0.748736
\(361\) −0.883156 −0.0464819
\(362\) −42.9137 −2.25550
\(363\) 0 0
\(364\) −14.2337 −0.746048
\(365\) 17.6155 0.922035
\(366\) −6.74456 −0.352544
\(367\) −23.7228 −1.23832 −0.619160 0.785265i \(-0.712527\pi\)
−0.619160 + 0.785265i \(0.712527\pi\)
\(368\) 12.7446 0.664356
\(369\) 5.69349 0.296391
\(370\) 29.9422 1.55662
\(371\) −10.3923 −0.539542
\(372\) 32.2337 1.67124
\(373\) 24.4511 1.26603 0.633015 0.774140i \(-0.281817\pi\)
0.633015 + 0.774140i \(0.281817\pi\)
\(374\) 0 0
\(375\) 10.3723 0.535622
\(376\) 7.51811 0.387717
\(377\) 10.3723 0.534200
\(378\) 2.00000 0.102869
\(379\) 23.7228 1.21856 0.609280 0.792956i \(-0.291459\pi\)
0.609280 + 0.792956i \(0.291459\pi\)
\(380\) 44.1485 2.26477
\(381\) −19.6974 −1.00913
\(382\) 44.1485 2.25883
\(383\) −23.4891 −1.20024 −0.600119 0.799911i \(-0.704880\pi\)
−0.600119 + 0.799911i \(0.704880\pi\)
\(384\) 14.2063 0.724960
\(385\) 0 0
\(386\) −43.3505 −2.20648
\(387\) 6.63325 0.337187
\(388\) −54.6060 −2.77220
\(389\) −9.11684 −0.462242 −0.231121 0.972925i \(-0.574239\pi\)
−0.231121 + 0.972925i \(0.574239\pi\)
\(390\) 24.6060 1.24597
\(391\) 11.9769 0.605697
\(392\) 38.1600 1.92737
\(393\) −6.63325 −0.334603
\(394\) 53.3505 2.68776
\(395\) 13.8564 0.697191
\(396\) 0 0
\(397\) 24.4891 1.22907 0.614537 0.788888i \(-0.289343\pi\)
0.614537 + 0.788888i \(0.289343\pi\)
\(398\) 17.3205 0.868199
\(399\) 3.37228 0.168825
\(400\) 4.00000 0.200000
\(401\) −19.1168 −0.954650 −0.477325 0.878727i \(-0.658393\pi\)
−0.477325 + 0.878727i \(0.658393\pi\)
\(402\) −40.6844 −2.02915
\(403\) 30.2921 1.50895
\(404\) 23.3639 1.16240
\(405\) −2.37228 −0.117880
\(406\) 5.04868 0.250562
\(407\) 0 0
\(408\) −35.8614 −1.77540
\(409\) −0.442430 −0.0218768 −0.0109384 0.999940i \(-0.503482\pi\)
−0.0109384 + 0.999940i \(0.503482\pi\)
\(410\) 34.0951 1.68384
\(411\) 0.744563 0.0367266
\(412\) 35.4891 1.74842
\(413\) 4.75372 0.233915
\(414\) −5.04868 −0.248129
\(415\) 20.1947 0.991319
\(416\) −16.8832 −0.827765
\(417\) 10.3923 0.508913
\(418\) 0 0
\(419\) −8.51087 −0.415783 −0.207892 0.978152i \(-0.566660\pi\)
−0.207892 + 0.978152i \(0.566660\pi\)
\(420\) 8.21782 0.400989
\(421\) 6.13859 0.299177 0.149588 0.988748i \(-0.452205\pi\)
0.149588 + 0.988748i \(0.452205\pi\)
\(422\) 31.4891 1.53287
\(423\) −1.25544 −0.0610415
\(424\) −78.5494 −3.81470
\(425\) 3.75906 0.182341
\(426\) −1.87953 −0.0910634
\(427\) −2.11684 −0.102441
\(428\) 1.28962 0.0623362
\(429\) 0 0
\(430\) 39.7228 1.91560
\(431\) −23.6588 −1.13960 −0.569802 0.821782i \(-0.692980\pi\)
−0.569802 + 0.821782i \(0.692980\pi\)
\(432\) 6.37228 0.306587
\(433\) −23.2337 −1.11654 −0.558270 0.829659i \(-0.688535\pi\)
−0.558270 + 0.829659i \(0.688535\pi\)
\(434\) 14.7446 0.707762
\(435\) −5.98844 −0.287124
\(436\) −43.5036 −2.08345
\(437\) −8.51278 −0.407221
\(438\) 18.7446 0.895650
\(439\) −24.4511 −1.16699 −0.583493 0.812118i \(-0.698315\pi\)
−0.583493 + 0.812118i \(0.698315\pi\)
\(440\) 0 0
\(441\) −6.37228 −0.303442
