Defining parameters
| Level: | \( N \) | = | \( 363 = 3 \cdot 11^{2} \) |
| Weight: | \( k \) | = | \( 10 \) |
| Nonzero newspaces: | \( 8 \) | ||
| Sturm bound: | \(96800\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(363))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 43880 | 32272 | 11608 |
| Cusp forms | 43240 | 31992 | 11248 |
| Eisenstein series | 640 | 280 | 360 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(363))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 363.10.a | \(\chi_{363}(1, \cdot)\) | 363.10.a.a | 1 | 1 |
| 363.10.a.b | 1 | |||
| 363.10.a.c | 3 | |||
| 363.10.a.d | 3 | |||
| 363.10.a.e | 4 | |||
| 363.10.a.f | 4 | |||
| 363.10.a.g | 6 | |||
| 363.10.a.h | 6 | |||
| 363.10.a.i | 8 | |||
| 363.10.a.j | 8 | |||
| 363.10.a.k | 8 | |||
| 363.10.a.l | 8 | |||
| 363.10.a.m | 14 | |||
| 363.10.a.n | 18 | |||
| 363.10.a.o | 18 | |||
| 363.10.a.p | 18 | |||
| 363.10.a.q | 18 | |||
| 363.10.a.r | 18 | |||
| 363.10.d | \(\chi_{363}(362, \cdot)\) | n/a | 316 | 1 |
| 363.10.e | \(\chi_{363}(124, \cdot)\) | n/a | 648 | 4 |
| 363.10.f | \(\chi_{363}(161, \cdot)\) | n/a | 1264 | 4 |
| 363.10.i | \(\chi_{363}(34, \cdot)\) | n/a | 1980 | 10 |
| 363.10.j | \(\chi_{363}(32, \cdot)\) | n/a | 3940 | 10 |
| 363.10.m | \(\chi_{363}(4, \cdot)\) | n/a | 7920 | 40 |
| 363.10.p | \(\chi_{363}(2, \cdot)\) | n/a | 15760 | 40 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(363))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_1(363)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)