Properties

Label 363.2.a.e.1.2
Level $363$
Weight $2$
Character 363.1
Self dual yes
Analytic conductor $2.899$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.89856959337\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} -2.61803 q^{5} +0.618034 q^{6} -3.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} -2.61803 q^{5} +0.618034 q^{6} -3.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} -1.61803 q^{10} -1.61803 q^{12} -1.76393 q^{13} -1.85410 q^{14} -2.61803 q^{15} +1.85410 q^{16} -1.61803 q^{17} +0.618034 q^{18} -5.85410 q^{19} +4.23607 q^{20} -3.00000 q^{21} +3.47214 q^{23} -2.23607 q^{24} +1.85410 q^{25} -1.09017 q^{26} +1.00000 q^{27} +4.85410 q^{28} -4.47214 q^{29} -1.61803 q^{30} +2.85410 q^{31} +5.61803 q^{32} -1.00000 q^{34} +7.85410 q^{35} -1.61803 q^{36} +0.236068 q^{37} -3.61803 q^{38} -1.76393 q^{39} +5.85410 q^{40} +11.9443 q^{41} -1.85410 q^{42} -6.23607 q^{43} -2.61803 q^{45} +2.14590 q^{46} +1.61803 q^{47} +1.85410 q^{48} +2.00000 q^{49} +1.14590 q^{50} -1.61803 q^{51} +2.85410 q^{52} -9.61803 q^{53} +0.618034 q^{54} +6.70820 q^{56} -5.85410 q^{57} -2.76393 q^{58} +10.3262 q^{59} +4.23607 q^{60} -7.85410 q^{61} +1.76393 q^{62} -3.00000 q^{63} -0.236068 q^{64} +4.61803 q^{65} -9.56231 q^{67} +2.61803 q^{68} +3.47214 q^{69} +4.85410 q^{70} -5.56231 q^{71} -2.23607 q^{72} +3.23607 q^{73} +0.145898 q^{74} +1.85410 q^{75} +9.47214 q^{76} -1.09017 q^{78} -9.47214 q^{79} -4.85410 q^{80} +1.00000 q^{81} +7.38197 q^{82} -0.708204 q^{83} +4.85410 q^{84} +4.23607 q^{85} -3.85410 q^{86} -4.47214 q^{87} +0.527864 q^{89} -1.61803 q^{90} +5.29180 q^{91} -5.61803 q^{92} +2.85410 q^{93} +1.00000 q^{94} +15.3262 q^{95} +5.61803 q^{96} -14.0344 q^{97} +1.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} - 3 q^{5} - q^{6} - 6 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 2 q^{3} - q^{4} - 3 q^{5} - q^{6} - 6 q^{7} + 2 q^{9} - q^{10} - q^{12} - 8 q^{13} + 3 q^{14} - 3 q^{15} - 3 q^{16} - q^{17} - q^{18} - 5 q^{19} + 4 q^{20} - 6 q^{21} - 2 q^{23} - 3 q^{25} + 9 q^{26} + 2 q^{27} + 3 q^{28} - q^{30} - q^{31} + 9 q^{32} - 2 q^{34} + 9 q^{35} - q^{36} - 4 q^{37} - 5 q^{38} - 8 q^{39} + 5 q^{40} + 6 q^{41} + 3 q^{42} - 8 q^{43} - 3 q^{45} + 11 q^{46} + q^{47} - 3 q^{48} + 4 q^{49} + 9 q^{50} - q^{51} - q^{52} - 17 q^{53} - q^{54} - 5 q^{57} - 10 q^{58} + 5 q^{59} + 4 q^{60} - 9 q^{61} + 8 q^{62} - 6 q^{63} + 4 q^{64} + 7 q^{65} + q^{67} + 3 q^{68} - 2 q^{69} + 3 q^{70} + 9 q^{71} + 2 q^{73} + 7 q^{74} - 3 q^{75} + 10 q^{76} + 9 q^{78} - 10 q^{79} - 3 q^{80} + 2 q^{81} + 17 q^{82} + 12 q^{83} + 3 q^{84} + 4 q^{85} - q^{86} + 10 q^{89} - q^{90} + 24 q^{91} - 9 q^{92} - q^{93} + 2 q^{94} + 15 q^{95} + 9 q^{96} + q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.61803 −0.809017
\(5\) −2.61803 −1.17082 −0.585410 0.810737i \(-0.699067\pi\)
−0.585410 + 0.810737i \(0.699067\pi\)
\(6\) 0.618034 0.252311
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) −1.61803 −0.511667
\(11\) 0 0
\(12\) −1.61803 −0.467086
\(13\) −1.76393 −0.489227 −0.244613 0.969621i \(-0.578661\pi\)
−0.244613 + 0.969621i \(0.578661\pi\)
\(14\) −1.85410 −0.495530
\(15\) −2.61803 −0.675973
\(16\) 1.85410 0.463525
\(17\) −1.61803 −0.392431 −0.196215 0.980561i \(-0.562865\pi\)
−0.196215 + 0.980561i \(0.562865\pi\)
\(18\) 0.618034 0.145672
\(19\) −5.85410 −1.34302 −0.671512 0.740994i \(-0.734355\pi\)
−0.671512 + 0.740994i \(0.734355\pi\)
\(20\) 4.23607 0.947214
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 3.47214 0.723990 0.361995 0.932180i \(-0.382096\pi\)
0.361995 + 0.932180i \(0.382096\pi\)
\(24\) −2.23607 −0.456435
\(25\) 1.85410 0.370820
\(26\) −1.09017 −0.213800
\(27\) 1.00000 0.192450
\(28\) 4.85410 0.917339
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) −1.61803 −0.295411
\(31\) 2.85410 0.512612 0.256306 0.966596i \(-0.417495\pi\)
0.256306 + 0.966596i \(0.417495\pi\)
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 7.85410 1.32759
\(36\) −1.61803 −0.269672
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) −3.61803 −0.586923
\(39\) −1.76393 −0.282455
\(40\) 5.85410 0.925615
\(41\) 11.9443 1.86538 0.932691 0.360677i \(-0.117454\pi\)
0.932691 + 0.360677i \(0.117454\pi\)
\(42\) −1.85410 −0.286094
\(43\) −6.23607 −0.950991 −0.475496 0.879718i \(-0.657731\pi\)
−0.475496 + 0.879718i \(0.657731\pi\)
\(44\) 0 0
\(45\) −2.61803 −0.390273
\(46\) 2.14590 0.316395
\(47\) 1.61803 0.236015 0.118007 0.993013i \(-0.462349\pi\)
0.118007 + 0.993013i \(0.462349\pi\)
\(48\) 1.85410 0.267617
\(49\) 2.00000 0.285714
\(50\) 1.14590 0.162054
\(51\) −1.61803 −0.226570
\(52\) 2.85410 0.395793
\(53\) −9.61803 −1.32114 −0.660569 0.750765i \(-0.729685\pi\)
−0.660569 + 0.750765i \(0.729685\pi\)
\(54\) 0.618034 0.0841038
\(55\) 0 0
\(56\) 6.70820 0.896421
\(57\) −5.85410 −0.775395
\(58\) −2.76393 −0.362922
\(59\) 10.3262 1.34436 0.672181 0.740387i \(-0.265358\pi\)
0.672181 + 0.740387i \(0.265358\pi\)
\(60\) 4.23607 0.546874
\(61\) −7.85410 −1.00561 −0.502807 0.864398i \(-0.667699\pi\)
−0.502807 + 0.864398i \(0.667699\pi\)
\(62\) 1.76393 0.224020
\(63\) −3.00000 −0.377964
\(64\) −0.236068 −0.0295085
\(65\) 4.61803 0.572797
\(66\) 0 0
