Properties

Label 363.2.a.d.1.2
Level $363$
Weight $2$
Character 363.1
Self dual yes
Analytic conductor $2.899$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.89856959337\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.381966 q^{2} -1.00000 q^{3} -1.85410 q^{4} +1.61803 q^{5} +0.381966 q^{6} -1.00000 q^{7} +1.47214 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-0.381966 q^{2} -1.00000 q^{3} -1.85410 q^{4} +1.61803 q^{5} +0.381966 q^{6} -1.00000 q^{7} +1.47214 q^{8} +1.00000 q^{9} -0.618034 q^{10} +1.85410 q^{12} -4.23607 q^{13} +0.381966 q^{14} -1.61803 q^{15} +3.14590 q^{16} -7.85410 q^{17} -0.381966 q^{18} -0.854102 q^{19} -3.00000 q^{20} +1.00000 q^{21} -4.23607 q^{23} -1.47214 q^{24} -2.38197 q^{25} +1.61803 q^{26} -1.00000 q^{27} +1.85410 q^{28} -6.00000 q^{29} +0.618034 q^{30} +5.09017 q^{31} -4.14590 q^{32} +3.00000 q^{34} -1.61803 q^{35} -1.85410 q^{36} -1.76393 q^{37} +0.326238 q^{38} +4.23607 q^{39} +2.38197 q^{40} -4.23607 q^{41} -0.381966 q^{42} +6.70820 q^{43} +1.61803 q^{45} +1.61803 q^{46} +1.09017 q^{47} -3.14590 q^{48} -6.00000 q^{49} +0.909830 q^{50} +7.85410 q^{51} +7.85410 q^{52} -2.61803 q^{53} +0.381966 q^{54} -1.47214 q^{56} +0.854102 q^{57} +2.29180 q^{58} +9.61803 q^{59} +3.00000 q^{60} +8.56231 q^{61} -1.94427 q^{62} -1.00000 q^{63} -4.70820 q^{64} -6.85410 q^{65} -4.85410 q^{67} +14.5623 q^{68} +4.23607 q^{69} +0.618034 q^{70} -5.32624 q^{71} +1.47214 q^{72} +7.70820 q^{73} +0.673762 q^{74} +2.38197 q^{75} +1.58359 q^{76} -1.61803 q^{78} +11.0000 q^{79} +5.09017 q^{80} +1.00000 q^{81} +1.61803 q^{82} -7.47214 q^{83} -1.85410 q^{84} -12.7082 q^{85} -2.56231 q^{86} +6.00000 q^{87} -3.76393 q^{89} -0.618034 q^{90} +4.23607 q^{91} +7.85410 q^{92} -5.09017 q^{93} -0.416408 q^{94} -1.38197 q^{95} +4.14590 q^{96} +1.14590 q^{97} +2.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + q^{5} + 3 q^{6} - 2 q^{7} - 6 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + q^{5} + 3 q^{6} - 2 q^{7} - 6 q^{8} + 2 q^{9} + q^{10} - 3 q^{12} - 4 q^{13} + 3 q^{14} - q^{15} + 13 q^{16} - 9 q^{17} - 3 q^{18} + 5 q^{19} - 6 q^{20} + 2 q^{21} - 4 q^{23} + 6 q^{24} - 7 q^{25} + q^{26} - 2 q^{27} - 3 q^{28} - 12 q^{29} - q^{30} - q^{31} - 15 q^{32} + 6 q^{34} - q^{35} + 3 q^{36} - 8 q^{37} - 15 q^{38} + 4 q^{39} + 7 q^{40} - 4 q^{41} - 3 q^{42} + q^{45} + q^{46} - 9 q^{47} - 13 q^{48} - 12 q^{49} + 13 q^{50} + 9 q^{51} + 9 q^{52} - 3 q^{53} + 3 q^{54} + 6 q^{56} - 5 q^{57} + 18 q^{58} + 17 q^{59} + 6 q^{60} - 3 q^{61} + 14 q^{62} - 2 q^{63} + 4 q^{64} - 7 q^{65} - 3 q^{67} + 9 q^{68} + 4 q^{69} - q^{70} + 5 q^{71} - 6 q^{72} + 2 q^{73} + 17 q^{74} + 7 q^{75} + 30 q^{76} - q^{78} + 22 q^{79} - q^{80} + 2 q^{81} + q^{82} - 6 q^{83} + 3 q^{84} - 12 q^{85} + 15 q^{86} + 12 q^{87} - 12 q^{89} + q^{90} + 4 q^{91} + 9 q^{92} + q^{93} + 26 q^{94} - 5 q^{95} + 15 q^{96} + 9 q^{97} + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.381966 −0.270091 −0.135045 0.990839i \(-0.543118\pi\)
−0.135045 + 0.990839i \(0.543118\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.85410 −0.927051
\(5\) 1.61803 0.723607 0.361803 0.932254i \(-0.382161\pi\)
0.361803 + 0.932254i \(0.382161\pi\)
\(6\) 0.381966 0.155937
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.47214 0.520479
\(9\) 1.00000 0.333333
\(10\) −0.618034 −0.195440
\(11\) 0 0
\(12\) 1.85410 0.535233
\(13\) −4.23607 −1.17487 −0.587437 0.809270i \(-0.699863\pi\)
−0.587437 + 0.809270i \(0.699863\pi\)
\(14\) 0.381966 0.102085
\(15\) −1.61803 −0.417775
\(16\) 3.14590 0.786475
\(17\) −7.85410 −1.90490 −0.952450 0.304696i \(-0.901445\pi\)
−0.952450 + 0.304696i \(0.901445\pi\)
\(18\) −0.381966 −0.0900303
\(19\) −0.854102 −0.195944 −0.0979722 0.995189i \(-0.531236\pi\)
−0.0979722 + 0.995189i \(0.531236\pi\)
\(20\) −3.00000 −0.670820
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −4.23607 −0.883281 −0.441641 0.897192i \(-0.645603\pi\)
−0.441641 + 0.897192i \(0.645603\pi\)
\(24\) −1.47214 −0.300498
\(25\) −2.38197 −0.476393
\(26\) 1.61803 0.317323
\(27\) −1.00000 −0.192450
\(28\) 1.85410 0.350392
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0.618034 0.112837
\(31\) 5.09017 0.914222 0.457111 0.889410i \(-0.348884\pi\)
0.457111 + 0.889410i \(0.348884\pi\)
\(32\) −4.14590 −0.732898
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −1.61803 −0.273498
\(36\) −1.85410 −0.309017
\(37\) −1.76393 −0.289989 −0.144994 0.989432i \(-0.546316\pi\)
−0.144994 + 0.989432i \(0.546316\pi\)
\(38\) 0.326238 0.0529228
\(39\) 4.23607 0.678314
\(40\) 2.38197 0.376622
\(41\) −4.23607 −0.661563 −0.330781 0.943707i \(-0.607312\pi\)
−0.330781 + 0.943707i \(0.607312\pi\)
\(42\) −0.381966 −0.0589386
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) 1.61803 0.241202
\(46\) 1.61803 0.238566
\(47\) 1.09017 0.159018 0.0795088 0.996834i \(-0.474665\pi\)
0.0795088 + 0.996834i \(0.474665\pi\)
\(48\) −3.14590 −0.454071
\(49\) −6.00000 −0.857143
\(50\) 0.909830 0.128669
\(51\) 7.85410 1.09979
\(52\) 7.85410 1.08917
\(53\) −2.61803 −0.359615 −0.179807 0.983702i \(-0.557547\pi\)
−0.179807 + 0.983702i \(0.557547\pi\)
\(54\) 0.381966 0.0519790
\(55\) 0 0
\(56\) −1.47214 −0.196722
\(57\) 0.854102 0.113129
\(58\) 2.29180 0.300928
\(59\) 9.61803 1.25216 0.626081 0.779758i \(-0.284658\pi\)