\(442\) −62.1138 −2.95445
\(443\) 20.7446 0.985604 0.492802 0.870142i \(-0.335973\pi\)
0.492802 + 0.870142i \(0.335973\pi\)
\(444\) 21.8614 1.03750
\(445\) 15.1168 0.716607
\(446\) 12.2718 0.581088
\(447\) 5.98844 0.283243
\(448\) 1.87953 0.0887993
\(449\) 24.6060 1.16123 0.580614 0.814179i \(-0.302813\pi\)
0.580614 + 0.814179i \(0.302813\pi\)
\(450\) −1.58457 −0.0746975
\(451\) 0 0
\(452\) −19.1168 −0.899181
\(453\) −2.17448 −0.102166
\(454\) 63.7228 2.99066
\(455\) 7.72281 0.362051
\(456\) 25.4891 1.19364
\(457\) 8.45787 0.395643 0.197821 0.980238i \(-0.436613\pi\)
0.197821 + 0.980238i \(0.436613\pi\)
\(458\) 9.15759 0.427906
\(459\) 5.98844 0.279516
\(460\) −20.7446 −0.967220
\(461\) −14.5012 −0.675389 −0.337694 0.941256i \(-0.609647\pi\)
−0.337694 + 0.941256i \(0.609647\pi\)
\(462\) 0 0
\(463\) −3.25544 −0.151293 −0.0756465 0.997135i \(-0.524102\pi\)
−0.0756465 + 0.997135i \(0.524102\pi\)
\(464\) 16.0858 0.746764
\(465\) −17.4891 −0.811039
\(466\) 6.37228 0.295190
\(467\) −22.2337 −1.02885 −0.514426 0.857535i \(-0.671995\pi\)
−0.514426 + 0.857535i \(0.671995\pi\)
\(468\) 17.9653 0.830447
\(469\) −12.7692 −0.589625
\(470\) −7.51811 −0.346785
\(471\) 6.62772 0.305389
\(472\) 35.9306 1.65384
\(473\) 0 0
\(474\) 14.7446 0.677240
\(475\) −2.67181 −0.122591
\(476\) −20.7446 −0.950825
\(477\) 13.1168 0.600579
\(478\) −73.9565 −3.38269
\(479\) −37.5152 −1.71411 −0.857057 0.515222i \(-0.827710\pi\)
−0.857057 + 0.515222i \(0.827710\pi\)
\(480\) 9.74749 0.444910
\(481\) 20.5446 0.936751
\(482\) −33.4891 −1.52539
\(483\) −1.58457 −0.0721006
\(484\) 0 0
\(485\) 29.6277 1.34533
\(486\) −2.52434 −0.114506
\(487\) −12.7446 −0.577511 −0.288756 0.957403i \(-0.593242\pi\)
−0.288756 + 0.957403i \(0.593242\pi\)
\(488\) −16.0000 −0.724286
\(489\) −9.37228 −0.423829
\(490\) −38.1600 −1.72389
\(491\) −18.6101 −0.839863 −0.419932 0.907556i \(-0.637946\pi\)
−0.419932 + 0.907556i \(0.637946\pi\)
\(492\) 24.8935 1.12229
\(493\) 15.1168 0.680828
\(494\) 44.1485 1.98633
\(495\) 0 0
\(496\) 46.9783 2.10939
\(497\) −0.589907 −0.0264610
\(498\) 21.4891 0.962951
\(499\) −37.8397 −1.69394 −0.846968 0.531644i \(-0.821574\pi\)
−0.846968 + 0.531644i \(0.821574\pi\)
\(500\) 45.3505 2.02814
\(501\) 2.87419 0.128410
\(502\) 1.28962 0.0575586
\(503\) −22.0742 −0.984241 −0.492121 0.870527i \(-0.663778\pi\)
−0.492121 + 0.870527i \(0.663778\pi\)
\(504\) 4.74456 0.211340
\(505\) −12.6766 −0.564101
\(506\) 0 0
\(507\) 3.88316 0.172457
\(508\) −86.1224 −3.82107
\(509\) −40.9783 −1.81633 −0.908165 0.418613i \(-0.862516\pi\)
−0.908165 + 0.418613i \(0.862516\pi\)
\(510\) 35.8614 1.58797
\(511\) 5.88316 0.260256
\(512\) 50.1369 2.21576
\(513\) −4.25639 −0.187924
\(514\) −61.5239 −2.71370
\(515\) −19.2554 −0.848496
\(516\) 29.0024 1.27676
\(517\) 0 0
\(518\) 10.0000 0.439375
\(519\) 6.92820 0.304114
\(520\) 58.3723 2.55979
\(521\) 16.9783 0.743831 0.371915 0.928267i \(-0.378701\pi\)
0.371915 + 0.928267i \(0.378701\pi\)
\(522\) −6.37228 −0.278907