\(67\) −9.56231 −1.16822 −0.584111 0.811674i \(-0.698557\pi\)
−0.584111 + 0.811674i \(0.698557\pi\)
\(68\) 2.61803 0.317483
\(69\) 3.47214 0.417996
\(70\) 4.85410 0.580176
\(71\) −5.56231 −0.660124 −0.330062 0.943959i \(-0.607070\pi\)
−0.330062 + 0.943959i \(0.607070\pi\)
\(72\) −2.23607 −0.263523
\(73\) 3.23607 0.378753 0.189377 0.981905i \(-0.439353\pi\)
0.189377 + 0.981905i \(0.439353\pi\)
\(74\) 0.145898 0.0169603
\(75\) 1.85410 0.214093
\(76\) 9.47214 1.08653
\(77\) 0 0
\(78\) −1.09017 −0.123437
\(79\) −9.47214 −1.06570 −0.532849 0.846210i \(-0.678879\pi\)
−0.532849 + 0.846210i \(0.678879\pi\)
\(80\) −4.85410 −0.542705
\(81\) 1.00000 0.111111
\(82\) 7.38197 0.815202
\(83\) −0.708204 −0.0777355 −0.0388677 0.999244i \(-0.512375\pi\)
−0.0388677 + 0.999244i \(0.512375\pi\)
\(84\) 4.85410 0.529626
\(85\) 4.23607 0.459466
\(86\) −3.85410 −0.415599
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) 0.527864 0.0559535 0.0279767 0.999609i \(-0.491094\pi\)
0.0279767 + 0.999609i \(0.491094\pi\)
\(90\) −1.61803 −0.170556
\(91\) 5.29180 0.554731
\(92\) −5.61803 −0.585721
\(93\) 2.85410 0.295957
\(94\) 1.00000 0.103142
\(95\) 15.3262 1.57244
\(96\) 5.61803 0.573388
\(97\) −14.0344 −1.42498 −0.712491 0.701681i \(-0.752433\pi\)
−0.712491 + 0.701681i \(0.752433\pi\)
\(98\) 1.23607 0.124862
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) −1.00000 −0.0990148
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 3.94427 0.386768
\(105\) 7.85410 0.766482
\(106\) −5.94427 −0.577359
\(107\) 4.23607 0.409516 0.204758 0.978813i \(-0.434359\pi\)
0.204758 + 0.978813i \(0.434359\pi\)
\(108\) −1.61803 −0.155695
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0.236068 0.0224066
\(112\) −5.56231 −0.525589
\(113\) 0.708204 0.0666222 0.0333111 0.999445i \(-0.489395\pi\)
0.0333111 + 0.999445i \(0.489395\pi\)
\(114\) −3.61803 −0.338860
\(115\) −9.09017 −0.847663
\(116\) 7.23607 0.671852
\(117\) −1.76393 −0.163076
\(118\) 6.38197 0.587508
\(119\) 4.85410 0.444975
\(120\) 5.85410 0.534404
\(121\) 0 0
\(122\) −4.85410 −0.439470
\(123\) 11.9443 1.07698
\(124\) −4.61803 −0.414712
\(125\) 8.23607 0.736656
\(126\) −1.85410 −0.165177
\(127\) 3.70820 0.329050 0.164525 0.986373i \(-0.447391\pi\)
0.164525 + 0.986373i \(0.447391\pi\)
\(128\) −11.3820 −1.00603
\(129\) −6.23607 −0.549055
\(130\) 2.85410 0.250321
\(131\) 7.14590 0.624340 0.312170 0.950026i \(-0.398944\pi\)
0.312170 + 0.950026i \(0.398944\pi\)
\(132\) 0 0
\(133\) 17.5623 1.52285
\(134\) −5.90983 −0.510532
\(135\) −2.61803 −0.225324
\(136\) 3.61803 0.310244
\(137\) 7.47214 0.638388 0.319194 0.947689i \(-0.396588\pi\)
0.319194 + 0.947689i \(0.396588\pi\)
\(138\) 2.14590 0.182671
\(139\) 0.854102 0.0724440 0.0362220 0.999344i \(-0.488468\pi\)
0.0362220 + 0.999344i \(0.488468\pi\)
\(140\) −12.7082 −1.07404
\(141\) 1.61803 0.136263
\(142\) −3.43769 −0.288485
\(143\) 0 0
\(144\) 1.85410 0.154508
\(145\) 11.7082 0.972313
\(146\) 2.00000 0.165521
\(147\) 2.00000 0.164957
\(148\) −0.381966 −0.0313974
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 1.14590 0.0935622
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 13.0902 1.06175
\(153\) −1.61803 −0.130810
\(154\) 0 0
\(155\) −7.47214 −0.600176
\(156\) 2.85410 0.228511
\(157\) −3.70820 −0.295947 −0.147973 0.988991i \(-0.547275\pi\)
−0.147973 + 0.988991i \(0.547275\pi\)
\(158\) −5.85410 −0.465727
\(159\) −9.61803 −0.762760
\(160\) −14.7082 −1.16279
\(161\) −10.4164 −0.820928
\(162\) 0.618034 0.0485573
\(163\) 18.2705 1.43106 0.715528 0.698584i \(-0.246186\pi\)
0.715528 + 0.698584i \(0.246186\pi\)
\(164\) −19.3262 −1.50913
\(165\) 0 0
\(166\) −0.437694 −0.0339717
\(167\) −10.0344 −0.776488 −0.388244 0.921557i \(-0.626918\pi\)
−0.388244 + 0.921557i \(0.626918\pi\)
\(168\) 6.70820 0.517549
\(169\) −9.88854 −0.760657
\(170\) 2.61803 0.200794
\(171\) −5.85410 −0.447674
\(172\) 10.0902 0.769368
\(173\) −15.3820 −1.16947 −0.584735 0.811225i \(-0.698801\pi\)
−0.584735 + 0.811225i \(0.698801\pi\)
\(174\) −2.76393 −0.209533
\(175\) −5.56231 −0.420471
\(176\) 0 0
\(177\) 10.3262 0.776168
\(178\) 0.326238 0.0244526
\(179\) −2.23607 −0.167132 −0.0835658 0.996502i \(-0.526631\pi\)
−0.0835658 + 0.996502i \(0.526631\pi\)
\(180\) 4.23607 0.315738
\(181\) −17.4721 −1.29869 −0.649347 0.760492i \(-0.724958\pi\)
−0.649347 + 0.760492i \(0.724958\pi\)
\(182\) 3.27051 0.242426
\(183\) −7.85410 −0.580592
\(184\) −7.76393 −0.572365
\(185\) −0.618034 −0.0454388
\(186\) 1.76393 0.129338
\(187\) 0 0
\(188\) −2.61803 −0.190940
\(189\) −3.00000 −0.218218
\(190\) 9.47214 0.687181
\(191\) −7.47214 −0.540665 −0.270332 0.962767i \(-0.587134\pi\)
−0.270332 + 0.962767i \(0.587134\pi\)
\(192\) −0.236068 −0.0170367
\(193\) 18.5623 1.33614 0.668072 0.744097i \(-0.267120\pi\)
0.668072 + 0.744097i \(0.267120\pi\)
\(194\) −8.67376 −0.622740
\(195\) 4.61803 0.330704
\(196\) −3.23607 −0.231148
\(197\) −24.3820 −1.73714 −0.868572 0.495564i \(-0.834961\pi\)
−0.868572 + 0.495564i \(0.834961\pi\)
\(198\) 0 0
\(199\) −16.7082 −1.18441 −0.592207 0.805786i \(-0.701743\pi\)
−0.592207 + 0.805786i \(0.701743\pi\)
\(200\) −4.14590 −0.293159
\(201\) −9.56231 −0.674473
\(202\) 1.85410 0.130454