0.626081 + 0.779758i \(0.284658\pi\)
\(60\) 3.00000 0.387298
\(61\) 8.56231 1.09629 0.548145 0.836383i \(-0.315334\pi\)
0.548145 + 0.836383i \(0.315334\pi\)
\(62\) −1.94427 −0.246923
\(63\) −1.00000 −0.125988
\(64\) −4.70820 −0.588525
\(65\) −6.85410 −0.850147
\(66\) 0 0
\(67\) −4.85410 −0.593023 −0.296511 0.955029i \(-0.595823\pi\)
−0.296511 + 0.955029i \(0.595823\pi\)
\(68\) 14.5623 1.76594
\(69\) 4.23607 0.509963
\(70\) 0.618034 0.0738692
\(71\) −5.32624 −0.632108 −0.316054 0.948741i \(-0.602358\pi\)
−0.316054 + 0.948741i \(0.602358\pi\)
\(72\) 1.47214 0.173493
\(73\) 7.70820 0.902177 0.451089 0.892479i \(-0.351036\pi\)
0.451089 + 0.892479i \(0.351036\pi\)
\(74\) 0.673762 0.0783233
\(75\) 2.38197 0.275046
\(76\) 1.58359 0.181650
\(77\) 0 0
\(78\) −1.61803 −0.183206
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 5.09017 0.569098
\(81\) 1.00000 0.111111
\(82\) 1.61803 0.178682
\(83\) −7.47214 −0.820173 −0.410087 0.912047i \(-0.634502\pi\)
−0.410087 + 0.912047i \(0.634502\pi\)
\(84\) −1.85410 −0.202299
\(85\) −12.7082 −1.37840
\(86\) −2.56231 −0.276301
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −3.76393 −0.398976 −0.199488 0.979900i \(-0.563928\pi\)
−0.199488 + 0.979900i \(0.563928\pi\)
\(90\) −0.618034 −0.0651465
\(91\) 4.23607 0.444061
\(92\) 7.85410 0.818847
\(93\) −5.09017 −0.527826
\(94\) −0.416408 −0.0429492
\(95\) −1.38197 −0.141787
\(96\) 4.14590 0.423139
\(97\) 1.14590 0.116348 0.0581742 0.998306i \(-0.481472\pi\)
0.0581742 + 0.998306i \(0.481472\pi\)
\(98\) 2.29180 0.231506
\(99\) 0 0
\(100\) 4.41641 0.441641
\(101\) −5.76393 −0.573533 −0.286766 0.958001i \(-0.592580\pi\)
−0.286766 + 0.958001i \(0.592580\pi\)
\(102\) −3.00000 −0.297044
\(103\) 6.94427 0.684239 0.342120 0.939656i \(-0.388855\pi\)
0.342120 + 0.939656i \(0.388855\pi\)
\(104\) −6.23607 −0.611497
\(105\) 1.61803 0.157904
\(106\) 1.00000 0.0971286
\(107\) −2.52786 −0.244378 −0.122189 0.992507i \(-0.538991\pi\)
−0.122189 + 0.992507i \(0.538991\pi\)
\(108\) 1.85410 0.178411
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 1.76393 0.167425
\(112\) −3.14590 −0.297259
\(113\) 4.52786 0.425946 0.212973 0.977058i \(-0.431685\pi\)
0.212973 + 0.977058i \(0.431685\pi\)
\(114\) −0.326238 −0.0305550
\(115\) −6.85410 −0.639148
\(116\) 11.1246 1.03289
\(117\) −4.23607 −0.391625
\(118\) −3.67376 −0.338197
\(119\) 7.85410 0.719984
\(120\) −2.38197 −0.217443
\(121\) 0 0
\(122\) −3.27051 −0.296098
\(123\) 4.23607 0.381953
\(124\) −9.43769 −0.847530
\(125\) −11.9443 −1.06833
\(126\) 0.381966 0.0340282
\(127\) −5.70820 −0.506521 −0.253261 0.967398i \(-0.581503\pi\)
−0.253261 + 0.967398i \(0.581503\pi\)
\(128\) 10.0902 0.891853
\(129\) −6.70820 −0.590624
\(130\) 2.61803 0.229617
\(131\) 12.7984 1.11820 0.559100 0.829101i \(-0.311147\pi\)
0.559100 + 0.829101i \(0.311147\pi\)
\(132\) 0 0
\(133\) 0.854102 0.0740600
\(134\) 1.85410 0.160170
\(135\) −1.61803 −0.139258
\(136\) −11.5623 −0.991460
\(137\) 14.2361 1.21627 0.608135 0.793834i \(-0.291918\pi\)
0.608135 + 0.793834i \(0.291918\pi\)
\(138\) −1.61803 −0.137736
\(139\) −5.56231 −0.471789 −0.235894 0.971779i \(-0.575802\pi\)
−0.235894 + 0.971779i \(0.575802\pi\)
\(140\) 3.00000 0.253546
\(141\) −1.09017 −0.0918089
\(142\) 2.03444 0.170727
\(143\) 0 0
\(144\) 3.14590 0.262158
\(145\) −9.70820 −0.806222
\(146\) −2.94427 −0.243670
\(147\) 6.00000 0.494872
\(148\) 3.27051 0.268834
\(149\) 0.236068 0.0193394 0.00966972 0.999953i \(-0.496922\pi\)
0.00966972 + 0.999953i \(0.496922\pi\)
\(150\) −0.909830 −0.0742873
\(151\) 18.9443 1.54166 0.770831 0.637039i \(-0.219841\pi\)
0.770831 + 0.637039i \(0.219841\pi\)
\(152\) −1.25735 −0.101985
\(153\) −7.85410 −0.634967
\(154\) 0 0
\(155\) 8.23607 0.661537
\(156\) −7.85410 −0.628831
\(157\) 2.29180 0.182905 0.0914526 0.995809i \(-0.470849\pi\)
0.0914526 + 0.995809i \(0.470849\pi\)
\(158\) −4.20163 −0.334263
\(159\) 2.61803 0.207624
\(160\) −6.70820 −0.530330
\(161\) 4.23607 0.333849
\(162\) −0.381966 −0.0300101
\(163\) −11.8541 −0.928485 −0.464242 0.885708i \(-0.653673\pi\)
−0.464242 + 0.885708i \(0.653673\pi\)
\(164\) 7.85410 0.613302
\(165\) 0 0
\(166\) 2.85410 0.221521
\(167\) −17.0344 −1.31816 −0.659082 0.752071i \(-0.729055\pi\)
−0.659082 + 0.752071i \(0.729055\pi\)
\(168\) 1.47214 0.113578
\(169\) 4.94427 0.380329
\(170\) 4.85410 0.372293
\(171\) −0.854102 −0.0653148
\(172\) −12.4377 −0.948365
\(173\) 11.0344 0.838933 0.419467 0.907771i \(-0.362217\pi\)
0.419467 + 0.907771i \(0.362217\pi\)
\(174\) −2.29180 −0.173741
\(175\) 2.38197 0.180060
\(176\) 0 0
\(177\) −9.61803 −0.722936
\(178\) 1.43769 0.107760
\(179\) −17.4721 −1.30593 −0.652964 0.757389i \(-0.726475\pi\)
−0.652964 + 0.757389i \(0.726475\pi\)
\(180\) −3.00000 −0.223607
\(181\) 11.4721 0.852717 0.426359 0.904554i \(-0.359796\pi\)
0.426359 + 0.904554i \(0.359796\pi\)
\(182\) −1.61803 −0.119937
\(183\) −8.56231 −0.632944
\(184\) −6.23607 −0.459729
\(185\) −2.85410 −0.209838
\(186\) 1.94427 0.142561
\(187\) 0 0
\(188\) −2.02129 −0.147417
\(189\) 1.00000 0.0727393
\(190\) 0.527864 0.0382953
\(191\) −23.1803 −1.67727 −0.838635 0.544693i \(-0.816646\pi\)
−0.838635 + 0.544693i \(0.816646\pi\)
\(192\) 4.70820 0.339785
\(193\) −9.85410 −0.709314 −0.354657 0.934997i \(-0.615402\pi\)
