Newspace parameters
Level: | \( N \) | \(=\) | \( 361 = 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 361.k (of order \(171\), degree \(108\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.88259951297\) |
Analytic rank: | \(0\) |
Dimension: | \(3348\) |
Relative dimension: | \(31\) over \(\Q(\zeta_{171})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{171}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.68057 | − | 0.0492526i | 2.14428 | − | 1.42921i | 5.18437 | + | 0.190579i | 0.225586 | + | 0.466865i | −5.81829 | + | 3.72547i | −1.02509 | + | 0.416356i | −8.53377 | − | 0.470821i | 1.40091 | − | 3.36025i | −0.581703 | − | 1.26257i |
4.2 | −2.59231 | − | 0.0476309i | −1.12649 | + | 0.750827i | 4.71913 | + | 0.173477i | 0.724103 | + | 1.49858i | 2.95597 | − | 1.89272i | −2.70404 | + | 1.09828i | −7.04756 | − | 0.388825i | −0.449173 | + | 1.07740i | −1.80572 | − | 3.91927i |
4.3 | −2.57446 | − | 0.0473030i | −1.65408 | + | 1.10248i | 4.62696 | + | 0.170089i | −0.912865 | − | 1.88924i | 4.31052 | − | 2.76004i | 3.30104 | − | 1.34077i | −6.76191 | − | 0.373065i | 0.366117 | − | 0.878175i | 2.26077 | + | 4.90695i |
4.4 | −2.10682 | − | 0.0387106i | 0.975583 | − | 0.650245i | 2.43855 | + | 0.0896418i | 1.36894 | + | 2.83311i | −2.08055 | + | 1.33218i | 0.0179410 | − | 0.00728700i | −0.926162 | − | 0.0510978i | −0.625468 | + | 1.50026i | −2.77444 | − | 6.02186i |
4.5 | −2.03170 | − | 0.0373303i | 1.47869 | − | 0.985572i | 2.12774 | + | 0.0782165i | −1.15639 | − | 2.39322i | −3.04103 | + | 1.94718i | 3.42774 | − | 1.39223i | −0.262102 | − | 0.0144606i | 0.0607472 | − | 0.145709i | 2.26009 | + | 4.90547i |
4.6 | −2.00564 | − | 0.0368515i | 0.00350894 | − | 0.00233877i | 2.02258 | + | 0.0743507i | −1.36836 | − | 2.83191i | −0.00712385 | + | 0.00456143i | −3.83080 | + | 1.55594i | −0.0479653 | − | 0.00264632i | −1.15441 | + | 2.76898i | 2.64007 | + | 5.73021i |
4.7 | −1.88090 | − | 0.0345596i | −0.161179 | + | 0.107429i | 1.53795 | + | 0.0565354i | 0.926139 | + | 1.91671i | 0.306874 | − | 0.196493i | 2.75639 | − | 1.11955i | 0.865952 | + | 0.0477759i | −1.13997 | + | 2.73436i | −1.67573 | − | 3.63715i |
4.8 | −1.74837 | − | 0.0321244i | −2.71203 | + | 1.80762i | 1.05711 | + | 0.0388596i | −0.570558 | − | 1.18081i | 4.79969 | − | 3.07326i | −1.39625 | + | 0.567108i | 1.64505 | + | 0.0907600i | 2.93321 | − | 7.03564i | 0.959612 | + | 2.08282i |
4.9 | −1.29904 | − | 0.0238685i | −1.21388 | + | 0.809073i | −0.311709 | − | 0.0114585i | −0.0974005 | − | 0.201577i | 1.59619 | − | 1.02205i | −0.926892 | + | 0.376471i | 2.99923 | + | 0.165472i | −0.335510 | + | 0.804760i | 0.121716 | + | 0.264182i |
4.10 | −1.15091 | − | 0.0211468i | 2.46964 | − | 1.64606i | −0.674499 | − | 0.0247948i | 0.997299 | + | 2.06398i | −2.87715 | + | 1.84225i | −1.75516 | + | 0.712886i | 3.07448 | + | 0.169624i | 2.23520 | − | 5.36139i | −1.10416 | − | 2.39655i |