\(203\) 13.4164 0.941647
\(204\) 2.61803 0.183299
\(205\) −31.2705 −2.18403
\(206\) −3.70820 −0.258363
\(207\) 3.47214 0.241330
\(208\) −3.27051 −0.226769
\(209\) 0 0
\(210\) 4.85410 0.334965
\(211\) 22.2705 1.53317 0.766583 0.642146i \(-0.221956\pi\)
0.766583 + 0.642146i \(0.221956\pi\)
\(212\) 15.5623 1.06882
\(213\) −5.56231 −0.381123
\(214\) 2.61803 0.178965
\(215\) 16.3262 1.11344
\(216\) −2.23607 −0.152145
\(217\) −8.56231 −0.581247
\(218\) 0 0
\(219\) 3.23607 0.218673
\(220\) 0 0
\(221\) 2.85410 0.191988
\(222\) 0.145898 0.00979203
\(223\) 0.708204 0.0474248 0.0237124 0.999719i \(-0.492451\pi\)
0.0237124 + 0.999719i \(0.492451\pi\)
\(224\) −16.8541 −1.12611
\(225\) 1.85410 0.123607
\(226\) 0.437694 0.0291150
\(227\) 24.8885 1.65191 0.825955 0.563736i \(-0.190636\pi\)
0.825955 + 0.563736i \(0.190636\pi\)
\(228\) 9.47214 0.627308
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) −5.61803 −0.370442
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) −24.3262 −1.59366 −0.796832 0.604200i \(-0.793493\pi\)
−0.796832 + 0.604200i \(0.793493\pi\)
\(234\) −1.09017 −0.0712666
\(235\) −4.23607 −0.276331
\(236\) −16.7082 −1.08761
\(237\) −9.47214 −0.615281
\(238\) 3.00000 0.194461
\(239\) −2.56231 −0.165742 −0.0828709 0.996560i \(-0.526409\pi\)
−0.0828709 + 0.996560i \(0.526409\pi\)
\(240\) −4.85410 −0.313331
\(241\) 23.1246 1.48959 0.744794 0.667295i \(-0.232548\pi\)
0.744794 + 0.667295i \(0.232548\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 12.7082 0.813559
\(245\) −5.23607 −0.334520
\(246\) 7.38197 0.470657
\(247\) 10.3262 0.657043
\(248\) −6.38197 −0.405255
\(249\) −0.708204 −0.0448806
\(250\) 5.09017 0.321931
\(251\) −7.79837 −0.492229 −0.246114 0.969241i \(-0.579154\pi\)
−0.246114 + 0.969241i \(0.579154\pi\)
\(252\) 4.85410 0.305780
\(253\) 0 0
\(254\) 2.29180 0.143800
\(255\) 4.23607 0.265273
\(256\) −6.56231 −0.410144
\(257\) −11.6738 −0.728189 −0.364095 0.931362i \(-0.618622\pi\)
−0.364095 + 0.931362i \(0.618622\pi\)
\(258\) −3.85410 −0.239946
\(259\) −0.708204 −0.0440057
\(260\) −7.47214 −0.463402
\(261\) −4.47214 −0.276818
\(262\) 4.41641 0.272847
\(263\) 16.3262 1.00672 0.503359 0.864077i \(-0.332097\pi\)
0.503359 + 0.864077i \(0.332097\pi\)
\(264\) 0 0
\(265\) 25.1803 1.54682
\(266\) 10.8541 0.665508
\(267\) 0.527864 0.0323048
\(268\) 15.4721 0.945111
\(269\) 15.5279 0.946751 0.473375 0.880861i \(-0.343035\pi\)
0.473375 + 0.880861i \(0.343035\pi\)
\(270\) −1.61803 −0.0984704
\(271\) 27.2705 1.65657 0.828283 0.560310i \(-0.189318\pi\)
0.828283 + 0.560310i \(0.189318\pi\)
\(272\) −3.00000 −0.181902
\(273\) 5.29180 0.320274
\(274\) 4.61803 0.278986
\(275\) 0 0
\(276\) −5.61803 −0.338166
\(277\) −30.5623 −1.83631 −0.918155 0.396220i \(-0.870322\pi\)
−0.918155 + 0.396220i \(0.870322\pi\)
\(278\) 0.527864 0.0316592
\(279\) 2.85410 0.170871
\(280\) −17.5623 −1.04955
\(281\) 0.763932 0.0455724 0.0227862 0.999740i \(-0.492746\pi\)
0.0227862 + 0.999740i \(0.492746\pi\)
\(282\) 1.00000 0.0595491
\(283\) −0.180340 −0.0107201 −0.00536005 0.999986i \(-0.501706\pi\)
−0.00536005 + 0.999986i \(0.501706\pi\)
\(284\) 9.00000 0.534052
\(285\) 15.3262 0.907848
\(286\) 0 0
\(287\) −35.8328 −2.11514
\(288\) 5.61803 0.331046
\(289\) −14.3820 −0.845998
\(290\) 7.23607 0.424917
\(291\) −14.0344 −0.822714
\(292\) −5.23607 −0.306418
\(293\) −0.0557281 −0.00325567 −0.00162783 0.999999i \(-0.500518\pi\)
−0.00162783 + 0.999999i \(0.500518\pi\)
\(294\) 1.23607 0.0720889
\(295\) −27.0344 −1.57401
\(296\) −0.527864 −0.0306815
\(297\) 0 0
\(298\) −9.27051 −0.537026
\(299\) −6.12461 −0.354195
\(300\) −3.00000 −0.173205
\(301\) 18.7082 1.07832
\(302\) −1.23607 −0.0711277
\(303\) 3.00000 0.172345
\(304\) −10.8541 −0.622525
\(305\) 20.5623 1.17739
\(306\) −1.00000 −0.0571662
\(307\) −0.562306 −0.0320925 −0.0160462 0.999871i \(-0.505108\pi\)
−0.0160462 + 0.999871i \(0.505108\pi\)
\(308\) 0 0
\(309\) −6.00000 −0.341328
\(310\) −4.61803 −0.262287
\(311\) 2.52786 0.143342 0.0716710 0.997428i \(-0.477167\pi\)
0.0716710 + 0.997428i \(0.477167\pi\)
\(312\) 3.94427 0.223300
\(313\) 25.8328 1.46016 0.730079 0.683363i \(-0.239483\pi\)
0.730079 + 0.683363i \(0.239483\pi\)
\(314\) −2.29180 −0.129334
\(315\) 7.85410 0.442529
\(316\) 15.3262 0.862168
\(317\) −19.3607 −1.08740 −0.543702 0.839278i \(-0.682978\pi\)
−0.543702 + 0.839278i \(0.682978\pi\)
\(318\) −5.94427 −0.333338
\(319\) 0 0
\(320\) 0.618034 0.0345492
\(321\) 4.23607 0.236434
\(322\) −6.43769 −0.358759
\(323\) 9.47214 0.527044
\(324\) −1.61803 −0.0898908
\(325\) −3.27051 −0.181415
\(326\) 11.2918 0.625395
\(327\) 0 0
\(328\) −26.7082 −1.47471
\(329\) −4.85410 −0.267615
\(330\) 0 0
\(331\) 26.5967 1.46189 0.730945 0.682437i \(-0.239080\pi\)
0.730945 + 0.682437i \(0.239080\pi\)
\(332\) 1.14590 0.0628893
\(333\) 0.236068 0.0129364
\(334\) −6.20163 −0.339338
\(335\) 25.0344 1.36778
\(336\) −5.56231 −0.303449
\(337\) 0.291796 0.0158951 0.00794757 0.999968i \(-0.497470\pi\)
0.00794757 + 0.999968i \(0.497470\pi\)
\(338\) −6.11146 −0.332419
\(339\) 0.708204 0.0384644
\(340\) −6.85410 −0.371716
\(341\) 0 0
\(342\) −3.61803 −0.195641
\(343\) 15.0000 0.809924
\(344\) 13.9443 0.751825
\(345\) −9.09017 −0.489398