\(523\) 6.83563 0.298901 0.149451 0.988769i \(-0.452250\pi\)
0.149451 + 0.988769i \(0.452250\pi\)
\(524\) −29.0024 −1.26698
\(525\) −0.497333 −0.0217054
\(526\) −56.4674 −2.46209
\(527\) 44.1485 1.92314
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 78.5494 3.41197
\(531\) −6.00000 −0.260378
\(532\) 14.7446 0.639258
\(533\) 23.3940 1.01331
\(534\) 16.0858 0.696100
\(535\) −0.699713 −0.0302512
\(536\) −96.5147 −4.16880
\(537\) −24.2337 −1.04576
\(538\) −23.0140 −0.992204
\(539\) 0 0
\(540\) −10.3723 −0.446352
\(541\) 27.7128 1.19147 0.595733 0.803182i \(-0.296861\pi\)
0.595733 + 0.803182i \(0.296861\pi\)
\(542\) −26.2337 −1.12683
\(543\) 17.0000 0.729540
\(544\) −24.6060 −1.05497
\(545\) 23.6039 1.01108
\(546\) 8.21782 0.351690
\(547\) −41.9740 −1.79468 −0.897339 0.441342i \(-0.854502\pi\)
−0.897339 + 0.441342i \(0.854502\pi\)
\(548\) 3.25544 0.139065
\(549\) 2.67181 0.114030
\(550\) 0 0
\(551\) −10.7446 −0.457734
\(552\) −11.9769 −0.509770
\(553\) 4.62772 0.196791
\(554\) −21.8614 −0.928802
\(555\) −11.8614 −0.503489
\(556\) 45.4381 1.92700
\(557\) −9.50744 −0.402843 −0.201422 0.979505i \(-0.564556\pi\)
−0.201422 + 0.979505i \(0.564556\pi\)
\(558\) −18.6101 −0.787830
\(559\) 27.2554 1.15278
\(560\) 11.9769 0.506116
\(561\) 0 0
\(562\) −1.48913 −0.0628150
\(563\) −14.5561 −0.613467 −0.306734 0.951795i \(-0.599236\pi\)
−0.306734 + 0.951795i \(0.599236\pi\)
\(564\) −5.48913 −0.231134
\(565\) 10.3723 0.436365
\(566\) −6.00000 −0.252199
\(567\) −0.792287 −0.0332729
\(568\) −4.45877 −0.187086
\(569\) −24.5437 −1.02892 −0.514462 0.857513i \(-0.672008\pi\)
−0.514462 + 0.857513i \(0.672008\pi\)
\(570\) −25.4891 −1.06762
\(571\) −4.55134 −0.190468 −0.0952339 0.995455i \(-0.530360\pi\)
−0.0952339 + 0.995455i \(0.530360\pi\)
\(572\) 0 0
\(573\) −17.4891 −0.730619
\(574\) 11.3870 0.475283
\(575\) 1.25544 0.0523554
\(576\) −2.37228 −0.0988451
\(577\) −16.4891 −0.686451 −0.343226 0.939253i \(-0.611520\pi\)
−0.343226 + 0.939253i \(0.611520\pi\)
\(578\) −47.6126 −1.98042
\(579\) 17.1730 0.713687
\(580\) −26.1831 −1.08720
\(581\) 6.74456 0.279812
\(582\) 31.5268 1.30683
\(583\) 0 0
\(584\) 44.4674 1.84007
\(585\) −9.74749 −0.403009
\(586\) 16.6060 0.685986
\(587\) 38.9783 1.60880 0.804402 0.594085i \(-0.202486\pi\)
0.804402 + 0.594085i \(0.202486\pi\)
\(588\) −27.8614 −1.14899
\(589\) −31.3793 −1.29296
\(590\) −35.9306 −1.47924
\(591\) −21.1345 −0.869356
\(592\) 31.8614 1.30950
\(593\) −27.7677 −1.14028 −0.570142 0.821546i \(-0.693112\pi\)
−0.570142 + 0.821546i \(0.693112\pi\)
\(594\) 0 0
\(595\) 11.2554 0.461428
\(596\) 26.1831 1.07250
\(597\) −6.86141 −0.280819
\(598\) −20.7446 −0.848308
\(599\) 40.4674 1.65345 0.826726 0.562605i \(-0.190201\pi\)
0.826726 + 0.562605i \(0.190201\pi\)
\(600\) −3.75906 −0.153463
\(601\) 40.2419 1.64150 0.820751 0.571286i \(-0.193555\pi\)
0.820751 + 0.571286i \(0.193555\pi\)
\(602\) 13.2665 0.540702
\(603\) 16.1168 0.656329
\(604\) −9.50744 −0.386852
\(605\) 0 0
\(606\) −13.4891 −0.547958