4.11 | −0.937912 | − | 0.0172331i | −2.24235 | + | 1.49457i | −1.11927 | − | 0.0411447i | 1.35012 | + | 2.79416i | 2.12888 | − | 1.36313i | 4.41634 | − | 1.79376i | 2.92236 | + | 0.161231i | 1.63998 | − | 3.93370i | −1.21814 | − | 2.64394i |
4.12 | −0.933975 | − | 0.0171608i | 1.29845 | − | 0.865439i | −1.12664 | − | 0.0414155i | −0.880440 | − | 1.82213i | −1.22757 | + | 0.786016i | −2.85494 | + | 1.15958i | 2.91697 | + | 0.160934i | −0.217434 | + | 0.521541i | 0.791040 | + | 1.71694i |
4.13 | −0.720055 | − | 0.0132303i | −1.41262 | + | 0.941535i | −1.48035 | − | 0.0544180i | 1.90263 | + | 3.93762i | 1.02962 | − | 0.659268i | −4.52008 | + | 1.83590i | 2.50338 | + | 0.138115i | −0.0454172 | + | 0.108939i | −1.31790 | − | 2.86047i |
4.14 | −0.495679 | − | 0.00910759i | 2.27739 | − | 1.51792i | −1.75304 | − | 0.0644421i | −0.130251 | − | 0.269563i | −1.14268 | + | 0.731660i | 4.23959 | − | 1.72197i | 1.85838 | + | 0.102529i | 1.72799 | − | 4.14479i | 0.0621075 | + | 0.134803i |
4.15 | −0.351568 | − | 0.00645970i | −0.533085 | + | 0.355312i | −1.87509 | − | 0.0689290i | −1.63080 | − | 3.37505i | 0.189711 | − | 0.121473i | 1.84053 | − | 0.747557i | 1.36096 | + | 0.0750865i | −0.996479 | + | 2.39017i | 0.551535 | + | 1.19709i |
4.16 | 0.0510612 | 0.000938197i | −1.90048 | + | 1.26671i | −1.99604 | − | 0.0733752i | −0.539848 | − | 1.11725i | −0.0982292 | + | 0.0628965i | 0.439274 | − | 0.178418i | −0.203836 | − | 0.0112460i | 0.852866 | − | 2.04570i | −0.0265171 | − | 0.0575549i | |
4.17 | 0.126711 | + | 0.00232818i | −0.167706 | + | 0.111779i | −1.98260 | − | 0.0728810i | −0.267723 | − | 0.554071i | −0.0215104 | + | 0.0137732i | 1.97597 | − | 0.802569i | −0.504126 | − | 0.0278134i | −1.13878 | + | 2.73150i | −0.0326333 | − | 0.0708300i |
4.18 | 0.328494 | + | 0.00603573i | 0.508770 | − | 0.339105i | −1.89078 | − | 0.0695056i | 0.597036 | + | 1.23561i | 0.169175 | − | 0.108323i | −2.54147 | + | 1.03226i | −1.27679 | − | 0.0704424i | −1.01056 | + | 2.42394i | 0.188665 | + | 0.409493i |
4.19 | 0.554324 | + | 0.0101851i | 2.33009 | − | 1.55305i | −1.69148 | − | 0.0621793i | −1.51974 | − | 3.14522i | 1.30744 | − | 0.837161i | −1.92218 | + | 0.780722i | −2.04415 | − | 0.112779i | 1.86295 | − | 4.46850i | −0.810397 | − | 1.75895i |
4.20 | 0.564438 | + | 0.0103710i | 0.721659 | − | 0.480999i | −1.68017 | − | 0.0617635i | 1.58305 | + | 3.27624i | 0.412320 | − | 0.264010i | 2.92391 | − | 1.18759i | −2.07506 | − | 0.114484i | −0.864981 | + | 2.07476i | 0.859559 | + | 1.86565i |
See next 80 embeddings (of 3348 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
361.k | even | 171 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 361.2.k.a | ✓ | 3348 |
361.k | even | 171 | 1 | inner | 361.2.k.a | ✓ | 3348 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
361.2.k.a | ✓ | 3348 | 1.a | even | 1 | 1 | trivial |
361.2.k.a | ✓ | 3348 | 361.k | even | 171 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(361, [\chi])\).