\(346\) −9.50658 −0.511077
\(347\) 20.9443 1.12435 0.562174 0.827019i \(-0.309965\pi\)
0.562174 + 0.827019i \(0.309965\pi\)
\(348\) 7.23607 0.387894
\(349\) 10.1246 0.541958 0.270979 0.962585i \(-0.412653\pi\)
0.270979 + 0.962585i \(0.412653\pi\)
\(350\) −3.43769 −0.183752
\(351\) −1.76393 −0.0941517
\(352\) 0 0
\(353\) −10.4721 −0.557376 −0.278688 0.960382i \(-0.589899\pi\)
−0.278688 + 0.960382i \(0.589899\pi\)
\(354\) 6.38197 0.339198
\(355\) 14.5623 0.772887
\(356\) −0.854102 −0.0452673
\(357\) 4.85410 0.256906
\(358\) −1.38197 −0.0730392
\(359\) 12.7639 0.673655 0.336827 0.941566i \(-0.390646\pi\)
0.336827 + 0.941566i \(0.390646\pi\)
\(360\) 5.85410 0.308538
\(361\) 15.2705 0.803711
\(362\) −10.7984 −0.567550
\(363\) 0 0
\(364\) −8.56231 −0.448787
\(365\) −8.47214 −0.443452
\(366\) −4.85410 −0.253728
\(367\) 5.56231 0.290350 0.145175 0.989406i \(-0.453625\pi\)
0.145175 + 0.989406i \(0.453625\pi\)
\(368\) 6.43769 0.335588
\(369\) 11.9443 0.621794
\(370\) −0.381966 −0.0198575
\(371\) 28.8541 1.49803
\(372\) −4.61803 −0.239434
\(373\) 4.41641 0.228673 0.114336 0.993442i \(-0.463526\pi\)
0.114336 + 0.993442i \(0.463526\pi\)
\(374\) 0 0
\(375\) 8.23607 0.425309
\(376\) −3.61803 −0.186586
\(377\) 7.88854 0.406281
\(378\) −1.85410 −0.0953647
\(379\) 1.58359 0.0813437 0.0406718 0.999173i \(-0.487050\pi\)
0.0406718 + 0.999173i \(0.487050\pi\)
\(380\) −24.7984 −1.27213
\(381\) 3.70820 0.189977
\(382\) −4.61803 −0.236279
\(383\) 26.8885 1.37394 0.686970 0.726686i \(-0.258940\pi\)
0.686970 + 0.726686i \(0.258940\pi\)
\(384\) −11.3820 −0.580834
\(385\) 0 0
\(386\) 11.4721 0.583916
\(387\) −6.23607 −0.316997
\(388\) 22.7082 1.15283
\(389\) 24.2705 1.23056 0.615282 0.788307i \(-0.289042\pi\)
0.615282 + 0.788307i \(0.289042\pi\)
\(390\) 2.85410 0.144523
\(391\) −5.61803 −0.284116
\(392\) −4.47214 −0.225877
\(393\) 7.14590 0.360463
\(394\) −15.0689 −0.759159
\(395\) 24.7984 1.24774
\(396\) 0 0
\(397\) −38.7082 −1.94271 −0.971355 0.237635i \(-0.923628\pi\)
−0.971355 + 0.237635i \(0.923628\pi\)
\(398\) −10.3262 −0.517608
\(399\) 17.5623 0.879215
\(400\) 3.43769 0.171885
\(401\) −26.0902 −1.30288 −0.651440 0.758700i \(-0.725835\pi\)
−0.651440 + 0.758700i \(0.725835\pi\)
\(402\) −5.90983 −0.294756
\(403\) −5.03444 −0.250783
\(404\) −4.85410 −0.241501
\(405\) −2.61803 −0.130091
\(406\) 8.29180 0.411515
\(407\) 0 0
\(408\) 3.61803 0.179119
\(409\) 11.0557 0.546671 0.273335 0.961919i \(-0.411873\pi\)
0.273335 + 0.961919i \(0.411873\pi\)
\(410\) −19.3262 −0.954455
\(411\) 7.47214 0.368573
\(412\) 9.70820 0.478289
\(413\) −30.9787 −1.52436
\(414\) 2.14590 0.105465
\(415\) 1.85410 0.0910143
\(416\) −9.90983 −0.485869
\(417\) 0.854102 0.0418256
\(418\) 0 0
\(419\) 16.5066 0.806399 0.403200 0.915112i \(-0.367898\pi\)
0.403200 + 0.915112i \(0.367898\pi\)
\(420\) −12.7082 −0.620097
\(421\) −37.2705 −1.81645 −0.908227 0.418478i \(-0.862564\pi\)
−0.908227 + 0.418478i \(0.862564\pi\)
\(422\) 13.7639 0.670018
\(423\) 1.61803 0.0786715
\(424\) 21.5066 1.04445
\(425\) −3.00000 −0.145521
\(426\) −3.43769 −0.166557
\(427\) 23.5623 1.14026
\(428\) −6.85410 −0.331306
\(429\) 0 0
\(430\) 10.0902 0.486591
\(431\) 39.5066 1.90296 0.951482 0.307703i \(-0.0995603\pi\)
0.951482 + 0.307703i \(0.0995603\pi\)
\(432\) 1.85410 0.0892055
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) −5.29180 −0.254014
\(435\) 11.7082 0.561365
\(436\) 0 0
\(437\) −20.3262 −0.972336
\(438\) 2.00000 0.0955637
\(439\) −3.29180 −0.157109 −0.0785544 0.996910i \(-0.525030\pi\)
−0.0785544 + 0.996910i \(0.525030\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 1.76393 0.0839017
\(443\) −41.1246 −1.95389 −0.976945 0.213493i \(-0.931516\pi\)
−0.976945 + 0.213493i \(0.931516\pi\)
\(444\) −0.381966 −0.0181273
\(445\) −1.38197 −0.0655115
\(446\) 0.437694 0.0207254
\(447\) −15.0000 −0.709476
\(448\) 0.708204 0.0334595
\(449\) −24.4721 −1.15491 −0.577456 0.816422i \(-0.695954\pi\)
−0.577456 + 0.816422i \(0.695954\pi\)
\(450\) 1.14590 0.0540182
\(451\) 0 0
\(452\) −1.14590 −0.0538985
\(453\) −2.00000 −0.0939682
\(454\) 15.3820 0.721911
\(455\) −13.8541 −0.649490
\(456\) 13.0902 0.613003
\(457\) −8.20163 −0.383656 −0.191828 0.981429i \(-0.561442\pi\)
−0.191828 + 0.981429i \(0.561442\pi\)
\(458\) 6.18034 0.288788
\(459\) −1.61803 −0.0755234
\(460\) 14.7082 0.685774
\(461\) 21.0902 0.982267 0.491134 0.871084i \(-0.336583\pi\)
0.491134 + 0.871084i \(0.336583\pi\)
\(462\) 0 0
\(463\) −15.7984 −0.734213 −0.367106 0.930179i \(-0.619651\pi\)
−0.367106 + 0.930179i \(0.619651\pi\)
\(464\) −8.29180 −0.384937
\(465\) −7.47214 −0.346512
\(466\) −15.0344 −0.696457
\(467\) −9.76393 −0.451821 −0.225910 0.974148i \(-0.572536\pi\)
−0.225910 + 0.974148i \(0.572536\pi\)
\(468\) 2.85410 0.131931
\(469\) 28.6869 1.32464
\(470\) −2.61803 −0.120761
\(471\) −3.70820 −0.170865
\(472\) −23.0902 −1.06281
\(473\) 0 0
\(474\) −5.85410 −0.268888
\(475\) −10.8541 −0.498020
\(476\) −7.85410 −0.359992
\(477\) −9.61803 −0.440380
\(478\) −1.58359 −0.0724318
\(479\) 28.0902 1.28347 0.641736 0.766925i \(-0.278214\pi\)
0.641736 + 0.766925i \(0.278214\pi\)
\(480\) −14.7082 −0.671335
\(481\) −0.416408 −0.0189866
\(482\) 14.2918 0.650973