−0.354657 + 0.934997i \(0.615402\pi\)
\(194\) −0.437694 −0.0314246
\(195\) 6.85410 0.490832
\(196\) 11.1246 0.794615
\(197\) −16.0344 −1.14241 −0.571203 0.820809i \(-0.693523\pi\)
−0.571203 + 0.820809i \(0.693523\pi\)
\(198\) 0 0
\(199\) −6.70820 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(200\) −3.50658 −0.247952
\(201\) 4.85410 0.342382
\(202\) 2.20163 0.154906
\(203\) 6.00000 0.421117
\(204\) −14.5623 −1.01957
\(205\) −6.85410 −0.478711
\(206\) −2.65248 −0.184807
\(207\) −4.23607 −0.294427
\(208\) −13.3262 −0.924008
\(209\) 0 0
\(210\) −0.618034 −0.0426484
\(211\) 1.38197 0.0951385 0.0475692 0.998868i \(-0.484853\pi\)
0.0475692 + 0.998868i \(0.484853\pi\)
\(212\) 4.85410 0.333381
\(213\) 5.32624 0.364948
\(214\) 0.965558 0.0660042
\(215\) 10.8541 0.740244
\(216\) −1.47214 −0.100166
\(217\) −5.09017 −0.345543
\(218\) 4.58359 0.310440
\(219\) −7.70820 −0.520872
\(220\) 0 0
\(221\) 33.2705 2.23802
\(222\) −0.673762 −0.0452199
\(223\) −15.1803 −1.01655 −0.508275 0.861195i \(-0.669717\pi\)
−0.508275 + 0.861195i \(0.669717\pi\)
\(224\) 4.14590 0.277009
\(225\) −2.38197 −0.158798
\(226\) −1.72949 −0.115044
\(227\) −9.18034 −0.609321 −0.304660 0.952461i \(-0.598543\pi\)
−0.304660 + 0.952461i \(0.598543\pi\)
\(228\) −1.58359 −0.104876
\(229\) −8.47214 −0.559855 −0.279927 0.960021i \(-0.590310\pi\)
−0.279927 + 0.960021i \(0.590310\pi\)
\(230\) 2.61803 0.172628
\(231\) 0 0
\(232\) −8.83282 −0.579903
\(233\) −10.8541 −0.711076 −0.355538 0.934662i \(-0.615702\pi\)
−0.355538 + 0.934662i \(0.615702\pi\)
\(234\) 1.61803 0.105774
\(235\) 1.76393 0.115066
\(236\) −17.8328 −1.16082
\(237\) −11.0000 −0.714527
\(238\) −3.00000 −0.194461
\(239\) 2.61803 0.169347 0.0846733 0.996409i \(-0.473015\pi\)
0.0846733 + 0.996409i \(0.473015\pi\)
\(240\) −5.09017 −0.328569
\(241\) 21.7082 1.39835 0.699174 0.714951i \(-0.253551\pi\)
0.699174 + 0.714951i \(0.253551\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −15.8754 −1.01632
\(245\) −9.70820 −0.620234
\(246\) −1.61803 −0.103162
\(247\) 3.61803 0.230210
\(248\) 7.49342 0.475833
\(249\) 7.47214 0.473527
\(250\) 4.56231 0.288546
\(251\) 24.9787 1.57664 0.788321 0.615264i \(-0.210951\pi\)
0.788321 + 0.615264i \(0.210951\pi\)
\(252\) 1.85410 0.116797
\(253\) 0 0
\(254\) 2.18034 0.136807
\(255\) 12.7082 0.795819
\(256\) 5.56231 0.347644
\(257\) −12.7426 −0.794864 −0.397432 0.917632i \(-0.630099\pi\)
−0.397432 + 0.917632i \(0.630099\pi\)
\(258\) 2.56231 0.159522
\(259\) 1.76393 0.109605
\(260\) 12.7082 0.788129
\(261\) −6.00000 −0.371391
\(262\) −4.88854 −0.302015
\(263\) 18.2705 1.12661 0.563304 0.826250i \(-0.309530\pi\)
0.563304 + 0.826250i \(0.309530\pi\)
\(264\) 0 0
\(265\) −4.23607 −0.260220
\(266\) −0.326238 −0.0200029
\(267\) 3.76393 0.230349
\(268\) 9.00000 0.549762
\(269\) 1.41641 0.0863599 0.0431800 0.999067i \(-0.486251\pi\)
0.0431800 + 0.999067i \(0.486251\pi\)
\(270\) 0.618034 0.0376124
\(271\) 16.3820 0.995134 0.497567 0.867426i \(-0.334227\pi\)
0.497567 + 0.867426i \(0.334227\pi\)
\(272\) −24.7082 −1.49815
\(273\) −4.23607 −0.256378
\(274\) −5.43769 −0.328503
\(275\) 0 0
\(276\) −7.85410 −0.472761
\(277\) 22.2148 1.33476 0.667378 0.744719i \(-0.267416\pi\)
0.667378 + 0.744719i \(0.267416\pi\)
\(278\) 2.12461 0.127426
\(279\) 5.09017 0.304741
\(280\) −2.38197 −0.142350
\(281\) 29.2361 1.74408 0.872039 0.489437i \(-0.162798\pi\)
0.872039 + 0.489437i \(0.162798\pi\)
\(282\) 0.416408 0.0247967
\(283\) 7.70820 0.458205 0.229103 0.973402i \(-0.426421\pi\)
0.229103 + 0.973402i \(0.426421\pi\)
\(284\) 9.87539 0.585996
\(285\) 1.38197 0.0818606
\(286\) 0 0
\(287\) 4.23607 0.250047
\(288\) −4.14590 −0.244299
\(289\) 44.6869 2.62864
\(290\) 3.70820 0.217753
\(291\) −1.14590 −0.0671737
\(292\) −14.2918 −0.836364
\(293\) 9.65248 0.563904 0.281952 0.959429i \(-0.409018\pi\)
0.281952 + 0.959429i \(0.409018\pi\)
\(294\) −2.29180 −0.133660
\(295\) 15.5623 0.906072
\(296\) −2.59675 −0.150933
\(297\) 0 0
\(298\) −0.0901699 −0.00522340
\(299\) 17.9443 1.03774
\(300\) −4.41641 −0.254981
\(301\) −6.70820 −0.386654
\(302\) −7.23607 −0.416389
\(303\) 5.76393 0.331129
\(304\) −2.68692 −0.154105
\(305\) 13.8541 0.793284
\(306\) 3.00000 0.171499
\(307\) −18.9787 −1.08317 −0.541586 0.840645i \(-0.682176\pi\)
−0.541586 + 0.840645i \(0.682176\pi\)
\(308\) 0 0
\(309\) −6.94427 −0.395046
\(310\) −3.14590 −0.178675
\(311\) −19.6525 −1.11439 −0.557195 0.830382i \(-0.688122\pi\)
−0.557195 + 0.830382i \(0.688122\pi\)
\(312\) 6.23607 0.353048
\(313\) −11.4721 −0.648443 −0.324222 0.945981i \(-0.605102\pi\)
−0.324222 + 0.945981i \(0.605102\pi\)
\(314\) −0.875388 −0.0494010
\(315\) −1.61803 −0.0911659
\(316\) −20.3951 −1.14732
\(317\) −29.1803 −1.63893 −0.819466 0.573128i \(-0.805730\pi\)
−0.819466 + 0.573128i \(0.805730\pi\)
\(318\) −1.00000 −0.0560772
\(319\) 0 0
\(320\) −7.61803 −0.425861
\(321\) 2.52786 0.141092
\(322\) −1.61803 −0.0901695
\(323\) 6.70820 0.373254
\(324\) −1.85410 −0.103006
\(325\) 10.0902 0.559702
\(326\) 4.52786 0.250775
\(327\) 12.0000 0.663602
\(328\) −6.23607 −0.344329
\(329\) −1.09017 −0.0601030
\(330\) 0 0
\(331\) 3.29180 0.180933 0.0904667 0.995899i \(-0.471164\pi\)
0.0904667 + 0.995899i \(0.471164\pi\)
\(332\) 13.8541 0.760343
\(333\) −1.76393 −0.0966629
\(334\) 6.50658 0.356024
