Newspace parameters
Level: | \( N \) | \(=\) | \( 361 = 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 361.i (of order \(57\), degree \(36\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.88259951297\) |
Analytic rank: | \(0\) |
Dimension: | \(1080\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{57})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{57}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −0.497104 | − | 2.54490i | 1.24599 | − | 0.137906i | −4.37639 | + | 1.77754i | −1.92608 | + | 1.87372i | −0.970344 | − | 3.10236i | −1.47712 | + | 1.14969i | 3.86271 | + | 5.91232i | −1.39391 | + | 0.312383i | 5.72588 | + | 3.97024i |
7.2 | −0.491952 | − | 2.51852i | −2.59032 | + | 0.286697i | −4.24794 | + | 1.72537i | −0.768443 | + | 0.747553i | 1.99637 | + | 6.38274i | 0.0293309 | − | 0.0228291i | 3.62809 | + | 5.55320i | 3.70018 | − | 0.829231i | 2.26076 | + | 1.56758i |
7.3 | −0.485221 | − | 2.48406i | 0.0922595 | − | 0.0102113i | −4.08212 | + | 1.65801i | 1.31765 | − | 1.28183i | −0.0701317 | − | 0.224223i | 3.34871 | − | 2.60641i | 3.33068 | + | 5.09798i | −2.91898 | + | 0.654159i | −3.82349 | − | 2.65115i |
7.4 | −0.409797 | − | 2.09793i | 2.01804 | − | 0.223357i | −2.38040 | + | 0.966836i | 2.44372 | − | 2.37729i | −1.29558 | − | 4.14219i | −1.18549 | + | 0.922706i | 0.665547 | + | 1.01870i | 1.09522 | − | 0.245444i | −5.98883 | − | 4.15256i |
7.5 | −0.376595 | − | 1.92796i | −0.174153 | + | 0.0192752i | −1.72221 | + | 0.699500i | 0.192031 | − | 0.186810i | 0.102747 | + | 0.328500i | −3.61536 | + | 2.81395i | −0.151662 | − | 0.232136i | −2.89743 | + | 0.649330i | −0.432480 | − | 0.299875i |
7.6 | −0.348190 | − | 1.78254i | 2.54770 | − | 0.281980i | −1.20322 | + | 0.488707i | −1.44340 | + | 1.40416i | −1.38972 | − | 4.44320i | 3.55530 | − | 2.76720i | −0.696676 | − | 1.06634i | 3.48388 | − | 0.780756i | 3.00555 | + | 2.08400i |
7.7 | −0.302889 | − | 1.55062i | −2.83012 | + | 0.313238i | −0.459700 | + | 0.186714i | 2.58601 | − | 2.51571i | 1.34293 | + | 4.29358i | −2.10407 | + | 1.63766i | −1.29952 | − | 1.98906i | 4.98409 | − | 1.11696i | −4.68418 | − | 3.24794i |
7.8 | −0.301334 | − | 1.54266i | −1.89976 | + | 0.210265i | −0.436011 | + | 0.177092i | −1.83532 | + | 1.78542i | 0.896828 | + | 2.86732i | −0.330256 | + | 0.257049i | −1.31482 | − | 2.01249i | 0.637470 | − | 0.142860i | 3.30734 | + | 2.29326i |
7.9 | −0.252437 | − | 1.29234i | −0.391559 | + | 0.0433377i | 0.246574 | − | 0.100150i | −2.30182 | + | 2.23925i | 0.154851 | + | 0.495086i | 1.37783 | − | 1.07241i | −1.63207 | − | 2.49807i | −2.77595 | + | 0.622105i | 3.47493 | + | 2.40946i |
7.10 | −0.176813 | − | 0.905186i | 0.734445 | − | 0.0812884i | 1.06489 | − | 0.432521i | 0.951507 | − | 0.925640i | −0.203441 | − | 0.650437i | 1.61292 | − | 1.25539i | −1.58869 | − | 2.43167i | −2.39459 | + | 0.536640i | −1.00612 | − | 0.697625i |