\(483\) −10.4164 −0.473963
\(484\) 0 0
\(485\) 36.7426 1.66840
\(486\) 0.618034 0.0280346
\(487\) 16.8197 0.762172 0.381086 0.924540i \(-0.375550\pi\)
0.381086 + 0.924540i \(0.375550\pi\)
\(488\) 17.5623 0.795008
\(489\) 18.2705 0.826221
\(490\) −3.23607 −0.146191
\(491\) −25.2148 −1.13793 −0.568964 0.822363i \(-0.692655\pi\)
−0.568964 + 0.822363i \(0.692655\pi\)
\(492\) −19.3262 −0.871294
\(493\) 7.23607 0.325896
\(494\) 6.38197 0.287138
\(495\) 0 0
\(496\) 5.29180 0.237609
\(497\) 16.6869 0.748511
\(498\) −0.437694 −0.0196135
\(499\) −17.5623 −0.786197 −0.393098 0.919496i \(-0.628597\pi\)
−0.393098 + 0.919496i \(0.628597\pi\)
\(500\) −13.3262 −0.595967
\(501\) −10.0344 −0.448306
\(502\) −4.81966 −0.215112
\(503\) −28.0689 −1.25153 −0.625765 0.780012i \(-0.715213\pi\)
−0.625765 + 0.780012i \(0.715213\pi\)
\(504\) 6.70820 0.298807
\(505\) −7.85410 −0.349503
\(506\) 0 0
\(507\) −9.88854 −0.439166
\(508\) −6.00000 −0.266207
\(509\) 23.6180 1.04685 0.523425 0.852071i \(-0.324654\pi\)
0.523425 + 0.852071i \(0.324654\pi\)
\(510\) 2.61803 0.115928
\(511\) −9.70820 −0.429466
\(512\) 18.7082 0.826794
\(513\) −5.85410 −0.258465
\(514\) −7.21478 −0.318230
\(515\) 15.7082 0.692186
\(516\) 10.0902 0.444195
\(517\) 0 0
\(518\) −0.437694 −0.0192312
\(519\) −15.3820 −0.675193
\(520\) −10.3262 −0.452835
\(521\) −14.8328 −0.649837 −0.324919 0.945742i \(-0.605337\pi\)
−0.324919 + 0.945742i \(0.605337\pi\)
\(522\) −2.76393 −0.120974
\(523\) 11.9787 0.523793 0.261896 0.965096i \(-0.415652\pi\)
0.261896 + 0.965096i \(0.415652\pi\)
\(524\) −11.5623 −0.505102
\(525\) −5.56231 −0.242759
\(526\) 10.0902 0.439952
\(527\) −4.61803 −0.201165
\(528\) 0 0
\(529\) −10.9443 −0.475838
\(530\) 15.5623 0.675983
\(531\) 10.3262 0.448121
\(532\) −28.4164 −1.23201
\(533\) −21.0689 −0.912595
\(534\) 0.326238 0.0141177
\(535\) −11.0902 −0.479470
\(536\) 21.3820 0.923560
\(537\) −2.23607 −0.0964935
\(538\) 9.59675 0.413745
\(539\) 0 0
\(540\) 4.23607 0.182291
\(541\) −19.5623 −0.841049 −0.420525 0.907281i \(-0.638154\pi\)
−0.420525 + 0.907281i \(0.638154\pi\)
\(542\) 16.8541 0.723946
\(543\) −17.4721 −0.749801
\(544\) −9.09017 −0.389738
\(545\) 0 0
\(546\) 3.27051 0.139965
\(547\) −21.6180 −0.924320 −0.462160 0.886796i \(-0.652925\pi\)
−0.462160 + 0.886796i \(0.652925\pi\)
\(548\) −12.0902 −0.516466
\(549\) −7.85410 −0.335205
\(550\) 0 0
\(551\) 26.1803 1.11532
\(552\) −7.76393 −0.330455
\(553\) 28.4164 1.20839
\(554\) −18.8885 −0.802497
\(555\) −0.618034 −0.0262341
\(556\) −1.38197 −0.0586084
\(557\) −14.9098 −0.631750 −0.315875 0.948801i \(-0.602298\pi\)
−0.315875 + 0.948801i \(0.602298\pi\)
\(558\) 1.76393 0.0746732
\(559\) 11.0000 0.465250
\(560\) 14.5623 0.615370
\(561\) 0 0
\(562\) 0.472136 0.0199159
\(563\) 8.88854 0.374607 0.187304 0.982302i \(-0.440025\pi\)
0.187304 + 0.982302i \(0.440025\pi\)
\(564\) −2.61803 −0.110239
\(565\) −1.85410 −0.0780027
\(566\) −0.111456 −0.00468485
\(567\) −3.00000 −0.125988
\(568\) 12.4377 0.521874
\(569\) 24.0689 1.00902 0.504510 0.863406i \(-0.331673\pi\)
0.504510 + 0.863406i \(0.331673\pi\)
\(570\) 9.47214 0.396744
\(571\) −34.6869 −1.45160 −0.725801 0.687905i \(-0.758531\pi\)
−0.725801 + 0.687905i \(0.758531\pi\)
\(572\) 0 0
\(573\) −7.47214 −0.312153
\(574\) −22.1459 −0.924352
\(575\) 6.43769 0.268470
\(576\) −0.236068 −0.00983617
\(577\) 10.7639 0.448108 0.224054 0.974577i \(-0.428071\pi\)
0.224054 + 0.974577i \(0.428071\pi\)
\(578\) −8.88854 −0.369715
\(579\) 18.5623 0.771423
\(580\) −18.9443 −0.786618
\(581\) 2.12461 0.0881437
\(582\) −8.67376 −0.359539
\(583\) 0 0
\(584\) −7.23607 −0.299431
\(585\) 4.61803 0.190932
\(586\) −0.0344419 −0.00142278
\(587\) −38.3050 −1.58101 −0.790507 0.612453i \(-0.790183\pi\)
−0.790507 + 0.612453i \(0.790183\pi\)
\(588\) −3.23607 −0.133453
\(589\) −16.7082 −0.688450
\(590\) −16.7082 −0.687866
\(591\) −24.3820 −1.00294
\(592\) 0.437694 0.0179891
\(593\) −22.2148 −0.912252 −0.456126 0.889915i \(-0.650763\pi\)
−0.456126 + 0.889915i \(0.650763\pi\)
\(594\) 0 0
\(595\) −12.7082 −0.520986
\(596\) 24.2705 0.994159
\(597\) −16.7082 −0.683821
\(598\) −3.78522 −0.154789
\(599\) −8.29180 −0.338794 −0.169397 0.985548i \(-0.554182\pi\)
−0.169397 + 0.985548i \(0.554182\pi\)
\(600\) −4.14590 −0.169256
\(601\) −33.8328 −1.38007 −0.690035 0.723776i \(-0.742405\pi\)
−0.690035 + 0.723776i \(0.742405\pi\)
\(602\) 11.5623 0.471244
\(603\) −9.56231 −0.389407
\(604\) 3.23607 0.131674
\(605\) 0 0
\(606\) 1.85410 0.0753177
\(607\) −13.3262 −0.540895 −0.270448 0.962735i \(-0.587172\pi\)
−0.270448 + 0.962735i \(0.587172\pi\)
\(608\) −32.8885 −1.33381
\(609\) 13.4164 0.543660
\(610\) 12.7082 0.514540
\(611\) −2.85410 −0.115465
\(612\) 2.61803 0.105828
\(613\) −34.6525 −1.39960 −0.699800 0.714339i \(-0.746728\pi\)
−0.699800 + 0.714339i \(0.746728\pi\)
\(614\) −0.347524 −0.0140249
\(615\) −31.2705 −1.26095
\(616\) 0 0
\(617\) 19.5836 0.788406 0.394203 0.919023i \(-0.371021\pi\)
0.394203 + 0.919023i \(0.371021\pi\)
\(618\) −3.70820 −0.149166
\(619\) −8.81966 −0.354492 −0.177246 0.984167i \(-0.556719\pi\)
−0.177246 + 0.984167i \(0.556719\pi\)
\(620\) 12.0902 0.485553
\(621\) 3.47214 0.139332
\(622\) 1.56231 0.0626428