\(335\) −7.85410 −0.429115
\(336\) 3.14590 0.171623
\(337\) 4.18034 0.227718 0.113859 0.993497i \(-0.463679\pi\)
0.113859 + 0.993497i \(0.463679\pi\)
\(338\) −1.88854 −0.102723
\(339\) −4.52786 −0.245920
\(340\) 23.5623 1.27785
\(341\) 0 0
\(342\) 0.326238 0.0176409
\(343\) 13.0000 0.701934
\(344\) 9.87539 0.532445
\(345\) 6.85410 0.369012
\(346\) −4.21478 −0.226588
\(347\) −10.4721 −0.562174 −0.281087 0.959682i \(-0.590695\pi\)
−0.281087 + 0.959682i \(0.590695\pi\)
\(348\) −11.1246 −0.596342
\(349\) −0.708204 −0.0379093 −0.0189546 0.999820i \(-0.506034\pi\)
−0.0189546 + 0.999820i \(0.506034\pi\)
\(350\) −0.909830 −0.0486325
\(351\) 4.23607 0.226105
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 3.67376 0.195258
\(355\) −8.61803 −0.457398
\(356\) 6.97871 0.369871
\(357\) −7.85410 −0.415683
\(358\) 6.67376 0.352719
\(359\) 3.70820 0.195712 0.0978558 0.995201i \(-0.468802\pi\)
0.0978558 + 0.995201i \(0.468802\pi\)
\(360\) 2.38197 0.125541
\(361\) −18.2705 −0.961606
\(362\) −4.38197 −0.230311
\(363\) 0 0
\(364\) −7.85410 −0.411667
\(365\) 12.4721 0.652821
\(366\) 3.27051 0.170952
\(367\) 28.8541 1.50617 0.753086 0.657922i \(-0.228564\pi\)
0.753086 + 0.657922i \(0.228564\pi\)
\(368\) −13.3262 −0.694678
\(369\) −4.23607 −0.220521
\(370\) 1.09017 0.0566752
\(371\) 2.61803 0.135922
\(372\) 9.43769 0.489322
\(373\) −34.8885 −1.80646 −0.903230 0.429156i \(-0.858811\pi\)
−0.903230 + 0.429156i \(0.858811\pi\)
\(374\) 0 0
\(375\) 11.9443 0.616800
\(376\) 1.60488 0.0827653
\(377\) 25.4164 1.30901
\(378\) −0.381966 −0.0196462
\(379\) 10.8885 0.559307 0.279653 0.960101i \(-0.409780\pi\)
0.279653 + 0.960101i \(0.409780\pi\)
\(380\) 2.56231 0.131444
\(381\) 5.70820 0.292440
\(382\) 8.85410 0.453015
\(383\) 0.708204 0.0361875 0.0180938 0.999836i \(-0.494240\pi\)
0.0180938 + 0.999836i \(0.494240\pi\)
\(384\) −10.0902 −0.514912
\(385\) 0 0
\(386\) 3.76393 0.191579
\(387\) 6.70820 0.340997
\(388\) −2.12461 −0.107861
\(389\) 5.74265 0.291164 0.145582 0.989346i \(-0.453495\pi\)
0.145582 + 0.989346i \(0.453495\pi\)
\(390\) −2.61803 −0.132569
\(391\) 33.2705 1.68256
\(392\) −8.83282 −0.446125
\(393\) −12.7984 −0.645593
\(394\) 6.12461 0.308553
\(395\) 17.7984 0.895533
\(396\) 0 0
\(397\) −5.29180 −0.265588 −0.132794 0.991144i \(-0.542395\pi\)
−0.132794 + 0.991144i \(0.542395\pi\)
\(398\) 2.56231 0.128437
\(399\) −0.854102 −0.0427586
\(400\) −7.49342 −0.374671
\(401\) 28.6869 1.43256 0.716278 0.697815i \(-0.245844\pi\)
0.716278 + 0.697815i \(0.245844\pi\)
\(402\) −1.85410 −0.0924742
\(403\) −21.5623 −1.07409
\(404\) 10.6869 0.531694
\(405\) 1.61803 0.0804008
\(406\) −2.29180 −0.113740
\(407\) 0 0
\(408\) 11.5623 0.572419
\(409\) 2.47214 0.122239 0.0611196 0.998130i \(-0.480533\pi\)
0.0611196 + 0.998130i \(0.480533\pi\)
\(410\) 2.61803 0.129295
\(411\) −14.2361 −0.702213
\(412\) −12.8754 −0.634325
\(413\) −9.61803 −0.473273
\(414\) 1.61803 0.0795220
\(415\) −12.0902 −0.593483
\(416\) 17.5623 0.861063
\(417\) 5.56231 0.272387
\(418\) 0 0
\(419\) −24.4508 −1.19450 −0.597251 0.802054i \(-0.703740\pi\)
−0.597251 + 0.802054i \(0.703740\pi\)
\(420\) −3.00000 −0.146385
\(421\) −27.5066 −1.34059 −0.670294 0.742095i \(-0.733832\pi\)
−0.670294 + 0.742095i \(0.733832\pi\)
\(422\) −0.527864 −0.0256960
\(423\) 1.09017 0.0530059
\(424\) −3.85410 −0.187172
\(425\) 18.7082 0.907481
\(426\) −2.03444 −0.0985690
\(427\) −8.56231 −0.414359
\(428\) 4.68692 0.226551
\(429\) 0 0
\(430\) −4.14590 −0.199933
\(431\) −17.0902 −0.823205 −0.411602 0.911364i \(-0.635031\pi\)
−0.411602 + 0.911364i \(0.635031\pi\)
\(432\) −3.14590 −0.151357
\(433\) −27.3050 −1.31219 −0.656096 0.754677i \(-0.727793\pi\)
−0.656096 + 0.754677i \(0.727793\pi\)
\(434\) 1.94427 0.0933280
\(435\) 9.70820 0.465473
\(436\) 22.2492 1.06554
\(437\) 3.61803 0.173074
\(438\) 2.94427 0.140683
\(439\) 36.7082 1.75199 0.875993 0.482323i \(-0.160207\pi\)
0.875993 + 0.482323i \(0.160207\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −12.7082 −0.604468
\(443\) 17.5967 0.836047 0.418023 0.908436i \(-0.362723\pi\)
0.418023 + 0.908436i \(0.362723\pi\)
\(444\) −3.27051 −0.155212
\(445\) −6.09017 −0.288702
\(446\) 5.79837 0.274561
\(447\) −0.236068 −0.0111656
\(448\) 4.70820 0.222442
\(449\) −26.9443 −1.27158 −0.635789 0.771863i \(-0.719325\pi\)
−0.635789 + 0.771863i \(0.719325\pi\)
\(450\) 0.909830 0.0428898
\(451\) 0 0
\(452\) −8.39512 −0.394873
\(453\) −18.9443 −0.890080
\(454\) 3.50658 0.164572
\(455\) 6.85410 0.321325
\(456\) 1.25735 0.0588810
\(457\) −22.9787 −1.07490 −0.537449 0.843296i \(-0.680612\pi\)
−0.537449 + 0.843296i \(0.680612\pi\)
\(458\) 3.23607 0.151212
\(459\) 7.85410 0.366598
\(460\) 12.7082 0.592523
\(461\) −24.2705 −1.13039 −0.565195 0.824957i \(-0.691199\pi\)
−0.565195 + 0.824957i \(0.691199\pi\)
\(462\) 0 0
\(463\) 35.2705 1.63916 0.819580 0.572965i \(-0.194207\pi\)
0.819580 + 0.572965i \(0.194207\pi\)
\(464\) −18.8754 −0.876268
\(465\) −8.23607 −0.381939
\(466\) 4.14590 0.192055
\(467\) −14.8885 −0.688960 −0.344480 0.938794i \(-0.611945\pi\)
−0.344480 + 0.938794i \(0.611945\pi\)
\(468\) 7.85410 0.363056
\(469\) 4.85410 0.224142
\(470\) −0.673762 −0.0310783
\(471\) −2.29180 −0.105600
\(472\) 14.1591 0.651723
\(473\) 0 0
\(474\) 4.20163 0.192987
\(475\) 2.03444 0.0933466
\(476\) −14.5623 −0.667462
