Properties

Label 3626.2.a.r
Level $3626$
Weight $2$
Character orbit 3626.a
Self dual yes
Analytic conductor $28.954$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3626,2,Mod(1,3626)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3626, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3626.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3626 = 2 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3626.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9537557729\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 518)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta q^{3} + q^{4} - 3 q^{5} + \beta q^{6} + q^{8} + (\beta + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + \beta q^{3} + q^{4} - 3 q^{5} + \beta q^{6} + q^{8} + (\beta + 2) q^{9} - 3 q^{10} + ( - \beta + 1) q^{11} + \beta q^{12} + ( - 2 \beta - 1) q^{13} - 3 \beta q^{15} + q^{16} + ( - \beta - 4) q^{17} + (\beta + 2) q^{18} + (\beta - 3) q^{19} - 3 q^{20} + ( - \beta + 1) q^{22} + ( - 2 \beta + 2) q^{23} + \beta q^{24} + 4 q^{25} + ( - 2 \beta - 1) q^{26} + 5 q^{27} - 4 q^{29} - 3 \beta q^{30} + ( - 2 \beta - 1) q^{31} + q^{32} - 5 q^{33} + ( - \beta - 4) q^{34} + (\beta + 2) q^{36} - q^{37} + (\beta - 3) q^{38} + ( - 3 \beta - 10) q^{39} - 3 q^{40} + ( - \beta + 8) q^{41} + (4 \beta + 1) q^{43} + ( - \beta + 1) q^{44} + ( - 3 \beta - 6) q^{45} + ( - 2 \beta + 2) q^{46} + (5 \beta - 3) q^{47} + \beta q^{48} + 4 q^{50} + ( - 5 \beta - 5) q^{51} + ( - 2 \beta - 1) q^{52} + ( - \beta + 2) q^{53} + 5 q^{54} + (3 \beta - 3) q^{55} + ( - 2 \beta + 5) q^{57} - 4 q^{58} - \beta q^{59} - 3 \beta q^{60} + ( - 4 \beta + 6) q^{61} + ( - 2 \beta - 1) q^{62} + q^{64} + (6 \beta + 3) q^{65} - 5 q^{66} + ( - 2 \beta - 1) q^{67} + ( - \beta - 4) q^{68} - 10 q^{69} + ( - \beta - 3) q^{71} + (\beta + 2) q^{72} + ( - 2 \beta - 2) q^{73} - q^{74} + 4 \beta q^{75} + (\beta - 3) q^{76} + ( - 3 \beta - 10) q^{78} + (4 \beta - 9) q^{79} - 3 q^{80} + (2 \beta - 6) q^{81} + ( - \beta + 8) q^{82} + (2 \beta + 1) q^{83} + (3 \beta + 12) q^{85} + (4 \beta + 1) q^{86} - 4 \beta q^{87} + ( - \beta + 1) q^{88} + (4 \beta - 4) q^{89} + ( - 3 \beta - 6) q^{90} + ( - 2 \beta + 2) q^{92} + ( - 3 \beta - 10) q^{93} + (5 \beta - 3) q^{94} + ( - 3 \beta + 9) q^{95} + \beta q^{96} + (4 \beta - 11) q^{97} + ( - 2 \beta - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} - 6 q^{5} + q^{6} + 2 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} - 6 q^{5} + q^{6} + 2 q^{8} + 5 q^{9} - 6 q^{10} + q^{11} + q^{12} - 4 q^{13} - 3 q^{15} + 2 q^{16} - 9 q^{17} + 5 q^{18} - 5 q^{19} - 6 q^{20} + q^{22} + 2 q^{23} + q^{24} + 8 q^{25} - 4 q^{26} + 10 q^{27} - 8 q^{29} - 3 q^{30} - 4 q^{31} + 2 q^{32} - 10 q^{33} - 9 q^{34} + 5 q^{36} - 2 q^{37} - 5 q^{38} - 23 q^{39} - 6 q^{40} + 15 q^{41} + 6 q^{43} + q^{44} - 15 q^{45} + 2 q^{46} - q^{47} + q^{48} + 8 q^{50} - 15 q^{51} - 4 q^{52} + 3 q^{53} + 10 q^{54} - 3 q^{55} + 8 q^{57} - 8 q^{58} - q^{59} - 3 q^{60} + 8 q^{61} - 4 q^{62} + 2 q^{64} + 12 q^{65} - 10 q^{66} - 4 q^{67} - 9 q^{68} - 20 q^{69} - 7 q^{71} + 5 q^{72} - 6 q^{73} - 2 q^{74} + 4 q^{75} - 5 q^{76} - 23 q^{78} - 14 q^{79} - 6 q^{80} - 10 q^{81} + 15 q^{82} + 4 q^{83} + 27 q^{85} + 6 q^{86} - 4 q^{87} + q^{88} - 4 q^{89} - 15 q^{90} + 2 q^{92} - 23 q^{93} - q^{94} + 15 q^{95} + q^{96} - 18 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.79129
2.79129
1.00000 −1.79129 1.00000 −3.00000 −1.79129 0 1.00000 0.208712 −3.00000
1.2 1.00000 2.79129 1.00000 −3.00000 2.79129 0 1.00000 4.79129 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(37\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3626.2.a.r 2
7.b odd 2 1 3626.2.a.m 2
7.d odd 6 2 518.2.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
518.2.e.a 4 7.d odd 6 2
3626.2.a.m 2 7.b odd 2 1
3626.2.a.r 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3626))\):

\( T_{3}^{2} - T_{3} - 5 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 17 \) Copy content Toggle raw display
$17$ \( T^{2} + 9T + 15 \) Copy content Toggle raw display
$19$ \( T^{2} + 5T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 20 \) Copy content Toggle raw display
$29$ \( (T + 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 17 \) Copy content Toggle raw display
$37$ \( (T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 15T + 51 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 75 \) Copy content Toggle raw display
$47$ \( T^{2} + T - 131 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$59$ \( T^{2} + T - 5 \) Copy content Toggle raw display
$61$ \( T^{2} - 8T - 68 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 17 \) Copy content Toggle raw display
$71$ \( T^{2} + 7T + 7 \) Copy content Toggle raw display
$73$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$79$ \( T^{2} + 14T - 35 \) Copy content Toggle raw display
$83$ \( T^{2} - 4T - 17 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 80 \) Copy content Toggle raw display
$97$ \( T^{2} + 18T - 3 \) Copy content Toggle raw display
show more
show less