\(623\) −1.58359 −0.0634453
\(624\) −3.27051 −0.130925
\(625\) −30.8328 −1.23331
\(626\) 15.9656 0.638112
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) −0.381966 −0.0152300
\(630\) 4.85410 0.193392
\(631\) 46.2705 1.84200 0.921000 0.389563i \(-0.127374\pi\)
0.921000 + 0.389563i \(0.127374\pi\)
\(632\) 21.1803 0.842509
\(633\) 22.2705 0.885173
\(634\) −11.9656 −0.475213
\(635\) −9.70820 −0.385258
\(636\) 15.5623 0.617086
\(637\) −3.52786 −0.139779
\(638\) 0 0
\(639\) −5.56231 −0.220041
\(640\) 29.7984 1.17788
\(641\) 35.7426 1.41175 0.705875 0.708337i \(-0.250554\pi\)
0.705875 + 0.708337i \(0.250554\pi\)
\(642\) 2.61803 0.103326
\(643\) −38.5623 −1.52075 −0.760374 0.649485i \(-0.774985\pi\)
−0.760374 + 0.649485i \(0.774985\pi\)
\(644\) 16.8541 0.664145
\(645\) 16.3262 0.642845
\(646\) 5.85410 0.230327
\(647\) 27.7984 1.09287 0.546433 0.837503i \(-0.315985\pi\)
0.546433 + 0.837503i \(0.315985\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 0 0
\(650\) −2.02129 −0.0792814
\(651\) −8.56231 −0.335583
\(652\) −29.5623 −1.15775
\(653\) 51.0344 1.99713 0.998566 0.0535342i \(-0.0170486\pi\)
0.998566 + 0.0535342i \(0.0170486\pi\)
\(654\) 0 0
\(655\) −18.7082 −0.730990
\(656\) 22.1459 0.864652
\(657\) 3.23607 0.126251
\(658\) −3.00000 −0.116952
\(659\) 10.6525 0.414962 0.207481 0.978239i \(-0.433474\pi\)
0.207481 + 0.978239i \(0.433474\pi\)
\(660\) 0 0
\(661\) −9.90983 −0.385448 −0.192724 0.981253i \(-0.561732\pi\)
−0.192724 + 0.981253i \(0.561732\pi\)
\(662\) 16.4377 0.638869
\(663\) 2.85410 0.110844
\(664\) 1.58359 0.0614553
\(665\) −45.9787 −1.78298
\(666\) 0.145898 0.00565343
\(667\) −15.5279 −0.601241
\(668\) 16.2361 0.628192
\(669\) 0.708204 0.0273807
\(670\) 15.4721 0.597741
\(671\) 0 0
\(672\) −16.8541 −0.650161
\(673\) −12.4164 −0.478617 −0.239309 0.970944i \(-0.576921\pi\)
−0.239309 + 0.970944i \(0.576921\pi\)
\(674\) 0.180340 0.00694643
\(675\) 1.85410 0.0713644
\(676\) 16.0000 0.615385
\(677\) −13.5279 −0.519918 −0.259959 0.965620i \(-0.583709\pi\)
−0.259959 + 0.965620i \(0.583709\pi\)
\(678\) 0.437694 0.0168095
\(679\) 42.1033 1.61578
\(680\) −9.47214 −0.363240
\(681\) 24.8885 0.953731
\(682\) 0 0
\(683\) −3.11146 −0.119057 −0.0595283 0.998227i \(-0.518960\pi\)
−0.0595283 + 0.998227i \(0.518960\pi\)
\(684\) 9.47214 0.362176
\(685\) −19.5623 −0.747437
\(686\) 9.27051 0.353950
\(687\) 10.0000 0.381524
\(688\) −11.5623 −0.440809
\(689\) 16.9656 0.646336
\(690\) −5.61803 −0.213875
\(691\) −26.2918 −1.00019 −0.500094 0.865971i \(-0.666701\pi\)
−0.500094 + 0.865971i \(0.666701\pi\)
\(692\) 24.8885 0.946120
\(693\) 0 0
\(694\) 12.9443 0.491358
\(695\) −2.23607 −0.0848189
\(696\) 10.0000 0.379049
\(697\) −19.3262 −0.732033
\(698\) 6.25735 0.236844
\(699\) −24.3262 −0.920103
\(700\) 9.00000 0.340168
\(701\) 10.6869 0.403639 0.201820 0.979423i \(-0.435315\pi\)
0.201820 + 0.979423i \(0.435315\pi\)
\(702\) −1.09017 −0.0411458
\(703\) −1.38197 −0.0521218
\(704\) 0 0
\(705\) −4.23607 −0.159540
\(706\) −6.47214 −0.243582
\(707\) −9.00000 −0.338480
\(708\) −16.7082 −0.627933
\(709\) 48.7426 1.83057 0.915284 0.402809i \(-0.131966\pi\)
0.915284 + 0.402809i \(0.131966\pi\)
\(710\) 9.00000 0.337764
\(711\) −9.47214 −0.355233
\(712\) −1.18034 −0.0442351
\(713\) 9.90983 0.371126
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 3.61803 0.135212
\(717\) −2.56231 −0.0956911
\(718\) 7.88854 0.294398
\(719\) −1.58359 −0.0590580 −0.0295290 0.999564i \(-0.509401\pi\)
−0.0295290 + 0.999564i \(0.509401\pi\)
\(720\) −4.85410 −0.180902
\(721\) 18.0000 0.670355
\(722\) 9.43769 0.351235
\(723\) 23.1246 0.860014
\(724\) 28.2705 1.05067
\(725\) −8.29180 −0.307950
\(726\) 0 0
\(727\) 38.8541 1.44102 0.720509 0.693445i \(-0.243908\pi\)
0.720509 + 0.693445i \(0.243908\pi\)
\(728\) −11.8328 −0.438553
\(729\) 1.00000 0.0370370
\(730\) −5.23607 −0.193796
\(731\) 10.0902 0.373198
\(732\) 12.7082 0.469709
\(733\) 37.7082 1.39278 0.696392 0.717661i \(-0.254787\pi\)
0.696392 + 0.717661i \(0.254787\pi\)
\(734\) 3.43769 0.126888
\(735\) −5.23607 −0.193135
\(736\) 19.5066 0.719022
\(737\) 0 0
\(738\) 7.38197 0.271734
\(739\) 25.0000 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(740\) 1.00000 0.0367607
\(741\) 10.3262 0.379344
\(742\) 17.8328 0.654663
\(743\) −35.1803 −1.29064 −0.645321 0.763912i \(-0.723276\pi\)
−0.645321 + 0.763912i \(0.723276\pi\)
\(744\) −6.38197 −0.233974
\(745\) 39.2705 1.43876
\(746\) 2.72949 0.0999337
\(747\) −0.708204 −0.0259118
\(748\) 0 0
\(749\) −12.7082 −0.464348
\(750\) 5.09017 0.185867
\(751\) 11.9230 0.435076 0.217538 0.976052i \(-0.430197\pi\)
0.217538 + 0.976052i \(0.430197\pi\)
\(752\) 3.00000 0.109399
\(753\) −7.79837 −0.284189
\(754\) 4.87539 0.177551
\(755\) 5.23607 0.190560
\(756\) 4.85410 0.176542
\(757\) 1.94427 0.0706658 0.0353329 0.999376i \(-0.488751\pi\)
0.0353329 + 0.999376i \(0.488751\pi\)
\(758\) 0.978714 0.0355485
\(759\) 0 0
\(760\) −34.2705 −1.24312
\(761\) 30.8885 1.11971 0.559854 0.828591i \(-0.310857\pi\)
0.559854 + 0.828591i \(0.310857\pi\)
\(762\) 2.29180 0.0830230
\(763\) 0 0
\(764\) 12.0902 0.437407
\(765\) 4.23607 0.153155
\(766\) 16.6180 0.600434
\(767\) −18.2148 −0.657698
\(768\) −6.56231 −0.236797