\(477\) −2.61803 −0.119872
\(478\) −1.00000 −0.0457389
\(479\) −30.6180 −1.39897 −0.699487 0.714645i \(-0.746588\pi\)
−0.699487 + 0.714645i \(0.746588\pi\)
\(480\) 6.70820 0.306186
\(481\) 7.47214 0.340700
\(482\) −8.29180 −0.377681
\(483\) −4.23607 −0.192748
\(484\) 0 0
\(485\) 1.85410 0.0841904
\(486\) 0.381966 0.0173263
\(487\) 0.708204 0.0320918 0.0160459 0.999871i \(-0.494892\pi\)
0.0160459 + 0.999871i \(0.494892\pi\)
\(488\) 12.6049 0.570596
\(489\) 11.8541 0.536061
\(490\) 3.70820 0.167520
\(491\) −29.0902 −1.31282 −0.656410 0.754404i \(-0.727926\pi\)
−0.656410 + 0.754404i \(0.727926\pi\)
\(492\) −7.85410 −0.354090
\(493\) 47.1246 2.12239
\(494\) −1.38197 −0.0621776
\(495\) 0 0
\(496\) 16.0132 0.719012
\(497\) 5.32624 0.238914
\(498\) −2.85410 −0.127895
\(499\) −24.8541 −1.11262 −0.556311 0.830974i \(-0.687784\pi\)
−0.556311 + 0.830974i \(0.687784\pi\)
\(500\) 22.1459 0.990395
\(501\) 17.0344 0.761043
\(502\) −9.54102 −0.425837
\(503\) −22.6525 −1.01002 −0.505012 0.863112i \(-0.668512\pi\)
−0.505012 + 0.863112i \(0.668512\pi\)
\(504\) −1.47214 −0.0655741
\(505\) −9.32624 −0.415012
\(506\) 0 0
\(507\) −4.94427 −0.219583
\(508\) 10.5836 0.469571
\(509\) −3.74265 −0.165890 −0.0829449 0.996554i \(-0.526433\pi\)
−0.0829449 + 0.996554i \(0.526433\pi\)
\(510\) −4.85410 −0.214943
\(511\) −7.70820 −0.340991
\(512\) −22.3050 −0.985749
\(513\) 0.854102 0.0377095
\(514\) 4.86726 0.214686
\(515\) 11.2361 0.495120
\(516\) 12.4377 0.547539
\(517\) 0 0
\(518\) −0.673762 −0.0296034
\(519\) −11.0344 −0.484358
\(520\) −10.0902 −0.442483
\(521\) −8.94427 −0.391856 −0.195928 0.980618i \(-0.562772\pi\)
−0.195928 + 0.980618i \(0.562772\pi\)
\(522\) 2.29180 0.100309
\(523\) −15.2705 −0.667733 −0.333866 0.942620i \(-0.608353\pi\)
−0.333866 + 0.942620i \(0.608353\pi\)
\(524\) −23.7295 −1.03663
\(525\) −2.38197 −0.103958
\(526\) −6.97871 −0.304286
\(527\) −39.9787 −1.74150
\(528\) 0 0
\(529\) −5.05573 −0.219814
\(530\) 1.61803 0.0702829
\(531\) 9.61803 0.417387
\(532\) −1.58359 −0.0686574
\(533\) 17.9443 0.777253
\(534\) −1.43769 −0.0622151
\(535\) −4.09017 −0.176833
\(536\) −7.14590 −0.308656
\(537\) 17.4721 0.753978
\(538\) −0.541020 −0.0233250
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) −45.5066 −1.95648 −0.978240 0.207475i \(-0.933475\pi\)
−0.978240 + 0.207475i \(0.933475\pi\)
\(542\) −6.25735 −0.268776
\(543\) −11.4721 −0.492316
\(544\) 32.5623 1.39610
\(545\) −19.4164 −0.831708
\(546\) 1.61803 0.0692455
\(547\) 11.7426 0.502079 0.251040 0.967977i \(-0.419228\pi\)
0.251040 + 0.967977i \(0.419228\pi\)
\(548\) −26.3951 −1.12754
\(549\) 8.56231 0.365430
\(550\) 0 0
\(551\) 5.12461 0.218316
\(552\) 6.23607 0.265425
\(553\) −11.0000 −0.467768
\(554\) −8.48529 −0.360505
\(555\) 2.85410 0.121150
\(556\) 10.3131 0.437372
\(557\) −40.6312 −1.72160 −0.860799 0.508944i \(-0.830036\pi\)
−0.860799 + 0.508944i \(0.830036\pi\)
\(558\) −1.94427 −0.0823076
\(559\) −28.4164 −1.20189
\(560\) −5.09017 −0.215099
\(561\) 0 0
\(562\) −11.1672 −0.471059
\(563\) −8.59675 −0.362310 −0.181155 0.983455i \(-0.557984\pi\)
−0.181155 + 0.983455i \(0.557984\pi\)
\(564\) 2.02129 0.0851115
\(565\) 7.32624 0.308217
\(566\) −2.94427 −0.123757
\(567\) −1.00000 −0.0419961
\(568\) −7.84095 −0.328999
\(569\) 11.8197 0.495506 0.247753 0.968823i \(-0.420308\pi\)
0.247753 + 0.968823i \(0.420308\pi\)
\(570\) −0.527864 −0.0221098
\(571\) 2.09017 0.0874709 0.0437354 0.999043i \(-0.486074\pi\)
0.0437354 + 0.999043i \(0.486074\pi\)
\(572\) 0 0
\(573\) 23.1803 0.968373
\(574\) −1.61803 −0.0675354
\(575\) 10.0902 0.420789
\(576\) −4.70820 −0.196175
\(577\) 18.2918 0.761497 0.380749 0.924679i \(-0.375666\pi\)
0.380749 + 0.924679i \(0.375666\pi\)
\(578\) −17.0689 −0.709972
\(579\) 9.85410 0.409523
\(580\) 18.0000 0.747409
\(581\) 7.47214 0.309996
\(582\) 0.437694 0.0181430
\(583\) 0 0
\(584\) 11.3475 0.469564
\(585\) −6.85410 −0.283382
\(586\) −3.68692 −0.152305
\(587\) 38.1246 1.57357 0.786786 0.617226i \(-0.211744\pi\)
0.786786 + 0.617226i \(0.211744\pi\)
\(588\) −11.1246 −0.458771
\(589\) −4.34752 −0.179137
\(590\) −5.94427 −0.244722
\(591\) 16.0344 0.659569
\(592\) −5.54915 −0.228069
\(593\) 15.0344 0.617391 0.308695 0.951161i \(-0.400108\pi\)
0.308695 + 0.951161i \(0.400108\pi\)
\(594\) 0 0
\(595\) 12.7082 0.520986
\(596\) −0.437694 −0.0179286
\(597\) 6.70820 0.274549
\(598\) −6.85410 −0.280285
\(599\) −18.6525 −0.762120 −0.381060 0.924550i \(-0.624441\pi\)
−0.381060 + 0.924550i \(0.624441\pi\)
\(600\) 3.50658 0.143155
\(601\) 28.8885 1.17839 0.589194 0.807992i \(-0.299445\pi\)
0.589194 + 0.807992i \(0.299445\pi\)
\(602\) 2.56231 0.104432
\(603\) −4.85410 −0.197674
\(604\) −35.1246 −1.42920
\(605\) 0 0
\(606\) −2.20163 −0.0894349
\(607\) 3.56231 0.144590 0.0722948 0.997383i \(-0.476968\pi\)
0.0722948 + 0.997383i \(0.476968\pi\)
\(608\) 3.54102 0.143607
\(609\) −6.00000 −0.243132
\(610\) −5.29180 −0.214259
\(611\) −4.61803 −0.186826
\(612\) 14.5623 0.588646
\(613\) −27.7082 −1.11912 −0.559562 0.828789i \(-0.689031\pi\)
−0.559562 + 0.828789i \(0.689031\pi\)
\(614\) 7.24922 0.292555
\(615\) 6.85410 0.276384
\(616\) 0 0
\(617\) −11.1803 −0.450104 −0.225052 0.974347i \(-0.572255\pi\)
−0.225052 + 0.974347i \(0.572255\pi\)
\(618\) 2.65248 0.106698
