Properties

Label 363.2.a.f.1.1
Level $363$
Weight $2$
Character 363.1
Self dual yes
Analytic conductor $2.899$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.89856959337\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.00000 q^{5} +1.73205 q^{6} +3.46410 q^{7} +1.73205 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.73205 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.00000 q^{5} +1.73205 q^{6} +3.46410 q^{7} +1.73205 q^{8} +1.00000 q^{9} +5.19615 q^{10} -1.00000 q^{12} +1.73205 q^{13} -6.00000 q^{14} +3.00000 q^{15} -5.00000 q^{16} -1.73205 q^{17} -1.73205 q^{18} -6.92820 q^{19} -3.00000 q^{20} -3.46410 q^{21} -6.00000 q^{23} -1.73205 q^{24} +4.00000 q^{25} -3.00000 q^{26} -1.00000 q^{27} +3.46410 q^{28} +1.73205 q^{29} -5.19615 q^{30} +4.00000 q^{31} +5.19615 q^{32} +3.00000 q^{34} -10.3923 q^{35} +1.00000 q^{36} -11.0000 q^{37} +12.0000 q^{38} -1.73205 q^{39} -5.19615 q^{40} +1.73205 q^{41} +6.00000 q^{42} -3.46410 q^{43} -3.00000 q^{45} +10.3923 q^{46} +5.00000 q^{48} +5.00000 q^{49} -6.92820 q^{50} +1.73205 q^{51} +1.73205 q^{52} -9.00000 q^{53} +1.73205 q^{54} +6.00000 q^{56} +6.92820 q^{57} -3.00000 q^{58} -6.00000 q^{59} +3.00000 q^{60} -6.92820 q^{62} +3.46410 q^{63} +1.00000 q^{64} -5.19615 q^{65} -2.00000 q^{67} -1.73205 q^{68} +6.00000 q^{69} +18.0000 q^{70} -6.00000 q^{71} +1.73205 q^{72} -6.92820 q^{73} +19.0526 q^{74} -4.00000 q^{75} -6.92820 q^{76} +3.00000 q^{78} +15.0000 q^{80} +1.00000 q^{81} -3.00000 q^{82} -3.46410 q^{84} +5.19615 q^{85} +6.00000 q^{86} -1.73205 q^{87} +9.00000 q^{89} +5.19615 q^{90} +6.00000 q^{91} -6.00000 q^{92} -4.00000 q^{93} +20.7846 q^{95} -5.19615 q^{96} -7.00000 q^{97} -8.66025 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} - 6 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{4} - 6 q^{5} + 2 q^{9} - 2 q^{12} - 12 q^{14} + 6 q^{15} - 10 q^{16} - 6 q^{20} - 12 q^{23} + 8 q^{25} - 6 q^{26} - 2 q^{27} + 8 q^{31} + 6 q^{34} + 2 q^{36} - 22 q^{37} + 24 q^{38} + 12 q^{42} - 6 q^{45} + 10 q^{48} + 10 q^{49} - 18 q^{53} + 12 q^{56} - 6 q^{58} - 12 q^{59} + 6 q^{60} + 2 q^{64} - 4 q^{67} + 12 q^{69} + 36 q^{70} - 12 q^{71} - 8 q^{75} + 6 q^{78} + 30 q^{80} + 2 q^{81} - 6 q^{82} + 12 q^{86} + 18 q^{89} + 12 q^{91} - 12 q^{92} - 8 q^{93} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 1.73205 0.707107
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 1.73205 0.612372
\(9\) 1.00000 0.333333
\(10\) 5.19615 1.64317
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) 1.73205 0.480384 0.240192 0.970725i \(-0.422790\pi\)
0.240192 + 0.970725i \(0.422790\pi\)
\(14\) −6.00000 −1.60357
\(15\) 3.00000 0.774597
\(16\) −5.00000 −1.25000
\(17\) −1.73205 −0.420084 −0.210042 0.977692i \(-0.567360\pi\)
−0.210042 + 0.977692i \(0.567360\pi\)
\(18\) −1.73205 −0.408248
\(19\) −6.92820 −1.58944 −0.794719 0.606977i \(-0.792382\pi\)
−0.794719 + 0.606977i \(0.792382\pi\)
\(20\) −3.00000 −0.670820
\(21\) −3.46410 −0.755929
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) −1.73205 −0.353553
\(25\) 4.00000 0.800000
\(26\) −3.00000 −0.588348
\(27\) −1.00000 −0.192450
\(28\) 3.46410 0.654654
\(29\) 1.73205 0.321634 0.160817 0.986984i \(-0.448587\pi\)
0.160817 + 0.986984i \(0.448587\pi\)
\(30\) −5.19615 −0.948683
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −10.3923 −1.75662
\(36\) 1.00000 0.166667
\(37\) −11.0000 −1.80839 −0.904194 0.427121i \(-0.859528\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 12.0000 1.94666
\(39\) −1.73205 −0.277350
\(40\) −5.19615 −0.821584
\(41\) 1.73205 0.270501 0.135250 0.990811i \(-0.456816\pi\)
0.135250 + 0.990811i \(0.456816\pi\)
\(42\) 6.00000 0.925820
\(43\) −3.46410 −0.528271 −0.264135 0.964486i \(-0.585087\pi\)
−0.264135 + 0.964486i \(0.585087\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 10.3923 1.53226
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 5.00000 0.721688
\(49\) 5.00000 0.714286
\(50\) −6.92820 −0.979796
\(51\) 1.73205 0.242536
\(52\) 1.73205 0.240192
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 1.73205 0.235702
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 6.92820 0.917663
\(58\) −3.00000 −0.393919
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 3.00000 0.387298
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −6.92820 −0.879883
\(63\) 3.46410 0.436436
\(64\) 1.00000 0.125000
\(65\) −5.19615 −0.644503
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −1.73205 −0.210042
