Properties

Label 361.2.i
Level $361$
Weight $2$
Character orbit 361.i
Rep. character $\chi_{361}(7,\cdot)$
Character field $\Q(\zeta_{57})$
Dimension $1080$
Newform subspaces $1$
Sturm bound $63$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.i (of order \(57\) and degree \(36\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 361 \)
Character field: \(\Q(\zeta_{57})\)
Newform subspaces: \( 1 \)
Sturm bound: \(63\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(361, [\chi])\).

Total New Old
Modular forms 1152 1152 0
Cusp forms 1080 1080 0
Eisenstein series 72 72 0

Trace form

\( 1080 q - 38 q^{2} - 19 q^{3} - 8 q^{4} - 37 q^{5} - 38 q^{6} - 40 q^{7} - 38 q^{8} + 49 q^{9} + 19 q^{10} - 40 q^{11} - 38 q^{12} - 38 q^{13} - 38 q^{15} - 8 q^{16} - 94 q^{17} - 38 q^{18} - 38 q^{19} - 46 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(361, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
361.2.i.a 361.i 361.i $1080$ $2.883$ None 361.2.i.a \(-38\) \(-19\) \(-37\) \(-40\) $\mathrm{SU}(2)[C_{57}]$