\(607\) −26.1282 −1.06051 −0.530256 0.847837i \(-0.677904\pi\)
−0.530256 + 0.847837i \(0.677904\pi\)
\(608\) 17.4891 0.709278
\(609\) −2.00000 −0.0810441
\(610\) 16.0000 0.647821
\(611\) −5.15848 −0.208690
\(612\) 26.1831 1.05839
\(613\) 43.4111 1.75336 0.876678 0.481077i \(-0.159754\pi\)
0.876678 + 0.481077i \(0.159754\pi\)
\(614\) −44.9783 −1.81517
\(615\) −13.5065 −0.544637
\(616\) 0 0
\(617\) 43.8614 1.76579 0.882897 0.469567i \(-0.155590\pi\)
0.882897 + 0.469567i \(0.155590\pi\)
\(618\) −20.4897 −0.824215
\(619\) 10.2337 0.411327 0.205663 0.978623i \(-0.434065\pi\)
0.205663 + 0.978623i \(0.434065\pi\)
\(620\) −76.4674 −3.07100
\(621\) 2.00000 0.0802572
\(622\) 16.4356 0.659009
\(623\) 5.04868 0.202271
\(624\) 26.1831 1.04816
\(625\) −27.7446 −1.10978
\(626\) −23.0140 −0.919824
\(627\) 0 0
\(628\) 28.9783 1.15636
\(629\) 29.9422 1.19387
\(630\) −4.74456 −0.189028
\(631\) 22.2337 0.885109 0.442555 0.896742i \(-0.354072\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(632\) 34.9783 1.39136
\(633\) −12.4742 −0.495805
\(634\) −38.5099 −1.52942
\(635\) 46.7277 1.85433
\(636\) 57.3505 2.27410
\(637\) −26.1831 −1.03741
\(638\) 0 0
\(639\) 0.744563 0.0294544
\(640\) −33.7013 −1.33216
\(641\) 7.11684 0.281098 0.140549 0.990074i \(-0.455113\pi\)
0.140549 + 0.990074i \(0.455113\pi\)
\(642\) −0.744563 −0.0293855
\(643\) 21.0951 0.831909 0.415955 0.909385i \(-0.363447\pi\)
0.415955 + 0.909385i \(0.363447\pi\)
\(644\) −6.92820 −0.273009
\(645\) −15.7359 −0.619602
\(646\) 64.3432 2.53155
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) −5.98844 −0.235248
\(649\) 0 0
\(650\) −6.51087 −0.255378
\(651\) −5.84096 −0.228925
\(652\) −40.9783 −1.60483
\(653\) 4.51087 0.176524 0.0882621 0.996097i \(-0.471869\pi\)
0.0882621 + 0.996097i \(0.471869\pi\)
\(654\) 25.1168 0.982146
\(655\) 15.7359 0.614854
\(656\) 36.2805 1.41652
\(657\) −7.42554 −0.289698
\(658\) −2.51087 −0.0978841
\(659\) −22.3692 −0.871380 −0.435690 0.900097i \(-0.643496\pi\)
−0.435690 + 0.900097i \(0.643496\pi\)
\(660\) 0 0
\(661\) −26.7228 −1.03940 −0.519698 0.854350i \(-0.673956\pi\)
−0.519698 + 0.854350i \(0.673956\pi\)
\(662\) 1.58457 0.0615862
\(663\) 24.6060 0.955617
\(664\) 50.9783 1.97834
\(665\) −8.00000 −0.310227
\(666\) −12.6217 −0.489081
\(667\) 5.04868 0.195485
\(668\) 12.5668 0.486224
\(669\) −4.86141 −0.187953
\(670\) 96.5147 3.72869
\(671\) 0 0
\(672\) 3.25544 0.125581
\(673\) −41.4766 −1.59881 −0.799404 0.600794i \(-0.794851\pi\)
−0.799404 + 0.600794i \(0.794851\pi\)
\(674\) 38.6060 1.48705
\(675\) 0.627719 0.0241609
\(676\) 16.9783 0.653010
\(677\) −36.2805 −1.39437 −0.697186 0.716890i \(-0.745565\pi\)
−0.697186 + 0.716890i \(0.745565\pi\)
\(678\) 11.0371 0.423878
\(679\) 9.89497 0.379734
\(680\) 85.0733 3.26241
\(681\) −25.2434 −0.967328
\(682\) 0 0
\(683\) 2.00000 0.0765279 0.0382639 0.999268i \(-0.487817\pi\)
0.0382639 + 0.999268i \(0.487817\pi\)
\(684\) −18.6101 −0.711576
\(685\) −1.76631 −0.0674873