\(69\) 6.00000 0.722315
\(70\) 18.0000 2.15141
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 1.73205 0.204124
\(73\) −6.92820 −0.810885 −0.405442 0.914121i \(-0.632883\pi\)
−0.405442 + 0.914121i \(0.632883\pi\)
\(74\) 19.0526 2.21481
\(75\) −4.00000 −0.461880
\(76\) −6.92820 −0.794719
\(77\) 0 0
\(78\) 3.00000 0.339683
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 15.0000 1.67705
\(81\) 1.00000 0.111111
\(82\) −3.00000 −0.331295
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −3.46410 −0.377964
\(85\) 5.19615 0.563602
\(86\) 6.00000 0.646997
\(87\) −1.73205 −0.185695
\(88\) 0 0
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 5.19615 0.547723
\(91\) 6.00000 0.628971
\(92\) −6.00000 −0.625543
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) 20.7846 2.13246
\(96\) −5.19615 −0.530330
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) −8.66025 −0.874818
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 13.8564 1.37876 0.689382 0.724398i \(-0.257882\pi\)
0.689382 + 0.724398i \(0.257882\pi\)
\(102\) −3.00000 −0.297044
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 3.00000 0.294174
\(105\) 10.3923 1.01419
\(106\) 15.5885 1.51408
\(107\) −3.46410 −0.334887 −0.167444 0.985882i \(-0.553551\pi\)
−0.167444 + 0.985882i \(0.553551\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −15.5885 −1.49310 −0.746552 0.665327i \(-0.768292\pi\)
−0.746552 + 0.665327i \(0.768292\pi\)
\(110\) 0 0
\(111\) 11.0000 1.04407
\(112\) −17.3205 −1.63663
\(113\) −21.0000 −1.97551 −0.987757 0.156001i \(-0.950140\pi\)
−0.987757 + 0.156001i \(0.950140\pi\)
\(114\) −12.0000 −1.12390
\(115\) 18.0000 1.67851
\(116\) 1.73205 0.160817
\(117\) 1.73205 0.160128
\(118\) 10.3923 0.956689
\(119\) −6.00000 −0.550019
\(120\) 5.19615 0.474342
\(121\) 0 0
\(122\) 0 0
\(123\) −1.73205 −0.156174
\(124\) 4.00000 0.359211
\(125\) 3.00000 0.268328
\(126\) −6.00000 −0.534522
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −12.1244 −1.07165
\(129\) 3.46410 0.304997
\(130\) 9.00000 0.789352
\(131\) 17.3205 1.51330 0.756650 0.653820i \(-0.226835\pi\)
0.756650 + 0.653820i \(0.226835\pi\)
\(132\) 0 0
\(133\) −24.0000 −2.08106
\(134\) 3.46410 0.299253
\(135\) 3.00000 0.258199
\(136\) −3.00000 −0.257248
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −10.3923 −0.884652
\(139\) −10.3923 −0.881464 −0.440732 0.897639i \(-0.645281\pi\)
−0.440732 + 0.897639i \(0.645281\pi\)
\(140\) −10.3923 −0.878310
\(141\) 0 0
\(142\) 10.3923 0.872103
\(143\) 0 0
\(144\) −5.00000 −0.416667
\(145\) −5.19615 −0.431517
\(146\) 12.0000 0.993127
\(147\) −5.00000 −0.412393
\(148\) −11.0000 −0.904194
\(149\) 12.1244 0.993266 0.496633 0.867961i \(-0.334570\pi\)
0.496633 + 0.867961i \(0.334570\pi\)
\(150\) 6.92820 0.565685
\(151\) −13.8564 −1.12762 −0.563809 0.825905i \(-0.690665\pi\)
−0.563809 + 0.825905i \(0.690665\pi\)
\(152\) −12.0000 −0.973329
\(153\) −1.73205 −0.140028
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) −1.73205 −0.138675
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) −15.5885 −1.23238
\(161\) −20.7846 −1.63806
\(162\) −1.73205 −0.136083
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 1.73205 0.135250
\(165\) 0 0
\(166\) 0 0
\(167\) 3.46410 0.268060 0.134030 0.990977i \(-0.457208\pi\)
0.134030 + 0.990977i \(0.457208\pi\)
\(168\) −6.00000 −0.462910
\(169\) −10.0000 −0.769231
\(170\) −9.00000 −0.690268
\(171\) −6.92820 −0.529813
\(172\) −3.46410 −0.264135
\(173\) −20.7846 −1.58022 −0.790112 0.612962i \(-0.789978\pi\)
−0.790112 + 0.612962i \(0.789978\pi\)
\(174\) 3.00000 0.227429
\(175\) 13.8564 1.04745
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) −15.5885 −1.16840
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) −3.00000 −0.223607
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) −10.3923 −0.770329
\(183\) 0 0
\(184\) −10.3923 −0.766131
\(185\) 33.0000 2.42621
\(186\) 6.92820 0.508001
\(187\) 0 0
\(188\) 0 0
\(189\) −3.46410 −0.251976
\(190\) −36.0000 −2.61171
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 5.19615 0.374027 0.187014 0.982357i \(-0.440119\pi\)
0.187014 + 0.982357i \(0.440119\pi\)
\(194\) 12.1244 0.870478
\(195\) 5.19615 0.372104
\(196\) 5.00000 0.357143
\(197\) 19.0526 1.35744 0.678719 0.734398i \(-0.262535\pi\)
0.678719 + 0.734398i \(0.262535\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 6.92820 0.489898
\(201\) 2.00000 0.141069
\(202\) −24.0000 −1.68863
\(203\) 6.00000 0.421117