7.11 | −0.166828 | − | 0.854065i | 2.73618 | − | 0.302840i | 1.15139 | − | 0.467655i | 0.510455 | − | 0.496579i | −0.715115 | − | 2.28635i | −1.32321 | + | 1.02989i | −1.54341 | − | 2.36236i | 4.46756 | − | 1.00120i | −0.509268 | − | 0.353119i |
7.12 | −0.141237 | − | 0.723052i | −3.36489 | + | 0.372426i | 1.35013 | − | 0.548376i | −1.41644 | + | 1.37793i | 0.744529 | + | 2.38039i | 2.60273 | − | 2.02579i | −1.39308 | − | 2.13227i | 8.25640 | − | 1.85030i | 1.19637 | + | 0.829545i |
7.13 | −0.141184 | − | 0.722784i | −1.29352 | + | 0.143167i | 1.35050 | − | 0.548528i | 2.25094 | − | 2.18975i | 0.286104 | + | 0.914726i | 1.87275 | − | 1.45762i | −1.39273 | − | 2.13173i | −1.27468 | + | 0.285662i | −1.90051 | − | 1.31779i |
7.14 | −0.0831546 | − | 0.425705i | −0.950749 | + | 0.105229i | 1.67868 | − | 0.681820i | −0.486706 | + | 0.473475i | 0.123856 | + | 0.395989i | −3.88236 | + | 3.02176i | −0.904323 | − | 1.38417i | −2.03454 | + | 0.455951i | 0.242033 | + | 0.167822i |
7.15 | −0.0671743 | − | 0.343895i | 2.09291 | − | 0.231643i | 1.73924 | − | 0.706417i | −0.792589 | + | 0.771042i | −0.220250 | − | 0.704179i | −2.02753 | + | 1.57809i | −0.743060 | − | 1.13734i | 1.39921 | − | 0.313570i | 0.318399 | + | 0.220773i |
7.16 | 0.0216586 | + | 0.110880i | −0.0211848 | + | 0.00234474i | 1.84116 | − | 0.747816i | −3.03725 | + | 2.95468i | −0.000718818 | − | 0.00229819i | −0.322988 | + | 0.251391i | 0.246378 | + | 0.377110i | −2.92695 | + | 0.655944i | −0.393398 | − | 0.272776i |
7.17 | 0.0610592 | + | 0.312589i | −2.00717 | + | 0.222154i | 1.75900 | − | 0.714446i | 0.730176 | − | 0.710326i | −0.191999 | − | 0.613855i | 0.293144 | − | 0.228163i | 0.679133 | + | 1.03949i | 1.05199 | − | 0.235757i | 0.266624 | + | 0.184873i |
7.18 | 0.152862 | + | 0.782568i | 3.00938 | − | 0.333078i | 1.26394 | − | 0.513369i | −2.74514 | + | 2.67052i | 0.720677 | + | 2.30413i | 0.169613 | − | 0.132015i | 1.46718 | + | 2.24569i | 6.01805 | − | 1.34868i | −2.50949 | − | 1.74004i |
7.19 | 0.157057 | + | 0.804046i | 1.27603 | − | 0.141231i | 1.23116 | − | 0.500056i | 0.346775 | − | 0.337348i | 0.313967 | + | 1.00381i | 2.33309 | − | 1.81592i | 1.49160 | + | 2.28306i | −1.31907 | + | 0.295612i | 0.325707 | + | 0.225840i |
7.20 | 0.159102 | + | 0.814515i | 0.592939 | − | 0.0656265i | 1.21487 | − | 0.493436i | 2.54554 | − | 2.47634i | 0.147792 | + | 0.472517i | −1.27640 | + | 0.993461i | 1.50303 | + | 2.30056i | −2.58012 | + | 0.578218i | 2.42202 | + | 1.67939i |
See next 80 embeddings (of 1080 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
361.i | even | 57 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 361.2.i.a | ✓ | 1080 |
361.i | even | 57 | 1 | inner | 361.2.i.a | ✓ | 1080 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
361.2.i.a | ✓ | 1080 | 1.a | even | 1 | 1 | trivial |
361.2.i.a | ✓ | 1080 | 361.i | even | 57 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(361, [\chi])\).