\(769\) −12.6869 −0.457502 −0.228751 0.973485i \(-0.573464\pi\)
−0.228751 + 0.973485i \(0.573464\pi\)
\(770\) 0 0
\(771\) −11.6738 −0.420420
\(772\) −30.0344 −1.08096
\(773\) −31.2492 −1.12396 −0.561978 0.827152i \(-0.689960\pi\)
−0.561978 + 0.827152i \(0.689960\pi\)
\(774\) −3.85410 −0.138533
\(775\) 5.29180 0.190087
\(776\) 31.3820 1.12655
\(777\) −0.708204 −0.0254067
\(778\) 15.0000 0.537776
\(779\) −69.9230 −2.50525
\(780\) −7.47214 −0.267545
\(781\) 0 0
\(782\) −3.47214 −0.124163
\(783\) −4.47214 −0.159821
\(784\) 3.70820 0.132436
\(785\) 9.70820 0.346501
\(786\) 4.41641 0.157528
\(787\) 10.2918 0.366863 0.183431 0.983033i \(-0.441279\pi\)
0.183431 + 0.983033i \(0.441279\pi\)
\(788\) 39.4508 1.40538
\(789\) 16.3262 0.581229
\(790\) 15.3262 0.545283
\(791\) −2.12461 −0.0755425
\(792\) 0 0
\(793\) 13.8541 0.491974
\(794\) −23.9230 −0.848995
\(795\) 25.1803 0.893055
\(796\) 27.0344 0.958210
\(797\) 10.7639 0.381278 0.190639 0.981660i \(-0.438944\pi\)
0.190639 + 0.981660i \(0.438944\pi\)
\(798\) 10.8541 0.384231
\(799\) −2.61803 −0.0926194
\(800\) 10.4164 0.368276
\(801\) 0.527864 0.0186512
\(802\) −16.1246 −0.569380
\(803\) 0 0
\(804\) 15.4721 0.545660
\(805\) 27.2705 0.961159
\(806\) −3.11146 −0.109596
\(807\) 15.5279 0.546607
\(808\) −6.70820 −0.235994
\(809\) −9.67376 −0.340111 −0.170056 0.985434i \(-0.554395\pi\)
−0.170056 + 0.985434i \(0.554395\pi\)
\(810\) −1.61803 −0.0568519
\(811\) −3.25735 −0.114381 −0.0571906 0.998363i \(-0.518214\pi\)
−0.0571906 + 0.998363i \(0.518214\pi\)
\(812\) −21.7082 −0.761809
\(813\) 27.2705 0.956419
\(814\) 0 0
\(815\) −47.8328 −1.67551
\(816\) −3.00000 −0.105021
\(817\) 36.5066 1.27720
\(818\) 6.83282 0.238904
\(819\) 5.29180 0.184910
\(820\) 50.5967 1.76692
\(821\) −40.4164 −1.41054 −0.705271 0.708938i \(-0.749175\pi\)
−0.705271 + 0.708938i \(0.749175\pi\)
\(822\) 4.61803 0.161072
\(823\) −35.4721 −1.23648 −0.618240 0.785989i \(-0.712154\pi\)
−0.618240 + 0.785989i \(0.712154\pi\)
\(824\) 13.4164 0.467383
\(825\) 0 0
\(826\) −19.1459 −0.666171
\(827\) −53.1246 −1.84732 −0.923662 0.383208i \(-0.874819\pi\)
−0.923662 + 0.383208i \(0.874819\pi\)
\(828\) −5.61803 −0.195240
\(829\) 17.6869 0.614292 0.307146 0.951662i \(-0.400626\pi\)
0.307146 + 0.951662i \(0.400626\pi\)
\(830\) 1.14590 0.0397747
\(831\) −30.5623 −1.06019
\(832\) 0.416408 0.0144363
\(833\) −3.23607 −0.112123
\(834\) 0.527864 0.0182784
\(835\) 26.2705 0.909128
\(836\) 0 0
\(837\) 2.85410 0.0986522
\(838\) 10.2016 0.352409
\(839\) −36.7082 −1.26731 −0.633654 0.773617i \(-0.718446\pi\)
−0.633654 + 0.773617i \(0.718446\pi\)
\(840\) −17.5623 −0.605957
\(841\) −9.00000 −0.310345
\(842\) −23.0344 −0.793819
\(843\) 0.763932 0.0263112
\(844\) −36.0344 −1.24036
\(845\) 25.8885 0.890593
\(846\) 1.00000 0.0343807
\(847\) 0 0
\(848\) −17.8328 −0.612381
\(849\) −0.180340 −0.00618925
\(850\) −1.85410 −0.0635952
\(851\) 0.819660 0.0280976
\(852\) 9.00000 0.308335
\(853\) 9.94427 0.340485 0.170243 0.985402i \(-0.445545\pi\)
0.170243 + 0.985402i \(0.445545\pi\)
\(854\) 14.5623 0.498312
\(855\) 15.3262 0.524146
\(856\) −9.47214 −0.323751
\(857\) −47.7214 −1.63013 −0.815065 0.579369i \(-0.803299\pi\)
−0.815065 + 0.579369i \(0.803299\pi\)
\(858\) 0 0
\(859\) 7.11146 0.242640 0.121320 0.992613i \(-0.461287\pi\)
0.121320 + 0.992613i \(0.461287\pi\)
\(860\) −26.4164 −0.900792
\(861\) −35.8328 −1.22118
\(862\) 24.4164 0.831626
\(863\) 11.8885 0.404691 0.202345 0.979314i \(-0.435144\pi\)
0.202345 + 0.979314i \(0.435144\pi\)
\(864\) 5.61803 0.191129
\(865\) 40.2705 1.36924
\(866\) −3.70820 −0.126010
\(867\) −14.3820 −0.488437
\(868\) 13.8541 0.470239
\(869\) 0 0
\(870\) 7.23607 0.245326
\(871\) 16.8673 0.571525
\(872\) 0 0
\(873\) −14.0344 −0.474994
\(874\) −12.5623 −0.424926
\(875\) −24.7082 −0.835290
\(876\) −5.23607 −0.176910
\(877\) −6.41641 −0.216667 −0.108333 0.994115i \(-0.534551\pi\)
−0.108333 + 0.994115i \(0.534551\pi\)
\(878\) −2.03444 −0.0686591
\(879\) −0.0557281 −0.00187966
\(880\) 0 0
\(881\) 13.9098 0.468634 0.234317 0.972160i \(-0.424715\pi\)
0.234317 + 0.972160i \(0.424715\pi\)
\(882\) 1.23607 0.0416206
\(883\) 10.5836 0.356166 0.178083 0.984015i \(-0.443010\pi\)
0.178083 + 0.984015i \(0.443010\pi\)
\(884\) −4.61803 −0.155321
\(885\) −27.0344 −0.908753
\(886\) −25.4164 −0.853881
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) −0.527864 −0.0177140
\(889\) −11.1246 −0.373108
\(890\) −0.854102 −0.0286296
\(891\) 0 0
\(892\) −1.14590 −0.0383675
\(893\) −9.47214 −0.316973
\(894\) −9.27051 −0.310052
\(895\) 5.85410 0.195681
\(896\) 34.1459 1.14073
\(897\) −6.12461 −0.204495
\(898\) −15.1246 −0.504715
\(899\) −12.7639 −0.425701
\(900\) −3.00000 −0.100000
\(901\) 15.5623 0.518456
\(902\) 0 0
\(903\) 18.7082 0.622570
\(904\) −1.58359 −0.0526695
\(905\) 45.7426 1.52054
\(906\) −1.23607 −0.0410656
\(907\) −42.9787 −1.42708 −0.713542 0.700612i \(-0.752910\pi\)
−0.713542 + 0.700612i \(0.752910\pi\)
\(908\) −40.2705 −1.33642
\(909\) 3.00000 0.0995037
\(910\) −8.56231 −0.283838
\(911\) 18.0557 0.598213 0.299106 0.954220i \(-0.403311\pi\)
0.299106 + 0.954220i \(0.403311\pi\)
\(912\) −10.8541 −0.359415
\(913\) 0 0
\(914\) −5.06888 −0.167664