\(204\) 1.73205 0.121268
\(205\) −5.19615 −0.362915
\(206\) −24.2487 −1.68949
\(207\) −6.00000 −0.417029
\(208\) −8.66025 −0.600481
\(209\) 0 0
\(210\) −18.0000 −1.24212
\(211\) 17.3205 1.19239 0.596196 0.802839i \(-0.296678\pi\)
0.596196 + 0.802839i \(0.296678\pi\)
\(212\) −9.00000 −0.618123
\(213\) 6.00000 0.411113
\(214\) 6.00000 0.410152
\(215\) 10.3923 0.708749
\(216\) −1.73205 −0.117851
\(217\) 13.8564 0.940634
\(218\) 27.0000 1.82867
\(219\) 6.92820 0.468165
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) −19.0526 −1.27872
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) 18.0000 1.20268
\(225\) 4.00000 0.266667
\(226\) 36.3731 2.41950
\(227\) 24.2487 1.60944 0.804722 0.593652i \(-0.202314\pi\)
0.804722 + 0.593652i \(0.202314\pi\)
\(228\) 6.92820 0.458831
\(229\) −23.0000 −1.51988 −0.759941 0.649992i \(-0.774772\pi\)
−0.759941 + 0.649992i \(0.774772\pi\)
\(230\) −31.1769 −2.05574
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −29.4449 −1.92900 −0.964499 0.264088i \(-0.914929\pi\)
−0.964499 + 0.264088i \(0.914929\pi\)
\(234\) −3.00000 −0.196116
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) 10.3923 0.673633
\(239\) 6.92820 0.448148 0.224074 0.974572i \(-0.428064\pi\)
0.224074 + 0.974572i \(0.428064\pi\)
\(240\) −15.0000 −0.968246
\(241\) 20.7846 1.33885 0.669427 0.742878i \(-0.266540\pi\)
0.669427 + 0.742878i \(0.266540\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −15.0000 −0.958315
\(246\) 3.00000 0.191273
\(247\) −12.0000 −0.763542
\(248\) 6.92820 0.439941
\(249\) 0 0
\(250\) −5.19615 −0.328634
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 3.46410 0.218218
\(253\) 0 0
\(254\) 0 0
\(255\) −5.19615 −0.325396
\(256\) 19.0000 1.18750
\(257\) 9.00000 0.561405 0.280702 0.959795i \(-0.409433\pi\)
0.280702 + 0.959795i \(0.409433\pi\)
\(258\) −6.00000 −0.373544
\(259\) −38.1051 −2.36774
\(260\) −5.19615 −0.322252
\(261\) 1.73205 0.107211
\(262\) −30.0000 −1.85341
\(263\) −13.8564 −0.854423 −0.427211 0.904152i \(-0.640504\pi\)
−0.427211 + 0.904152i \(0.640504\pi\)
\(264\) 0 0
\(265\) 27.0000 1.65860
\(266\) 41.5692 2.54877
\(267\) −9.00000 −0.550791
\(268\) −2.00000 −0.122169
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) −5.19615 −0.316228
\(271\) 3.46410 0.210429 0.105215 0.994450i \(-0.466447\pi\)
0.105215 + 0.994450i \(0.466447\pi\)
\(272\) 8.66025 0.525105
\(273\) −6.00000 −0.363137
\(274\) 10.3923 0.627822
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) 5.19615 0.312207 0.156103 0.987741i \(-0.450107\pi\)
0.156103 + 0.987741i \(0.450107\pi\)
\(278\) 18.0000 1.07957
\(279\) 4.00000 0.239474
\(280\) −18.0000 −1.07571
\(281\) 6.92820 0.413302 0.206651 0.978415i \(-0.433744\pi\)
0.206651 + 0.978415i \(0.433744\pi\)
\(282\) 0 0
\(283\) 31.1769 1.85328 0.926638 0.375956i \(-0.122686\pi\)
0.926638 + 0.375956i \(0.122686\pi\)
\(284\) −6.00000 −0.356034
\(285\) −20.7846 −1.23117
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 5.19615 0.306186
\(289\) −14.0000 −0.823529
\(290\) 9.00000 0.528498
\(291\) 7.00000 0.410347
\(292\) −6.92820 −0.405442
\(293\) −19.0526 −1.11306 −0.556531 0.830827i \(-0.687868\pi\)
−0.556531 + 0.830827i \(0.687868\pi\)
\(294\) 8.66025 0.505076
\(295\) 18.0000 1.04800
\(296\) −19.0526 −1.10741
\(297\) 0 0
\(298\) −21.0000 −1.21650
\(299\) −10.3923 −0.601003
\(300\) −4.00000 −0.230940
\(301\) −12.0000 −0.691669
\(302\) 24.0000 1.38104
\(303\) −13.8564 −0.796030
\(304\) 34.6410 1.98680
\(305\) 0 0
\(306\) 3.00000 0.171499
\(307\) −3.46410 −0.197707 −0.0988534 0.995102i \(-0.531517\pi\)
−0.0988534 + 0.995102i \(0.531517\pi\)
\(308\) 0 0
\(309\) −14.0000 −0.796432
\(310\) 20.7846 1.18049
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) −3.00000 −0.169842
\(313\) 7.00000 0.395663 0.197832 0.980236i \(-0.436610\pi\)
0.197832 + 0.980236i \(0.436610\pi\)
\(314\) 24.2487 1.36843
\(315\) −10.3923 −0.585540
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) −15.5885 −0.874157
\(319\) 0 0
\(320\) −3.00000 −0.167705
\(321\) 3.46410 0.193347
\(322\) 36.0000 2.00620
\(323\) 12.0000 0.667698
\(324\) 1.00000 0.0555556
\(325\) 6.92820 0.384308
\(326\) −3.46410 −0.191859
\(327\) 15.5885 0.862044
\(328\) 3.00000 0.165647
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −11.0000 −0.602796
\(334\) −6.00000 −0.328305
\(335\) 6.00000 0.327815
\(336\) 17.3205 0.944911
\(337\) 12.1244 0.660456 0.330228 0.943901i \(-0.392874\pi\)
0.330228 + 0.943901i \(0.392874\pi\)
