Properties

Label 361.2.k
Level $361$
Weight $2$
Character orbit 361.k
Rep. character $\chi_{361}(4,\cdot)$
Character field $\Q(\zeta_{171})$
Dimension $3348$
Newform subspaces $1$
Sturm bound $63$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.k (of order \(171\) and degree \(108\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 361 \)
Character field: \(\Q(\zeta_{171})\)
Newform subspaces: \( 1 \)
Sturm bound: \(63\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(361, [\chi])\).

Total New Old
Modular forms 3564 3564 0
Cusp forms 3348 3348 0
Eisenstein series 216 216 0

Trace form

\( 3348 q - 108 q^{2} - 111 q^{3} - 114 q^{4} - 108 q^{5} - 117 q^{6} - 111 q^{7} - 120 q^{8} - 117 q^{9} - 123 q^{10} - 111 q^{11} - 117 q^{12} - 111 q^{13} - 111 q^{14} - 117 q^{15} - 96 q^{16} - 3 q^{17}+ \cdots - 123 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(361, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
361.2.k.a 361.k 361.k $3348$ $2.883$ None 361.2.k.a \(-108\) \(-111\) \(-108\) \(-111\) $\mathrm{SU}(2)[C_{171}]$