\(915\) 20.5623 0.679769
\(916\) −16.1803 −0.534613
\(917\) −21.4377 −0.707935
\(918\) −1.00000 −0.0330049
\(919\) −46.9574 −1.54898 −0.774491 0.632585i \(-0.781994\pi\)
−0.774491 + 0.632585i \(0.781994\pi\)
\(920\) 20.3262 0.670136
\(921\) −0.562306 −0.0185286
\(922\) 13.0344 0.429266
\(923\) 9.81153 0.322950
\(924\) 0 0
\(925\) 0.437694 0.0143913
\(926\) −9.76393 −0.320863
\(927\) −6.00000 −0.197066
\(928\) −25.1246 −0.824756
\(929\) −32.8885 −1.07904 −0.539519 0.841973i \(-0.681394\pi\)
−0.539519 + 0.841973i \(0.681394\pi\)
\(930\) −4.61803 −0.151431
\(931\) −11.7082 −0.383721
\(932\) 39.3607 1.28930
\(933\) 2.52786 0.0827586
\(934\) −6.03444 −0.197453
\(935\) 0 0
\(936\) 3.94427 0.128923
\(937\) 16.5967 0.542192 0.271096 0.962552i \(-0.412614\pi\)
0.271096 + 0.962552i \(0.412614\pi\)
\(938\) 17.7295 0.578888
\(939\) 25.8328 0.843022
\(940\) 6.85410 0.223556
\(941\) 44.6312 1.45494 0.727468 0.686142i \(-0.240697\pi\)
0.727468 + 0.686142i \(0.240697\pi\)
\(942\) −2.29180 −0.0746708
\(943\) 41.4721 1.35052
\(944\) 19.1459 0.623146
\(945\) 7.85410 0.255494
\(946\) 0 0
\(947\) 18.3262 0.595523 0.297761 0.954640i \(-0.403760\pi\)
0.297761 + 0.954640i \(0.403760\pi\)
\(948\) 15.3262 0.497773
\(949\) −5.70820 −0.185296
\(950\) −6.70820 −0.217643
\(951\) −19.3607 −0.627813
\(952\) −10.8541 −0.351783
\(953\) −37.8197 −1.22510 −0.612549 0.790432i \(-0.709856\pi\)
−0.612549 + 0.790432i \(0.709856\pi\)
\(954\) −5.94427 −0.192453
\(955\) 19.5623 0.633021
\(956\) 4.14590 0.134088
\(957\) 0 0
\(958\) 17.3607 0.560898
\(959\) −22.4164 −0.723864
\(960\) 0.618034 0.0199470
\(961\) −22.8541 −0.737229
\(962\) −0.257354 −0.00829743
\(963\) 4.23607 0.136505
\(964\) −37.4164 −1.20510
\(965\) −48.5967 −1.56438
\(966\) −6.43769 −0.207129
\(967\) 34.6869 1.11546 0.557728 0.830024i \(-0.311673\pi\)
0.557728 + 0.830024i \(0.311673\pi\)
\(968\) 0 0
\(969\) 9.47214 0.304289
\(970\) 22.7082 0.729116
\(971\) 37.7771 1.21232 0.606162 0.795341i \(-0.292708\pi\)
0.606162 + 0.795341i \(0.292708\pi\)
\(972\) −1.61803 −0.0518985
\(973\) −2.56231 −0.0821438
\(974\) 10.3951 0.333081
\(975\) −3.27051 −0.104740
\(976\) −14.5623 −0.466128
\(977\) −4.63932 −0.148425 −0.0742125 0.997242i \(-0.523644\pi\)
−0.0742125 + 0.997242i \(0.523644\pi\)
\(978\) 11.2918 0.361072
\(979\) 0 0
\(980\) 8.47214 0.270632
\(981\) 0 0
\(982\) −15.5836 −0.497292
\(983\) −27.3050 −0.870893 −0.435446 0.900215i \(-0.643409\pi\)
−0.435446 + 0.900215i \(0.643409\pi\)
\(984\) −26.7082 −0.851426
\(985\) 63.8328 2.03388
\(986\) 4.47214 0.142422
\(987\) −4.85410 −0.154508
\(988\) −16.7082 −0.531559
\(989\) −21.6525 −0.688509
\(990\) 0 0
\(991\) 21.2705 0.675680 0.337840 0.941204i \(-0.390304\pi\)
0.337840 + 0.941204i \(0.390304\pi\)
\(992\) 16.0344 0.509094
\(993\) 26.5967 0.844022
\(994\) 10.3131 0.327111
\(995\) 43.7426 1.38674
\(996\) 1.14590 0.0363092
\(997\) 12.9787 0.411040 0.205520 0.978653i \(-0.434111\pi\)
0.205520 + 0.978653i \(0.434111\pi\)
\(998\) −10.8541 −0.343581
\(999\) 0.236068 0.00746886
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.a.e.1.2 2
3.2 odd 2 1089.2.a.s.1.1 2
4.3 odd 2 5808.2.a.bm.1.1 2
5.4 even 2 9075.2.a.bv.1.1 2
11.2 odd 10 363.2.e.h.202.1 4
11.3 even 5 363.2.e.j.130.1 4
11.4 even 5 363.2.e.j.148.1 4
11.5 even 5 363.2.e.c.124.1 4
11.6 odd 10 363.2.e.h.124.1 4
11.7 odd 10 33.2.e.a.16.1 4
11.8 odd 10 33.2.e.a.31.1 yes 4
11.9 even 5 363.2.e.c.202.1 4
11.10 odd 2 363.2.a.h.1.1 2
33.8 even 10 99.2.f.b.64.1 4
33.29 even 10 99.2.f.b.82.1 4
33.32 even 2 1089.2.a.m.1.2 2
44.7 even 10 528.2.y.f.49.1 4
44.19 even 10 528.2.y.f.97.1 4
44.43 even 2 5808.2.a.bl.1.1 2
55.7 even 20 825.2.bx.b.49.2 8
55.8 even 20 825.2.bx.b.724.2 8
55.18 even 20 825.2.bx.b.49.1 8
55.19 odd 10 825.2.n.f.526.1 4
55.29 odd 10 825.2.n.f.676.1 4
55.52 even 20 825.2.bx.b.724.1 8
55.54 odd 2 9075.2.a.x.1.2 2
99.7 odd 30 891.2.n.d.676.1 8
99.29 even 30 891.2.n.a.676.1 8
99.40 odd 30 891.2.n.d.379.1 8
99.41 even 30 891.2.n.a.460.1 8
99.52 odd 30 891.2.n.d.757.1 8
99.74 even 30 891.2.n.a.757.1 8
99.85 odd 30 891.2.n.d.460.1 8
99.95 even 30 891.2.n.a.379.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.a.16.1 4 11.7 odd 10
33.2.e.a.31.1 yes 4 11.8 odd 10
99.2.f.b.64.1 4 33.8 even 10
99.2.f.b.82.1 4 33.29 even 10
363.2.a.e.1.2 2 1.1 even 1 trivial
363.2.a.h.1.1 2 11.10 odd 2
363.2.e.c.124.1 4 11.5 even 5
363.2.e.c.202.1 4 11.9 even 5
363.2.e.h.124.1 4 11.6 odd 10
363.2.e.h.202.1 4 11.2 odd 10
363.2.e.j.130.1 4 11.3 even 5
363.2.e.j.148.1 4 11.4 even 5
528.2.y.f.49.1 4 44.7 even 10
528.2.y.f.97.1 4 44.19 even 10
825.2.n.f.526.1 4 55.19 odd 10
825.2.n.f.676.1 4 55.29 odd 10
825.2.bx.b.49.1 8 55.18 even 20
825.2.bx.b.49.2 8 55.7 even 20
825.2.bx.b.724.1 8 55.52 even 20
825.2.bx.b.724.2 8 55.8 even 20
891.2.n.a.379.1 8 99.95 even 30
891.2.n.a.460.1 8 99.41 even 30
891.2.n.a.676.1 8 99.29 even 30
891.2.n.a.757.1 8 99.74 even 30
891.2.n.d.379.1 8 99.40 odd 30
891.2.n.d.460.1 8 99.85 odd 30
891.2.n.d.676.1 8 99.7 odd 30
891.2.n.d.757.1 8 99.52 odd 30
1089.2.a.m.1.2 2 33.32 even 2
1089.2.a.s.1.1 2 3.2 odd 2
5808.2.a.bl.1.1 2 44.43 even 2
5808.2.a.bm.1.1 2 4.3 odd 2
9075.2.a.x.1.2 2 55.54 odd 2
9075.2.a.bv.1.1 2 5.4 even 2