\(338\) 17.3205 0.942111
\(339\) 21.0000 1.14056
\(340\) 5.19615 0.281801
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) −6.92820 −0.374088
\(344\) −6.00000 −0.323498
\(345\) −18.0000 −0.969087
\(346\) 36.0000 1.93537
\(347\) −27.7128 −1.48770 −0.743851 0.668346i \(-0.767003\pi\)
−0.743851 + 0.668346i \(0.767003\pi\)
\(348\) −1.73205 −0.0928477
\(349\) 1.73205 0.0927146 0.0463573 0.998925i \(-0.485239\pi\)
0.0463573 + 0.998925i \(0.485239\pi\)
\(350\) −24.0000 −1.28285
\(351\) −1.73205 −0.0924500
\(352\) 0 0
\(353\) 21.0000 1.11772 0.558859 0.829263i \(-0.311239\pi\)
0.558859 + 0.829263i \(0.311239\pi\)
\(354\) −10.3923 −0.552345
\(355\) 18.0000 0.955341
\(356\) 9.00000 0.476999
\(357\) 6.00000 0.317554
\(358\) −20.7846 −1.09850
\(359\) −31.1769 −1.64545 −0.822727 0.568436i \(-0.807549\pi\)
−0.822727 + 0.568436i \(0.807549\pi\)
\(360\) −5.19615 −0.273861
\(361\) 29.0000 1.52632
\(362\) 12.1244 0.637242
\(363\) 0 0
\(364\) 6.00000 0.314485
\(365\) 20.7846 1.08792
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) 30.0000 1.56386
\(369\) 1.73205 0.0901670
\(370\) −57.1577 −2.97149
\(371\) −31.1769 −1.61862
\(372\) −4.00000 −0.207390
\(373\) −20.7846 −1.07619 −0.538093 0.842885i \(-0.680855\pi\)
−0.538093 + 0.842885i \(0.680855\pi\)
\(374\) 0 0
\(375\) −3.00000 −0.154919
\(376\) 0 0
\(377\) 3.00000 0.154508
\(378\) 6.00000 0.308607
\(379\) 14.0000 0.719132 0.359566 0.933120i \(-0.382925\pi\)
0.359566 + 0.933120i \(0.382925\pi\)
\(380\) 20.7846 1.06623
\(381\) 0 0
\(382\) −20.7846 −1.06343
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 12.1244 0.618718
\(385\) 0 0
\(386\) −9.00000 −0.458088
\(387\) −3.46410 −0.176090
\(388\) −7.00000 −0.355371
\(389\) −27.0000 −1.36895 −0.684477 0.729034i \(-0.739969\pi\)
−0.684477 + 0.729034i \(0.739969\pi\)
\(390\) −9.00000 −0.455733
\(391\) 10.3923 0.525561
\(392\) 8.66025 0.437409
\(393\) −17.3205 −0.873704
\(394\) −33.0000 −1.66252
\(395\) 0 0
\(396\) 0 0
\(397\) 11.0000 0.552074 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(398\) −17.3205 −0.868199
\(399\) 24.0000 1.20150
\(400\) −20.0000 −1.00000
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) −3.46410 −0.172774
\(403\) 6.92820 0.345118
\(404\) 13.8564 0.689382
\(405\) −3.00000 −0.149071
\(406\) −10.3923 −0.515761
\(407\) 0 0
\(408\) 3.00000 0.148522
\(409\) −1.73205 −0.0856444 −0.0428222 0.999083i \(-0.513635\pi\)
−0.0428222 + 0.999083i \(0.513635\pi\)
\(410\) 9.00000 0.444478
\(411\) 6.00000 0.295958
\(412\) 14.0000 0.689730
\(413\) −20.7846 −1.02274
\(414\) 10.3923 0.510754
\(415\) 0 0
\(416\) 9.00000 0.441261
\(417\) 10.3923 0.508913
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 10.3923 0.507093
\(421\) 7.00000 0.341159 0.170580 0.985344i \(-0.445436\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(422\) −30.0000 −1.46038
\(423\) 0 0
\(424\) −15.5885 −0.757042
\(425\) −6.92820 −0.336067
\(426\) −10.3923 −0.503509
\(427\) 0 0
\(428\) −3.46410 −0.167444
\(429\) 0 0
\(430\) −18.0000 −0.868037
\(431\) 17.3205 0.834300 0.417150 0.908838i \(-0.363029\pi\)
0.417150 + 0.908838i \(0.363029\pi\)
\(432\) 5.00000 0.240563
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) −24.0000 −1.15204
\(435\) 5.19615 0.249136
\(436\) −15.5885 −0.746552
\(437\) 41.5692 1.98853
\(438\) −12.0000 −0.573382
\(439\) 6.92820 0.330665 0.165333 0.986238i \(-0.447130\pi\)
0.165333 + 0.986238i \(0.447130\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 5.19615 0.247156
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 11.0000 0.522037
\(445\) −27.0000 −1.27992
\(446\) −34.6410 −1.64030
\(447\) −12.1244 −0.573462
\(448\) 3.46410 0.163663
\(449\) 21.0000 0.991051 0.495526 0.868593i \(-0.334975\pi\)
0.495526 + 0.868593i \(0.334975\pi\)
\(450\) −6.92820 −0.326599
\(451\) 0 0
\(452\) −21.0000 −0.987757
\(453\) 13.8564 0.651031
\(454\) −42.0000 −1.97116
\(455\) −18.0000 −0.843853
\(456\) 12.0000 0.561951
\(457\) 29.4449 1.37737 0.688686 0.725059i \(-0.258188\pi\)
0.688686 + 0.725059i \(0.258188\pi\)
\(458\) 39.8372 1.86147
\(459\) 1.73205 0.0808452
\(460\) 18.0000 0.839254
\(461\) 15.5885 0.726027 0.363013 0.931784i \(-0.381748\pi\)
0.363013 + 0.931784i \(0.381748\pi\)
\(462\) 0 0
\(463\) −34.0000 −1.58011 −0.790057 0.613033i \(-0.789949\pi\)
−0.790057 + 0.613033i \(0.789949\pi\)
\(464\) −8.66025 −0.402042
\(465\) 12.0000 0.556487
\(466\) 51.0000 2.36253
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 1.73205 0.0800641