\(686\) −26.7446 −1.02111
\(687\) −3.62772 −0.138406
\(688\) 42.2689 1.61149
\(689\) 53.8960 2.05327
\(690\) 11.9769 0.455952
\(691\) −4.11684 −0.156612 −0.0783061 0.996929i \(-0.524951\pi\)
−0.0783061 + 0.996929i \(0.524951\pi\)
\(692\) 30.2921 1.15153
\(693\) 0 0
\(694\) −45.4891 −1.72674
\(695\) −24.6535 −0.935159
\(696\) −15.1168 −0.573002
\(697\) 34.0951 1.29144
\(698\) −65.5842 −2.48240
\(699\) −2.52434 −0.0954792
\(700\) −2.17448 −0.0821877
\(701\) −10.0424 −0.379298 −0.189649 0.981852i \(-0.560735\pi\)
−0.189649 + 0.981852i \(0.560735\pi\)
\(702\) −10.3723 −0.391477
\(703\) −21.2819 −0.802664
\(704\) 0 0
\(705\) 2.97825 0.112167
\(706\) 74.0907 2.78844
\(707\) −4.23369 −0.159224
\(708\) −26.2337 −0.985922
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 4.45877 0.167335
\(711\) −5.84096 −0.219053
\(712\) 38.1600 1.43011
\(713\) 14.7446 0.552188
\(714\) 11.9769 0.448223
\(715\) 0 0
\(716\) −105.957 −3.95978
\(717\) 29.2974 1.09413
\(718\) −3.25544 −0.121492
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) −15.1168 −0.563372
\(721\) −6.43087 −0.239498
\(722\) 2.22938 0.0829691
\(723\) 13.2665 0.493386
\(724\) 74.3288 2.76241
\(725\) 1.58457 0.0588496
\(726\) 0 0
\(727\) 7.25544 0.269089 0.134545 0.990908i \(-0.457043\pi\)
0.134545 + 0.990908i \(0.457043\pi\)
\(728\) 19.4950 0.722532
\(729\) 1.00000 0.0370370
\(730\) −44.4674 −1.64581
\(731\) 39.7228 1.46920
\(732\) 11.6819 0.431776
\(733\) 9.15759 0.338243 0.169122 0.985595i \(-0.445907\pi\)
0.169122 + 0.985595i \(0.445907\pi\)
\(734\) 59.8844 2.21037
\(735\) 15.1168 0.557593
\(736\) −8.21782 −0.302913
\(737\) 0 0
\(738\) −14.3723 −0.529051
\(739\) 38.8974 1.43086 0.715432 0.698682i \(-0.246230\pi\)
0.715432 + 0.698682i \(0.246230\pi\)
\(740\) −51.8614 −1.90646
\(741\) −17.4891 −0.642479
\(742\) 26.2337 0.963069
\(743\) 24.6535 0.904448 0.452224 0.891904i \(-0.350631\pi\)
0.452224 + 0.891904i \(0.350631\pi\)
\(744\) −44.1485 −1.61856
\(745\) −14.2063 −0.520477
\(746\) −61.7228 −2.25983
\(747\) −8.51278 −0.311466
\(748\) 0 0
\(749\) −0.233688 −0.00853877
\(750\) −26.1831 −0.956073
\(751\) −16.3505 −0.596639 −0.298320 0.954466i \(-0.596426\pi\)
−0.298320 + 0.954466i \(0.596426\pi\)
\(752\) −8.00000 −0.291730
\(753\) −0.510875 −0.0186173
\(754\) −26.1831 −0.953534
\(755\) 5.15848 0.187736
\(756\) −3.46410 −0.125988
\(757\) 9.51087 0.345679 0.172839 0.984950i \(-0.444706\pi\)
0.172839 + 0.984950i \(0.444706\pi\)
\(758\) −59.8844 −2.17510
\(759\) 0 0
\(760\) −60.4674 −2.19338
\(761\) −40.6295 −1.47282 −0.736408 0.676537i \(-0.763480\pi\)
−0.736408 + 0.676537i \(0.763480\pi\)
\(762\) 49.7228 1.80127
\(763\) 7.88316 0.285389
\(764\) −76.4674 −2.76649
\(765\) −14.2063 −0.513629
\(766\) 59.2945 2.14240
\(767\) −24.6535 −0.890185
\(768\) −31.1168 −1.12283
\(769\) −34.7885 −1.25451 −0.627253 0.778816i \(-0.715821\pi\)
−0.627253 + 0.778816i \(0.715821\pi\)
\(770\) 0 0
\(771\) 24.3723 0.877746
\(772\) 75.0853 2.70238