\(619\) −16.1246 −0.648103 −0.324051 0.946039i \(-0.605045\pi\)
−0.324051 + 0.946039i \(0.605045\pi\)
\(620\) −15.2705 −0.613278
\(621\) 4.23607 0.169988
\(622\) 7.50658 0.300986
\(623\) 3.76393 0.150799
\(624\) 13.3262 0.533476
\(625\) −7.41641 −0.296656
\(626\) 4.38197 0.175139
\(627\) 0 0
\(628\) −4.24922 −0.169562
\(629\) 13.8541 0.552399
\(630\) 0.618034 0.0246231
\(631\) −32.2148 −1.28245 −0.641225 0.767353i \(-0.721574\pi\)
−0.641225 + 0.767353i \(0.721574\pi\)
\(632\) 16.1935 0.644143
\(633\) −1.38197 −0.0549282
\(634\) 11.1459 0.442660
\(635\) −9.23607 −0.366522
\(636\) −4.85410 −0.192478
\(637\) 25.4164 1.00703
\(638\) 0 0
\(639\) −5.32624 −0.210703
\(640\) 16.3262 0.645351
\(641\) −13.9098 −0.549405 −0.274703 0.961529i \(-0.588579\pi\)
−0.274703 + 0.961529i \(0.588579\pi\)
\(642\) −0.965558 −0.0381075
\(643\) 14.1459 0.557860 0.278930 0.960311i \(-0.410020\pi\)
0.278930 + 0.960311i \(0.410020\pi\)
\(644\) −7.85410 −0.309495
\(645\) −10.8541 −0.427380
\(646\) −2.56231 −0.100813
\(647\) 15.9656 0.627671 0.313835 0.949477i \(-0.398386\pi\)
0.313835 + 0.949477i \(0.398386\pi\)
\(648\) 1.47214 0.0578310
\(649\) 0 0
\(650\) −3.85410 −0.151170
\(651\) 5.09017 0.199499
\(652\) 21.9787 0.860753
\(653\) −3.38197 −0.132347 −0.0661733 0.997808i \(-0.521079\pi\)
−0.0661733 + 0.997808i \(0.521079\pi\)
\(654\) −4.58359 −0.179233
\(655\) 20.7082 0.809136
\(656\) −13.3262 −0.520302
\(657\) 7.70820 0.300726
\(658\) 0.416408 0.0162333
\(659\) −0.875388 −0.0341003 −0.0170501 0.999855i \(-0.505427\pi\)
−0.0170501 + 0.999855i \(0.505427\pi\)
\(660\) 0 0
\(661\) 16.4377 0.639352 0.319676 0.947527i \(-0.396426\pi\)
0.319676 + 0.947527i \(0.396426\pi\)
\(662\) −1.25735 −0.0488685
\(663\) −33.2705 −1.29212
\(664\) −11.0000 −0.426883
\(665\) 1.38197 0.0535903
\(666\) 0.673762 0.0261078
\(667\) 25.4164 0.984127
\(668\) 31.5836 1.22201
\(669\) 15.1803 0.586906
\(670\) 3.00000 0.115900
\(671\) 0 0
\(672\) −4.14590 −0.159931
\(673\) −17.8328 −0.687405 −0.343702 0.939079i \(-0.611681\pi\)
−0.343702 + 0.939079i \(0.611681\pi\)
\(674\) −1.59675 −0.0615044
\(675\) 2.38197 0.0916819
\(676\) −9.16718 −0.352584
\(677\) 22.4721 0.863674 0.431837 0.901952i \(-0.357866\pi\)
0.431837 + 0.901952i \(0.357866\pi\)
\(678\) 1.72949 0.0664207
\(679\) −1.14590 −0.0439755
\(680\) −18.7082 −0.717427
\(681\) 9.18034 0.351791
\(682\) 0 0
\(683\) −49.0689 −1.87757 −0.938784 0.344505i \(-0.888047\pi\)
−0.938784 + 0.344505i \(0.888047\pi\)
\(684\) 1.58359 0.0605502
\(685\) 23.0344 0.880101
\(686\) −4.96556 −0.189586
\(687\) 8.47214 0.323232
\(688\) 21.1033 0.804557
\(689\) 11.0902 0.422502
\(690\) −2.61803 −0.0996669
\(691\) 32.6525 1.24216 0.621079 0.783748i \(-0.286694\pi\)
0.621079 + 0.783748i \(0.286694\pi\)
\(692\) −20.4590 −0.777734
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −9.00000 −0.341389
\(696\) 8.83282 0.334807
\(697\) 33.2705 1.26021
\(698\) 0.270510 0.0102389
\(699\) 10.8541 0.410540
\(700\) −4.41641 −0.166925
\(701\) −10.2016 −0.385310 −0.192655 0.981267i \(-0.561710\pi\)
−0.192655 + 0.981267i \(0.561710\pi\)
\(702\) −1.61803 −0.0610688
\(703\) 1.50658 0.0568217
\(704\) 0 0
\(705\) −1.76393 −0.0664335
\(706\) 4.58359 0.172506
\(707\) 5.76393 0.216775
\(708\) 17.8328 0.670198
\(709\) −40.2148 −1.51030 −0.755149 0.655553i \(-0.772435\pi\)
−0.755149 + 0.655553i \(0.772435\pi\)
\(710\) 3.29180 0.123539
\(711\) 11.0000 0.412532
\(712\) −5.54102 −0.207658
\(713\) −21.5623 −0.807515
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 32.3951 1.21066
\(717\) −2.61803 −0.0977723
\(718\) −1.41641 −0.0528599
\(719\) 46.4853 1.73361 0.866804 0.498648i \(-0.166170\pi\)
0.866804 + 0.498648i \(0.166170\pi\)
\(720\) 5.09017 0.189699
\(721\) −6.94427 −0.258618
\(722\) 6.97871 0.259721
\(723\) −21.7082 −0.807337
\(724\) −21.2705 −0.790512
\(725\) 14.2918 0.530784
\(726\) 0 0
\(727\) −15.8541 −0.587996 −0.293998 0.955806i \(-0.594986\pi\)
−0.293998 + 0.955806i \(0.594986\pi\)
\(728\) 6.23607 0.231124
\(729\) 1.00000 0.0370370
\(730\) −4.76393 −0.176321
\(731\) −52.6869 −1.94870
\(732\) 15.8754 0.586771
\(733\) −49.5967 −1.83190 −0.915949 0.401295i \(-0.868560\pi\)
−0.915949 + 0.401295i \(0.868560\pi\)
\(734\) −11.0213 −0.406803
\(735\) 9.70820 0.358092
\(736\) 17.5623 0.647355
\(737\) 0 0
\(738\) 1.61803 0.0595607
\(739\) 3.00000 0.110357 0.0551784 0.998477i \(-0.482427\pi\)
0.0551784 + 0.998477i \(0.482427\pi\)
\(740\) 5.29180 0.194530
\(741\) −3.61803 −0.132912
\(742\) −1.00000 −0.0367112
\(743\) −7.11146 −0.260894 −0.130447 0.991455i \(-0.541641\pi\)
−0.130447 + 0.991455i \(0.541641\pi\)
\(744\) −7.49342 −0.274722
\(745\) 0.381966 0.0139942
\(746\) 13.3262 0.487908
\(747\) −7.47214 −0.273391
\(748\) 0 0
\(749\) 2.52786 0.0923661
\(750\) −4.56231 −0.166592
\(751\) 22.8541 0.833958 0.416979 0.908916i \(-0.363089\pi\)
0.416979 + 0.908916i \(0.363089\pi\)
\(752\) 3.42956 0.125063
\(753\) −24.9787 −0.910275
\(754\) −9.70820 −0.353552
\(755\) 30.6525 1.11556
\(756\) −1.85410 −0.0674330
\(757\) 5.00000 0.181728 0.0908640 0.995863i \(-0.471037\pi\)
0.0908640 + 0.995863i \(0.471037\pi\)
\(758\) −4.15905 −0.151064
\(759\) 0 0
\(760\) −2.03444 −0.0737970
\(761\) 42.7082 1.54817 0.774086 0.633081i \(-0.218210\pi\)
0.774086 + 0.633081i \(0.218210\pi\)
\(762\) −2.18034 −0.0789854