\(469\) −6.92820 −0.319915
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) −10.3923 −0.478345
\(473\) 0 0
\(474\) 0 0
\(475\) −27.7128 −1.27155
\(476\) −6.00000 −0.275010
\(477\) −9.00000 −0.412082
\(478\) −12.0000 −0.548867
\(479\) −24.2487 −1.10795 −0.553976 0.832533i \(-0.686890\pi\)
−0.553976 + 0.832533i \(0.686890\pi\)
\(480\) 15.5885 0.711512
\(481\) −19.0526 −0.868722
\(482\) −36.0000 −1.63976
\(483\) 20.7846 0.945732
\(484\) 0 0
\(485\) 21.0000 0.953561
\(486\) 1.73205 0.0785674
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) 0 0
\(489\) −2.00000 −0.0904431
\(490\) 25.9808 1.17369
\(491\) 20.7846 0.937996 0.468998 0.883199i \(-0.344615\pi\)
0.468998 + 0.883199i \(0.344615\pi\)
\(492\) −1.73205 −0.0780869
\(493\) −3.00000 −0.135113
\(494\) 20.7846 0.935144
\(495\) 0 0
\(496\) −20.0000 −0.898027
\(497\) −20.7846 −0.932317
\(498\) 0 0
\(499\) 22.0000 0.984855 0.492428 0.870353i \(-0.336110\pi\)
0.492428 + 0.870353i \(0.336110\pi\)
\(500\) 3.00000 0.134164
\(501\) −3.46410 −0.154765
\(502\) 10.3923 0.463831
\(503\) −31.1769 −1.39011 −0.695055 0.718957i \(-0.744620\pi\)
−0.695055 + 0.718957i \(0.744620\pi\)
\(504\) 6.00000 0.267261
\(505\) −41.5692 −1.84981
\(506\) 0 0
\(507\) 10.0000 0.444116
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 9.00000 0.398527
\(511\) −24.0000 −1.06170
\(512\) −8.66025 −0.382733
\(513\) 6.92820 0.305888
\(514\) −15.5885 −0.687577
\(515\) −42.0000 −1.85074
\(516\) 3.46410 0.152499
\(517\) 0 0
\(518\) 66.0000 2.89987
\(519\) 20.7846 0.912343
\(520\) −9.00000 −0.394676
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) −3.00000 −0.131306
\(523\) 41.5692 1.81770 0.908848 0.417128i \(-0.136963\pi\)
0.908848 + 0.417128i \(0.136963\pi\)
\(524\) 17.3205 0.756650
\(525\) −13.8564 −0.604743
\(526\) 24.0000 1.04645
\(527\) −6.92820 −0.301797
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −46.7654 −2.03136
\(531\) −6.00000 −0.260378
\(532\) −24.0000 −1.04053
\(533\) 3.00000 0.129944
\(534\) 15.5885 0.674579
\(535\) 10.3923 0.449299
\(536\) −3.46410 −0.149626
\(537\) −12.0000 −0.517838
\(538\) 36.3731 1.56815
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) −6.00000 −0.257722
\(543\) 7.00000 0.300399
\(544\) −9.00000 −0.385872
\(545\) 46.7654 2.00321
\(546\) 10.3923 0.444750
\(547\) 34.6410 1.48114 0.740571 0.671978i \(-0.234555\pi\)
0.740571 + 0.671978i \(0.234555\pi\)
\(548\) −6.00000 −0.256307
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 10.3923 0.442326
\(553\) 0 0
\(554\) −9.00000 −0.382373
\(555\) −33.0000 −1.40077
\(556\) −10.3923 −0.440732
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) −6.92820 −0.293294
\(559\) −6.00000 −0.253773
\(560\) 51.9615 2.19578
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −17.3205 −0.729972 −0.364986 0.931013i \(-0.618926\pi\)
−0.364986 + 0.931013i \(0.618926\pi\)
\(564\) 0 0
\(565\) 63.0000 2.65043
\(566\) −54.0000 −2.26979
\(567\) 3.46410 0.145479
\(568\) −10.3923 −0.436051
\(569\) 27.7128 1.16178 0.580891 0.813982i \(-0.302704\pi\)
0.580891 + 0.813982i \(0.302704\pi\)
\(570\) 36.0000 1.50787
\(571\) −3.46410 −0.144968 −0.0724841 0.997370i \(-0.523093\pi\)
−0.0724841 + 0.997370i \(0.523093\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) −10.3923 −0.433766
\(575\) −24.0000 −1.00087
\(576\) 1.00000 0.0416667
\(577\) 13.0000 0.541197 0.270599 0.962692i \(-0.412778\pi\)
0.270599 + 0.962692i \(0.412778\pi\)
\(578\) 24.2487 1.00861
\(579\) −5.19615 −0.215945
\(580\) −5.19615 −0.215758
\(581\) 0 0
\(582\) −12.1244 −0.502571
\(583\) 0 0
\(584\) −12.0000 −0.496564
\(585\) −5.19615 −0.214834
\(586\) 33.0000 1.36322
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) −5.00000 −0.206197
\(589\) −27.7128 −1.14189
\(590\) −31.1769 −1.28353
\(591\) −19.0526 −0.783718
\(592\) 55.0000 2.26049
\(593\) 22.5167 0.924648 0.462324 0.886711i \(-0.347016\pi\)
0.462324 + 0.886711i \(0.347016\pi\)
\(594\) 0 0
\(595\) 18.0000 0.737928
\(596\) 12.1244 0.496633
\(597\) −10.0000 −0.409273
\(598\) 18.0000 0.736075
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) −6.92820 −0.282843
\(601\) 22.5167 0.918474 0.459237 0.888314i \(-0.348123\pi\)
0.459237 + 0.888314i \(0.348123\pi\)
\(602\) 20.7846 0.847117
\(603\) −2.00000 −0.0814463
\(604\) −13.8564 −0.563809
\(605\) 0 0
\(606\) 24.0000 0.974933
\(607\) −20.7846 −0.843621 −0.421811 0.906684i \(-0.638605\pi\)
−0.421811 + 0.906684i \(0.638605\pi\)
\(608\) −36.0000 −1.45999