\(773\) 33.2119 1.19455 0.597275 0.802036i \(-0.296250\pi\)
0.597275 + 0.802036i \(0.296250\pi\)
\(774\) −16.7446 −0.601871
\(775\) 4.62772 0.166233
\(776\) 74.7904 2.68482
\(777\) −3.96143 −0.142116
\(778\) 23.0140 0.825092
\(779\) −24.2337 −0.868262
\(780\) −42.6188 −1.52600
\(781\) 0 0
\(782\) −30.2337 −1.08115
\(783\) 2.52434 0.0902125
\(784\) −40.6060 −1.45021
\(785\) −15.7228 −0.561171
\(786\) 16.7446 0.597259
\(787\) 4.75372 0.169452 0.0847259 0.996404i \(-0.472999\pi\)
0.0847259 + 0.996404i \(0.472999\pi\)
\(788\) −92.4058 −3.29182
\(789\) 22.3692 0.796364
\(790\) −34.9783 −1.24447
\(791\) 3.46410 0.123169
\(792\) 0 0
\(793\) 10.9783 0.389849
\(794\) −61.8188 −2.19387
\(795\) −31.1168 −1.10360
\(796\) −30.0000 −1.06332
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) −8.51278 −0.301349
\(799\) −7.51811 −0.265972
\(800\) −2.57924 −0.0911899
\(801\) −6.37228 −0.225153
\(802\) 48.2574 1.70403
\(803\) 0 0
\(804\) 70.4674 2.48519
\(805\) 3.75906 0.132489
\(806\) −76.4674 −2.69345
\(807\) 9.11684 0.320928
\(808\) −32.0000 −1.12576
\(809\) 53.6559 1.88644 0.943221 0.332167i \(-0.107780\pi\)
0.943221 + 0.332167i \(0.107780\pi\)
\(810\) 5.98844 0.210412
\(811\) −44.0559 −1.54701 −0.773506 0.633789i \(-0.781499\pi\)
−0.773506 + 0.633789i \(0.781499\pi\)
\(812\) −8.74456 −0.306874
\(813\) 10.3923 0.364474
\(814\) 0 0
\(815\) 22.2337 0.778812
\(816\) 38.1600 1.33587
\(817\) −28.2337 −0.987772
\(818\) 1.11684 0.0390495
\(819\) −3.25544 −0.113754
\(820\) −59.0544 −2.06227
\(821\) 12.8617 0.448878 0.224439 0.974488i \(-0.427945\pi\)
0.224439 + 0.974488i \(0.427945\pi\)
\(822\) −1.87953 −0.0655561
\(823\) −32.3505 −1.12767 −0.563834 0.825888i \(-0.690674\pi\)
−0.563834 + 0.825888i \(0.690674\pi\)
\(824\) −48.6072 −1.69331
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) 16.1407 0.561267 0.280633 0.959815i \(-0.409455\pi\)
0.280633 + 0.959815i \(0.409455\pi\)
\(828\) 8.74456 0.303895
\(829\) −22.2554 −0.772963 −0.386482 0.922297i \(-0.626310\pi\)
−0.386482 + 0.922297i \(0.626310\pi\)
\(830\) −50.9783 −1.76948
\(831\) 8.66025 0.300421
\(832\) −9.74749 −0.337934
\(833\) −38.1600 −1.32217
\(834\) −26.2337 −0.908398
\(835\) −6.81840 −0.235960
\(836\) 0 0
\(837\) 7.37228 0.254823
\(838\) 21.4843 0.742164
\(839\) 26.9783 0.931393 0.465696 0.884945i \(-0.345804\pi\)
0.465696 + 0.884945i \(0.345804\pi\)
\(840\) −11.2554 −0.388349
\(841\) −22.6277 −0.780266
\(842\) −15.4959 −0.534023
\(843\) 0.589907 0.0203175
\(844\) −54.5408 −1.87737
\(845\) −9.21194 −0.316900
\(846\) 3.16915 0.108958
\(847\) 0 0
\(848\) 83.5842 2.87029
\(849\) 2.37686 0.0815737
\(850\) −9.48913 −0.325474
\(851\) 10.0000 0.342796
\(852\) 3.25544 0.111529
\(853\) −31.7292 −1.08639 −0.543193 0.839608i \(-0.682785\pi\)
−0.543193 + 0.839608i \(0.682785\pi\)
\(854\) 5.34363 0.182855
\(855\) 10.0974 0.345322
\(856\) −1.76631 −0.0603713
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −12.1168 −0.413421 −0.206711 0.978402i \(-0.566276\pi\)
−0.206711 + 0.978402i \(0.566276\pi\)
