Properties

Label 363.10.a
Level $363$
Weight $10$
Character orbit 363.a
Rep. character $\chi_{363}(1,\cdot)$
Character field $\Q$
Dimension $164$
Newform subspaces $18$
Sturm bound $440$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(440\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(363))\).

Total New Old
Modular forms 408 164 244
Cusp forms 384 164 220
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(100\)\(40\)\(60\)\(94\)\(40\)\(54\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(104\)\(42\)\(62\)\(98\)\(42\)\(56\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(104\)\(44\)\(60\)\(98\)\(44\)\(54\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(100\)\(38\)\(62\)\(94\)\(38\)\(56\)\(6\)\(0\)\(6\)
Plus space\(+\)\(200\)\(78\)\(122\)\(188\)\(78\)\(110\)\(12\)\(0\)\(12\)
Minus space\(-\)\(208\)\(86\)\(122\)\(196\)\(86\)\(110\)\(12\)\(0\)\(12\)

Trace form

\( 164 q + 50 q^{2} + 41728 q^{4} - 1708 q^{5} + 1782 q^{6} - 2824 q^{7} + 45540 q^{8} + 1076004 q^{9} - 82948 q^{10} + 37260 q^{12} - 176248 q^{13} + 265908 q^{14} + 219996 q^{15} + 10567220 q^{16} + 166508 q^{17}+ \cdots - 2034267006 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(363))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11
363.10.a.a 363.a 1.a $1$ $186.958$ \(\Q\) None 3.10.a.b \(-18\) \(81\) \(-1530\) \(-9128\) $-$ $-$ $\mathrm{SU}(2)$ \(q-18q^{2}+3^{4}q^{3}-188q^{4}-1530q^{5}+\cdots\)
363.10.a.b 363.a 1.a $1$ $186.958$ \(\Q\) None 3.10.a.a \(36\) \(-81\) \(-1314\) \(4480\) $+$ $-$ $\mathrm{SU}(2)$ \(q+6^{2}q^{2}-3^{4}q^{3}+28^{2}q^{4}-1314q^{5}+\cdots\)
363.10.a.c 363.a 1.a $3$ $186.958$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 33.10.a.b \(-3\) \(-243\) \(2388\) \(228\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}-3^{4}q^{3}+(-105+5\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.d 363.a 1.a $3$ $186.958$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 33.10.a.a \(51\) \(243\) \(-1362\) \(15090\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(17-\beta _{1})q^{2}+3^{4}q^{3}+(475-21\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.e 363.a 1.a $4$ $186.958$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 33.10.a.d \(-19\) \(-324\) \(1138\) \(-8122\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-5+\beta _{1})q^{2}-3^{4}q^{3}+(22^{2}+2\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.f 363.a 1.a $4$ $186.958$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 33.10.a.c \(3\) \(324\) \(2388\) \(-5372\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+3^{4}q^{3}+(175+7\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.g 363.a 1.a $6$ $186.958$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 363.10.a.g \(-3\) \(486\) \(-2388\) \(-13152\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+3^{4}q^{3}+(99+2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
363.10.a.h 363.a 1.a $6$ $186.958$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 363.10.a.g \(3\) \(486\) \(-2388\) \(13152\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3^{4}q^{3}+(99+2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
363.10.a.i 363.a 1.a $8$ $186.958$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 363.10.a.i \(-35\) \(-648\) \(112\) \(-13266\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta _{1})q^{2}-3^{4}q^{3}+(264+7\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.j 363.a 1.a $8$ $186.958$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 363.10.a.j \(0\) \(-648\) \(-1128\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-3^{4}q^{3}+(277+\beta _{2})q^{4}+(-141+\cdots)q^{5}+\cdots\)
363.10.a.k 363.a 1.a $8$ $186.958$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 363.10.a.k \(0\) \(648\) \(1372\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3^{4}q^{3}+(213+\beta _{2})q^{4}+(171+\cdots)q^{5}+\cdots\)
363.10.a.l 363.a 1.a $8$ $186.958$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 363.10.a.i \(35\) \(-648\) \(112\) \(13266\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta _{1})q^{2}-3^{4}q^{3}+(264+7\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.m 363.a 1.a $14$ $186.958$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 363.10.a.m \(0\) \(-1134\) \(-2622\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{7}q^{2}-3^{4}q^{3}+(244-\beta _{1})q^{4}+(-187+\cdots)q^{5}+\cdots\)
363.10.a.n 363.a 1.a $18$ $186.958$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 33.10.e.a \(-49\) \(1458\) \(1017\) \(-19741\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+3^{4}q^{3}+(273-5\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.o 363.a 1.a $18$ $186.958$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 33.10.e.b \(-15\) \(-1458\) \(-449\) \(533\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-3^{4}q^{3}+(232-2\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.p 363.a 1.a $18$ $186.958$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 363.10.a.p \(0\) \(1458\) \(2378\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{9}q^{2}+3^{4}q^{3}+(360+\beta _{1})q^{4}+(132+\cdots)q^{5}+\cdots\)
363.10.a.q 363.a 1.a $18$ $186.958$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 33.10.e.b \(15\) \(-1458\) \(-449\) \(-533\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-3^{4}q^{3}+(232-2\beta _{1}+\cdots)q^{4}+\cdots\)
363.10.a.r 363.a 1.a $18$ $186.958$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 33.10.e.a \(49\) \(1458\) \(1017\) \(19741\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{2}+3^{4}q^{3}+(273-5\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(363))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(363)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)