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 0 0
\(612\) −1.73205 −0.0700140
\(613\) −19.0526 −0.769526 −0.384763 0.923015i \(-0.625717\pi\)
−0.384763 + 0.923015i \(0.625717\pi\)
\(614\) 6.00000 0.242140
\(615\) 5.19615 0.209529
\(616\) 0 0
\(617\) −9.00000 −0.362326 −0.181163 0.983453i \(-0.557986\pi\)
−0.181163 + 0.983453i \(0.557986\pi\)
\(618\) 24.2487 0.975426
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) −12.0000 −0.481932
\(621\) 6.00000 0.240772
\(622\) −20.7846 −0.833387
\(623\) 31.1769 1.24908
\(624\) 8.66025 0.346688
\(625\) −29.0000 −1.16000
\(626\) −12.1244 −0.484587
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 19.0526 0.759675
\(630\) 18.0000 0.717137
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 0 0
\(633\) −17.3205 −0.688428
\(634\) −10.3923 −0.412731
\(635\) 0 0
\(636\) 9.00000 0.356873
\(637\) 8.66025 0.343132
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 36.3731 1.43777
\(641\) −15.0000 −0.592464 −0.296232 0.955116i \(-0.595730\pi\)
−0.296232 + 0.955116i \(0.595730\pi\)
\(642\) −6.00000 −0.236801
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) −20.7846 −0.819028
\(645\) −10.3923 −0.409197
\(646\) −20.7846 −0.817760
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 1.73205 0.0680414
\(649\) 0 0
\(650\) −12.0000 −0.470679
\(651\) −13.8564 −0.543075
\(652\) 2.00000 0.0783260
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) −27.0000 −1.05578
\(655\) −51.9615 −2.03030
\(656\) −8.66025 −0.338126
\(657\) −6.92820 −0.270295
\(658\) 0 0
\(659\) −13.8564 −0.539769 −0.269884 0.962893i \(-0.586986\pi\)
−0.269884 + 0.962893i \(0.586986\pi\)
\(660\) 0 0
\(661\) −41.0000 −1.59472 −0.797358 0.603507i \(-0.793769\pi\)
−0.797358 + 0.603507i \(0.793769\pi\)
\(662\) −34.6410 −1.34636
\(663\) 3.00000 0.116510
\(664\) 0 0
\(665\) 72.0000 2.79204
\(666\) 19.0526 0.738272
\(667\) −10.3923 −0.402392
\(668\) 3.46410 0.134030
\(669\) −20.0000 −0.773245
\(670\) −10.3923 −0.401490
\(671\) 0 0
\(672\) −18.0000 −0.694365
\(673\) 20.7846 0.801188 0.400594 0.916256i \(-0.368804\pi\)
0.400594 + 0.916256i \(0.368804\pi\)
\(674\) −21.0000 −0.808890
\(675\) −4.00000 −0.153960
\(676\) −10.0000 −0.384615
\(677\) −32.9090 −1.26479 −0.632397 0.774644i \(-0.717929\pi\)
−0.632397 + 0.774644i \(0.717929\pi\)
\(678\) −36.3731 −1.39690
\(679\) −24.2487 −0.930580
\(680\) 9.00000 0.345134
\(681\) −24.2487 −0.929213
\(682\) 0 0
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) −6.92820 −0.264906
\(685\) 18.0000 0.687745
\(686\) 12.0000 0.458162
\(687\) 23.0000 0.877505
\(688\) 17.3205 0.660338
\(689\) −15.5885 −0.593873
\(690\) 31.1769 1.18688
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) −20.7846 −0.790112
\(693\) 0 0
\(694\) 48.0000 1.82206
\(695\) 31.1769 1.18261
\(696\) −3.00000 −0.113715
\(697\) −3.00000 −0.113633
\(698\) −3.00000 −0.113552
\(699\) 29.4449 1.11371
\(700\) 13.8564 0.523723
\(701\) 39.8372 1.50463 0.752315 0.658804i \(-0.228937\pi\)
0.752315 + 0.658804i \(0.228937\pi\)
\(702\) 3.00000 0.113228
\(703\) 76.2102 2.87432
\(704\) 0 0
\(705\) 0 0
\(706\) −36.3731 −1.36892
\(707\) 48.0000 1.80523
\(708\) 6.00000 0.225494
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) −31.1769 −1.17005
\(711\) 0 0
\(712\) 15.5885 0.584202
\(713\) −24.0000 −0.898807
\(714\) −10.3923 −0.388922
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −6.92820 −0.258738
\(718\) 54.0000 2.01526
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 15.0000 0.559017
\(721\) 48.4974 1.80614
\(722\) −50.2295 −1.86935
\(723\) −20.7846 −0.772988
\(724\) −7.00000 −0.260153
\(725\) 6.92820 0.257307
\(726\) 0 0
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 10.3923 0.385164
\(729\) 1.00000 0.0370370
\(730\) −36.0000 −1.33242
\(731\) 6.00000 0.221918
\(732\) 0 0
\(733\) −8.66025 −0.319874 −0.159937 0.987127i \(-0.551129\pi\)
−0.159937 + 0.987127i \(0.551129\pi\)
\(734\) −45.0333 −1.66221
\(735\) 15.0000 0.553283
\(736\) −31.1769 −1.14920
\(737\) 0 0
\(738\) −3.00000 −0.110432
\(739\) 27.7128 1.01943 0.509716 0.860343i \(-0.329750\pi\)
0.509716 + 0.860343i \(0.329750\pi\)
\(740\) 33.0000 1.21310
\(741\) 12.0000 0.440831
\(742\) 54.0000 1.98240
\(743\) 51.9615 1.90628 0.953142 0.302524i \(-0.0978293\pi\)
0.953142 + 0.302524i \(0.0978293\pi\)
\(744\) −6.92820 −0.254000
\(745\) −36.3731 −1.33261
\(746\) 36.0000 1.31805
\(747\) 0 0
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 5.19615 0.189737