\(860\) −68.8019 −2.34613
\(861\) −4.51087 −0.153730
\(862\) 59.7228 2.03417
\(863\) 16.5109 0.562037 0.281018 0.959702i \(-0.409328\pi\)
0.281018 + 0.959702i \(0.409328\pi\)
\(864\) −4.10891 −0.139788
\(865\) −16.4356 −0.558829
\(866\) 58.6497 1.99300
\(867\) 18.8614 0.640567
\(868\) −25.5383 −0.866827
\(869\) 0 0
\(870\) 15.1168 0.512509
\(871\) 66.2227 2.24387
\(872\) 59.5842 2.01778
\(873\) −12.4891 −0.422693
\(874\) 21.4891 0.726881
\(875\) −8.21782 −0.277813
\(876\) −32.4665 −1.09694
\(877\) −25.3909 −0.857388 −0.428694 0.903450i \(-0.641026\pi\)
−0.428694 + 0.903450i \(0.641026\pi\)
\(878\) 61.7228 2.08304
\(879\) −6.57835 −0.221882
\(880\) 0 0
\(881\) −5.39403 −0.181730 −0.0908648 0.995863i \(-0.528963\pi\)
−0.0908648 + 0.995863i \(0.528963\pi\)
\(882\) 16.0858 0.541637
\(883\) −4.86141 −0.163599 −0.0817997 0.996649i \(-0.526067\pi\)
−0.0817997 + 0.996649i \(0.526067\pi\)
\(884\) 107.584 3.61845
\(885\) 14.2337 0.478460
\(886\) −52.3663 −1.75928
\(887\) −29.4072 −0.987397 −0.493698 0.869633i \(-0.664355\pi\)
−0.493698 + 0.869633i \(0.664355\pi\)
\(888\) −29.9422 −1.00479
\(889\) 15.6060 0.523407
\(890\) −38.1600 −1.27913
\(891\) 0 0
\(892\) −21.2554 −0.711685
\(893\) 5.34363 0.178818
\(894\) −15.1168 −0.505583
\(895\) 57.4891 1.92165
\(896\) −11.2554 −0.376018
\(897\) 8.21782 0.274385
\(898\) −62.1138 −2.07276
\(899\) 18.6101 0.620683
\(900\) 2.74456 0.0914854
\(901\) 78.5494 2.61686
\(902\) 0 0
\(903\) −5.25544 −0.174890
\(904\) 26.1831 0.870838
\(905\) −40.3288 −1.34057
\(906\) 5.48913 0.182364
\(907\) −36.3505 −1.20700 −0.603500 0.797363i \(-0.706228\pi\)
−0.603500 + 0.797363i \(0.706228\pi\)
\(908\) −110.371 −3.66280
\(909\) 5.34363 0.177237
\(910\) −19.4950 −0.646253
\(911\) 38.2337 1.26674 0.633369 0.773850i \(-0.281671\pi\)
0.633369 + 0.773850i \(0.281671\pi\)
\(912\) −27.1229 −0.898129
\(913\) 0 0
\(914\) −21.3505 −0.706213
\(915\) −6.33830 −0.209538
\(916\) −15.8614 −0.524076
\(917\) 5.25544 0.173550
\(918\) −15.1168 −0.498930
\(919\) 31.6742 1.04484 0.522419 0.852689i \(-0.325030\pi\)
0.522419 + 0.852689i \(0.325030\pi\)
\(920\) 28.4125 0.936733
\(921\) 17.8178 0.587118
\(922\) 36.6060 1.20555
\(923\) 3.05934 0.100699
\(924\) 0 0
\(925\) 3.13859 0.103196
\(926\) 8.21782 0.270054
\(927\) 8.11684 0.266592
\(928\) −10.3723 −0.340487
\(929\) −34.8832 −1.14448 −0.572240 0.820086i \(-0.693925\pi\)
−0.572240 + 0.820086i \(0.693925\pi\)
\(930\) 44.1485 1.44769
\(931\) 27.1229 0.888917
\(932\) −11.0371 −0.361533
\(933\) −6.51087 −0.213156
\(934\) 56.1253 1.83648
\(935\) 0 0
\(936\) −24.6060 −0.804271
\(937\) −40.2419 −1.31465 −0.657323 0.753609i \(-0.728311\pi\)
−0.657323 + 0.753609i \(0.728311\pi\)
\(938\) 32.2337 1.05247
\(939\) 9.11684 0.297517
\(940\) 13.0217 0.424723
\(941\) −16.3807 −0.533997 −0.266999 0.963697i \(-0.586032\pi\)
−0.266999 + 0.963697i \(0.586032\pi\)
\(942\) −16.7306 −0.545112
\(943\) 11.3870 0.370811
\(944\) −38.2337 −1.24440
\(945\) 1.87953 0.0611410
