Defining parameters
| Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 363.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(440\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(363))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 408 | 164 | 244 |
| Cusp forms | 384 | 164 | 220 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(100\) | \(40\) | \(60\) | \(94\) | \(40\) | \(54\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(104\) | \(42\) | \(62\) | \(98\) | \(42\) | \(56\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(104\) | \(44\) | \(60\) | \(98\) | \(44\) | \(54\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(100\) | \(38\) | \(62\) | \(94\) | \(38\) | \(56\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(200\) | \(78\) | \(122\) | \(188\) | \(78\) | \(110\) | \(12\) | \(0\) | \(12\) | ||||
| Minus space | \(-\) | \(208\) | \(86\) | \(122\) | \(196\) | \(86\) | \(110\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(363))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(363))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(363)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)