Properties

Label 363.10
Level 363
Weight 10
Dimension 31992
Nonzero newspaces 8
Sturm bound 96800
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(96800\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(363))\).

Total New Old
Modular forms 43880 32272 11608
Cusp forms 43240 31992 11248
Eisenstein series 640 280 360

Trace form

\( 31992 q - 18 q^{2} - 45 q^{3} + 506 q^{4} - 2844 q^{5} + 19529 q^{6} - 33562 q^{7} + 151688 q^{8} + 4597 q^{9} - 380346 q^{10} - 30700 q^{11} + 678943 q^{12} + 351842 q^{13} - 80076 q^{14} - 1149761 q^{15}+ \cdots + 1154049960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(363))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
363.10.a \(\chi_{363}(1, \cdot)\) 363.10.a.a 1 1
363.10.a.b 1
363.10.a.c 3
363.10.a.d 3
363.10.a.e 4
363.10.a.f 4
363.10.a.g 6
363.10.a.h 6
363.10.a.i 8
363.10.a.j 8
363.10.a.k 8
363.10.a.l 8
363.10.a.m 14
363.10.a.n 18
363.10.a.o 18
363.10.a.p 18
363.10.a.q 18
363.10.a.r 18
363.10.d \(\chi_{363}(362, \cdot)\) n/a 316 1
363.10.e \(\chi_{363}(124, \cdot)\) n/a 648 4
363.10.f \(\chi_{363}(161, \cdot)\) n/a 1264 4
363.10.i \(\chi_{363}(34, \cdot)\) n/a 1980 10
363.10.j \(\chi_{363}(32, \cdot)\) n/a 3940 10
363.10.m \(\chi_{363}(4, \cdot)\) n/a 7920 40
363.10.p \(\chi_{363}(2, \cdot)\) n/a 15760 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(363))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(363)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)