\(763\) 12.0000 0.434429
\(764\) 42.9787 1.55492
\(765\) −12.7082 −0.459466
\(766\) −0.270510 −0.00977392
\(767\) −40.7426 −1.47113
\(768\) −5.56231 −0.200712
\(769\) 3.50658 0.126450 0.0632252 0.997999i \(-0.479861\pi\)
0.0632252 + 0.997999i \(0.479861\pi\)
\(770\) 0 0
\(771\) 12.7426 0.458915
\(772\) 18.2705 0.657570
\(773\) 4.81966 0.173351 0.0866756 0.996237i \(-0.472376\pi\)
0.0866756 + 0.996237i \(0.472376\pi\)
\(774\) −2.56231 −0.0921002
\(775\) −12.1246 −0.435529
\(776\) 1.68692 0.0605568
\(777\) −1.76393 −0.0632807
\(778\) −2.19350 −0.0786406
\(779\) 3.61803 0.129630
\(780\) −12.7082 −0.455027
\(781\) 0 0
\(782\) −12.7082 −0.454444
\(783\) 6.00000 0.214423
\(784\) −18.8754 −0.674121
\(785\) 3.70820 0.132351
\(786\) 4.88854 0.174369
\(787\) 3.70820 0.132183 0.0660916 0.997814i \(-0.478947\pi\)
0.0660916 + 0.997814i \(0.478947\pi\)
\(788\) 29.7295 1.05907
\(789\) −18.2705 −0.650447
\(790\) −6.79837 −0.241875
\(791\) −4.52786 −0.160992
\(792\) 0 0
\(793\) −36.2705 −1.28800
\(794\) 2.02129 0.0717328
\(795\) 4.23607 0.150238
\(796\) 12.4377 0.440842
\(797\) −48.5410 −1.71941 −0.859706 0.510790i \(-0.829353\pi\)
−0.859706 + 0.510790i \(0.829353\pi\)
\(798\) 0.326238 0.0115487
\(799\) −8.56231 −0.302913
\(800\) 9.87539 0.349148
\(801\) −3.76393 −0.132992
\(802\) −10.9574 −0.386920
\(803\) 0 0
\(804\) −9.00000 −0.317406
\(805\) 6.85410 0.241575
\(806\) 8.23607 0.290103
\(807\) −1.41641 −0.0498599
\(808\) −8.48529 −0.298512
\(809\) 15.9098 0.559360 0.279680 0.960093i \(-0.409772\pi\)
0.279680 + 0.960093i \(0.409772\pi\)
\(810\) −0.618034 −0.0217155
\(811\) 16.4377 0.577206 0.288603 0.957449i \(-0.406809\pi\)
0.288603 + 0.957449i \(0.406809\pi\)
\(812\) −11.1246 −0.390397
\(813\) −16.3820 −0.574541
\(814\) 0 0
\(815\) −19.1803 −0.671858
\(816\) 24.7082 0.864960
\(817\) −5.72949 −0.200449
\(818\) −0.944272 −0.0330157
\(819\) 4.23607 0.148020
\(820\) 12.7082 0.443790
\(821\) −8.59675 −0.300029 −0.150014 0.988684i \(-0.547932\pi\)
−0.150014 + 0.988684i \(0.547932\pi\)
\(822\) 5.43769 0.189661
\(823\) 25.8328 0.900475 0.450238 0.892909i \(-0.351339\pi\)
0.450238 + 0.892909i \(0.351339\pi\)
\(824\) 10.2229 0.356132
\(825\) 0 0
\(826\) 3.67376 0.127827
\(827\) 20.6525 0.718157 0.359078 0.933307i \(-0.383091\pi\)
0.359078 + 0.933307i \(0.383091\pi\)
\(828\) 7.85410 0.272949
\(829\) 42.3951 1.47244 0.736222 0.676740i \(-0.236608\pi\)
0.736222 + 0.676740i \(0.236608\pi\)
\(830\) 4.61803 0.160294
\(831\) −22.2148 −0.770622
\(832\) 19.9443 0.691443
\(833\) 47.1246 1.63277
\(834\) −2.12461 −0.0735693
\(835\) −27.5623 −0.953833
\(836\) 0 0
\(837\) −5.09017 −0.175942
\(838\) 9.33939 0.322624
\(839\) 35.8328 1.23709 0.618543 0.785751i \(-0.287723\pi\)
0.618543 + 0.785751i \(0.287723\pi\)
\(840\) 2.38197 0.0821856
\(841\) 7.00000 0.241379
\(842\) 10.5066 0.362081
\(843\) −29.2361 −1.00694
\(844\) −2.56231 −0.0881982
\(845\) 8.00000 0.275208
\(846\) −0.416408 −0.0143164
\(847\) 0 0
\(848\) −8.23607 −0.282828
\(849\) −7.70820 −0.264545
\(850\) −7.14590 −0.245102
\(851\) 7.47214 0.256142
\(852\) −9.87539 −0.338325
\(853\) −2.16718 −0.0742030 −0.0371015 0.999312i \(-0.511812\pi\)
−0.0371015 + 0.999312i \(0.511812\pi\)
\(854\) 3.27051 0.111915
\(855\) −1.38197 −0.0472622
\(856\) −3.72136 −0.127193
\(857\) 32.2361 1.10116 0.550582 0.834781i \(-0.314406\pi\)
0.550582 + 0.834781i \(0.314406\pi\)
\(858\) 0 0
\(859\) −7.58359 −0.258749 −0.129374 0.991596i \(-0.541297\pi\)
−0.129374 + 0.991596i \(0.541297\pi\)
\(860\) −20.1246 −0.686244
\(861\) −4.23607 −0.144365
\(862\) 6.52786 0.222340
\(863\) 35.8885 1.22166 0.610830 0.791762i \(-0.290836\pi\)
0.610830 + 0.791762i \(0.290836\pi\)
\(864\) 4.14590 0.141046
\(865\) 17.8541 0.607058
\(866\) 10.4296 0.354411
\(867\) −44.6869 −1.51765
\(868\) 9.43769 0.320336
\(869\) 0 0
\(870\) −3.70820 −0.125720
\(871\) 20.5623 0.696727
\(872\) −17.6656 −0.598234
\(873\) 1.14590 0.0387828
\(874\) −1.38197 −0.0467457
\(875\) 11.9443 0.403790
\(876\) 14.2918 0.482875
\(877\) −40.0557 −1.35259 −0.676293 0.736633i \(-0.736415\pi\)
−0.676293 + 0.736633i \(0.736415\pi\)
\(878\) −14.0213 −0.473195
\(879\) −9.65248 −0.325570
\(880\) 0 0
\(881\) 30.7984 1.03762 0.518812 0.854888i \(-0.326375\pi\)
0.518812 + 0.854888i \(0.326375\pi\)
\(882\) 2.29180 0.0771688
\(883\) 18.9443 0.637526 0.318763 0.947835i \(-0.396733\pi\)
0.318763 + 0.947835i \(0.396733\pi\)
\(884\) −61.6869 −2.07476
\(885\) −15.5623 −0.523121
\(886\) −6.72136 −0.225808
\(887\) 30.4853 1.02360 0.511798 0.859106i \(-0.328980\pi\)
0.511798 + 0.859106i \(0.328980\pi\)
\(888\) 2.59675 0.0871411
\(889\) 5.70820 0.191447
\(890\) 2.32624 0.0779757
\(891\) 0 0
\(892\) 28.1459 0.942394
\(893\) −0.931116 −0.0311586
\(894\) 0.0901699 0.00301573
\(895\) −28.2705 −0.944979
\(896\) −10.0902 −0.337089
\(897\) −17.9443 −0.599142
\(898\) 10.2918 0.343442
\(899\) −30.5410 −1.01860
\(900\) 4.41641 0.147214
\(901\) 20.5623 0.685030
\(902\) 0 0
\(903\) 6.70820 0.223235
\(904\) 6.66563 0.221696
\(905\) 18.5623 0.617032
\(906\) 7.23607 0.240402
\(907\) 31.3951 1.04246 0.521229 0.853417i \(-0.325474\pi\)
0.521229 + 0.853417i \(0.325474\pi\)
\(908\) 17.0213 0.564871
\(909\) −5.76393 −0.191178
\(910\) −2.61803 −0.0867870
\(911\) −10.5967 −0.351086 −0.175543 0.984472i \(-0.556168\pi\)