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) −5.19615 −0.189233
\(755\) 41.5692 1.51286
\(756\) −3.46410 −0.125988
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) −24.2487 −0.880753
\(759\) 0 0
\(760\) 36.0000 1.30586
\(761\) −32.9090 −1.19295 −0.596475 0.802632i \(-0.703432\pi\)
−0.596475 + 0.802632i \(0.703432\pi\)
\(762\) 0 0
\(763\) −54.0000 −1.95493
\(764\) 12.0000 0.434145
\(765\) 5.19615 0.187867
\(766\) −10.3923 −0.375489
\(767\) −10.3923 −0.375244
\(768\) −19.0000 −0.685603
\(769\) −25.9808 −0.936890 −0.468445 0.883493i \(-0.655186\pi\)
−0.468445 + 0.883493i \(0.655186\pi\)
\(770\) 0 0
\(771\) −9.00000 −0.324127
\(772\) 5.19615 0.187014
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 6.00000 0.215666
\(775\) 16.0000 0.574737
\(776\) −12.1244 −0.435239
\(777\) 38.1051 1.36701
\(778\) 46.7654 1.67662
\(779\) −12.0000 −0.429945
\(780\) 5.19615 0.186052
\(781\) 0 0
\(782\) −18.0000 −0.643679
\(783\) −1.73205 −0.0618984
\(784\) −25.0000 −0.892857
\(785\) 42.0000 1.49904
\(786\) 30.0000 1.07006
\(787\) 6.92820 0.246964 0.123482 0.992347i \(-0.460594\pi\)
0.123482 + 0.992347i \(0.460594\pi\)
\(788\) 19.0526 0.678719
\(789\) 13.8564 0.493301
\(790\) 0 0
\(791\) −72.7461 −2.58655
\(792\) 0 0
\(793\) 0 0
\(794\) −19.0526 −0.676150
\(795\) −27.0000 −0.957591
\(796\) 10.0000 0.354441
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) −41.5692 −1.47153
\(799\) 0 0
\(800\) 20.7846 0.734847
\(801\) 9.00000 0.317999
\(802\) −5.19615 −0.183483
\(803\) 0 0
\(804\) 2.00000 0.0705346
\(805\) 62.3538 2.19768
\(806\) −12.0000 −0.422682
\(807\) 21.0000 0.739235
\(808\) 24.0000 0.844317
\(809\) −20.7846 −0.730748 −0.365374 0.930861i \(-0.619059\pi\)
−0.365374 + 0.930861i \(0.619059\pi\)
\(810\) 5.19615 0.182574
\(811\) 27.7128 0.973128 0.486564 0.873645i \(-0.338250\pi\)
0.486564 + 0.873645i \(0.338250\pi\)
\(812\) 6.00000 0.210559
\(813\) −3.46410 −0.121491
\(814\) 0 0
\(815\) −6.00000 −0.210171
\(816\) −8.66025 −0.303170
\(817\) 24.0000 0.839654
\(818\) 3.00000 0.104893
\(819\) 6.00000 0.209657
\(820\) −5.19615 −0.181458
\(821\) −55.4256 −1.93437 −0.967184 0.254078i \(-0.918228\pi\)
−0.967184 + 0.254078i \(0.918228\pi\)
\(822\) −10.3923 −0.362473
\(823\) 14.0000 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(824\) 24.2487 0.844744
\(825\) 0 0
\(826\) 36.0000 1.25260
\(827\) 38.1051 1.32504 0.662522 0.749042i \(-0.269486\pi\)
0.662522 + 0.749042i \(0.269486\pi\)
\(828\) −6.00000 −0.208514
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) −5.19615 −0.180253
\(832\) 1.73205 0.0600481
\(833\) −8.66025 −0.300060
\(834\) −18.0000 −0.623289
\(835\) −10.3923 −0.359641
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 51.9615 1.79498
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 18.0000 0.621059
\(841\) −26.0000 −0.896552
\(842\) −12.1244 −0.417833
\(843\) −6.92820 −0.238620
\(844\) 17.3205 0.596196
\(845\) 30.0000 1.03203
\(846\) 0 0
\(847\) 0 0
\(848\) 45.0000 1.54531
\(849\) −31.1769 −1.06999
\(850\) 12.0000 0.411597
\(851\) 66.0000 2.26245
\(852\) 6.00000 0.205557
\(853\) −8.66025 −0.296521 −0.148261 0.988948i \(-0.547367\pi\)
−0.148261 + 0.988948i \(0.547367\pi\)
\(854\) 0 0
\(855\) 20.7846 0.710819
\(856\) −6.00000 −0.205076
\(857\) −41.5692 −1.41998 −0.709989 0.704213i \(-0.751300\pi\)
−0.709989 + 0.704213i \(0.751300\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 10.3923 0.354375
\(861\) −6.00000 −0.204479
\(862\) −30.0000 −1.02180
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) −5.19615 −0.176777
\(865\) 62.3538 2.12009
\(866\) 32.9090 1.11829
\(867\) 14.0000 0.475465
\(868\) 13.8564 0.470317
\(869\) 0 0
\(870\) −9.00000 −0.305129
\(871\) −3.46410 −0.117377
\(872\) −27.0000 −0.914335
\(873\) −7.00000 −0.236914
\(874\) −72.0000 −2.43544
\(875\) 10.3923 0.351324
\(876\) 6.92820 0.234082
\(877\) 19.0526 0.643359 0.321680 0.946849i \(-0.395753\pi\)
0.321680 + 0.946849i \(0.395753\pi\)
\(878\) −12.0000 −0.404980
\(879\) 19.0526 0.642627
\(880\) 0 0
\(881\) −9.00000 −0.303218 −0.151609 0.988441i \(-0.548445\pi\)
−0.151609 + 0.988441i \(0.548445\pi\)
\(882\) −8.66025 −0.291606
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) −3.00000 −0.100901
\(885\) −18.0000 −0.605063
\(886\) 31.1769 1.04741
\(887\) −31.1769 −1.04682 −0.523409 0.852081i \(-0.675340\pi\)
−0.523409 + 0.852081i \(0.675340\pi\)
\(888\) 19.0526 0.639362
\(889\) 0 0
\(890\) 46.7654 1.56758