\(946\) 0 0
\(947\) −31.4891 −1.02326 −0.511630 0.859206i \(-0.670958\pi\)
−0.511630 + 0.859206i \(0.670958\pi\)
\(948\) −25.5383 −0.829446
\(949\) −30.5109 −0.990425
\(950\) 6.74456 0.218823
\(951\) 15.2554 0.494691
\(952\) 28.4125 0.920855
\(953\) 47.2627 1.53099 0.765495 0.643442i \(-0.222494\pi\)
0.765495 + 0.643442i \(0.222494\pi\)
\(954\) −33.1113 −1.07202
\(955\) 41.4891 1.34256
\(956\) 128.096 4.14293
\(957\) 0 0
\(958\) 94.7011 3.05965
\(959\) −0.589907 −0.0190491
\(960\) 5.62772 0.181634
\(961\) 23.3505 0.753243
\(962\) −51.8614 −1.67208
\(963\) 0.294954 0.00950475
\(964\) 58.0049 1.86821
\(965\) −40.7393 −1.31144
\(966\) 4.00000 0.128698
\(967\) −44.3508 −1.42623 −0.713113 0.701049i \(-0.752716\pi\)
−0.713113 + 0.701049i \(0.752716\pi\)
\(968\) 0 0
\(969\) −25.4891 −0.818829
\(970\) −74.7904 −2.40137
\(971\) 59.4891 1.90910 0.954548 0.298056i \(-0.0963382\pi\)
0.954548 + 0.298056i \(0.0963382\pi\)
\(972\) 4.37228 0.140241
\(973\) −8.23369 −0.263960
\(974\) 32.1716 1.03084
\(975\) 2.57924 0.0826018
\(976\) 17.0256 0.544975
\(977\) 13.1168 0.419645 0.209823 0.977739i \(-0.432711\pi\)
0.209823 + 0.977739i \(0.432711\pi\)
\(978\) 23.6588 0.756525
\(979\) 0 0
\(980\) 66.0951 2.11133
\(981\) −9.94987 −0.317675
\(982\) 46.9783 1.49914
\(983\) −56.2337 −1.79358 −0.896788 0.442460i \(-0.854106\pi\)
−0.896788 + 0.442460i \(0.854106\pi\)
\(984\) −34.0951 −1.08691
\(985\) 50.1369 1.59749
\(986\) −38.1600 −1.21526
\(987\) 0.994667 0.0316606
\(988\) −76.4674 −2.43275
\(989\) 13.2665 0.421850
\(990\) 0 0
\(991\) 34.5109 1.09627 0.548137 0.836389i \(-0.315337\pi\)
0.548137 + 0.836389i \(0.315337\pi\)
\(992\) −30.2921 −0.961774
\(993\) −0.627719 −0.0199201
\(994\) 1.48913 0.0472322
\(995\) 16.2772 0.516022
\(996\) −37.2203 −1.17937
\(997\) −48.4598 −1.53474 −0.767368 0.641207i \(-0.778434\pi\)
−0.767368 + 0.641207i \(0.778434\pi\)
\(998\) 95.5201 3.02364
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.a.j.1.1 4
3.2 odd 2 1089.2.a.u.1.4 4
4.3 odd 2 5808.2.a.ck.1.2 4
5.4 even 2 9075.2.a.cv.1.4 4
11.2 odd 10 363.2.e.n.202.1 16
11.3 even 5 363.2.e.n.130.1 16
11.4 even 5 363.2.e.n.148.1 16
11.5 even 5 363.2.e.n.124.4 16
11.6 odd 10 363.2.e.n.124.1 16
11.7 odd 10 363.2.e.n.148.4 16
11.8 odd 10 363.2.e.n.130.4 16
11.9 even 5 363.2.e.n.202.4 16
11.10 odd 2 inner 363.2.a.j.1.4 yes 4
33.32 even 2 1089.2.a.u.1.1 4
44.43 even 2 5808.2.a.ck.1.1 4
55.54 odd 2 9075.2.a.cv.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.j.1.1 4 1.1 even 1 trivial
363.2.a.j.1.4 yes 4 11.10 odd 2 inner
363.2.e.n.124.1 16 11.6 odd 10
363.2.e.n.124.4 16 11.5 even 5
363.2.e.n.130.1 16 11.3 even 5
363.2.e.n.130.4 16 11.8 odd 10
363.2.e.n.148.1 16 11.4 even 5
363.2.e.n.148.4 16 11.7 odd 10
363.2.e.n.202.1 16 11.2 odd 10
363.2.e.n.202.4 16 11.9 even 5
1089.2.a.u.1.1 4 33.32 even 2
1089.2.a.u.1.4 4 3.2 odd 2
5808.2.a.ck.1.1 4 44.43 even 2
5808.2.a.ck.1.2 4 4.3 odd 2
9075.2.a.cv.1.1 4 55.54 odd 2
9075.2.a.cv.1.4 4 5.4 even 2