−0.175543 + 0.984472i \(0.556168\pi\)
\(912\) 2.68692 0.0889727
\(913\) 0 0
\(914\) 8.77709 0.290320
\(915\) −13.8541 −0.458002
\(916\) 15.7082 0.519014
\(917\) −12.7984 −0.422640
\(918\) −3.00000 −0.0990148
\(919\) −5.65248 −0.186458 −0.0932290 0.995645i \(-0.529719\pi\)
−0.0932290 + 0.995645i \(0.529719\pi\)
\(920\) −10.0902 −0.332663
\(921\) 18.9787 0.625370
\(922\) 9.27051 0.305308
\(923\) 22.5623 0.742647
\(924\) 0 0
\(925\) 4.20163 0.138149
\(926\) −13.4721 −0.442722
\(927\) 6.94427 0.228080
\(928\) 24.8754 0.816575
\(929\) 0.708204 0.0232354 0.0116177 0.999933i \(-0.496302\pi\)
0.0116177 + 0.999933i \(0.496302\pi\)
\(930\) 3.14590 0.103158
\(931\) 5.12461 0.167952
\(932\) 20.1246 0.659204
\(933\) 19.6525 0.643393
\(934\) 5.68692 0.186082
\(935\) 0 0
\(936\) −6.23607 −0.203832
\(937\) 10.3475 0.338039 0.169019 0.985613i \(-0.445940\pi\)
0.169019 + 0.985613i \(0.445940\pi\)
\(938\) −1.85410 −0.0605386
\(939\) 11.4721 0.374379
\(940\) −3.27051 −0.106672
\(941\) 41.4508 1.35126 0.675630 0.737241i \(-0.263872\pi\)
0.675630 + 0.737241i \(0.263872\pi\)
\(942\) 0.875388 0.0285217
\(943\) 17.9443 0.584346
\(944\) 30.2574 0.984793
\(945\) 1.61803 0.0526346
\(946\) 0 0
\(947\) 41.3951 1.34516 0.672580 0.740024i \(-0.265186\pi\)
0.672580 + 0.740024i \(0.265186\pi\)
\(948\) 20.3951 0.662403
\(949\) −32.6525 −1.05994
\(950\) −0.777088 −0.0252121
\(951\) 29.1803 0.946237
\(952\) 11.5623 0.374736
\(953\) 42.6525 1.38165 0.690825 0.723022i \(-0.257248\pi\)
0.690825 + 0.723022i \(0.257248\pi\)
\(954\) 1.00000 0.0323762
\(955\) −37.5066 −1.21368
\(956\) −4.85410 −0.156993
\(957\) 0 0
\(958\) 11.6950 0.377850
\(959\) −14.2361 −0.459707
\(960\) 7.61803 0.245871
\(961\) −5.09017 −0.164199
\(962\) −2.85410 −0.0920199
\(963\) −2.52786 −0.0814593
\(964\) −40.2492 −1.29634
\(965\) −15.9443 −0.513264
\(966\) 1.61803 0.0520594
\(967\) −20.9230 −0.672838 −0.336419 0.941712i \(-0.609216\pi\)
−0.336419 + 0.941712i \(0.609216\pi\)
\(968\) 0 0
\(969\) −6.70820 −0.215499
\(970\) −0.708204 −0.0227391
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 1.85410 0.0594703
\(973\) 5.56231 0.178319
\(974\) −0.270510 −0.00866769
\(975\) −10.0902 −0.323144
\(976\) 26.9361 0.862205
\(977\) 48.5967 1.55475 0.777374 0.629039i \(-0.216551\pi\)
0.777374 + 0.629039i \(0.216551\pi\)
\(978\) −4.52786 −0.144785
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) −12.0000 −0.383131
\(982\) 11.1115 0.354581
\(983\) −43.8885 −1.39983 −0.699914 0.714228i \(-0.746778\pi\)
−0.699914 + 0.714228i \(0.746778\pi\)
\(984\) 6.23607 0.198799
\(985\) −25.9443 −0.826653
\(986\) −18.0000 −0.573237
\(987\) 1.09017 0.0347005
\(988\) −6.70820 −0.213416
\(989\) −28.4164 −0.903589
\(990\) 0 0
\(991\) −38.7426 −1.23070 −0.615350 0.788254i \(-0.710985\pi\)
−0.615350 + 0.788254i \(0.710985\pi\)
\(992\) −21.1033 −0.670031
\(993\) −3.29180 −0.104462
\(994\) −2.03444 −0.0645286
\(995\) −10.8541 −0.344098
\(996\) −13.8541 −0.438984
\(997\) −45.7984 −1.45045 −0.725225 0.688512i \(-0.758264\pi\)
−0.725225 + 0.688512i \(0.758264\pi\)
\(998\) 9.49342 0.300509
\(999\) 1.76393 0.0558083
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.a.d.1.2 2
3.2 odd 2 1089.2.a.t.1.1 2
4.3 odd 2 5808.2.a.cj.1.2 2
5.4 even 2 9075.2.a.cb.1.1 2
11.2 odd 10 363.2.e.f.202.1 4
11.3 even 5 363.2.e.k.130.1 4
11.4 even 5 363.2.e.k.148.1 4
11.5 even 5 33.2.e.b.25.1 yes 4
11.6 odd 10 363.2.e.f.124.1 4
11.7 odd 10 363.2.e.b.148.1 4
11.8 odd 10 363.2.e.b.130.1 4
11.9 even 5 33.2.e.b.4.1 4
11.10 odd 2 363.2.a.i.1.1 2
33.5 odd 10 99.2.f.a.91.1 4
33.20 odd 10 99.2.f.a.37.1 4
33.32 even 2 1089.2.a.l.1.2 2
44.27 odd 10 528.2.y.b.289.1 4
44.31 odd 10 528.2.y.b.433.1 4
44.43 even 2 5808.2.a.ci.1.2 2
55.9 even 10 825.2.n.c.301.1 4
55.27 odd 20 825.2.bx.d.124.2 8
55.38 odd 20 825.2.bx.d.124.1 8
55.42 odd 20 825.2.bx.d.499.1 8
55.49 even 10 825.2.n.c.751.1 4
55.53 odd 20 825.2.bx.d.499.2 8
55.54 odd 2 9075.2.a.u.1.2 2
99.5 odd 30 891.2.n.b.784.1 8
99.16 even 15 891.2.n.c.190.1 8
99.20 odd 30 891.2.n.b.433.1 8
99.31 even 15 891.2.n.c.136.1 8
99.38 odd 30 891.2.n.b.190.1 8
99.49 even 15 891.2.n.c.784.1 8
99.86 odd 30 891.2.n.b.136.1 8
99.97 even 15 891.2.n.c.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.4.1 4 11.9 even 5
33.2.e.b.25.1 yes 4 11.5 even 5
99.2.f.a.37.1 4 33.20 odd 10
99.2.f.a.91.1 4 33.5 odd 10
363.2.a.d.1.2 2 1.1 even 1 trivial
363.2.a.i.1.1 2 11.10 odd 2
363.2.e.b.130.1 4 11.8 odd 10
363.2.e.b.148.1 4 11.7 odd 10
363.2.e.f.124.1 4 11.6 odd 10
363.2.e.f.202.1 4 11.2 odd 10
363.2.e.k.130.1 4 11.3 even 5
363.2.e.k.148.1 4 11.4 even 5
528.2.y.b.289.1 4 44.27 odd 10
528.2.y.b.433.1 4 44.31 odd 10
825.2.n.c.301.1 4 55.9 even 10
825.2.n.c.751.1 4 55.49 even 10
825.2.bx.d.124.1 8 55.38 odd 20
825.2.bx.d.124.2 8 55.27 odd 20
825.2.bx.d.499.1 8 55.42 odd 20
825.2.bx.d.499.2 8 55.53 odd 20
891.2.n.b.136.1 8 99.86 odd 30
891.2.n.b.190.1 8 99.38 odd 30
891.2.n.b.433.1 8 99.20 odd 30
891.2.n.b.784.1 8 99.5 odd 30
891.2.n.c.136.1 8 99.31 even 15
891.2.n.c.190.1 8 99.16 even 15
891.2.n.c.433.1 8 99.97 even 15
891.2.n.c.784.1 8 99.49 even 15
1089.2.a.l.1.2 2 33.32 even 2
1089.2.a.t.1.1 2 3.2 odd 2
5808.2.a.ci.1.2 2 44.43 even 2
5808.2.a.cj.1.2 2 4.3 odd 2
9075.2.a.u.1.2 2 55.54 odd 2
9075.2.a.cb.1.1 2 5.4 even 2