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 0 0
\(894\) 21.0000 0.702345
\(895\) −36.0000 −1.20335
\(896\) −42.0000 −1.40312
\(897\) 10.3923 0.346989
\(898\) −36.3731 −1.21378
\(899\) 6.92820 0.231069
\(900\) 4.00000 0.133333
\(901\) 15.5885 0.519327
\(902\) 0 0
\(903\) 12.0000 0.399335
\(904\) −36.3731 −1.20975
\(905\) 21.0000 0.698064
\(906\) −24.0000 −0.797347
\(907\) −22.0000 −0.730498 −0.365249 0.930910i \(-0.619016\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(908\) 24.2487 0.804722
\(909\) 13.8564 0.459588
\(910\) 31.1769 1.03350
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) −34.6410 −1.14708
\(913\) 0 0
\(914\) −51.0000 −1.68693
\(915\) 0 0
\(916\) −23.0000 −0.759941
\(917\) 60.0000 1.98137
\(918\) −3.00000 −0.0990148
\(919\) 24.2487 0.799891 0.399946 0.916539i \(-0.369029\pi\)
0.399946 + 0.916539i \(0.369029\pi\)
\(920\) 31.1769 1.02787
\(921\) 3.46410 0.114146
\(922\) −27.0000 −0.889198
\(923\) −10.3923 −0.342067
\(924\) 0 0
\(925\) −44.0000 −1.44671
\(926\) 58.8897 1.93524
\(927\) 14.0000 0.459820
\(928\) 9.00000 0.295439
\(929\) 39.0000 1.27955 0.639774 0.768563i \(-0.279028\pi\)
0.639774 + 0.768563i \(0.279028\pi\)
\(930\) −20.7846 −0.681554
\(931\) −34.6410 −1.13531
\(932\) −29.4449 −0.964499
\(933\) −12.0000 −0.392862
\(934\) 31.1769 1.02014
\(935\) 0 0
\(936\) 3.00000 0.0980581
\(937\) −50.2295 −1.64093 −0.820463 0.571700i \(-0.806284\pi\)
−0.820463 + 0.571700i \(0.806284\pi\)
\(938\) 12.0000 0.391814
\(939\) −7.00000 −0.228436
\(940\) 0 0
\(941\) −29.4449 −0.959875 −0.479938 0.877303i \(-0.659341\pi\)
−0.479938 + 0.877303i \(0.659341\pi\)
\(942\) −24.2487 −0.790066
\(943\) −10.3923 −0.338420
\(944\) 30.0000 0.976417
\(945\) 10.3923 0.338062
\(946\) 0 0
\(947\) 54.0000 1.75476 0.877382 0.479792i \(-0.159288\pi\)
0.877382 + 0.479792i \(0.159288\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 48.0000 1.55733
\(951\) −6.00000 −0.194563
\(952\) −10.3923 −0.336817
\(953\) 57.1577 1.85152 0.925759 0.378113i \(-0.123427\pi\)
0.925759 + 0.378113i \(0.123427\pi\)
\(954\) 15.5885 0.504695
\(955\) −36.0000 −1.16493
\(956\) 6.92820 0.224074
\(957\) 0 0
\(958\) 42.0000 1.35696
\(959\) −20.7846 −0.671170
\(960\) 3.00000 0.0968246
\(961\) −15.0000 −0.483871
\(962\) 33.0000 1.06396
\(963\) −3.46410 −0.111629
\(964\) 20.7846 0.669427
\(965\) −15.5885 −0.501810
\(966\) −36.0000 −1.15828
\(967\) −10.3923 −0.334194 −0.167097 0.985940i \(-0.553439\pi\)
−0.167097 + 0.985940i \(0.553439\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) −36.3731 −1.16787
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −36.0000 −1.15411
\(974\) 65.8179 2.10894
\(975\) −6.92820 −0.221880
\(976\) 0 0
\(977\) −9.00000 −0.287936 −0.143968 0.989582i \(-0.545986\pi\)
−0.143968 + 0.989582i \(0.545986\pi\)
\(978\) 3.46410 0.110770
\(979\) 0 0
\(980\) −15.0000 −0.479157
\(981\) −15.5885 −0.497701
\(982\) −36.0000 −1.14881
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) −3.00000 −0.0956365
\(985\) −57.1577 −1.82120
\(986\) 5.19615 0.165479
\(987\) 0 0
\(988\) −12.0000 −0.381771
\(989\) 20.7846 0.660912
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 20.7846 0.659912
\(993\) −20.0000 −0.634681
\(994\) 36.0000 1.14185
\(995\) −30.0000 −0.951064
\(996\) 0 0
\(997\) 1.73205 0.0548546 0.0274273 0.999624i \(-0.491269\pi\)
0.0274273 + 0.999624i \(0.491269\pi\)
\(998\) −38.1051 −1.20620
\(999\) 11.0000 0.348025
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.a.f.1.1 2
3.2 odd 2 1089.2.a.o.1.2 2
4.3 odd 2 5808.2.a.ca.1.1 2
5.4 even 2 9075.2.a.bo.1.2 2
11.2 odd 10 363.2.e.m.202.1 8
11.3 even 5 363.2.e.m.130.1 8
11.4 even 5 363.2.e.m.148.1 8
11.5 even 5 363.2.e.m.124.2 8
11.6 odd 10 363.2.e.m.124.1 8
11.7 odd 10 363.2.e.m.148.2 8
11.8 odd 10 363.2.e.m.130.2 8
11.9 even 5 363.2.e.m.202.2 8
11.10 odd 2 inner 363.2.a.f.1.2 yes 2
33.32 even 2 1089.2.a.o.1.1 2
44.43 even 2 5808.2.a.ca.1.2 2
55.54 odd 2 9075.2.a.bo.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.f.1.1 2 1.1 even 1 trivial
363.2.a.f.1.2 yes 2 11.10 odd 2 inner
363.2.e.m.124.1 8 11.6 odd 10
363.2.e.m.124.2 8 11.5 even 5
363.2.e.m.130.1 8 11.3 even 5
363.2.e.m.130.2 8 11.8 odd 10
363.2.e.m.148.1 8 11.4 even 5
363.2.e.m.148.2 8 11.7 odd 10
363.2.e.m.202.1 8 11.2 odd 10
363.2.e.m.202.2 8 11.9 even 5
1089.2.a.o.1.1 2 33.32 even 2
1089.2.a.o.1.2 2 3.2 odd 2
5808.2.a.ca.1.1 2 4.3 odd 2
5808.2.a.ca.1.2 2 44.43 even 2
9075.2.a.bo.1.1 2 55.54 odd 2
9075.2.a.bo.1.2 2 5.4 even 2